CHAPTER VIIL
ELLIPTIC FUNCTIONS

§ 1. General remarks about periodic functions. In Chapter I,
§§ 8, 9, we mentioned that the function sinz has the period 2w,
and the function ¢’ the period 2=i. In general, by a period of a funec-
tion F(z) meromorphic in any region G we shall mean a number
o such that:

1° for every point 2, if one of the points 2, z--w belongs to
@, then so does the other; :

'2° if ze@, then F(z+w)=F(z).

For a constant function every number is & period. A function
meromorphic in a region G is said to be periodic if it has at least
one period different from 0. '

From the definition of a period it follows that if F(z) has
a period o, then it also has the period mw, where m is an ar-
bitrary integer. More generally, if wy, ws,..., ®, are periods of the
function F(z2), then every number of the form myw,+mMews—+ ... +Mpoy,,
where My, My, ..., My are arbitrary integers, is also a period.

Differentiating F(z-+w)=F(z), we get F'(24w)=F'(z). Con-
sequently, the derivative of a periodic function F(2) is also a pe-

riodic function, and every period of the fumction F(z) is also a pe-- '

riod of the function F'(z).

However, a primitive function of a periodic function need

not be periodic. For example, the function F(z)=2 is not periodie,
in spite of the fact that its derivative F'’(2)=1, being a constant,
is a periodic function.

Let us now consider an arbitrary periodic function F(z) and
the set £ of all its periods. If #(2) is not a constant, then Q2 does
not have finite points of accumulation. In fact, otherwise there
would exist a sequence {wn} of distinet periods, converging to a
finite number a, and hence there would exist periods w,=w,—
—w, ;70 with arbitrarily small absolute values. Since F(z-w,)=
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=F(z), an arbitrary point 2z, at which the function F is holomor-
phic, would be the limit of the sequence of the points z-4w,,
at which the function would assume the same value ag at the
point 2. Therefore F(z) would be a constant, contrary to the hy-
pothesis.

As to the distribution of the points of the set 2, we distin-
guish two cases:

a) The set 2 lies on some straight line p (passing, obviously,
through the point 0). Let w0, then, be a point of the set £ situated
nearest the point 0. Since the set 2 does not have any finite points
of accumulation and is symmetric with respect to the point 0, there
exist exactly two numbers having the given property and differ-
ing only in sign; we choose any one of them as w. We easily
ascertain that all the elements of the set Q are of the form nw, where
n=0,4+1,+2,... : :

In fact, if a period w not of this form existed, then, since it
would lie on the straight line p, we should have w=(m-0)w, where
m is an integer, and 0<<f<<1. The number fw=w—mw, being the
difference of two periods, would be a period different from 0 and
lying closer to the point 0 than w, contrary to the assumption con-
cerning w. '

The number w, defined to within a sign, is called a primi-
tive period of the function F(z). For example, by theorem 9.10,
Chapter I, 2ri is a primitive period of the function é°.

b) The set Q does mot lie on one straight line. Let, as before,
w50 be a point of the set 2 nearest the point 0. In view of the
symmetry of the set £ with respect to the point 0, there exist at
least two points with this property. Let p denote the straight line
0w. The same reasoning as in case a) indicates that all the elements
of the set Q2 lying on the straight line p are of the form me,
Let us now consider those points of the
set £ which do not lie on the straight line p, and let us choose from -
them a point o' nearest the point 0. It is clear that |o'|>|w|.
‘We shall prove that all the elements of the set Q are of the form
mw-+nw’, where m and n are arbitrary integers.

We already know that numbers of this form are periods. All
that remains to be shown is that there are no other periods.

The numbers mw-t+nw’ are the vertices of a net of parallel-
ograms covering the plane (see the Fig. 32, p. 315). If some point
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w of the set 2 were not of the form mw-nw’, then it would lie in-

side or on the perimeter of one of these parallelograms, but not

on a vertex. Hence, we should have
w=(m-+) &+ (n-+0") 0,

where the numbers 6 and 6’, not both simultaneously zero, would
satisfy the inequalities 0<<f<1 and 0<6'<1l. The number
w' =w—(mo+no')=0w-40'w’ would be a period lying inside or on
the perimeter of the parallelogram with vertices 0, o, o+w’, o', but
not on any one of these vertices. Now, it cannot lie either inside or on
the perimeter of the triangle with vertices 0, w, »’, since in view of
the inequality |o|<|w’] it would belong to the open circle K(0;|w’().
‘We should therefore have |w’|<|w’|, which is confrary to the de-
finition. of the number w’. And if w’ lay in the triangle with ver-
tices , o+o’, o', then the number w'=w+o'—w’, which is
a period, would lie in the triangle 0, w, ', and we should again
come to a contradiction.

