410 CHAPTER VIII. Elliptic functions.
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its terminal point at the point & The analytic function F(x) which we obtain
in this way is also called Weiersirass’s elliptic integral of the first kind. If J is
one of the values of the function F at the point z, then -all of its values
are given by formulae (14.12). Consequently, F(x) is an infinitely-valued func-
tion, having at most the critical points é;,€;,65, 0. .

Expanding the function 1/y in the neighbourhood of the points e in
a Laurent series in (v—e,)"%, we easily verify that these points are algebraic
critical points of the function F(z), with order of ramification 1. In an anal-
ogous manner we verify the same thing for the point oo.

Applying a suitable substitution &= (u), y=g’(u), forxeK, we see with-
out difficulty that the function F(2) is the inverse (cf. Chapter VI, § 5) of
the function @ (u--u,), where u, is a constant.

In this way, going from elliptic integrals, we arrive in a natural manner at
elliptic functions. It was precisely this road which Abel and Jacobi took
to introduce elliptic functions for the first time. The theory of elliptic func-
tions based on the notion of double periodicity and developed in §§ 3-10 of
the present chapter is historically more recent, and is due principally to Liou-
ville and Weierstrass.

EXERCISES. 1. Let I and L denote two curves with initial point s,
and terminal point #;, mot passing through the point oo or through any one
of the distinet roots e;.e,,....e, of a given polynomial P(z) of degree n. If
the analytic function y, defined by the formula y*=P(z), assumes the value
¥y, at the point z,, and at the point #,, after a continuation along the curves

L and fr, the values y, and %, respectively, then a necessary and suffi-
cient condition that y,=y; is that the number

Zn’indae‘, where C=L-( —i}),

i=1
he even. .

2. If P(x) is a polynomial of the fourth degree with simple roots, and -

the circle K=X(x,;R) does not contain roots of the polynomial P, then the
function

) &
Fo= (2,
Yy

&Ly

where y*=P(x), and we integrate along the segment [x,,£], is holomorphic
in the circle K. This function is continuable along every curve not passing
through any one of the roots of the polynomial P. Prove that, with a suitable
choice of the periods w, »’, the function F is the inverse of the function

ap (u+ty; 0, 0”) b
cp(u+un;w,w’)+d'

where a, b, ¢, d, u, are constants.
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CHAPTER IX
THE FUNCTIONS I(s) AND ¢(s). DIRICHLET SERIES

§ 1. The funection I'(s). In Chapter VII, §5, we introduced
the meromorphic function I. At present we shall sbudy somewhat
in detail the properties of this function.

Let us congider the integral
+00
(1) [ v e,
0

where s=oc-it is & complex variable and «*'=exp [(s—1)Logu].
Integral (1.1) is known as Euler’s integral of the second kind.

Let us note that [4*'¢™¥|=u*""¢* and that the function v’ "¢
is integrable over the interval 0<Cu<1, provided that o>>0. On the
other hand, for every o we have the inequality wleTv e if
w is gufficiently large, and hence the function wle™ is integrable
over the interval 1<{u<<+oco. Consequently, the integral (1.1) is
convergent, and even absolutely convergent, if o>0.

Integral (1.1) is improper, because the interval of integration
is infinite and, in addition, if 0<“Rs<1, the integrand is unbounded
in the neighbourhood of the point u=0.

Tet us denote by F(s) the value of the integral (1.1). We shall
prove that the integral under consideration is almost uniformly
convergent in the half-plane ‘Rs>0, i.e. that if we take F,p(s)==

R

= fu ¢~du, then F,p(s) tends almost uniformly to the limit
4]

F(s) in the half-plane Ws>0, as 6—04 and R-—>+oco. It is suf-
ficient to prove that the function F,g(s) tends uniformly to F(s)
in every strip a<<'Rs<b, where 0<a<<hb<-oco. We may assume.
that 8<1<R. Then, if s belongs to the strip mentioned, we have
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P8 +o0 |
1Fs,m(8)—F( S)[:U 9_u%3_1du+f S du!

[

fe —U a—ldu+f e—-'u b—~1d,u,

0

which proves the uniform convergence of the function F; x(s).

The functions F,z(s) are entire, and therefore the function
F(s) is holomorphic in the half-plane <)2s>0. Consequently:

(1.2) The integral (1.1) is absolutely and almost wniformly convergent
in the half-plane Rs>0 and represents a funmction -holomorphic in.
this half-plane.

Let us also note that the function F(s) satisfies the equation
(1.3) F(s+1)=sF(s),
if “Rs>0. In fact, integrating by parts, we have

+0co

Pls+1) f =[5 s [ =i (),
0 |

since the integrated term is equal to zero for 2s>0.
It is easy to verify that F(1)=

Applying formula (1.3) repeatedly, we obtain for a non-neg-
ative integer n the equation

(1.4) Fn4+1)=1-2-3-...-n=nl,
if we define 0! to be 1. ‘
We had two formulac for the function I'(s), namely (p. 313)

1 =

(1.5) | e~ ° Sﬂ(hL
n’n!

(1.6) )= )54 2) - (o)

‘We shall now show that the funetion I' is also represented
by the integral (1.1) in the half-plane ®Rs>0, . e. that

8
;) e (y=Bulers constant),

(1.7) “I'(s) =fe‘" wduw when Rs>0.
o
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Proof. Since both sides are here functions helomorphie in the
half-plane “Rs>0, it is sufficient to prove the equation (1.7) in
the interval 0<s<{1. In view of (1.6), it is sufficient to show that
in this interval

F(s)s(s—}—l)...(s—}_n).ﬂ}

n!n’ ’
or, applying repeatedly the equation (1.3), that
8 1
(1.8) »( iy )—>1 when #->o0.

n!n®

Let us substitute s+4+n-41 for s in the integral (1.1). Since,
by our assumptions concerning s, we have the inequalities u’<n’
and «*'>n", for Ou<n, and the opposite inequalities, when
uzn, it follows that:

n

Ps+n+1 <w, 14"e““d1¢+7;‘“1 u““ e—du
'y

-+

F(s+n +1)=ntt fu"“ e du—-n° ffu,”e‘*‘du

Let us now apply integration by parts to those integrals in-
volving «™*'. An casy calculation gives:
. o0 [s<] :
F(n-+s+1)<n’ f Ut dut-e " 0" 0t [ e U du,
. 0

n
o0 n
F(n+s-+1)>nf [ e du—e 0" 40t [y du.
0 0

In these inequalities the coefficient of »®is F(n-+1)=n!, and
the coefficient of #*~" is smaller than n!. Let us divide the last two
inequalities by n!n’. Formula (1.8) will be a consequence of these
inequalities if we show that e“”n’”/n!ﬁo. Discarding the firgt »
terms in the series for ¢", we have the inequality ‘

S n" 14 n n n? n )
“ n! n+l  (n+l)(m+2) )

The sum in the pa.i'enthesis increases beyond all bounds to-
gether with n, because each of its terms tends to 1. Consequently
e"nlfn"—oco, which was to be shown. Formula (1.7) is therefore
proved.
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From (1.3) and (1.4) we have the following formulae:
(1.9) I'(s+1)=sI'(s), for all s,

(1.10) I(n-+1)=n! (n=0,1,...),

which, by the way, we already knew before (see p. 314).

