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CHAPTER I

DIVISIBILITY AND INDETERMINATE EQUATIONS
OF FIRST DEGREE

§ 1. Divisibility. By natural numbers we mean the numbers 1, 2, ...,
by iniegers we mean the natural numbers, the number zero and the nega-
tive numbers —1, —2, —3,...

‘We say that an integer a is divisible by an integer b if there is an
integer ¢ such that a4 = be. We then write

bia.
‘We call b a divisor of a and a a multiple of b.

We write bt e if b does 1ot divide a.

Since for each integer b we have 0 = 0-b, every integer is a divisor
of zero. Since for each integer o we have a = a-1, we see that 1 is a divi-
sor of every integer.

Suppose now that »,y,z are integers such that

(1) zly and ylz.

Then there exist integers ¢ and « such that y = ¢ and 2 = yu. The number
v = tu is an integer (as the product of two integers). Thus, since z = av,
we obtain x|2. This proves that relations (1) imply the relation #[z which
means that a divisor of a divisor of an integer is a divisor of that integer.
‘We express this by saying that the relation of divisibility of integers is
tramsitive. It follows that if w|y, then z|ky for every integer k.

It is easy to prove that a divisor of each of two given integers is
a divisor of their sum and their difference. Moreover, if d|a and 15,
then, for arbitrary integers « and vy, d|az--by.

In fact, the relations d|e and &|b imply that there exist integers
k and I such that ¢ = kd, b = 1d, whence ax-+by = (kr+-ly)d and con-
sequently, since %w+4ly is an integer, d|az--by. )

Any two of the formulae & = be, —a = b(—0), @ = (—b)(—¢),
—a = (—b)e are equivalent. Hence also any two of the formulae

bla, b|{—a, —bla, —bl—a

are equivalent. Consequently while, examining divisibﬂiﬁy of integers we
can restrict ourselves to the investigation of divisibility of natural numbers..
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It follows from the definition of the relation b|e that if 0]a, then
a = 0. If, however, a s 0, then every divisor b of the integer o is differ-
ent from zero and, consequently, —b is also a divisor of a. Thus for an
integer @, a 7 0, the divisors b of a can be arranged in pairs (b, —b).
Therefore, in order to find all the divisors of an integer, it is sufficient
to find the natural ones and then join to each of them the negative divi-
sor of the same absolute value.

It seems at first sight that the notions of divisor and multiple are,
in a sense, dual. It is much easier, however, to find the multiples of an
integer than the divisors of it. In fact, the multiples of an integer a are,
clearly, all the integers of the form ka, where %k is an arbitrary infeger.
Consequently, the multiples of a form the sequence

ey —2a, —a, 0, a, 2a, ...,

which is infinite in both directions. On the other hand, the task of find-
ing the set of the divisors of @ is by no means simple. This might seem
strange, since the set of the divisors is finite and the set of the multiples
is infinite.

If a natural number o is divisible by a natural number d, then d < a.
Thus, in order to find all the positive divisors of an integer a, it suffices
to divide @ by the natural numbers 1,2,...,a successively and select
those for which the quotient is an integer. Since for each natural number
a the number of those quotients is finite, there exists a method, theoret-
ically at least, for finding all the divisors of a given integer. The diffi-
culty is, then, of a practical nature, and indeed for some natural numbers
we are unable fo find all the divisors. For instance, we cannot do this,
for the time being at least, for the number @ = 2191—1, which has 31
digits. This turns out to be much too tedious a task even with the aid
of computing machines. It may seem interesting that we can prove (cf.
Chapter X, § 3) that there exist exactly two divisors of the number g,
different from the trivial ones: 1 and 211—1, but we cannot find either
of them. For the number 21, however, which is greater than a, we can,
clearly, find all the natural divisors. They are 102 in number and form
a geometric progression 1,2,22,923, ..., 2191, We ecannot find any of
the non-trivial divisors of the number 212641 either. We do not even
know the exact number of them, which is, as we know greater than three
(compare Chapter X).

Sometimes the divisors of a natural number have been found by the
use of electronic computers. This was the case with the number (18!—1):
:59 = 108514808571661. With the aid of the computer SWAC, D. H. Leh-
mer discovered that the number has exactly four natural divisors. They
are 1, the number itself, 22663 and 478749547 (cf. Gabard {371, pp. 218-220).

L. Divisibility Y

To the divisors of natural numbers and the number of them we shall
return in Chapter IV. .
The solution of the problem whether a given integer is divisible by
another one may involve serious difficulties, which sometimes can be
overcome by the use of electronic computers. For example, the fact that
the number @ = 2511 is divisible by the number m = 825753601
has been found in this way. The reason why this particular fact has been
of special interest will be given later (Chapter X, § 4). The number a
has 19729 digits, and so it would be a very tedious task even to write it
down. However, the problem was not to divide @ by m but to decide
whether ¢ is divisible by m or not, and the computations necessary for
that could be simplified to the extent accessible to a computer.
'We present here another example of the solution of a similar problem.
This is the problem of divisibility of the number 22**+1 by the num-
ber 5-2"4-1. The first number has more than 10°* digits and it is clear-
ly impossible to write down all of them; the second one has 587 digits.
Here again, owing to the special form of the first number, the necessary
computations could be simplified to such an extent that electronic com-
puters could be used. We return to this problem in Chapter X, § 4.

EXERCISES. 1. Prove that if a and b are natural numbers, then a!b!|{a+ b)!.

o=

Proof. The theorem is true if at least one of the numbers ¢ and b is equal to 1,
since for each mnatural b we have (b+ 1)! = bl(b+1), whence 1!b!|(1+4b). Thus the
theorem is true for a-4b = 2, since in this case @ = 1 and b = 1. Suppose that
7 is a natural number greater than 2 and that the theorem is true for all natural
numbers whose sum is equal to n. Let a and b be two natural numbers for which
a+b = n-+1. We already know that the theorem is true if at least one of the nnm-
bers @ and b is equal to 1, and thus we may assume that ¢> 1 and b>> 1. From the
assumption that the theorem is true for the natural numbers whose sum is equal
to » and from the equalities (a— 1)+b = n, a+ (b— 1) = n we infer that (a— 1)1d!|
| (a+b—1)! and a! (b— 1)!|(a+b— 1)L But (a+b)! = (a+b— 1)1(a-+b) = (a-+b— 1)la
+(a--b—1)!b, and sinee (a— 1)!b!|(a-+b—1)! and (a—1)}la = al, a!b!|(a+b—1)la.
Similarly, by a!(d— 1)!|(a+b— 1)!, we deduce that a!b!|(a+b— 1)!b. Hence, by the
identity for (a-b)!, we conclude that ald!|({a-+b)!, which proves the theorem for
natural numbers whose sum is equal to #+ 1. From this by induction the theorem
follows for all matural o and b.

2. Prove that, for a natural number k, the product P = (a-+1){(a+2)...(a+k)
is ‘divisible by ! )

Proof. Plainly, P = (a-%)!/a!. Henece, in virtue of exercise 1 (for b = k),
the theorem follows. :

3. Prove that if a3, ga, ..., am are natural numbers (m > 2}, then ajlasl...am!|
I(a‘1+a'2+--~+am)!

Proof. As follows from exercise 1 the theorem is true for m = 2..Suppose it
is true for a given natural number m and let a1, as, ..., Gm, @mq1 be patural num-
bers. We then have !

(@1 +as+... +am)amypr! (a1 as+ ...+ am+ amp1)!,
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which, by the assumption that the theorem is true for the number m, implies the
theorem for m--1. Thus, by induction, the theorem follows.

In particular, for m = 3, ay = n, ay = 2m, ag = 3n, with n =1,2,..
obtain

. We

2t (2n)! (Bn)!|(6n)!, nm=1,2,...

4. Prove that if § is a set of natural numbers such that for any two numbers of
the set § their difference and their sum belong to § and d is the least natural num-
ber belonging to the set S, then § is the set of the natural multiples of the number d.

Proof. By hypothesis, the sum of any two numbers belonging to the set §
belongs to 8. Hence, by an easy induction we infer that the sum of any finitely
many numbers of the set § belongs to 9. Accordingly, in the case of equal numbers,
the numbers nd, with n =1, 2, ... belong to S. In other words each natural mul-
tiple of the number ¢ belongs to S.

On the other hand, suppose that % belongs to the set § and that % is not a mul-
tiple of d. Consequently, dividing % by d we obtain the positive reminder » < d.
We have & = gd+r, where ¢ is a natural number, for if ¢ = 0, we would have
k <r <d and hence % < d, contrary to the assumption that d was the least num-
ber belonging to the set §. The number ¢d is then a natural multiple of the number
d and as such belongs to the set 9. Consequently, the natural number r = k— gd,
as the difference of two numbers of the set 8, belongs to S, which is impossible, since
r < d. This proves that each number of the set § is a natural multiple of the num-
ber d, and this completes the proof of the theorem.