A pair of periods , ', such that every period is of the
form mo-+ne’, where m and n are integers, is called a pair of
primitive periods. In contrast to the primitive periods in case a),
there are infinitely many primitive pairs in case b). For
example, if & is an integer, then, together with w, ', the pair
o, kot o' is also a pair of primitive periods.

Case b) can be characterized in the following manmner: the
function has two periods with a non-real quotient.

Summarizing, we can say:

(1.1) If a function F(z), meromorphic in o region G and different
from a constant, is periodic, then one of the following two possibili-
ties occurs: ‘

a) there exists a period w (primitive period) such that every other
period is an integral multiple of w; this period is determined to- with-
mnoa sign; :

b) there exists a pair of periods w, w’ different from zero, with

a non-real quotient (a pair of primitive periods), such that every pe-
riod of the fumction F(2) is of the form mow-+nw’, where m and n
are arbitrary integers; there are infinitely many pairs o, o' having
this property.

In a case a) the function F(z) is called simply periodic, in
@ case b) doubly periodic. Functions reducing to a congtant will
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also be called doubly periodic, and by a pair of primitive periods
of such a function we shall mean an arbitrary pair of numbers
w, o' different from zero with a non-real quotient.

Let wus suppose that a function F(2), holomorphic in a
region &, has aperiod w. Through the points nw (for n=10,4-1,42,...)
let us draw a family of parallel straight lines ¢,, different from the
straight line Ow. In this way the entire plane will be divided into
& series of parallel strips §,, contained between ¢, and g, ., respec-
tively. If we agree e.g. to include g, in 8,, excluding g,,;, how-
ever, then every point of the open plane will belong to exactly one
strip 8,. The strips are called period-strips. If § is one of these,
then we obviously have G-85£0 (see p. 356, condition 1° of the
definition) and for the investigation of a function in the entire re-
gion @ it is sufficient to limit ourselves to the set G-8. For per-
iodic functions, the most frequently considered region @ is a strip
bounded by two parallel straight lines. Obviously, the lines bounding
this strip must be parallel to the straight line 0Ow. As extreme cases
we obtain here as @ the half-plane bounded by a straight line
parallel to 0w or the entire open plane.

In the case of doubly periodic functions having a pair of
primitive periods w, »’, we consider the net of parallelograms covering
the plane, with vertices at the points mw-+nw’, where m and »
are integers. Let us consider one such parallelogram. All of its
points are of the form (m+0)w+(n+0')w’, where 0<HLT,
0<0'<1. Let us remove from this parallelogram the points corre-
sponding to 6=1 or§’'=1, %.e. let us include in the parallelogram, besi-
des the interior points; only the vertex {=mw +nw’ and the two sides
intersecting at this vertex, but without the end-points {+w, {+w’.
Let us denote by E,,, the figure obtained, which we shall call a
period-parallelogram. The period-parallelograms R,, do mnot have
points in common and cover the entire open plane. The parallel-
ogram R,, with vertices at the points 0, w, w+w’, w’, is called
the fundamental parallelogram.

Generalizing the definition of congruence, introduced in § 9,
Chapter I, we shall say that 2, is congruent to z,, modulo w, w’, and
write

Zy=#(modw,n’), v
if the difference 2,—=z; is of the form mw-+nw’, where m and n
are integers. If the numbers o and o’ are fixed, then we shall
simply write z;=#; and say that z, is congruent to =2,.
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If a funetion meromorphic in a region @ iz doubly periodie
and R is one of its period-parallelograms, then R-@0 and in
order to investigate the function in @ it is sufficient to limit one-
self to the set R-G. In what follows we shall limit ourselves,
almost exclusively, to the case in which the region G is the open
plane. ‘

§ 2. Expansion of a periodic funection in a Fourier series.
If a function F(2) has a period o, then the function &(z)=F(sw)
has period 1. Therefore without loss of generality we may assume
from the start that the function F(z) has period 1 (we do not
agsume, however, that this period is primitive; F(2) may even be
doubly periodic). .