" Let us replace s by —s in formula (1.5) and let us multiply
the new formula by the previous one. Making use of the expan-
sion of the function sinws in an infinite product (see Chapter VII,
(5.9)), we can write

1 © §? sginmws
— = g2 ) —m — —_———
reri—s) [1 (1 nz) -

In view of (1.9), we have —sI'(—s)=I(1—s), and therefore

(1.11) I(§)T(1—8)=——

This formula plays an important role. Since the points s and
1-s are symmetric with respect to the point 1/2, it relates the val-
ues of the function I'(s) in the half-plane ‘Ks>1/2 to the values
in the hali-plane Rs<<1/2. Putting s=1/2, we obtain, in particular

r(1/2)=Vr;
from this and (1.9) we can easily obtain the value I'(n+1/2) for an
arbitrary integer =.

We shall prove one more formula (which we shall make use
of later), namely, Legendre’s formula :

(1.12) I'(s) (s +1/2) =)/ =22 I'(2s).
Proof. From (1.6) it follows that
n2s+1/2 (%!)2 22n+‘2

I'(s)I'(s+1/2)=lm

nvo0 28(28+1) (28+2)...(25+2n+1) =K-TI'(2s),

where

i (n!)222"+21/'r_b( n )23=2¥—2sﬁ (n!)222n+21/;:.
oo (20+1)1 \2n+41 oo (20-F1)!
Since Wallig’s formula (see p. 312) can be written in the form
. 9™m)?
2 noeo(2n41)!

Von+1,
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we find without further difficulties that K =2}/, and the equa-
tion (1.12) is proved. ‘

We shall now investigate the order (see Chapter VII, § 6) of
the entire function 1/I'(s) and we shall show that

(1.13) The order of the function 1/I'(s) is equal to 1.

Proof. The exponent of convergence (see Chapter VIIL, §8)
of the sequence 0, —1, —2, ... of the roots of the function 1/I'(s) is 1.
By virtue of theorem 9.4, Chapter VII, the canonical product
formed from the roots of the function 1/I'(s) also has the order 1.
Moreover, since the order of the function e is equal to 1, the
order of the function 1/I'(s) does not exceed 1 (Chapter VIL, theo-
rem 6.6).

On the other hand, as is seen from formula (1.5), for example,
the function I'(s) assumes conjugate values at conjugate points.
Consequently,

- T 27

1
[ (it) p =T (@) D(—it)= — =T T —it) = — Z = e

This gives -1/|I'(it) |>exp(wt/2) for >0 and sufficiently large, and

hence the order of the function 1/I'(s) is not smaller than 1.

o0
EXERCISES. 1. nlatbtn) _Tla+DIG+1)
] (a+n)(b+n) Ir'a+b+1)

9 d"‘logl’(s)_i 1 .
Lode &l (stn)

3. In the interval (0,4-oo), the function I'(s) has one minimom. It is
contained in the interior of the interval [1,2].
| i o_(=1r
4. Prove that I'(s)= vt du —~ ' for all s, and that the
TOV! a (8) if e~ +§n!(s+n)

integral on the right side represents an entire function.

5. A necessary and sufficient condition that a funetion ®(s) satisfy
the functional equation ®(s+1)=sP(s) is that ®(s)=I(s)P(s), where P (s}
is a periodic function of period 1. )

6. If a function @(s) is holomorphic on the segment 4<s< -+ oo, where 4
is an arbitrary real number, and if &(s) satisfies the funectional equation
D(s+1)=sP(s) for s>4, and the condition

. Plo+n+1)

lim —————=1
) 'n—;l:o nin?
for 0<Co< 1, then @(s)=1I'(s).
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[Hint. Consider the quotient of the function @(s) by the right side of
formula (1.6).] :

7. Prove that |F(1/2+it)[=]/ 2% for real t.
eTN_l_G—TU

8. The equation
+00 :

fu"le““d%=e""“/21’(s),
F :
holds for 0<“Rs<1.

[=2] - o0
From this derive formulae for the integrals f u' "t cosudu and f w' ' sin udu.
b d

[Hint. Integrate the funetion 2~*e¢™* along the boundary of a quarter
of a circle with centre at the point 0.]

9, Derive the following generalization of Legendre's formula (1.11):

2. _
F(s)l“(s-i——l—?’)l’(s-f-?—ﬁ) .. .1’(s+mm !

n

) =m(l—-‘lms)/'.!(21‘:)(1n——1)/2]1(,’ns) .

§ 2. The function B(p,q). The function I'(s) is closely related
to the so-called Huler Beta fumction, defined by the formula

1
(2.1) ‘ B(p,q)= v~ (1—)"" du.
: . ;

This integral, which is also known as Huler's integral of the
first kind, exists for Rp>0 and “Rg>0. By means of the substi-
tution w=1-v, we verify.immediately that B(p,q)=DB(q,p), and
hence that B(p,q) is & symmeiric function, of the variables p,q.

. (2.2) For a fived q with a positive real part, B(p,q) is a holomorphic
function in the half-plane Rp>0.

In order to prove this, it is sufficient to note that
1—1/n ’
Byp,q)= [ T (1—u)ftdu
1i/m
is an entire function of the variable p and that B,(p,q) tends
uniformly to B(p,q) in every half-plane ‘Rp>£>0, ag n—>+oc.
Obviously p and ¢ in theorem 2.2 may be interchanged.

_ ‘We shall now prove a fundamental relation between the func-
tion B and the function I', namely,

I
(2.3) B(p,q)n%%’—, for Rp>0, Rg>0.

icm
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Proof. We shall need the formulae:

(2.4) I'(p)=2[ e o™ dv,
0

/2

(2.5) B(p,q)=2 [ sin"~6 cos*¢0.df.
[}

The first one of these is obtained from (1.7) by the substitution
w=1?, and the second one, from (2.1), by the substitution u=gin%6.

Let us assume, first, that p and ¢ are real and that p>1/2
and ¢>>1/2..Then the integrands in formulae (2.4) and (2.5) are con-
tinuous. We have

(2.6) I(p)I(g)=lim [ 2 fe—v“ v @) (2 fRefW’ we! dw)]
R

R
=4lim _J f g ) 20 —1 2L Gy o
R0 o
The double integral on the right side is taken over the square
of side R. This square contains a quarter of the circle with cenfre
at the origin of the system and with radius &, and is itself con-
tained in a similar quarter of the circle with radius RV’E. Let us
now pass to polar coordinates and let us take v=pcosf and
w=pginf. Since the integrand is non-negative, therefore, consider-
ing the double integrals extended over the quarter circles men-
tioned above, we find that the last integral in (2.6) is contained
between the products
/2 R
f cos 2P 0gin?10d0- f ¢ U1 g,
0 - U]
/2 Ry2
v fcosz”"‘lﬂsin2q"16d6-fe“’zgg””’-’“‘ldg,
0 ' 0 :

whick, in view of the equations (2.4) and (2.5), tend to B(p,a) I'(p+49)/ 4.
This gives the formula (2.3) on the assumption that p>1/2and g1 2.
If we fix ¢>>1/2, then both sides of formula (2.3) will be holomorphic
in the half-plane Rp>0, and hence it is true for ¢>1/2 if Rp>0.
Similarly, fixing p so that ®p>0, and treating both sides of the
equation (2.3) as functions-of the variable g, we obtain the formula
in the general case.