§ 2. Least common multiple. Let a,, ay, ..., a, be a finite sequence
of integers. Every integer which is divisible by each of the integers a;
(¢ =1,2,...,n) is called a common multiple of the integers ay, ..., a,.
Such is the product of the integers a,, ay, ... s Gy, for ingtance. If at least
one of the integers ay, a,, ..., a, is zero, then clearly only the integer 0
is their common multiple. If, however, none of the integers a; (i = 1,2,...
..., m) i8 zero, there are infinitely many common multiples of these inte-
gers, e.g. all integers of the form ka,a,...a,, % being an integer. In this
case there exist also common multiples which are natural numbers; for
instance |a;a,...a,|, where || denotes the module of the number z. In
every seti of natural numbers there exists the smallest number; conse-
quently, the set of the common multiples of integers a,, a,, ..., @,, which
are natural numbers, containg the smallest one; it is called the least com-
mon multiple of the integers a,, a,, ..., @, and denoted by [ay, a, ..., a,].

THROREM 1. Every common multiple of natural numbers Gyy Oy eney Oy
is divisible by their least common multiple.

Proof. Suppose, contrary to theorem 1, that there exists a com-
mon multiple M of the integers ay, ay, ..., a, which iy not divisible by
their least common multiple N. Let

M = gN+r,

where 7 is a natural number < N. Hence r =— M- ¢ . Let ¢ be any of
the numbers 1, 2, ..., n. Since M and N are multiples of the infeger a;,
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there exist integers x; and y; such that M = z;a; and N = y;a;. There-
fore ¢ = M —qN = (#;—qy;)e;, whence a;{r for all {=1,2,...,n,
which implies that the natural number r is a common multiple of the
integers ay, G, ..., &, and is smaller than their least common multiple
N; this is clearly impossible. :

§ 3. Greatest common divisor. Let S be a given (finite or infinite)
set of natural numbers, such that at least one of them, for instance a,,
is different from zero. Every integer d which is a divisor of each of the
integers of the set § is called a common divisor of the integers of the set §.
Clearly, the integer 1 is an example of a common divisor of the integers of §.

Every integer d which is a common divisor of the integers of the
set 8 is, clearly, a divisor of the natural number |a,|, and so its module
is less than |a,|. It follows that the number of common divisors of the
integers of the set § is finite, and therefore there exists the greatest one
among them; that number is called the greatest common divisor of the inte-
gers of the set 8, and is denoted by dg. dg is plainly a natural number.
Now, let d denote an arbitrary common divisor of the integers of the
set S and let N = [d, dg]. Further, let ¢ be an integer of the set S.
We have d|a and dg|a, which proves that & is a common multiple of the
divisors d and dg, whence, by theorem 1, [d, dg] |a. The number ¥ =
[@, ds] is then a divisor of the integers of the set § and, since dg is
the greatest common divisor of those integers, N < dg. But the natu-
ral number N, as the least common multiple of the numbers d and dg,
is divisible by dg, whence N > dg. Thus N =dg, and so d|ds. This
proves the following

THEOREM 2. If 8 is a set (finite or infinite) of integers among which
at least one is different from zero, then there exists the greatest common di:vi:w.r
of the integers of the set 8. Moreover, the greatest common divisor is divisi-
ble by any other common divisor of the integers of the set 8.
) It can be proved (cf. Schinzel [7]) that if f(x) is a polynomial of
degree n with integer coefficients and % is an arbitrary integer, then the
greatest common divisor of the numbers f(z), # running over t'he set of
integers, is equal to the greatest common divisor of the fo]low1:ug n+1
integers: f(k), f(k-+1), f(k+2), ..., f(k-+n). Thus, for instance, if f(z) =
= g®—g, then, in virtue of what we have stated above, the greatest
common divisor of the integers f(z), # being an integer, is equal to the
greatest common divisor of the integers f(—1) =0, f(0) =0, f1)y =0,
f(2) =6, ie. it i3 equal to 6.

§ 4. Relatively prime numbers. Two integers a and b whose greatest
common. divisor is equal to 1 arve called relatively prime.

THEOREM 3. Dividing each of two integers a and b by their . greatest
common divisor we oblain relatively prime numbers.



Yakuza


12 CHAPTER 1. Divisibility and indeterminate equations

Proof. Let a and b be two integers, d their greatest common divi-
sor and a; = a/d, b; = b/d. If the integers a, and b, were not relatively
prime, their greatest common divisor d, would be greater than 1, and
then we should have a, = a,/d, and b, = b,[d,, a, and b, being integers.
But then we would obtain the equalities a = ddy @y, b == dd, by, imply-
ing that the integer dd, is & common divisor of the integers ¢ and b, whence
ddy < d, which is impossible, since d, > 1. This shows that the integers
@y ansd. b, must be relatively prime, which completes the proof of theo-
rem 3.

The greatest common divisor of integers a,, @, ..., &, is denoted
by (a1, as) ..., as).

The argument used to prove theorem 3 will also prbve the
following

THEOREM 3°% _Dividing each of the integers @y, ay, ..., ay byb their
greatest common divisor we oblain integers whose greafest common divisor
is equal to 1.

Let 7 be a rational number (i.e. the ratio afb of two integers ¢ and
b with b - 0). Multiplying, if necessary, the denominator of + by —1,
Wwe may assume that b>0. If (a,b) =d, then putting a/d — Gy,
b/d = b, we obtain, by theorem 3, relatively prime numbers ¢, and b,
with b, > 0, since b has been assumed to be > 0. We then have 7 = afb
= a,/b;. Thus every rational number can be written as a fraction whose
numerator is an integer and denominator a natural number, the numera-
tor and the denominator being relatively prime. o

Now we prove that if (a,b) =1 and ¢la, then (e,b) = 1.

In fact, if (¢,b) = d, then d|b and d|e, whence, in virtue of ¢|a,
we obtain d|a. Consequently, d is a common divisor of the integers a
and b, thus, by theorem 2, it is a divisor of their gre&besﬁ common divi-
sor =1, whence ¢ =1, which proves that (e, by =1.

. For every finite sequence of natural numbers @1y Ayy.v.y G, W AN
eagily find a natural number a which is relatively prime to every number
of the sequence. Such ig, for instance, the number 4 = g, Gy 0+ 13
for, every common divisor d; of the integers a and a;, where i is any
number of the numbers 1,2,...,%, is also a divisor of the number
leag...an and hence a divisor of the difference G—0@y...0, =1, sO
it is equal to 1.

From this we can easily conclude that there exists an infinite sequence
o.f natural numbers such that any two different elements of it are rela-
tnfely prime. But the formula obtained in this way for the nth term of
this sequence would not be simple. A much simpler example of a sequence
Fy, whose any two different terms are relatively prime is obtained
by setting Fjy =241 (k =0,1,2,...). In fact, let m and n be

cm
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two integers, with m >n > 0. As iz well known for each integer
2 and natural number k& we have s—1 | #*—1 (since z*—1 = (z—1)x
X (@ +a" 24 .4+ +1)). Applying this to z = 2"}, k= 2" we
obtain that 2"*1—1[2™_1. Since F, — 2241 |2 —1 and 22" —1
= Fp—2,wehave I, | F,,—2. Henceifd| ¥, and d | Fy,, thend | F,—2,
which implies & | 2. But d, as a divisor of an odd number F,,, is an
odd number, and thus the relation d|2 implies d]1, which proves
that (Fp, F,) =1 for m >n >0, as required.

It is worth-while noting that the following generalization of the above
is also frue. If a and b are two relatively prime integers and if 2 | ab,
then any two different numbers in the sequence a®*+b2* (k =0,1,2,...)
are relatively prime. .

One can prove that if &k is a natural number < 16, then among
every k consecutive natural numbers there exists at least one number
relatively prime to each of the remaining k—1 numbers. On the other
hand, one can prove that for each natural number % > 17 there exists
a sequence of % consecutive natural numbers m, m-+1,...,m+4+k—1
such that none of the numbers of the sequence is relatively prime
to each of the others (¢f. Pillai [4] and Brauer [2]). Here we
prove this statement for % =17. We eclaim that in this case the
number m = 2184 satisfies our conditions. In other words, we as-
sert that none of the consecutive natural numbers 2184, 2185, ..., 2200
is relatively prime to each of the other numbers of the sequence.

None of the numbers of the sequence which is divisible by
anyone of the numbers 2, 3, 5, 7, is relatively prime to each
of the other numbers of the sequence, since for each n =2,3,5,7
there are at least two numbérs in the sequence divisible by x.
There are only two other numbers in the sequence, 2189 and
2197, but the first of them as well as the number 2200, is divisible
by 11 and the second one, as well as the number 2184, is divisible
by 13.

EXERCISES. 1. Prove that if m and n are natural numbers and m is odd,
then (2™—1, 2%41) = 1.