Let us suppose that F(z) is a function meromorphic in the
strip B defined by the inequality b<<92<B. The function

(2.1) C=e2m

transforms this strip (of course mot in a one-to-one manner) into
the annulus P=P(0;¢ *"5 ™). We shall prove that the function

2wh

(2.2) Y =P()=F (—Llog ;)

is a function meromorphic in P. Let us notice first of all that for-
mula (2.2) defines G({) in P uniquely. In fact, although the expres-

. 1 R
gion é—;ilogt hag infinitely many values, they differ by integers.

Because of the fact that 1 is a period of the function Fz), from
formula (2.2) we obtain the same value for G(¢) in all cases. Now,

let , be an arbitrary point of the annulus P and let z0=—éi_ Log ¢,.
i
In the neighbourhood of the point 7, there exists a holomorphic
. 1
branch L() of the function —2—7;log¢. Since @({)=F(L(¢)) in
¥i3

this neighbourhood, we see that, if the function ¥ () is holomorphic
at the point 2, then G(¢) is holomorphic at the point &,. If
F(2) has & k-tuple pole at 2,, since L'(£)#0, the function G(¢) has
@ k-tuple pole at ¢, (cf. Chapter ITI, theorem 8.3). Consequently,
the function G(Cy) is, in fact, meromorphic in P.

Similarly, if the function F(z) is holomorphic in the strip R,
then, obviously, the function G(¢) is holomorphic in the annulus P.
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If the function F(z) is meromorphic in the open plane, then
the function G(Z), given by the formula (2.2), is meromorphic in
the annulus P=P(0;0, co). (At the points 0 and co the function
G({) may, of course, have essential singularities.) ‘

Let us suppose now that the function F(z). is holomorphic in
the strip R and cannot be extended, as a holomorphic funetion,
to any wider strip containing R.

The function G({), being holomorphic in the annulus P, is ex-
pansible there in an absolutely and almost uniformly convergent
Laurent series ’

G(C)"_“ 2 chn-
N =—00
This series is divergent at the points not belonging to the
closure of the annulus P, since in the contrary case the function
G{({) could be extended, with preservation of holomorphism, to an
annulus containing P and different from P (see Chapter III, § 4),
and, as a consequence, the function F(z) could be extended, with

" . preservation of holomorplism, to a strip containing R and different

from E, which is contrary to the hypothesis.
Putting (=€’ in the last equation, we obtain the formula

(2.3) Flz)= 3 cpe®™ie,

=00
where the series on the right side is absolutely and uniformly con-
vergent in every strip which, together with the straight lines
which bound it, lies in E. We may therefore state the following
theorem:

(2.4) If F(2) is a function of period 1, holomorphic in a strip R
defined by the inequality b<<9z<B, then in this strip F(z) is expan-
sible in a series of the form (2.3), uniformly and absolutely convergent
in every strip b'<<Iz<{B’ contained in R.

In addition, if the function F(z) cannot be extended, preserving
holomorphism, to any strip containing R, but different from R, then
the series (2.3) is divergent at every point exterior to R.

The expansion (2.3) is called the Fourier ewpansion, or the
Fourier series, of the function F(z). To different strips of holomor-
phism of one and the same funection there correspond, in general,
different Fourier series.
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Let us consider, for example, the function F(2)=cotnz, having the
period 1. Taking =", we find that F(e)=i({-+1)/({—1). The right side
of this equation has the point {=1 as the only smtru.lar point, and its Taylor
series in the circles K(0;1) and K(oco;1) are, respectively,

—i(l+20+204..), (14242
From this we obtain the following two Fourier expansions for the funetion
cotnz:

x 0
(2.5) cotme= —i(l -{—22‘327“’“), cOtn:z:i(l +226—27r:tnz)’

n=1 n=1

the first for U2>0, and the second for 92<0.

Making use of the equation €*™"*= cos 2mnz+48in 2mnz we may
write (2.3) in the form:

(2.6)

H

L\')IH

Z (@,C08 2z b,sin 27nz),
n=1

where

(2.7)  ay=2¢y, @n=Cp+0C_p,
Series (2.6) is the trigonometric form of a Fourier series.
Now let H(z) be a function with period w0, holomorphic

in a strip b<9(z/w)<B, parallel to the straight line 0w. The func-

tion F(z)=H(20) has period 1 and is holomorphic in the strip

b<J2<B, and hence we there have formula (2.3), or, what amounts
to the same thing, formula (2.6). Consequently, for b<9(z/w)<< B,

by=i(,—C_,) for n=1,2,...