8. Saks and A. Zygulmnd, Analytic ¥unctions. 27
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EXERCISE. Show that if Rp>0 and Rg>0, then
T Wt dw

B(p,9)= J et

§ 3. Hankel’s formulae for the funetion I'(s). The right side

of formula (1.7) is defined only for Rs>0. We shall now give an
integral formula defining the function I'(s) in the entire plane.

" TFirst of all, let us adopt the following notations. If &(z)
is a function defined in the open plane with the exception, possibly,
of the real axis, then for every real point «, for which the limif
of ®(x-+1y) exists as y tends to O through positive values, we shall
denote this limit by (&(z)).. We simila;:ly define (D(z))_. If ¢ and d

are real numbers, then the integral f (D(z))+dz will be called the

c
integral of the function @D(z) along the segment [c,d] on the upper
gide of the real axis. We similarly define the integral of the function
&(2) along the segment [¢,d] on the lower side of the real axis. These
definitions will enable us to shorten certain statements.

Let us consider the function ¥(z)=¢"2*"", understanding *— to
be, as usual, the principal value of the power, 4. ¢. ¢ 1% De-
noting by G the region obtained by removing the real half-axis
2<<0 from the open plane, we see immediately that the function
¥(z) is holomorphic in G; moreover (cf. the analogous reasoning in
Chapter IV, § 8), for every real point 2<<0 we have (¥(2)), =¥(2),
(P(2))_=¢~ P (z). Consequently, we have for Rs>0 and every

real N >0
N 0 —N

(1) - [(@F ) det [(677)_de=(1 o) [ de,
0 —N ° 5

The integrals appearing in this equation are convergent and
represent funetions of ¢ holomorphie in the half-plane ‘Rs>0. By
Cauchy’s theorem (in the formulation (2.3), Chapter IV), we easily
verify that the left side of formula (3.1). is equal (for “®s>0)
to the expression

—R —N
(3.2) [(EF™) e+ [ (27 de+ [ 2 s,

—N —R Cp
where Oy denotes an arbitrary circumference C(0;R) with radius
RB<¥; now, this expression already consists of integrals existing

icm
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for all finite valnes of s and represents, therefore, & holomorphic
function of s in the entire open plane. When N—>- oo, the first two
of these integrals tend to finite limits, almost uniformly with respect
t0 s. The expression (3.2) will therefore also represent an entire
function of s, after passing to the limit as N-—>-+oco. On the other
hand, since we have & '=¢* D" (2 for every real negative 2,
the right side of formula (3.1) (with Rs>0) tends, as ¥N—-+-oco, t0

(1 _e—Zﬂ(s—l)i) f 6zz3—-1 dz
0

—o0 +00
=2isinr(s —1)[6"( —z)s“ldz=2isin-n:sfe"“usi“ldu.
0 0

Therefore, in view of (1.7), we have

—R —00
2isinms - I(s)= [ (2" ") _de+ [(2") de+ [ &2 .
- —R C(:R)

This equation, although proved by means of formula (1.7) holding
only for ‘Rs>0, is satisfied for all values of s, since — as we have
seen. — both of its sides are holomorphic in the entire open plane.
Taking into account the terminology adopted at the beginning
of thiz section, we may also write the formula in the abbreviated
form:

(3.3) I(s)= J 2 de,

where the curve of integration L(R) consists of the segment [ — oo, —E]
on the lower side of the real axis, the circumference C(0;R) and the seg-
ment [ —R, —oo] on the upper side of the real awis.
If, in addition, we make use of equation (1.11) and replace
s by 1—s, then from (3.3) we obtain
1 1

3.4 S 5 e
(3.4) Tis) = omi e de,
L(R)

where the curve of integration L(R) is the same as that in (3.3).

Formulae (3.3) and (3.4) are called Hankel’s formulae.

In these formulae we integrate along a rather special curve. In view
of Cauchy’s theorem, however, this curve can be altered to a considerable
degree. The reader will easily verify, for example, that both Hankel’s formulae

27
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will remain true if L(R) is replaced by the curve L,+ILy+IL;, where I, is the
half-line y=—R, — co<w<<0, L, the gemi-ciroumference z = Re®, —7 /2O /2,
and I, the halfline y=R, 0> —oco. We could also take as the curve of
integration the curve IL{+L,+ILj, where the curve L; is the half-line
Arg (2-++iB)=—pB with its initial point at oo and its terminal point at —iR,
and the curve L is the half-line Arg(z—iR)=§ with its initial point at iR
and its terminal point at oo, provided =/2<f<m.

From the point of view of the applications of Hankel's formulae, how-
ever, the question of the greatest possible generality of the curve of integra-
tion has no significance. -

The reasoning which has led us to formula (3.3) can be_

applied to general integrals of the form
+00
[ v pwdu,

0

where p(z) is a function holomorphic -in a neighbourhood of the

positive real axis and tending to 0 sufficiently rapidly as 2 tends
to oco. '

For example, let us consider the function @(2)=2[(¢*~1). If
we assume that R<2rn, then for ‘Rs>0 we obtain the formula

400 o
u 1 &
(3.5) f d=— f —de,
p er—1 2¢8in mL(R)l'" €

where L{R) denotes the same curve of integration as in fofmula (3.3).

EXERCISE. Show that for ®s>0 the equation
i 1 +oo
a-iv i)t
1:——(8)—215 f e (at+w)tde |

—0
holds, where o is an arbitrary positive number.

[Hint. This equation can be obtained from Hankel’s formula by a suit-
able modification of the curve of integration.]

§ 4. Stirling’s formula. In many problems, in which the func-
tion I'(s) appears, it is essential to kmow its behaviour as s—-oc.

Ir particular, formulae are needed which would express I'(s) by,

elementary functions, even though approximately.
Let 0<<d<rw and let G(8) denote the set of points s=~£0 satis-
fying the condition

(4.1) : —n4d<<ATg st —4.

We shall show that when s fends to co, remaining in G‘(é),
then : ‘
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(4.2) I(s) == I/E’:;:e-‘*s*””z.

The sign =~ of asymptotic equality (see p. 314) denotes here,
as usual, that the quotient of both sides of this formula tends to 1.
*—Y? we mean the principal value of the power. The assump-
tion that s has to satisfy the condition (4.1) is natural, since the
function I'(s) has poles at the points s=0, —1, —2, ...

Formula (4.2) is called Stirling’s formula and plays an import-
ant role in the applications of the function I We can write it
in the form

(4.3) Log I'(s) =

Lol

1
Log 2rn—s+ (s “5} Log s+¢(s),

where by Log I'(s) we mean that branch of the function which
assumes real values for s>0 and where &(s)—0 as s—oco.

The proof of Stirling’s formula will be based on formula (1.6),
which we shall write in the form
1 1)...
(4.4) —ee 1§ wnl—*’
I'(8) pi0l-2-...-(n+1)

and on the following lemma, which is closely related teo the inte-
gral test for the convergence of series (see p. 313):

(4.5) If f(u) is a function defined for w=0 and having a continuous
derivative, then for every integer n>0 we have

we)  Dio—[faan=""T frpa,

»=0
where P(u) is a function of period 1, equal to w—1/2 for 0<Cu<l.

Proof. Let us consider the equations:

10)— [ Huadu=fo)— [ Hu)au—r+12)
»—1 1 .