Proof (J. Browkin). Let d be the greatest common divisor of the numbers
2™~ 1 and 2*+1. d is an odd number and 2™ —1 = kd, 2"+ 1 = Ild, where k and
1 are natural numbers. Hence 2™ = kd+1, 2" = ld— 1, whence 2™" = (kd+ 1)"
=td41, 2" = (Id— 1)™ == ud~ 1, where  and u are natural numbers.

Consequently, since td+1 = ud— 1, we have d |2, and this in view of d being
odd, implies that d = 1. :

2. Prove that for each natural number n we have (n!+1,(n41)!4 1) =1.

Proof. If d|n!+1 and d|(n+1)!41, then using the eguality (n!+1)(n+1)
= (n41!+n-+1, we see that d|(n+1)l4+n+1, whence d{n and, sincev dlnl+1,
we have d|l. '
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§ 5. Relation between the greatest common divisor and the least
common. multiple.

THEOREM 4. The product of two natural nwmbers is equal to the
product of their least common multiple and their greatest common
divisor.

Proof. Let a and b be two natural numbers, and let ¥ = [a, b]. Since
ab is clearly a common multiple of the numbers a and b, theorem 1 implies
that ¥ | ab. Let ab = dN, where d is a natural number. Since N is a com-
mon multiple of @ and b, we have N = ka = Ib, where & and I are natural
numbers. From this we obtain ab = dN = dka = dlb, and hence a = dl
and b = dk, which proves that d is a common lelSOI' of the numbers
a and b.

Now, let ¢ denote an arbitrary common divisor of the numbers a
and b. We have a = ta,, b = tb,, which implies that the number a,b,
is & common multiple of the numbers ¢ and b. Therefore, by theorem 1,
we have N | ta,b,. Hence, for an integer u, we obtain ta;b, = Nu. But
4N = ab = i%a,b;, whence tNu = dN. Consequently, d =tu and i|d.
Thus the natural number ¢ is & common divisor of the numbers & and b
and, moreover, every common divisor of these numbers divides d; this
proves that d is the greatest common divisor of the numbers ¢ and b,
which, in view of the formula ab = dN, completes the proof of theorem 4.

An important special case of theorem 4 is obtained when the natural
numbers @ and b are relatively prime, i.e. when d = (@, ) = 1. Then
the formula ab = Nd implies N = ab. This proves the following

COROLLARY. The leasi common multiple of two relatively prime natu-
ral numbers is equal to their product.

§ 6. Fundamental theorem of arithmetic. Let a4 and b be two rela-
tively prime natural numbers and ¢ a natural number such that b | @ec.
The number ac is divisible by each of the numbers & and b, therefore,
by theorem 1, it is also divisible by their least common multiple, which,
in virtue of the corollary to theorem 4, is equal to ab. Thus ac — tab,
where ¢ is an integer, whence ¢ = b, and therefore b | ¢. Thus we ha.ve
proved the following

TeroREM 5. A natural number which divides the product of two natu-
ral numbers and is relatively prime to one of them is a divisor of the other.

Theorem 5 is sometimes called the fundamental theorem of arithmetic.
We have proved it for natural numbers, but, clearly, it remains true for

all integers since the change of the sign does not affect divigibility of the
numbers.

CORQLLARY. If @, b, ¢ are integers such that a e, blcand (a, b) =1,
then ab | ¢.
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Proof. If a|c, then ¢ = at, where ¢ is an integer. Since b |c¢, we
have b | at and henee using both the assumption that (a, b) =1 and theo—
rem 5 we obtain b|¢, ie. ¢ = bu, where w is an integer; hence ¢ =
at = agbu, and thus ab|e, as required.

As an easy corollary to theorem 5 we prove

TemorEM 6. If a,b,c are integers such that (a,b) = (a,¢) =1,
then (a, be) = 1.

Proof. Let d = (a,bc) and d, = (b, d). We then have d,|b and
dy | d. Since d | a, d, | a; we see, in virtue of the fact that d, |a, d, | b
and (a, b) = 1 hold, that &, = 1. Thus (b, d) = 1. But, since d = (a, be),
d | be, which by theorem 5 implies that ¢ |¢. In view of d|a and by
(@,¢) =1 we conclude that d =1, ie. (a,bec) =1, as required.

From this, by an easy induction, we derive

THEOREM 6% Let n be a natural number > 2. If ay, a,, ...
o are integers such that (a;,a) =1 holds for every s =1,2,...
(@ Bye Oy, a) = 1.

In other words, theorem 6 states that an integer, which is rela-
tively prime to each of the given integers is relatively prime to their
product.

Returning to theorem 5 we see that the argument used for its proof
will also prove the following generalization of it. -
If a,b and ¢ are integers such that b|ac, then b|(a,b (b c).

Theorem 6* has the following

COROLLARY 1. If (@, b) = 1 and n is a natural number, then (a*, b™) = 1.

Proof. If (&,b) =1, then, by theorem 6% (for @, = @y =...
= a, = @), we have (a",b) =1, whence, again by theorem 6* (for a,
=@, = ... =08, =0>0), we conclude that (a",d") =1.

From corollary 1 we derive

COROLLARY 2. For natural numbers a, b, n, the relation a™ | b @mplws
the relation a|b.

Proof. Let (a,b) =d. We then have a = da,, b = db,, where
(@1, by) = 1. Hence, in view of corollary 1, (a},b}) = 1. Since a”|b",
or equivalently a7d"”|bd", we have a}|b} and a7 | (a7,d}), which
proves that a7 | 1, whence a, =1, a = d, and consequently, by b = db,
= aby, & | b, as required.

We note that for two natural numbers ¢ and b the relation o”|b°
does not necessarily imply @ | b. For instance it is easy to check that
44[10%, but 4 4 10; similarly 9°|21%, but 91 21.

Remark. The notion of divisibility of one number by another can
be extended to real numbers in the following manner. Given two real
numbers « and f we say that o divides g and write o | f if there exists

) Gn, GNA
, n, then
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an integer % such that p = ka. In the case of this. extended notion of
divisibility, however, the relation a?| f* does not necessarily imply the
relation « | B. For instance, 2 | 6, but it is not true that %) | 1/5, since
if it were, the latter relation would imply the existence of an integer %
such that V6 = kl/—Z-, which would give &k = ]/g, whence § =%* and
thus & >1, ie. k >2, and then 8 = k2 > 4, which, clearly, is untrue.

COROLLARY 3. For natural numbers a, b and n > 1, the relation a™ | 2™
implies @ | b.

Proof. Let (a,d) =d. Consequently, a = da,, b = db;, where
(ay, b;) = 1. Hence, by corollary 1, (a7, b7) = 1 and, in virtue of the rela-
tion a™ | 26", we have d"a}|2d"b}, whence ai | 207 and by the- use jof
(a7, b7) = 1 and theorem B we have a7 |2, which, since » > 1, implies
a, =1, and consequently a = d, which gives a|b.

THEOREM 7. If a natural number is the m-th power of a rational
number and m 4s natural, then it is the m-th power of a natural
number. ' :

Proof. Suppose that a natural number » is the mth power of a ration-
al number p/g. As we know from § 4, we may assume that p and q are
natural numbers and that (p, ¢) = 1. Hence, by theorem 6% we infer
that (p™, ¢) = 1. On the other hand, by » = (p/q)™, we have ng™ = p™,
whenee ¢ | p™ and therefore ¢ | (p™, ¢) = 1. Thus ¢ = 1 (since ¢ is a natu-
ral number), and consequently, » = p™, which means that » is the mth
power of a natural number.

As an immediate consequence of theorem 7 we have the following

COROLLARY. The m-th root of a natural number which is not the m-th
power of a natural number is an drrational number,

o 5,

In particular, the numbers ﬁ, 1/3, }/5, 1/5, ﬁ, 1/5, I/I(S, 1/2,
3,— 8, .

V3, V4 are irrational.

EXERCISES. 1. Prove that if a, b, d are integers such that (a,d) = 1 and
dla+b, then (d,a) =1 and (d,d) = 1.

Proof. Suppose that (a,b) = 1 and dla-+b. If (d, a) = 8, then é|d and 3|a,
whence, since dia-+b, dla+b and consequently &|(a+b)—a, which gives 4§|b.
Thus §|(a, b). Hence 6 = (d, a) = 1. The proof of the equality (d, ) = 1 is analo-
gous.

2. Prove that if n,n; and ns are natural numbers, n|nyny and none of the
numbers my,ng i8 divisible by =, then the number

n1
7y,
n

is a divisor of the number n, and moreover 1 < d < .

5] i=

6. Fundamental theorem of arithmetic i

Proof. In virtue of (*) we have % = (m, ﬂnﬁ?—) Thus the number %‘ is natu-

ral and, consequently n; = %lk, T

n,
= 711, where k& and 1 are relatively prime

natural numbers. We also have k = d, nyd = nl and, since (d,7) =1, d|n. Thus
d is a divisor of the number #. If d = 1, then we would have ny — nl and consequently
n|mg, contrary to the assumption. If d = n, then, since, by (%), d|n1, we have njn;,
which also contradicts the assumption. Thus d is & divisor of n for which 1 <d < n,
a8 required.