" 2ming

1 d 2nne . 2mme
H(z Z e © =3 'a°+§ (ancos — + b, sin ~—a:-—) ,

=00

where the last two series differ only in appearance; we can easily
pass from one to the other by using formulae (2.7).

EXERCISES. 1. Let F(z) be a function of period 1, holomorphic and
bounded for 9z>b. Show that F(z) tends to a finite limit, as 2z tends to oo
in such a way that 92— co..

2. An entire function F({z) with period 1, bounded in the strip 0<CR2<1,
is constant.

3. We shall say that a holomorphic function F(2) with period 1 be-
longs to the class SR if the function G({), given by formula (2.2), is a rat-
ional function of the variable {. Show that necessary and sufficient con-
dition that a function F(2), meromorphic and having period 1, belong to
the class fR, is that it tend to a limit, finite or infinite, as 2z tends to oo
in the strip 0CR2<1. (The limits for Qz—>+oo and for 9z—— oo need not
be the same.)
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4. If a function F(2) of class SR does not tend either to 0 or to co, when
0<Re<1 and O9z—>-oco, then in the strip 0<LRz< 1 the function F(z) has
exactly as many roots as poles (taking into account the multiplicities of the
roots and. the poles).

5. Let F(z) satisfy the hypotheses of exercise 4 and let a,,a,,...,a, and
B1:Bas---s B, TESpECtively, be all the roots and all the poles of the function,
situated in the strip 0<CRz< 1. Then

n
]!]1— (6% — ¢2mick)

F (3’) == G—n—-———mﬂ ’
I7 ( &2 _ eam'ﬂk)

k=1
where C is a constant.

§ 3. General theorems on elliptic functions. Among the doubly
periodic meromorphic functions a particularly important role is
played by those funections whose region of meromorphism is the
entire open plane. They are called elliptic functions. In discussing
doubly periodic functions we shall limit ourselves almost exclu-
gively to elliptic functions.

The name “elliptic functions” is, perhahs, not the most suitable one and
expresses a rather accidental property of these functions. Historically, it arose be-
cause of the fact that the length of an arc of an ellipse is expressible in terms
of certain integrals intimately connected with elliptic functions, the so-called
elliptic integrals (see § 14). However, the arc length of many other curves,
for example, the lemniscate, is expressible in terms of elliptic integrals.

Let F(z) be an elliptic function, and w,w’, a pair of its prim-
itive periods. Changing possibly the order of the periods we may
always assume that J(w'/w)>0, or 0<Arg(w’/o)<r.

The parallelogram formed from the segments [0,w],[w,0+o'],
[o+w’,0'], and [w’,0], is therefore positively oriented (Chapter IV,
§ 11, p. 209). ,

We shall begin with the proof of the theorem that
(3.1) The only entire elliptic function is a constant.

Proof. A doubly periodic entire function F(z) is bounded
in the fundamental parallelogram. Since the function F(z) assumes
the same values in all the period-parallelograms as in the funda-
mental parallelogram, it is therefore bounded in the entire open
plane, and consequently a constant.

We see, therefore, that every elliptic function which is not
a constant must have at least one finite pole and therefore at
least one pole in every period-parallelogram.
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If we disregard the case of a constant funetion, then the point
at infinity is, for an elliptic function, a pomt of accumulation of
its poles and hence a singular point.

(3.2) The sum, difference, product, and quotient of two elliptic functions
having a common pair of periods with a non-resl quotient, is an elliptic
function. '

The derivative F’(z) and the logarithmic derivative F'(z)/F(z)
of an elliptic function F(2) are also elliptic functions.

The proof follows from the fact that the four arithmetical
operations and differentiation preserve the meromorphism as well
as the double periodicity of the funection.

The common pair of periods appearing in theorem 3.2' does
not have to be a primitive pair for the individual functions. Al-
though the consideration of pairs of primitive pericds has a funda-
mental significance for the theory of elliptic functions, neverthe-
less, in certain cases it is convenient to take into consideration
a non-primitive pair. Elliptic functions having a common pair of
_periods with a non-real quotient will be called co-periodic.