-=7(,,)_f_(_”_)i_§”_'fi) + ff'(u)(u—v—l—l/Z)du
yl

:f——-——-(”)"’; vy [ 1w Pwan
»—1
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Taking into account only the left and right sides, we obtain
formula (4.6) by summing for »=1,2,...,n, and adding f(0 )

Let us apply this formula to the function f(u)=Log (s-+u),
where se@(d). Since (s-+u)Log(s+u)—w is a primitive function
for f(u), an easy calculation gives the equation

i 1) 1
ZLog (s+v)= ——(s——?—l)Logs—}—éLog(s +n)-+(s —1) Log(s+n)

v=0

)
4(rn+1)Log(s+mn) —n—]—of m du.

Let us denote the last integral by J,(s). If in the lagt equation
we take s=1 and subtract the new equation from the preceding
one, we shall have

n

.,~oL gi_;_—v———A( )Logs-}— Log( iﬁ)—}—(s—l) Log(s-+mn)
s4n
+(n+1)1‘0gi_,_-"I"Jn(s)"'an(]-)-
a4

From this it follows that
hm[( .~—s)Logn+ZLog —H]

=0

=—(s-§)Logs+um[(n+1)Log~}+J (s )—Jn<1)],

or, in view of (4.4), that
1 ; s+n |
_Logl’(s):—(s—-:?—) Logs-—[—g [(‘n—{-l) Logm+Jn(s)—Jn(1)] .
Since ! Log (1+2)—>1 as 2—0, it follows that, as n—»oo,
s4+n s—1
1) Log——= s —
(n+ )Log1+n (n+1)Log(1+n+])—>.s 1,

and therefore

N300

47  TLogI(s)= (s—~)Logs S 1+Hm [T, (1) —, (8)].

§ 4 Stirling’s formula. 423

Let Q(u)= f P(v)dv. From the definition of the function P(u) it
0

is seen that its integral over every interval [»,»+1], where » is aninte-
ger, iy equal to zero. From this two consequences follow: 1° @(n)=

u
for every integer n, 2° |@(u)|< 1/2 for every u, since @ (u)== [P(v)dw,

where v is the largest integer not exceeding u, and [P(v)|<1/2.
Let us now integrate the integral J,(s) by parts. We find that

) Q)
Jﬂ_(s)—~6[<w{_g)2 du—>f(u+s)2du as  Mm—>00,

because the last integral is convergent, and even absolutely con-
vergent. Let us denote its value by J(s).

‘We shall show that J(s) tends to 0 as s tends to co, remaining
in the set G(d). For if s=pe”?, then the change of variable u=wg
and the inequality |Q(u)|<1/2 give

()< f . 1 f dv < 1 f dav
T2y o+ 2 ) v*42vc0s6+1 20 J o' —2vcos S+1°

The integral on the right side is finite, since the denominator
of the integrand is always different from zero and for sufficiently
large values of v exceeds v2/2. From the above inequalities it follows
that J(s) tends to 0 as s tends to oo, remaining in G(d).

By formula (4.7), denoting by e(s) a number tending to 0 as
$—>o00, we may therefore write log I'(s)=(s—1/2) Log s —s-+C-&(s) or

(4.8) I(s)= 0,62,

where ¢ and C, are constants, 0 =1--J(1), and C;=exp C. In order
to find the constant ¢ we make use of Wallis’s formula (see p. 312):

]/E iy 246 1 5 9% (n 1) 1
[ - . — == Im . - .
2 ael:3-5.0(20—1) Yo+l nue (201 V2nd1

Since n!=I(n-+1), from formula (4.8) we obtain

]//—E i 2271.0 —21—2 (,”/_1__1)2n+1 1 1 C ___lhmde,n( n_l_l )2n+1
e U DT e L i | e \2n1
1 2%_}_2)271—}-1 1 Las ( )211,-1-1 1
—_— —1 = — O T ]_1 === G .
g O ,l,lfo(zwrl g ¢ e 5 1
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Consequently, C;=V2r and Stirling’s formula is proved.

By Stirling’s-formula we sometimes mean the formula
(4.9) n! =) Imen R,
which is a particular case of formula (4.2). In fact, it is sufficient in (4.2) to
take s=n-+1 and to note that in the equality X

o _ . 1 nt+1/2
¥ O e (ML) (n+ 1)n+1,’2 =]/21re'"n"+1/2'e"1 (1+ E)

the produet of the last two terms on the right side tends to 1.

EXERCISE. If o belongs to a finite interval and [f{|— -+ oo, then
|T(o+it)| = Y/ 2m [t O~ /2 &1,

§ 5. The function (s) of Riemann. Let us consider the series
(6.1) + + + 5+

where s=o-4it and n’=exp (sLogn). Since |n’|=n° the series
(5.1) is absolutely econvergent, for ‘®s>1, and the convergence
is uniform in every half-plane ‘Rs>1--¢, where £>0. The sum of
the series (5.1) is therefore a function holomorphic in the half-plane
‘Rs>1. This function is known as the Riemann function C(s).

The series (5.1) is divergent for s<C1. [From theorem 8.6 proved later
on p. 433, it will follow that the series (5.1) is divergent at every point of
the half-plane Rs<1.

The function {(s) plays an important role in the theory of prime
numbers. The significance of this function for the theory of prime
numbers has its source in the following equation which is due to
Euler:

ad 1
(5.2) t)=J] ——
n=1 n

where p, denotes the n-th prime number (p,=2, p,=3, ps=>, ...),
and ¢ is an arbitrary number with real part greater than 1.

Proof. To prove the validity of formula (5.2), let us note that
the series pr°+p;°+..., all of whose terms appear in the series
(5.1), is convergent absolutely and uniformly in every half-plane
‘Rs>1+e (for £>0). By theorem 1.20, Chapter VII, the product

[](1—pz*), absolutely convergent in the half-plane ‘®2s>1, repre-
Nn=1
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sents a function holomorphic there. Both sides of equation (5.2) are
therefore holomorphic for “®s>1 and it is sufficient to prove this
equation for s real and greater than 1.

Let us consider, for s>1 the partial produbt

=ﬂ1_p —H (1w P>+ ..)
of the product (5.2). The series under the product sign are abso-
lutely convergent. Carrying out the multiplication we see that
Fy(s) is equal to the sum of terms of the form pyT*p;™...p5"%,
where a,f,...,4 assume, independently of each other, all the non-
negative integral values. In particular, this sum contains the terms
1,27%,87% ..., N~°. Since a positive integer can be decomposed into
prime f&cton in only one way, all the terms of the sum ave dis-

tinet. It follows that Zn <Fu( s)<2n , which for N—oo gives
the formula (5.2). ™! =l

From formula (5.2) it follows, in particular, that £(s)0 for
‘Rs>1. :

We shall now represent the function {(s) in the form of an
integral. We sghall show, namely, that for Rs>1 the following
equation holds:

Sl

. ____ZL ~
(5:3) &) T I(s) J & — 1

Proof. We shall start from the formula

[+

1 1
(5.4) = T of e ™" 'dv, -where “Ks>0,

which we obtain from (1.7) by the gubstitution «=nv. Consequently,
N 8—1 ,—Nv

11 [ 1 e
Y f P d”“ﬁgof =

Since ¢’—1 has a éimple root at the point 0, these integrals exist
when ‘Rs>1. If we show that the second one of them tends to 0
when N tends to oo, we shall obtain formula (5.3).

v
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Now, breaking up this integral into two, extended respect-
ively, over the intervals [0,d] and [8,+oc], where 6>0, and re-
membering that ¢ <1, we see that the absolute value of this in-

o-~-1

: vt v
tegral does not exceed the sum f 5o v e f o]
0 ]

dv.