3. Prove that if ¢ and b are two relatively prime natural numbers and m is and
arbitrary natural number, then in the arithmetical progression a+bk (k= 0,1, 2,...)
there are infinitely many numbers relatively prime to m.

Proof. Suppose (a,b) = 1 and m is an arbitrary natural number. The num-
ber m is, clearly, divisible by some divisors that are relatively prime to @, e.g. the
number 1. Let ¢ denote the greatest one of them. We are going to prove that the
number a+be is relatively prime to m. We have (a,b) = 1, and, according to the
definition of ¢, (@, ¢) = 1. Hence (a, be) = 1. From exercise 1 it follows that if dla+be,
then (d, @) = 1 and (d, be) = 1; thus, a fortioni, (d, ¢) = 1. On the other hand, if also
d|m, then since ¢|m and (4, ¢) = 1, by the corollary to theorem 5 we have de|m.
Further, since (d,a) =1 and (a,¢) = 1, the equality (@, de¢) = 1 holds. Thus the
number dc is a divisor of the number m and is relatively prime to a, but, since ¢ is
the greatest divisor having these properties, d = 1. So far we have proved that if
d is a common divisor of the numbers a--be and m, then d = 1; this proves that
(a+be, m) = 1. From this relation we conclude that if 7 is an arbitrary natural num-
ber, then for ¥ = ¢+ lm the numbers a+ bk and m are relatively prime, and this is
what we had to prove.

4. Prove that if o and b are relatively prime natural numbers then the arithme-
tical progression a+%kb (k = 0,1, 2,...) contains an infinite subsequence such that
any two numbers of the subsequence are relatively prime.

Proof. We define the required subsequence u;, W, ... inductively. Let u; = a.
Now, let » be an arbitrary natural number. Suppose we have already defined the
numbers u;, Uz, ..., %y and that any two of them are relatively prime. In virtue of
exercise 3, for the natural number uju,...u, there is an term of the progression
a+kb (k= 0,1, 2,...) which is relatively prime to U Ug...Uy. Let us denote it by
“ni1. It is readily shown that the sequence u;, u,, ... defined in this way has the
desired properties.

THEOREM 8. Suppose that a and b are two relatively prime natural
numbers such that the product of them is the n-th power of a natural num-
ber, i.e. ab = ¢", where n is a natural number. Then the numbers & and
b are themselves the n-th powers of natural numbers.

. Proof. Let (a,6) =d. Then a = da,, ¢ = de,, where (@,0,) =1.
By the assumption that ab = ¢", we have da,b = d"!, whence a;b
='d""%". Butin view of d | a and (a, b) = 1, we obtain (d, b) = 1, whence,
by theorem 6°, we obtain (@*~*, b) = 1. The equality a,b = d*'c? implies
the relation b | @" "¢}, Therefore, by theorem 5, | ¢*. On the ‘other hand,
since (a,¢,) = 1, theorem 6° implies that (ay,c?) =1 and, since the
equality a,b = d" '} gives the gelagion ¢} |a;b, then, by theorem B,

Elementary theory of numbers - . %
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we obtain c1 | b. The relations b | ¢f and ¢f | b together imply the equality
b = ¢, whence a; = d** and ¢ = da; = d". Thus we arrive at the final
conclusion that each of the numbers a and b is the ath power of
a natural number.

COROLLARY. Suppose that k,c and n are natural numbers, that a,,
gy +re, Gy 08 @ Sequence of natural numbers such that any two of them are
'relam"vely prime and that a, a,...a; = c". Then every number of the sequence

Uy, Gy ...y @z 8 the n-th power of a 'nat'm*a,l number.
§ 7. Proof of the formulae
2) (@1, Gy vy @nyr) = (@1, Ggp ooy B0,y Gy
and
(8) [B1y Gy - Gnyr] = [[G1; Gy ooy Gndy Bus].

THEOREM 9. For natural numbers n>2 ond a, dy, ..., Gnyy for-
mula (2) holds.

Proof. Let d = ((ay, @5, ..., @), Gnyy). Then d is a common divi-
sor of the numbers (a,,a,,...,a,) and a,.,. Since (ay, az,...,a,) 18
a divisor of each of the numbers a;, a,, ..., @y, ¢ must be a divisor of each
of the numbers a,, @, ..., Gy, Gn ;. Now let d’ denote an arbitrary divisor
of the numbers a,, a;,..., 4,y;. In virtue of theorem 2, we have d'|
|(@1, 83, ..., @,). Since also d'|a,,,, we have, by the definition of the
number d and again by theorem 2, d’|d. Thus d is a common divisor
of the numbers a,, ¢y, ..., @y, @y,,, Which is divisible by every common
divigor of these numbers. Consequently, d is the greatest common divi-
80T Of @y, @, ..., Gpyq. Formula (2) is thus proved.

It follows that in order to find the number (a,, 4y, ..., a,).We ma.y
caleulate the divisors dy = (a;, s), d3 = (dy, a3), dy = (d,, @)y
= (fu_g; Gn_1), and (a;, Gy, ..., ay) = (dn_1, &s), successively.

Thus the calculation of the greatest common divisor of arbitrarily
many numbers reduces to the successive calculation of the greatest com-
mon divisor of two numbers.

THEOREM 10. For natural numbers n >
mula (3) holds.

Proof. Let N = [[al,az, ceey a,,,],a,,+1]. Then N iz a common mul-
tiple of the numbers [a,, @y ..., a,] and 6,,;. Since [a;, @y, ..., a,] i8
a multiple of each of the numbers a,, as, ..., a,, the number ¥ is a mul-
tiple of each of the numbers a,, a,, ..., @, Gqyy. Let M denote an arbit-
rary eommon multiple of the numbers a,, a,,..., Gy, Gny;. In virtue
of theorem 1, we have [a, ay, ..., a,] | M. Since also a,,, | M, we have
again by theorem 1, [[a1,as,...,8x], Guy]| M or, equally, N | M.
Thus N iz & common multiple of the numbers a,,a,, ...

2 and Gy, Gy, ...y Qnpy for-

‘n«-—l‘

H aﬂr’ an+l“
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which is a divisor of every common multiple of these numbers. Conse-
quently, N is their least common multiple. This completes the proof of
formula (3).

It follows that in order to find the number [a1, as, .
caleulate N, = [a,,a,], N; =[N,, as], ...
[ay, a3, ...y @] = [Nn_1, an] successively.

THEOREM 11. If n i a natural number >
ral numbers @, @y, ..., 0,
= U 0y...0y.

Proof. In virtue of the corollary to theorem 4, theorem 11 is true
for » = 2. Now, let » be an arbitrary natural number > 2. Suppose
that the theorem is true for the natural number » and that a,, a,, .. oy O,y
Gy are natural numbers such that any two of them are relatively prime.
Consequently, (a;; @y.q) =1 for all ¢ =1,2,...,n. Hence, by theorem
6* and corollary to theorem 4, [a;a,...0,, 6] = 018y 00y ;. But by

.0y O] We may
'n—l = [-N —29 an_l] and

2 and if any two of the natu-
are. relatively prime, then [ay, @y, ..., ay,]

the hypothesis, theorem 11 is true for the number n; hence a,a...4, =
[a), @, ..., 6,.], and in virtue of (3), aa,.. O Gy gy = [[0'1: Uy evey Gp], a'n+1]
= [ay, as, ..., Gy, @&,,;], which proves the theorem for the number n+1,

and thus, by induction, the theorem holds for all natural numbers,

It is worth-while to note that the implication stated by theorem
11 could be reversed: if for » > 2 and natural numbers a,, a, ..., a, the
formula [ay, a,, ..., @,] = a,4,...a, holds, then any two of the numbers
Gy Gy, ..., Gy are relatively prime.

One can also prove the following statement: In order that the prod-
uct of n > 2 natural numbers be equal to the product of their greatest
common divisor and their least common multiple it is necessary and
suj'ﬁelent that any two of those numbers be relatively prime.

" This statement, however, is not true for n = 2, since for instance
the numbers 2 and 4 are not relatively prime and 2:4 = (2, 4')-[2,4]1

§ 8. Rules for calculating the greatest common divisor of two num-
bers. Let a and b be two given natural numbers. The process of dividing
the number a by b yields the quotient ¢ and the remainder  less than b.
We have

a = gb+47.

It follows immediately from this equality that every common divisor
of the numbers a4 and b is a divisor of the remainder 7 = a— gb, and that
every. common divisor of the numbers b and » is a divisor of the num-
ber a. Therefore the common divisors of @ and b are the same as the com-
mon lelSOI‘S of b and 7. So )

(a, b) = (b, 7).
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We adopt the notation a = ny, b = n,, r = n,, and write the above
equality as
(gy My) = (g, Na).