By choosing ¢ sufficiently small we can make the first term smaller
than the number ¢>0 given in advance. For a fixed &, the second
term tends to 0. Consequently, for N sufficiently large, the abso-
lute value of the second integral in (5.5) is smaller than e For-
mula (5.3) is therefore proved. S
Let us write it in the form
1

wtt g P
r(s)c(s)=of6u___1 du+lf —

Denoting the integrals on the right side by P(s) and @Q(s), re-
spectively, we verify immediately (cf. Chapter II, theorem 5.7 and
6.1) that the function Q(s) is entire. In order to investigate the
function P(s) we start from equation (5.8), Chapter VII, which
we write in the form

u 1 &(—=1)'B
(5.6) =1-7 u—{—z()_—-——'——’u”,

e—1

when ‘Rs>1.

where B, are Bernoulli numbers (see p. 311).

The series on the right side of thiy equation is uniformly con-
vergent for 0<Cu<1. Let us multiply both sides by «*~2%, where
Rs>2, and let us integrate them over the interval 0<<u<<l. We get

(—1'B, 1
(5.7) P(8)=—_—~—+_§ @ s4ov—1

Y
In view of the inequality limsup ]/B (2»)!=1/27c<1 (because

the radius of convergence of the senes (b.6) is equal o 2m), the
series (5.7) is uniformly and absolutely convergent in every finite
circle, provided that we discard a finite number of terms having
poles in this circle or on its circumference. Consequently, P(s)
can be extended to the entire open plane as a meromorphic func-
tion, having simple poles at the points 1, 0, -1, —3, —5,...,
and elsewhere holomorphic. But 1/I'(s) is an entire function hav-

1)
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ing simple roots at the points 0, —1, —2,..., and different from
zero elsewhere. At the point s=1 the function F(s) has the value 1.
Therefore, taking into account the equation ¢(s)=P(s)/I'(s)+Q(s)/I'(s)
and formula (5.7), we can state the fo]lowmg theorem

(8.8) The function {(s), defined for Rs>1 by series (5.1), can be ex-
tended to the entire open plane as a meromorphic function wilth a sin-
gle pole at the point s=1. This pole is simple and the residue of
the function ((s) at this pole is 1, and therefore the difference
L) ——
s—1

8 an entire ;functwn The function £(s) has roots at the points —2,
—4, —6,

From theorem 5.8 it folldws, in particular, that the product
(s—1)L(s) is an entire function.

The integral formula (5.3) holds only for Rs>1. We shall
now derive another integral formula for ((s), which will hold
in the entire plane. We shall start from the equation (3.5), where
the curve of integration L(R) is the same as that in formula (3.3).
Moreover, we assume that 0<R<2r, and hence that the circle
K(0;R) does not contain any one of the points 42wi,t-4ni,...,
within or on its circumference. Let us replace s by s—1 in (3.5).
Taking formula (5.3) into consideration, we have

—la
(5.9) £(s)I'(s) = 1 ¢ dz for

Rs>1..
217 smms 1 —é°

But I'(s)I'(1—s)=m=/sinns. Consequently,

I(l—s) r&7'¢
. ]
27 LRy 1—e
where 0<<R<2x, and L(R) denotes the curve of integration, consisting
of the segment [ —oco, —R] of the lower side of the real awxis, the circum-
ference C(0;R) and the segment [—R, —oo] of the upper side of the
real awis.
 This is the formula which we were seeking. It is satisfied for
every s, since the integral on the right side is everywhere
convergent and represents an entire function.

(5.10) | t(s)= dz,
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EXERCISES. 1. Using (5.2), prove that, if 9%2s>1, then:

o) & (2

1 Qpm) £(s) =Z’°m(n)l
n‘

where u(l)=1, u(n)=(—1)" for those » which are the products of » cijstinct
prime factors, and p(n)=0 in the remaining cases.

2. Prove the formulae:

o0 oc

{C(s)}’=§]%—)’ r:(s)f(s-—k>=2°’;(:):

ne=l nesl

where d(n) denotes the number of divisors of the number n, and oy (n) the
sum of the k-th powers of all the divisors of the number n. The first one of
these formulae holds when ‘Rs>1, and the second one when simultaneously
Rs>1 and Rs>k4-1.

‘ (=1)"B gimlpinp
3. {(1—2m)=- " =2 T
& ) om0 Sm) @m!

4. Let s be an arbitrary number with a positive real part and let

(m=1,2,...).

[s-]
o : -
@(z)zzw for |¢|<1. Show that if we remove the interval [1,--oc0] from
n=]
the open plane, then the function ®(z) can be extended to the remaining
region G as a holomorphic function and that, for ze@, '

+oo
z w~tdu
I'(s) t—z
[

The natural region (Chapter VI, §4) of the function @(2) is the open
plane without the point z=1.

§ 6. Functional equation of the function ¢(s). Let us denote
by Ly the curve of integration L(R) (ef. formula (5.10)) for
R=2m(N+1/2), N=1,2,... Let s be a real number. The circle K(0;R)
now confains the points 4-2xi, +-2-2xi,..., +-N-2ni. Therefore, if
we replace L(E) by Ly in formula (5.10), then we must take into
account the residues of the integrand at the points mentioned. An
eagy caleulation gives the formula

Il—s).r&1te?

N
8
2 ) T =t =T =)@ 2sing D=t
J ‘

(6.1)

M=l

Let us first note that for s<0 the left side of this equation
tends. to 0 as N->co. In fact, if we remove all the -circles
K(2nin;e) from the open plane, where &0, and n— 0,+1,42,...,
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then the inequality |[1—e™®|>C, holds at the remaining points of
the plane, O, denoting a constant depending only on e (the proof
is analogous to the proof of theorem 9.12, Chapter I). Consequent-
ly, the funection

ez__ 1

1—e  1—e*

is bounded on the sum of the circumferences C(0;2=(N +1/2)). From
this it follows easily that for s<0 the left side of formula (6.1)
tends to 0 as NV tends to oo. This gives the equation

£(s)=2(2m)Hsin T T(L—8) L(1—s),

which must obviously hold in the entire plane, since both sides
are meromorphic functions. Let us replace s by 1—s. We obtain
the formula

(6.2) L(1—s) =21 o5 e

2

I'(s)Z(s)-

This is the functional equation of the function [(8), proved by
Riemann. It connects the values of the function  at the points
s and 1—s, and hence from the behaviour of the function {(s) in
the half-plane “®s>1/2 it permits one to deduce its behaviour
for ‘Rs<1/2.

§ 7. Roots of the function Z(s). Since £(s)#0 for “Re>1, it
follows from formula (6.2) that in the half-plane “Ws<0 the fune- -
tion £(s) has only those roots which are poles of the product
I'(s)cos(ns/2). Consequently:

(7.1) The function (s) does not have any roots in the half-plane “Ks>1.
In the half-plane Rs<<O the only roots of the function [(s) are the
points —2, —4, —6, ... These are simple roots.

The roots —2,—4,—6,... are sometimes called the trivial
roots of the function {(s), in order to distinguish them from the
others, the proof of whose existence is deeper.

We shall now give this proof. Obviously, roots different from
—2, —4, —6, ... can only lie in the unbounded strip 0LWs<<1. Let

(7.2) 5(s)=%s(s~—1)n_s’21“(%—)s) £(s).

E4
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:The poles —2,—4,—6,... of the factor I'(s/2) are here removed
by the roots of the function ((s). It is easy to see that the func-
tion £(s) is also holomorphic at the points s=0 and s=1, and hence
i3 entire, and that with the exception of the points —2, —4, —6, ...
the roots of the function C(s) ond E£(s) are the same. The possible
roots of the function &(s) can therefore lie only in the strip 0 <R 1.

‘We shall prove that the funection &(s) satisfies the equation

(1.3) §(L—s)=£(s).

In view of (7.2), the formula (7.3) is equivalent to the follow-
ing: :
w2 (8[2) E(8)
—— ey

I'(1/2—s/2)
which again, by virtue of the equation I'(1/2-s/2)I'(1/2+s/2)=
=m/cos (ns/2) (cf. formula (1.11)), can be written in the form

L(1—8)=

8 1 s s .
7.4 )= Vs () (= 2 i \
(7.4) [1—s) r(3) rz+3) toeoss,
If we now apply Legendre’s formula (1.12) with s/2 instead
of s, then the equation (7.4) reduces to (6.2); formula (7.3) is
therefore proved.

We shall base our further reasoning on the following lemma:
(7.5) The entive function 5(8)=£&(1/2—1s) is an even function of order 1.

Proof. The evenness of the function S(s) follows from
formula (7.3). '
~In order to prove that the order of this function is equal to 1,
let us denote by G(s) the integral appearing on the right side of
formula (5.10), taking R=1. Let G(s)=@,(s)-+Gy(s), where G4(s)
denotes the part of the integral G(s) along the circumference
C(0;1), and G,(s) the remaining part of this integral. Let s=o i,
[8|]=0>1, and finally let mn be the gmallest integer exceeding g.
Since [1/(1—e™)|<4e* for u<—1, where A is a donsta.nt,
therefore:

oS

(7.6) 1Ga(s) | < 246" [ e ul— Gu< 24671 (m),
I

(7.7) |G4(s) | gzmenMax]ML_l .
v og=11—€7F)

icm

§7 Roots of the funetion £(s). 431

We have I'(n)<(n—1)""'<p?=exp(olioge). From this and
the inequalities (7.6) and (7.7) it easily follows that the order of
the entire function G(s) does not exceed 1.

Let us now consider the entire function (s—1)Z(s), which by
virtue of formula (5.10) is equal to (s—1)G(s)I[(1—s)/2ni. Sinece
the funection 1/I'(1—s) has the order 1 (theorem 1.13), we find,
after applying theorem 10.19, Chapter VII, that the order of
the funetion (s—1)¢(s) is not greater than 1. Consequently the order
of the entire function s(s—1)n2f(s)/2=£&(s)/(s/2) also does not
exceed 1. Hence, applying theorem 10.19, Chapter VII, once more,
we find that the order of the function £(s) does not exceed 1.

On the other hand, when s is real and tends to oo, it is
seen from equation (5.1) that {(s) tends to 1. Applying Stirling’s
formula, we deduce from (7.2) that the quotient Log &(s)/4sLogs
then tends to 1. Consequently, the order of the function &(s) is
not smaller than 1.

The order of the function £(s) is therefore equal to 1. Hence
the same can be said of the order of the function Z(s).

Since H(s) is an even function, its expansion in.a power ser-
ies at the point 0 has even powers only. It follows from this that
E(Y/s) 1is am entire funciion of order 1/2. By virtue of theorem
11.2, Chapter VII, the function S(ys) has infinitely many roots
(their sequence has an exponent of convergence 1/2). We deduce
from this that the function Z(s), and hence also the function &(s),
has infinitely many roots. On the other hand, we know that the
roots of the fumetion £(s) must lie in the strip 0<<Ns<C1. Conge-
quently:

- (7.8) The function £(s) has infinitely many roots in the strip 0<Rs<1.

These are the so-called non-trivial roots of the function Z(s).

How these roots are distributed is not known thus far, despite the fact
that this question is of fundamental significance for very many problems
in the theory of mumbers. It is relatively easy to show that there are no
roots on the boundary lines Rs=0 and ‘Rs=-1. There is a conjecture that
all the non-trivial roots of the function f(s) lie on the central straight line
Rs=1/2 of the strip 0<LWs< 1. This is the famous Riemann hypothesis, which’
thus far has been neither proved nor disproved. It has been possible to
prove, however, that there are, in fact, infinitely many roots of the fune-
tion ¢(s) on the line Rs=1/2 (Hardy).

A detailed discussion of the properties of the function {(s) can be found
in the book of E. C. Titchmarsh, The theory of the Riemann zela-function,
Oxford 1951.
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§ 8. Dirichlet series. Series of the form -

(8.1) D aye
n=1

where ¢y, a,,... are constants, and 4,,4,,... are arbitrary real num-

bers tending monotonically to oo, are called Dirichlet series.

If we take A,=n—1 for n=1,2,..., then the series (8.1) be-
comes a power series in ¢°. Dirichlet series can therefore be con-
sidered as a generalization of power series. We shall show further
on that some, although not all, properties of power series carry
over to Dirichlet series.

Another important particular case is obtained by putting
Jp==Logn. The series (8.1) can then be written in the form

(s=0-1t),

(8.2) _ 5o,
n=1MN

where n’==exp(sLogn). Series (8.2) are known as the special
Dirichlet series. Taking a;=a,=...=1 here, we obtain the series
itefining the Riemann funetion Z(s) (see § b).

Since the deletion of a finite number of terms of the series
(8.1) does not affect its convergence, we may always assume
that the numbers 1, are non-negative, and hence that 0, <A,<C

Instead of the series (8.1) we could obviously consider the series Ya, 2™,

which we obtain from (8.1) by the substitution e™*=z. In the case, however.
when not all the numbers 1,,1,,..., are integers, the point 2=0 ig, in gen-
eral, a critical point of the terms, and therefore also a critical point for the
sum of the series Ya,# TFor this reason the form (8.1) is more convenient

for consideration, since we are here dealing with single-valued functions.

) We shall now be concerned with the investigation of the con-
~vergence of series (8.1); we shall begin with absolute convergence.
The absolute value of the n-th terma of this series is |a,le % If
0220, then, since all the numbers 2, are non-negative, we have
e e, Consequently, if a Dirichlet series is absolutely converg-
ent at a point $y=o0,+4b, then it is absolutely amd wniformly con-
vergent in the entire half-plane “Rs>a,.

It follows from this immediately that
(8.3) For every Dirichlet series (8.1) there ewists a real mumber a,

such that the series is absolutely convergent for Rs>a and absolutely
divergent for ‘Rs<a. (In the extreme cases we may have a= +oo.)

icm

§ 8 ceee im0 ipinichlet geress 't T T 433

The number o is called the abscissa of absolute comvergence,
the: stra1ght tine Ré=a the line of absolute cowvwgema, and the
half-plane Rs>a the half- pltme of absolute convergence.