If n, = 0, then clearly, (n,, n;) = n,. If, however, n, 7 0, then we can
divide n, by #, and denote the remainder by n,; again

(ng, Mg) = (Mg, n3).

Proceeding in this way we obtain the following sequence of equalities:

(Mg M1) = (1, My),
(15 ) = (M, 1),

(N, Mg) = (Mg, my),

(4)

(Pae_gy M) = (Mge_1y ),
(Mx_1y M) = (Mg, N 1) -

Since 7;,, denotes here the remainder given by the division of n;_,
by m (0 =1,2,..., %), we have n;,, <mn; for 4 =1,2,..., k. There-
fore the ns are continually decreasing, i.e.

Ny >Ng >Ny >0 2 0.

This sequence cannot be infinite, since there are only  different non-nega-
tive integers less than n. Hence in the sequence of equalities (4) there
exists a last one, say (ng_,, n;) = (5 Mg,1). T we could have Mgy = 0,
then we would divide n; by n4,, and obtain another equality, (ng, Ng)
= (r41; Mp4), contrary to the assumption that there are only % equali-
ties in sequence (4). Thus M1 = 0, and consequently (my_;, ng) = ny.
Accordingly, equalities (4) imply

(0, M) = (ny, My} = (ng, ng) = ... = (s M) = mye,
whence

(mgy M1} = 1y,

From the above reasoning we may deduce the following rule for
finding the greatest common divisor of two given natural numbers:

In order to find the greatest common divisor of two given natural num-
bers n, and n, we divide ny by n, and find the remainder ny. Then we divide
7y by ny and again find the remainder n,. Continuing, we divide Ny by ng
and 80 on. At the final step we obtain o remainder which is equal to zero,
The remainder obtained in the last but one step s the greatest common divisor
of the numbers n, and n,. R
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The rule we have just presented is called either the division algorithm,

-the Buclidean algorithm, or the algorithm of comtinued fraciions. The. last

name will find its justification in §9.

It follows from the Emclidean algorithm that the greatest common
divisor of two given natural numbers can be obtained in finitely many
divisions. i ' B

The number of the divisions, however, can be arbitrarily large for
suitably chosen natural numbers o and b. As a matter of fact, for each
natural number n there exist natural numbers a, and b,, such that in order to
find their greatest common divisor by means of the Buclidean algorithm
n divisions are needed.

We prove this by providing ourselves with the sequence

(5) Uy =g =1, Uy =Up_1+U,_s, Where n :3,4,'...
‘We have '
=1, =1, ug=2, u; =3, u;=05, 4 =8, wu, =13,
(6) ;
Uy = 21, uy, = 34, ...

This is the Fibonacci sequence: its first two terms are equal to 1 and
each of the following terms is the sum of the preceding two.

Let a, = tUnys;, by = tny,- We apply the Euclidean algorithm to
find the number (a,, bn) == (#nyqs Uny1). We obtain the following sequence
of divisions: ’

Unyz == 1 Upyy+ Uy,
Unyy = 1 Uyt U=y,

Evidently the number of necessary divisions is n. For example, in order
to find the greatest common divisor of the numbers u,, — 144 and u,, = 89
by means of the Euclidean algorithm one needs 10 divisions. .

It can easily be proved that the least numbers for which one needs
exactly » divisions to find their greatest common divisor by means of
the Euclidean algorithm are the numbers u,,, and g, :

We now prove the following

THEOREM 12. The number of divisions mecessary to find the greatest
common divisor of two natural numbers by means of the Buclidean algorithm
8" not. greater than 5 multiplied by the number of digits in the decimal
espansion of the smaller of the numbers (Lamé [1]).
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Proof. First we prove the following property of the Fibonacei
sequence w, (n=1,2,...) defined above:

(7 Unys > 10u, for n=2,8,...
A straightforward computation shows that for n = 2 formula (7) holds

(for, u; = 13 > 10u, = 10). Further, let # > 3. In virtue of (5) we have

Unys = un+4+’“n+a = 2Up 3+ Unyg = Bthnygt 2y
= BlUny1+ 8Un = 8Upt Blhy_;.

Since the sequence (6) is mnot decreasing, t, = ty_; =+ U,_, <2y,
whence 2un.< 4u,_, and therefore w, 5 = 8u,+ Bu,_, > 8ty + 4ty
> 10u,, which implies Unys > 10u,, as required.

From (7), by a simple induction, we obtain
(8y Unpsy > 100, 0 =2,8,...;1=1,2,...

}_Tow, let n, ej\,nd ni <, be two given natural numbers. Suppose
that in o'rder to find the greatest common divisor (ng, 1) by means of
the Euclidean algorithm the following % divisions are necessary:

Ty = Q10+ Ny,
Ny ==y Mg+ 1y,

Mh—s == Qo1 Mgy Mgy

N1 = QM.

We. han're,.of course ¢ > 2, since for ¢, =1 we would have n; = =,
which is impossible because ny is the remainder obtained by dlwé‘;é
@k_, by (= Thus m_; = gmy = 2ny, > 2 = u,. Hence Mgy == Ngg_1+
;Zk = U+ Uy = Yay Mg 2 Myt My 22 Ugt Uy = Usy oouy Ny 304, So,
> 5l or equllvalently, k> 5l41, then n, > ugye and, by (8) (with
" Thz) y ni > 10°. This means, however, that n, has at least 141 digits
ltJ;u t;h(-‘sosfca; 1(: e;)feﬁni;‘hus if m, has 1 digits, then % < 1, which shows the
'It follows from theorem 12 that in order to fin '
Euclidean algorithm the greatest common divigor ofdtv]z iﬁlﬁlo‘fuﬁ:ﬁ
bezjg the smaller of which has at most 6 digits at most 30" divisions are
medei We note that in theorem 12 the number 5 cannot be repla-
ced ‘by. tht_a number 4 since, as we have Seen, we need 10 divisions in
order to find the greatest common divisor of 144 and 89, ‘
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' § 9. Representation of rationals as simple continued fractions. Let
ng,n; be two given matural numbers, and (9) the sequence of equal-
ities obtained by the repeated application of the Euclidean algorithm

to the numbers n, and n,. For all i =1,2,...,%k—1 we have
Bl b —— and g,
Ny Mg Ny
Ny 1
whence
Lo 1
(10) — =q+ 1
1
g2+ ; :— 1
3
% + . 1
- PN
k1 .
which we write in the abbreviated form
n, i}, 1], 1] 1, 1
— =gt —F—F— e+
m o !22 143 I!h 1!11:-1 !Qk

Tn formulae (9) ¢, is a positive integer which is the quotient obtained
by dividing the natural number n, by the natural number n,, the num-
bers ¢;, for { =2,38,..., k, are natural numbers, since 7;_; > ;. The
expression on the right-hand side of formula (10), ¢, being an infeger and
G2y Qs +--, Gy being natural numbers, is called a simple continued fraction.
Thus we may say that by the use of the Euclidean algorithm every
rational number ean be represented as a simple continued fraction.
Exameres. Consider the number 314159/100000. The successive
application of the Euclidean algorithm gives
314159 = 3-1000004-14159,
100000 = 7-14159 4887,
14159 = 15-8874- 854,
887 = 1-8544-33,
854 = 25-33+29,

33 = 12944,
29 = 7-4+1,
4 =141
Thus
sase ) 1f 1, 3], 3l 3]
To0000 ~ 7 T TR T TR T Y
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To take another example, consider the number u,,,/u,, where u,
(k=1,2,...) denotes the Fibonacei sequence (cf. §8). It follows imme-
diately from (10) that for all natural numbers n we have

TSR | O 1]
U, —‘1’{‘!1 +|1 +l1 ++|1!
where the sign r—' appears n—1 times. Thus, e.g.
s _ w1 w1 1]
e e

and so on. We could, of course, have alyo written

We shall go into some more details concerning continued fractions
in Chapter VIIIL

§ 10. Linear form of the greatest common divisor.
THEOREM 13. If a1, 4y, ..., Gy are m > 1 integers such that at least

one of them is different from zero, then there exist integers ¥y, ty, ..., t,, such
that
(11) (aly a’u---yam) =a1t1+a'zt2+-'-+amtm~

Proof. Denote by D the set of the natural numbers defined by the
rule: a number » belongs to the set D if and only if there exist integers
Dyy Loy oeey By Such that
(12) N = 0%+ Gt ...}; Ay,

In other words, . is the set of all natural numbers of the form a2, + a,x, +
ot QnBp, Where @, @y, ..., ¢, are integers.

) The set D is non-empty (i.e. it contains at least one number) since
if, 8ay, a # 0 (where 1 <% < m) then || belongs to D because it i
plainly of the form x4 G+ ...+ Gy, Where @; =0 for ik
and z; equals +1 or —1 depending on whether @, > 0 or a < 0.