On the straight line Rs=aq itself;- the series ycan be ;‘elther ahsolutely, con-
vergent, or absolutely divergent, as is indieated by the examples of thq serjen:

x S 11 Su
(8.4) z_—lbog’n' v

for which a=1. The cages a=—co 0r a=+} o0 occ}n' e. g. for the s'gries :

» 1 1 Ew'n.’
@9 L e 4w

The following theorem 1s somewha.t deeper.» ke

(8.6) (a) For every wahlet semes (8.1) ‘there exists a 'real number /3 such
that the series is comvergent in the half-plane c)(fs>ﬁ and dwergemt
in the half-plane Rs<pB. (In the extreme cases we may haye f=—oo
or f=-+o0.)

(b) The Dirichlet series under conmdemtwn i almost umfm'mly

. convergent in the half-plane “Rs>p amd iis sum 1is therefore a hol-

omorphic function in the open half-plane ‘Rs>p. ,
Theorem 8.6 follows immediately from the following theorem.

(8.7) If the series (8.1) is convergent at a point Sy, then it s com-
vergent at every point s such that Rs>Rs,. Moreover, the converg-
ence is umiform in every amgle |Arg(s—s,)|<n/2—3, where 0>0.

Proof. Since a,¢*s=a e, where a,=a,¢ " and s'=s—S5,,
we may assume from the start tha.t $,="0, and hence that the series
4,4, ... is convergent. In view of theorem 2.6(c), Chapter IIT,
in order to prove the uniform convergence of the series (8. 1) in
the angle |Arg s|<<w/2—3§, it is sufficient to show that the sum
of the series :

(8.8) 6] |6 g e
is bounded in this angle. Now

ﬂk Ak

(8.9) M — g1 = IJA (%e‘“)dlz—s fe—‘“dl, )

k-1 g1

and the absolute va.lue of the last integral does not exceed

8, Saks and A. Zygmund, Analytic Functions. 28
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2k

. A .
ol f 16 da=lsl [o~roar=
.

(e-—lk_la ”e—i_ka)

Is|
Ay “
Sinee 0<A;<1,<..., the sum of the series (8.8) does not
exceed ‘ I
Js] 1

14 WV ety ca My 2
0 & o 8in 6

and the theorem is proved.

The number § satisfying the conditions of theorem 8.6 is called the .

abscissa of convergence, the straight line ‘Rs=p the line of convergence,
and the half-plane ‘Rs>p the half-plane of comvergence of the Dir-
ichlet series under consideration. On the line of convergence the
geries may have points of convergence as well as points of diverg-
ence. We obviously have a8, where « is the abscissa of absolute
convergence. = . : : -

The unbounded strip f<<‘Rs<<a (which may be empty) is called

the sirip of conditional econvergence. At the points of this strip the
Dirichlet series is convergent, but not absolutely. For example, .

let us consider the Dirichlet series ‘

1 T 1
TFTETE T .
for which a=1. If s is real and positive, then this series, being
alternating and with terms tending to zero monotonically, is con-
vergent. Consequently, f=0 and the strip 0<Rs<1 is the strip
of conditional convergence. .

Let us also note that the sum-F(s) of the series (8.10) can
be easily expressed in terms of the funetion {(s) of Riemann. In
faet, assuming that RWs>1, we can write the series (8.10) in the
form . : v

(8.10)

RO 2(1 1 ) SR
+23+§§+Za+---— ‘?—f—;{s"}—--- ={(8)—2-27°L(s).
Consequently,

(811) F(s)={(s)(1—2").

The half-plane of'lqonvergence of the Dirichlet series is the analogue
of the circle of convergence of a power series. Between the two cages, how-
ever, there:are essential differences, For: example, for power series the circle
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of absolute convergence and the circle of ordinary convergence coincide, but
for the Dirichlet series the half-plane of absolute convergence and the half-
plane of ordinary convergence may be different. Furthermore, a power sgeries
must have on the circumference of its cirele of convergence at least one point
of non-continuability (see Chapter VI, § 2), while the function represented
by a Dirichlet series can be, in some cages, extended, with preservation of
holomorphism, to a half-plane containing the half-plane of convergence and
different from it. In fact, recalling that the funection Z(s) is holomorphic in
the open plane with the exception of the point s=1, at which it has a simple
pole, and taking relation (8.11) into account, we see that the sum F(s) of the
series (8.10) can be extended to the entire open plane as a holomorphic fune-
tion. Nevertheless, the series (8.10) is convergent only when Rs>0.

While every function holomorphic in a circle is expansible in a power
series in this circle, the problem of determining necessary and sufficient
conditions which must be satistied by a funetion holomorphic in a halfplane
in order that it be expansible in a Dirichlet series, is very difficult. A distinet
advance in this domain is of recent date. This we owe to Bohr, who used
here the theory of so-called almost periodic functions, created by him.
On the other hand, the question of the uniqueness of the expansion of a func-

ton in a Dirichlet series does not present difficulties. "

(‘8‘72) A function I{’v(s)', holomorphic in a ha?f~plcme Rs>y, can
be represented in it by a Dirichlet series in at most one way.

For, if there were two distinet Dirichlet series convergent to
the sum F(s), for <R2s>y, then the difference of these series would
be a Dirichlet series convergent to 0 for ®s>y, but with coeffi-
cients not all equal to 0. That this is impossible follows from the
lemma;:

(8.13) If the sum. F(s) of the series (8.1), convergent in a half-plane
‘Re>f, has infinitely many roots $,8,,..., lying in an angle |Arg s|<<
<n/2—e (where £>0) and tending fo oo, then a,=a,~...=0 and
the function F(s) vamishes identically.

Proof. We start from the equation 6 F(s)=ay+ Y aye 23,

N2

As follows from theorem 8.7, the series on the ‘right side of this
equation is uniformly convergent in the set ‘Rs>p ¢, |Arg s|<n/2—e.
Therefore, as s tends to oo while remaining in ‘this set, :

Lim e**F(s)=a,+ > lima, e 8=y, |
800

e =2 8—300

But F(s,)=0 for n=1,2,..., which together with the preced-
ing equation gives «;==0. Repeating this reasoning, we obtain
sucecessively a,=a,=...=0. : s o
28*
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We shall now prove the following theorem:

(8 14) (a) If o denotes the abscissa of absolute convergence, and 5 the
abscissa of convergence, of the series (8.1), then

- , Logn
(8.15) ‘ ca—p<Llimsup g,
' (b)\ Moreover, if >0, then '

Logld
(8.16) B=Llimsup g4, ,
n->e N

where Ap=a,+a5+ ...y

Proof. (a) Let us denote the right side of the inequality (8.15)
by k. Obviously %>0 and we may assume that k< 4-co, because
otherwise the inequality would be obvious. Let %’ be an arbitrary
number greater than . k, _and & an arbitrary positive number. It
is sufficient to show. that if s, is a point of convergence-of the series
(8.1) lying on the real axis, then the series is absolutely convergent
at the point s;=s,+k'(142). Now, a6~ "% =a,e % - ¢~W*0+9, The
first factor on the right side, as a term of a convergent series, tends
to 0. Moreover, since (Logn)/A,<<k'for n>>n,, the second factor on
the right side does not exceed n»~* for n>mn,. Consequently, for
all n sufficiently large we have |a, ¢ **|<<w™"~° and the series (8.1)
is absolutely convergent at the point s;. Inequality (8.15) is
therefore proved. :

‘(b) Let us denote by y the right side of formula (8.16). The
number y. cannot be .negative, since otherwise we. ghould have
Log|4,|->—oc, and hence the Dirichlet' series would be convergent
at the point s=0, contrary to hypothesis. Therefore y>0.

First, . we shall prove that f<Cy, where we may assume that
y<-+oo. In order to prove this, it is sufficient to show that if ¢>0,
then the .series is. convergent at the point.sy=y-2¢. From the defini-
tion of the number .y it follows that Log|4,|<(y-+¢)4,; and hence
that |A4,]<e?*%, for y>>v,. Hence, if m>n>y,, by an application
of the tra,nsforma,tlon of Abel (see p. 128) we obtain

2 a, 6% = 2 A6 i 1% An_.le e 2 Ay €,
\v—n . . v——n .

Let us now.apply formula, (8.9).: Since §,>0, we hawve, taking
the inequality for [4,] into account, L :
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m—1 A1 '
<s Z (o, f G50 Q- g+ Vi | e
2

—z,,s,,

y

1 o1 o
<302 f grteA gy L gmehn | g—eim g fe'“dl—}—%‘"’*‘.
p=n ].

For a fixed &>0, the right side tends to 0 as 7» tends to oo.
From this follows the convergence of the series at the points s,.

We shall now show that g>y. Let s, be an arbitrary point
of convergence of the series lying on the real axis. By hypothesis,
we have s,> 0. Let a,e»%=b,, b;-+b,+...+b,=B,. Abel's trans-
formation gives

n n 11.-—1
_A_nz‘z;a,v:zzb el,:sa_ZIB elvs) 61v+130)+B 611;30
v= y= Y=

Since the sequence {B,} is convergent, there exists a number
M such that |B, 1<M for v_l 2,... From the formula for 4, we
therefore get C
[An <Y M'(e""+ls°;e}”’“‘)+Me""s°<2 Met®,

p=1
From this inequality and from the definition of the number y
it follows immediately that y<(s,, and hence that y<f.
We have shown that y>f and that y<(f; the formula (8.16)
is therefore proved. .

This formula, applied to the series Y |a,|e™’, gives the cor-
n

ollary:

(8.17) If the abscissa a of absolute comvergence of the series (8.1) is
positive, then \
’ Log A}
o=1im sup g
N0

where Ap=|a,|+|as|+...+|anl.

In the case f<<0 formula (8.16) is, in general, false (e. g. when
B<0 and a,+a,+...70). However, if f>—oo, then by a transla-
tion of the origin we can always make B>0. :

) 1y .
EXERCISES. 1. For the Dirichlet series Z’ --_-—-12-~ we have a=-+ o0

n=2 ]/n(Logfn)'

2

and f=—oo.
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2. If the abscissa of convergence f of the series (8.1) is negative, then
v O + i1 T Oyt

Give the formula for the abscissa a of absolute convergence when a<0,

p=limsup 4-Log|B,|,  where

8. If in the series (8.1) the exponents 1, satisfy the condition A7 Log n—0,
then : . ‘
a=f= lim ngup A7 Logla,).

(This formula is a generalization of the Cauchy-Hadamard formula for
the radius of convergence of a power series; cf. theorem 1.1, Chapter III.)

4. Prove that for ‘)@s>a the sum F(s) of the senes (8.1) satisties the
formu.la. ,

o
Z la’nlge—%u'—'

nesl

1 T
57 f 1P (a+it)[* di.

This is the Parseval identity for Dirichlet serles (cf, Chapter III, §1,
exercise 4).

[Hint. Multiply the Series defining the functions F(s) and 17'(_{); note that
T

1 : v o
the quotient .7, f ¢*dt is equal to 1, when A=0, and that it tends to 0
- .

together with 1/T, when A is real and - different from 0.]
5. The senes Z’n"’ deﬁnmg the functlons C(s) for Rs>1, is divergent

on the stra.lght ].me C)Qs_l At every pomt of this straight line dlfferent
from 1, the pa.rmal sums of this’ senes are bounded.

n+l )
[Hint. Investigate the difference n~* — f u”"du and con&uder the integral
+o
[ du]

1

6. Under the assumption that-

a) the power series F(z) Z’a Z* has ‘asradius of convergence not smaller
n=1
than I; k

b) the point z=1'is a point of contmuabmty of this series (see Pp. 240);

¢) the Dirichlet series Z,'a, = has points of convergence; -

na=l
the sum G(s) of this Dirichlet series can be extended to the ontirs- open
plané ds a holomorphic function (Hardy).

In particular, when 0<0<2n, the function 26"‘" =+ ig entire. (For f=m
we obtain the senes (8.10), mth mgn cha,nged)

[Hint. From condmon e) it follows that for n sufhmently la.rge we have
Ja <n®; for some k3>0. Making use of this and formula (5.4), we can- prove that

.
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+00

1
G(s)— T f uw " Fe ) du for Re>k+1. Let us now proceed as in the proof

of Hankel’s formula (see the remark at the end of § 3) and replace the
last integral by a curvilinear integral along a curve not passing through the
origin. }

7. Let F(s) denote the sum of the series (8.1) and let B be the abscissa
of convergence of this series. Then, if the numbers a,,a,,...,4,,-.. 816 pos-
itive (or more generally, if they satisfy the condition |Arga,|<w/2—s,
where £>0), the point f is a point of non-continuability for the expansion of
the funection F(s) in a power series with centre at any point of the half-
plane “®s>pg (cf. Chapter VI, § 2, exercise 5 and 6).

[Hént. It is sufficient to consider the expansion of the function F(s) at
the point s=p+1.]

8. If 85£0,—1,— , then a necessary and sufficient condition for the
the convergence of the series

Z";", a,n!
=is(s+1)...(s+n)
is the convergence of the Dirichlet series

® | Saa

n=1

*)

If B is the abscissa of convergence of the series (%), then the series (¥) is
almost umformly convergent in the half-plane Rs>pf minus the points
0,—1,—2,... (Landau).

{Hint. Apply theorem 2.6 (c), Chapter III; c¢f. also exercise 7, § 5,
Chapter VIIL.]

9. Let a(u) be a function defined for 4>>0 and integrable in every finite
interval 0<{u<Cu,. The integral

+o0
(%) f a(u)e ™ du

0

is called the Laplace iniegral and has properties analogous to, the properties
of the Dirichlet series. Prove that:

a) there exists a real number § (which may be equal to 4 oo) such that
the integral (%) is convergent for Rs>p and divergent for Rs<f;
b) if p>0, then
Logid H
f=limsup F—O&—(u—)l, where. A(u)= f a(v)dv.

w00
0

[Hint. The proof is analogous to the proof of formula (8.16), but instead
of Abel's transformation we apply integration by parts.]
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10. Let i,,4;,... be an arbitrary sequence of complex numbers (not nec-

essarily: tending to oo0). The set S of points of absolute convergence of the .

series Z’aﬂe“"n‘ is convex (i.e. if s; and s, lie in §, then the entire segment
[81,8,] also lies in ).

[Hint. Tf a0, f=0, a--f=1, u>0 and v>0, then uwavhSu+tv.]
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