Denote by d the least natural number belonging to the set D. (The
number ¢ does exist since every set of natural numbers contains the least
one.) If d belongs to the set D, then, by definition, there exist integers
by bay ey by such that

(13) R W

cm
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But since d is the least number of the set D, for every natural number
n of the form (12), where #,, %, ..., ,, are integers, the inequality » > d
holds.

We are going to prove that for each of the integers @y, s, ..., ¥,
the number &%, Gyt ...+ @py is divisible by d. Suppose that this
is not the case. Then, for some integers ¥,, %5, ..., ¥n the division of the
number & Y+ tYs+ ...+ anym by 4 yields a qunotient ¢ and a positive
remainder r. We have ayy,+ a¥%s+...+ @Yy = gd-+7r, whence, by
(18), 7 = @141+ GaYat ...t Gl — Q{01 + Gty ‘l; coot Gnln) = 0,0+ 0y,
+ ..t Gmm, Where @; = y;— gt; are, of course, integers for all 4 =1, 2,
..., m. Thus the natural number r is of the form (12), which implies
that # belongs to the set D. But, on the other hand, », as the remainder
obtained by dividing an integer by d, is less than d, contrary to the agsump-
tion that d was the least number belonging to the set D.

We have thus proved that for arbitrary integers m,a,,..., %,
the number a;%,+ @,%,~+ ...+ @p 2, is divisible by d. Hence, in partic-
ular, d]a;o+ G+ ...+ 0n%y,, where oy =1 and @, =0 for ¢k,
Hence, for each k¥ =1, 2,...,m, d | a;, which means that d is & common
divisor of the numbers a;, @, ..., Gn.

Now, let 6 denote an arbitrary common divisor of the numbers
Qyy Ggy..ny Qpy and let 2, 2,...,2, be the integer for which a, = dz;
(k=1,2,...,m). Hence, by (13), we have

d = 0yt Aolyt ...+ Oty = (02 + B2+ ...+ Gp2p) 6,

whence 6| d. From this we conclude that the common divisor d is equal
to (ay, s, ..., a,) because it is divisible by every common divisor of the
numbers @;, gy ...y &y, Thus (12) implies (13), and this completes the
proof of the theorem.

Let ay, @y, ..., @y be m > 1 integers such that (a;, @y, ..., @m) = 1.
By theorem 13 there exist integers #;, 1, ..., %, such that

Ayt dylst .t Wl = 1.

Conversely, suppose that for given integers @, a,,...,a, there
exist integers fy, i, ..., t, such that equation (14) holds. The left-hand
side of the equation is clearly divisible by every common divisor of
the numbers a,, a,, ..., a,. But, since the right-hand side of the equa-
tion is 1, we see that (@, s, ..., ¢,) = 1, and this proves the following
theorem.

" THEOREM 14, For m > 1 the relation (@, Gy, ..., @y) = 1 holds if and
only if there exist integers 1y, Ty, ..., b SUuch that @ty atet... +-pbny = 1.:

COROLLARY. If for inlegers d, k and a,, ag, ..., Gm with m > 1 we have

(Gyy @yyeeny @) =1 and d)ka; with i =1,2,...,m, then d|k.

(14)
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Proof. By theorem 14, since (ay, @, ..., @) = 1, there exist inte-
gers fy, by, ..., ty, such that a,¢+4-axt,+...+aut, = 1. But since d | ka,
for all 4=1,2,...,m, d|kat;, for 4 =1,2,...,m, whence we infer
that d|k(a,%+ ayt,+ ...+ ayty,) and, consequently, d | %, as required.

We note that theorems analogous to theorem 13 and 14 are valid
for polynomials of one variable, and fail for polynomials of several
variables. In faet, if f(z,y) = and ¢(z,y) =y, then the greatest
common divisor of the polynomials f(z,y) and g(»,y) is a constant.
The expression @p(z, y)+y¢(», ¥), however, cannot be a constant differ-
ent from zero whichever polynomials p(x,y), ¢(x,y) are taken (Boch-
ner [17).

Let us return for a while to theorem 13. It would be of some inter-
est to find for given numbers a,,as, ..., &, the numbers &¢,14,...,1,
for which (11) holds. The proof of the theorem does not contain any hint
what to do this. (We say that it is purely an emistential proof.)
We can do this, however, with the aid of the Euclidean algorithm. We
start with the case m = 2. Then, apart from the trivial case when one of
the numbers is equal to zero, we change, if necessary, the signs of #, and
i, and assume that a; and a, are natural numbers, which we denote by
7y and ny, respectively. Applying the Euclidean algorithm to them we
obtain formulae (9). As we know, n; = (ng, %). The last but one equality
of (9) is equivalent to
(15) Ng = Nppg— Qi1 Wt -

Substituting here the value of #,_, obtained from the last but two equal-
ity of (9), we have

e = Me_g— Qo1 (Mp_s— Qr_o M s) = — Qo1p—g+ (14 Qo1 Qr2) Mg_s-

Further, we substitute in the last equality the value of n,_, obtained
from the equality last but three of (9) and so on. Proceeding in this way,
we arrive after k—2 substitutions at the equality n; = ';zow—{—nl‘y,
where #» and y are integers. It is obvious that this process leads us to
an effective calculation of the numbers z = ¢, and 4 = 5.

In the general case, when m is an arbitrary natural number >1,
we proceed by induction. Suppose that for all integers ay, as, ..., amy
we have a rule for finding the numbers #,1,, ..., tn satisfying equality
(1). Leb @, @5y ..., Gny Gmyy be given integers. By theorem 9 we have
(01 3y ooy Gngn) = (@1, Gy ...y Bm), Gmys). AS We know from the reason-
ing; above, there is a rule for finding the numbers # and y satisfying
the equality

(16) (T N Omy1) = (G5 Ggy ..oy C) B+ G 1Y
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We get @, = o for 4 =1,2,...,m and @, = y. In virtue of (16) and
(11) we have

amn

@y, Qgy eeny am+1) = W@+ @+ .. -+amwm+am+1mm+1;

where @, %, ..., ®m,1 are integers. Thus we have established a rule for
finding integers @, #s, ..., T, satisfying equation (17) provided that
a rule for finding integers %, %, ..., %, is given.

This, by induction, completes the proof of the following assertion:
for every m > 1 and integers ay, Gy, ..., Gy Such that at least one of them is
different from zero there exists a rule for finding integers t,,1,, ..., 1, satis-
fying equation (11).

§ 11. Indeterminate equations of / variables and degree 1.

THEOREM 15. Given m > 1 integers ay, ay, ..., Gy, af least one of which
8 different from zero. The equation
(18)
18 solvable in integers @y, Ta, ..., Ly of and only if (ay, Gay ..., 0y)|b.

Proof. Suppose that there exigt integers w, s, ..., 2, satisfying
equation (18). It follows immediately from (18) that every common
divisor of the numbers a,, a, ..., &, is a divisor of the number b. Thus
(@yy @y .ny @) | b, and this proves the necessity of the condition.

On the other hand, suppose that d = (a,, @;, ..., @) | b. Then there
exigts an integer %k such that b = kd. Since at least one of the num-
bers @y, dy, ..., @y is different from zero, then, by theorem 13, there
exist integers %, %, ..., t, satisfying equation (11). Set @; = ki; for all
$=1,2,...,m. Hence, since @ = (ay, ds, ..., &m), in virtue of formula
(11), we have :

O+ Gyt U B = B(Ol - Gylyt .+ Onln) = kd =b.

Oy @B+ Ay .o+ By, = b,y

Thus the condition of theorem 15 is sufficient.

Theorem 15 can also be expressed in the following form:

In order that an equation of degree 1 with integral coefficients and m > 1
variables be solvable in integers, it is necessary and sufficient that the con-
stant term of the equation be divisible by the greatest common divisor of the
coefficients at the wvariables.

From the proof of theorem 15 and the faet that for given integfsrs
@1y yy.n., By We can effectively find integers #,%,...,1, satisfying
equation (11), it follows that if equation (11) is solvable in integers, ﬂ.}en
also we can effectively find integers @, @, ..., %, satisfying equa!;lon
(11), i.e. we have a rule for finding at least one of the integral solutions
of equation (18). The question arises what is the rule for finding all the
integral solutions of equation. (18).
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We start with the case m = 2. Consider an equation

(19) az--by = ¢,

where a, b, ¢ are integers and (a, b) | ¢. We may assume that both & and
b are different from zero, since otherwise we would have an equation in
one variable, for which we could easily find the solution. Since (a,b) ¢,
we can find integers ,,y, such that

(20) axy+ by, = c.

Suppose now that z and y are arbitrary integers satisfying equation
(19). From equalities (19) and (20) we derive

(1) a(@—az) =D (yo—y).

Since d = (a, b) is the greatest common divisor of the numbers o and
b, we have @ = da,, b = db,, where @, and b, are relatively prime inte-
gers. From (21) we have ‘

(22) @y (B—@p) = by (y,—y).

Hence, by (a,, ;) =1 and theorem 6, we have b, | #—m,, whence &— %,
= b;t, where ¢ is an integer. By (22), @15, = b,(yo—y), whence, since
b, # 0, we obtain y,—y = ;1. The equalities #—a, = b1, Yo—Y = a3l
imply

(23) B =Zy+bit, Yy =y,—ayt.

We have thus proved that if », y form integral solution of equation (19),
then they can be written in the form (23), where ¢ is an integer. -

Now, let ¢ denote an arbitrary integer. We find & and y from (23)
and calculate the value of o

an-+by = a(z,+ by )+ b (y,— a,8) = azy+ by,+ (ab, — ba,)t.

Hence, in virtue of (20) and the identity ab;— ba, = da,b, —db,a, = 0
we obtain equality (19). Thus, .

In order that integers z and Yy constitute a solution of equation (19)
it 18 mecessary and sufficient that for some natural t formulae (23) hold.

It follows that for ¢ = 0, £1, +2,... formulae (23) give all the
integral solutions of equation (19). Since at least one of the numbers
@1, b, i8 different from zero, if equation (19) has at least one integral solu-
tion, then it has infinitely many of them.

We now prove the following )

THEOREM 16. If a and b are relatively prime natural numbers, then
there ewist natural mumbers w and v such that au—by =1.
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Proof. In virtue of thearem 15 there exist integers , and y, such
that ame—+ by, =1. We choose an integer ¢, such that 1, > @b
and %, > yo/a, and put v = x,+dt; > 0 and v = — (yo—aty) > 0. Plainly,
# and o are natural numbers and au—bv = az,+by, = 1.

From theorem 16 we derive the following three corollaries.

CorOLLARY 1. If natural numbers a,b,l,m satisfy the conditions

1

(Lym)=1 and o =2b",

then there exisis a natural number n such that o = n™ and b — nt.

Proof. Since (I, m) =1, then, in virtue of theorem 16, there exist
natural numbers r and s such that Ir—ms =1. Hence, since o' = b™,
we have ¢ = a"™ = " [a™ = (b"]a®)". The number o is then the mth
power of a rational number b"/a’, which, in virtue of theorem 7, implies
that it is the m-th power of a natural number n = b"/a°. Thus o = »™,
whence b™ = @' = #™, which shows that b =nx'. This gives & = n™
and b = n', where » is a natural number as required.

CorROLLARY 2. If a and b are two relatively prime natural numbers,
then every natural mumber n > ab can be written in the form n = ezt by,
where ®,y are natural numbers.

Proof. Let ¢ and b be two relatively prime natural numbers, and
%, © natural numbers satisfying theorem 16. We then have au—by =1,
whence, for n > ab, anu—bnv = n > ab and, consequently, nu/b—nv/a
> 1. Therefore there exists an integer ¢ such that nv/a < ¢ < nufb. (Such
is the greatest integer less that mu/b.) Let z = nu—>bt, y = at—nv.
‘We have © > 0 and v > 0 and also aw-+by = a(nu—>bt)-+b(at—nw) = n,
which completes the proof of corollary 2.

‘We notice that in corollary 2 the number ab cannot be replaced by
2 smaller number. The reagon is that if (a, b) = 1, the number ab itself
does not have a representation in the form ax+ by = ab where w, y are
nataral numbers. In fact, suppose ab = aw- by, then az = (a—y)b,
W]ience, gince (@,b) =1, b|#, whence x> b and then ab = aw+by
= ab+by > ab, which is impossible.:

COROLLARY 3. Given natural numbers a >1,m,n. Then

(@"—1,a"—1) = a™"—1.

Proof. Let 8 = (m,n). Then m = émy, n = ény, where m; and
ny are relatively prime natural numbers. In virtue of theorem 16 there
exigt natural numbers «, » such that m;u—n;» = 1, hence § = mu;— no.
Let 4 = (a™—1, a"—1). Clearly, ¢™"—1|¢™—1 and a™™—1| a;n——l,
which implies that a™™—1|d. On the other hand, we have d|a™—1,
whence d|g™—1 and d|a®—1, and this implies d]a™—1. Hence
ala™ —a™ = g™ (g™ ™ 1) = a™(a’—1). Since d]|a™—1 and o >1,
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we have (d,d) =1 and hence d]a’—1, consequently d]a™™_1
which, by the formula «™™—-1|d, gives a™"—1=d = (a™—1
a"—1), a§ required. :

So far we have proved that for a linear equation of the type (19)
the integral solutions are given by formulae (23). Now we are going to
consider the general case of linear equation (18) with arbitrarily many
variables m. The following proof of the fact that there is a method
for finding the solution of equation (18) seems the simplest and easiest
to remember.

‘We note first that we may confine ourselves to considering only
equations (18) where a’s, ¢ =1,2,...,m, are natural numbers. This
is because coefficients equal to zero do not affect the solutions and if
any of the a/s is negative we may replace it by —a; and change the
sign at the variable.

It any two of the coefficients a;, 1 =1, 2, ...y m are equal, for in-
stance a, = a,, then setting 4,4+, =2 we obtain the equation

(24)

’

7

B+ G+ gyt ...+ Gy, = b.

From every integral solution @, , @y, ..., #,, of equation (18) we can derive
a solution , @y, 4, ..., s, of equation (24) putting # = #,+x,. Con-
versely, from every integral solution @, u, #,, ... of (24) we can derive
a solution of (18) letting #, be an arbitrary integer, #, = #—,. Thus,
the problem of finding all integral solutions of equation (18) in the case
where two of its coefficients are equal is equivalent to the analogous prob-
lem for equation (24) in which less number of variables occurs. If any
two coefficients of equation (24) are equal we can proceed in the same
way, decreasing further the number of variables. Thus, we may suppose
that the coefficients of equation (18) are all different natural numbers.
Let, a, say, be the greatest of them. Then, in particular a, > a,. Suppose
that the division of 4, by a, yields the quotient % and the remainder a;.
We then have a; = a,k+a,, where % is a natural number and a; is an’
integer such that 0 < a; < a,. Set ] — koytmy, 2 =y, a) = a,. We
have 6@+ ay @ = ay(kz; +2,)+ a3, = ajo,+aiw,. Thus equation (24)
can be written:in the form

(25) a{m{-{-a;m;-{— G+t ATy =D,

From every integral solution ,, z,, --sy Ty of equation (24);We derive
an integral solution i, z;, @, ..., 4, of equation (25) putting o1 = ko, -+,
@y =@, Conversely, from every integral solution DLy Byy Bay vnvy B OF
equation (25) we derive an integral solution of (18) putting @, = a3,
@y = @;— k). :

" Thus the problem of finding the integral solutions of equation (18)
reduces to that of solving equation (25) in which the greatest of the coef-
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fieients at the variables is less than the corresponding one in equation
(18). Continuing, from equation (25) we can similarly obtain an equation
in which the greatest of the coefficients at the variables is less than the
corresponding one in (25). This process leads to an equation in one variable,
which, if solvable, of course, can be easily solved.

Thus we have proved that for a linear equation with integral coeffi-
cients there exists a method for finding all the integral solutions. The
method we have presented here is far from being the most convenient
rule for finding integral solution of & linear equation in practice, it is'just
gimple enough to present it as a proof of the existence o.f the. solutlops.
The question of finding the method which is most convenient in practice
is not of our interest now.

Tt is worth-while to note that if in (18) one of the coefficients a,, a,,
.ev, Uy for instance ay, equals 1, then all the integral solutions of (18)
are simply obtained by taking arbitrary integers for «,,a, ..., s, and
putting

By = b— Ay — QW3 — . . .— Gy Dy«

It is easy to see that if equation (18) is solvable in integers and "> 1,
then it necessarily has infinitely many integral solutions. In fact, if ¥,
Yoy ...y Ym are integers such that ¥+ &¥s+...+@uYn =b, then
putting @; = Y+ ant; for i =1,2,...,m—1 -and B =ym—~a}tl.-...
—Op1tm_y, Where by, ty, ..., t,_; ave arbitrary integers, we obtain inte-
Qers @y, Ly, ..., Ty Satisfying equation (18). . )

It is also easy to prove that if equation (18) has an m'tegral soh.mon
By, Byy ..., By, then the integers o, #y, ..., &, can be written as linear
combinations of m—1 integral parameters. ' v

This property enables us to find the integral solutions .Of the systems
of n linear equations of m variables. In order to do this e express
each of the variables of the first equations as a linear combination with
integral “coefficients of m—1 parameters and substitutt? them for the
variables in the remaining n— 1 equations. Thus, regarding the parame-
ters as variables we obtain a system of n—1 equations of m—l.va.na-
bles. Proceeding in this way we finally arrive either at one equation (of
one or more variables), which we have already learned how to solve,
or to one or more equations with one variable.

§ 12. Chinese Remainder Theorem.

TEROREM 17. Suppose that m is a natural number >.2, gy By ey Om
are matural numbers such that any two of them a,re'rela.twely prime, and
P1yTay oeny T are arbitrary integers. Then there exist integers @y, &gy ...
oioy Ly 8UCH that

(26) Dy 1y = Gy Ty = ..o = G+ T
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"o Proof. The theorem is true for m — 2, since if ‘a;; a, are ‘relatively
prime, the equation 0, %~— @,y = r,—7; bas an integral solution in » and Y.
Now let m be an arbitrary natural number = 2. Suppose that theorem

17 ig true for the number m. Let 1y Qyy vvy Gy Gmyy De natural numbers
such that any two of them are relatively prime and let r;, ry, ... » Pms P
be arbitrary integers. From the assumption that the theorem is true for
the number m we infer that there exist integers @, @, ..., &, satisfying
equation (26). Since each of the numbers Q15 Gay ...y Gy 18 Telatively prime
to the number a,,,, then, by theorem 6% the number a, a,...a,, is also

relatively prime to a,, +1 and therefore, as we know, there exist integers ¢
and % such that

Oy Gyee s O Gy B = T ) — Gy By — 7).
We set
Uy, .Gy .
@ =—"""Titg, where §=1,2, ceymoand @, =,

&;

Plainly the numbers a], 27, «+o3 By, are integers and, as is eagy to check,

(hw{-{»ﬁ = az.’ﬂ;+7"3 = a’m+1w;11+1+7'an+1’
which by induction, completes the proof of the theorem.

It follows from theorem 17 that if any two of m > 2 natural num-
bers ay, ay, ..., a, are relatively prime and sy ..oy ' are arbitrary
integers, then there exists an integer % such that dividing % by a,, a4,
--+5 @y, We obtain the remainders 71,725 oy T'm, Tespectively. This, by the
way, i8 the reason why the theorem is called the remainder theorem.

It is obvious that adding to % an arbitrary multiple of the number
G18y...0n, We obtain an integer which divided by a1, 0.,..., a, gives
also the remainders 71572, ...y T Tespectively. It follows that there exigt
infinitely many integers which have this property.

‘We present here a simple application of theorem 17, Let m and ¢
be two given natural numbers. We proved in § 4 that any two different
terms of the sequence F), = 211 (5 =0,1,2,...) are relatively prime.
Put a; =F; and r, = —i for all t=1,2,...,m. For ¢ = a3y +1y
formulae (26) imply that Fio, = a;m; @&+ —7; =e¢--i, whence
Filc+d for all § =1,2,...,m. Since F;>1 for ¢ — 1,2,..., each of
the numbers ¢+-1, ¢+2, ..., c+m is divigible by the sth power of a natu-
ral number greater than 1. Thus we have proved the following assertion:

For each natural number s there exist arbi

trarily long sequences of
consecutive natural numbers, each of them divisible by the s-th power of
& natural number greater than 1.
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§ 13. Thue Theorem.

TamorEM 18 (Thue (11). If m is a natural number and a an integer
relatively prime to m, then there exist natural numbers z and y both less
than Vm and such that the number ax -y is divisible by m for o suitable
choice of the ambigous sign .

Proof. The theorem is, of course, true for m = 1, since in this case
we may set 4 =y = 1. Suppose that m is a natural number greater
than 1. Let ¢ denote the greatest natural number less than or equal to
}/;ﬁ. Then, clearly, ¢-41 > Vm and hence (g+1)2>m. Consider the
expressions ax—y, for =,y taking the values 0,.1,2, e q. ?[‘here are
(g+1)2 > m of them and, since there are only m different remainders ob-
tained from division by m, for two different pairs @, y, and w,, y,, where,
for instance, @, > @,, one obtains the same remainders from division
of ar—y by m. Consequently the number awl—-yl—(awz——ya)f a(w,—
— ;) — (Yp—ya) is divisible by m. We cannot have , = @y, since then
the number y,—y, would be divisible by m, which, in view of the fact
that 0 <y1 < g < Vm < m (since m >1) and simi.laﬂy 0y, < m,
iy impossible because the pairs ,, y, and #,, y, were different. The equal-
ity 9, = y, is also impossible, since then the number a(®,— ,) xivould b.e
divigible by m, whieh, in view of the fact that the num.ber' @ i relah-v
vely prime to m, would imply that m | (v, —x,), and 13]115,. in wrtufa of
the inequalities 0 <w; <g<m, 0 <, < g and @; # @, I8 mlpossﬂol«.e.
Thus we have both o, # @, and y, # y,. Since »;, > #,, @ =y~ 18
a natural number. The number y,—y, ¢an be a negative integer, but
certainly it is different from zero, so Y= |Y1— Y| i_s_ a natural number,
We see that & = o —a, <a, < g <Vm, ¥y <q < l/myzmd that for th.e
appropriate sign - or — the number a(@;—m,)—(y,—¥,) ==arty is
divigible by m, and this is what the Thue‘theorem states.

By a slight modification of the proof given above we could have
the following generalization of the theorem (Scholz and Schoenberg
proved [1], p. 44):

If m, e and f are natural numbers such that e < m, f < m < ef, then
for each integer o with (o, m) = 1 there ewist integers @ and y such that for
the uppropriate sign -+ or — we have

mlavty and O0<Le<<f, 0<Ly<e.

For other generalizations of the Thue theorem, see Brauer and Rey-
nolds {1], Mordell [6] and Nagell [6].

§ 14. Square-free numbers. An integer is called square-free if it is noi;
divisible by the square of any natural number > 1. The square-freg nla:{tui'g
numbers < 20 are the following: 1, 2, 3, 3, 6, 7, 10, 11, 13, 14, 15, 17, 19.

. 3
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It follows from the assertion proved at the end of § 12 that there
exist arbitrarily long sequences of consecutive natural numbers such that
none of them is square-free. Among every four consecutive natural num-
bers at leagt one is not square-free (since at least one of them is divisible
by 4 = 22). One can prove that there exist infinitely many triples of
consecutive natural numbers such that each of the numbers is square-free.

It can be proved that each natural number > 1 is the sum of two
square-free natural numbers and in infinitely many ways a difference
of such numbers (cf. Sierpiviski [36]). It is also true that each sufficient-
ly large natural number is the sum of the square-free number and the
square of a natural number (Esterman [1]; cf. Nagell [1], Erdés [13]).

We prove .

TrxorEM 19. Each natural number n can be uniquely represenied
in the form n = k%, where I and 1 are natural numbers and 1is square-free.

Proof. For a given natural number n, let % denote the greatest natu
ral number such that %2 | n. We have n = k2, where 7 is a natural num-
ber. If 7 were be not square-free, then we would have 7 = 72, where 7, s
are natural numbers and » > 1. Thus » = (k)% and consequently (kr)? | n,
where kr >k, contrary to the definition of %.

Now suppose that n = kil,, where k,,1; are natural numbers and
I, is square-free. Let d = (k,%;). We have %k = dh, k; = dh,, where
h,hy are mnatural numbers and (h,h,) =1. Since = = d*h%l = @*hil,,
we have 'l = hil, and, since (h®,h}) =1, by theorem 5, we obtain
h* |1, which proves that h = 1, since I, is square-free. This implies that
k =dh = d. But since d|k;, we have %k|k,, whence % <k, which,
in virtue of the definition of % and the equality n = %1, implies &k = %,
whence also | =1;.
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CHAPTER II

DIOPHANTINE ANALYSIS OF SECOND AND HIGHER DEGREES

§ 1. Diophantine equations of arbitrary degree and one unknown.
The name of Diophantine analysis bears a branch of the theory of numbers
concerning equations which are to be solved in integers. The equations
themselves are called Diophantine. They are named after a Greek mathe-
matician Diophantus who lived in Alexandria in the third century A. D.
and occupied himgelf with problems reducible to the equations of the
above-mentioned type.

We start with the equations of arbitrary degree and one unknown.

Suppose that the left-hand side of an equation is a polynomial with
integral coefficients, i.e. let the equation be of the form

(1) ' a2+ @ 8" A G B Gy, = 0,

where m is a given natural number and a,, a,, ..., 6, are integers with
ay# 0 and @, # 0.
If there is an infeger # satisfying equation (1), then

(aﬂwm_l'i'alm, _2+'-~+a’m-—l)w = —ly .

- It follows that the integer # must be a divisor of the integer a.,, there-

fore, since the integer a,,, being different from zero, has finitely many
divisors, all the integral solutions of equation (1) can be found in finitely
many trials. We just substitute the divisors (positive and negative as
well) of a,, successively in equation (1) and select those which satisfy
the equation. If @, = 0, then clearly # =0 is a solution of the equation.
The other solutions are obtained by considering the equation

@ a8t Gy =0,

whose solutions are found in analogy to the previous case whenever
Gy 5% 0. If @p_; = 0, then the equation turns into an equation of degree
m—2 and we repeat the same reasoning.

As an example we consider the equation

o +o+2 =0.
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