(3.3) If two co-periodic elliptic functions F(z) and IFi(2) have the
same poles in the entire plame and the same principal parts at these
poles, then they differ by a constant. ‘ v

If two co-periodic fumctions F(z) and F,(z) have the same roots
and the same poles, their multiplicities being taken imio account,
then they differ by a constant factor.

Proof. In the first case the difference F,(z)—F(z), and in the
second case the quotient F,(z)/F(2), is an entire elliptic function
and hence, by theorem 3.1, a constant.

Let F(2) be an elliptic function, and ay,a,,...,q, its distinet
poles lying in the fundamental parallelogram, with the correspond-
ing multiplicities m,,m,,...,m; (we recall that we include in the
fundamental parallelogram its interior as well as the sides Ow and
Ow’, without the end-points w and w’). The number

M=m;+My~+ ...y,

. e. the number of poles lying in the fundamental parallelogram
with their multiplicities taken into account, is called the order of
the elliptic function. Of course, instead of a fundamental parallel-

ogram we can take in this definition an arbitrary period-parallel-

ogram.
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Let 2z, be an arbitrary complex number. Let us consider the
parallelogram R with vertices 2,2+ o, 2+w-+w’, and z,+w’, 0b-
tained from the fundamental parallelpgram by a translation through
2, (in particular, B may be a period-parallelogram).

(3.4) If an elliptic function F(z) is holomorphic on the perimeter of

the parallelogram R, then its imtegral along this perimeter is zero.

In fact, this integral is equal to

Zy+w Zo+ 0+’ 2yt o’

[ Pyde+ [ Fyde+ [ F()det fp(z)dz,

Z, Zy+ o Zto+o’ 2o’
‘where we integrate along rectilinear segments. The sum of the first
and third integrals is, as one eagily sees,

Zoto %t o
[F ) de+- fp (z+w’ dz—J F(z)dz+ {F (2)dz,

Zytw Zy Zto
and is therefore zero. »
~ From (3.4) we have the following theorem:

(3.5) The sum of the residues of an arbitrary elliptic function F(z),
corresponding to all the poles belonging to any period-parallelogram I,
is equal to zero.

Proof. Let us suppose, first, that the function F(2) is hol-
omorphic on the perimeter of the parallelogram R under consider-
ation. The sum of the residues, multiplied by 2wi, is then equal
to the integral of the function F'(z), taken along the perimeter of
the parallelogram R in the positive sense, and hence, by theorem
3.4, is zero.

- Obviously, it would be sufficient to assume merely that R is &
translation of -a period-parallelogram.

If F(2) has poles on the perimeter of the parallelogram R, let
us consider the parallelogram R’ formed from R by a translation
through ¢, where ¢ is a complex constant with a sufficiently small
absolute value. The function #(2) has a finite number of poles in E.
Therefore, if ¢ is suitably chosen, then the function F(z) will
have the same poles in R’ ag in R, and will be holomorphic on
the perimeter of the parallelogram R’. By virtue of the case al-
ready considered, the sum of its residues, corresponding to the
poles lying in R’, is equal to zero. Consequently, the sum of the
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residues of the function F(z), for poles ‘lying in R, is also equal
to zero and the theorem is proved.

(3.6) BEvery mon-constant elliptic function is of order Z=2.

Proof. An elliptic function of order 1 would have exactly
one pole 2z, in the fundamental parallelogram, with principal part
¢/(z—2,). Since ¢ 0, we should have a contradiction to theorem 3.5.

Let us note now that together with F(z) the function F'(2)/F (2}
is also elliptic and the sum of its residues in the period-parallel-
ogram is equal to the difference between the number of roots and
the number of poles of the function F(z) in this parallelogram.
Applying theorem 3.5 we deduce from this that

(3.7) The number of roots of an elliptic function F(2) in an arbitrary
period-parallelogram is equal to the mumber of its poles in this
~parallelogram.

Replacing the function F(2) by F(z)—c we obtain that

(8.8) An elliptic function of order r>>0 assumes every value ¢ exactly
r times in the period-parallelogram.

In view of theorem 3.7 the number of roots of an elliptic func-
tion in the period parallelogram depends on the number of poles
lying in it. We shall now show that also the position of the roots
depends on the position of the poles. Namely:

(3.9) Let F(2) be an elliptic function of order r>0, and let ay,a,,...,a,
and by,by,...,b, be the roots and poles, respectively, of the fumction
F(z) in the period-parallelogram R, where every root and every pole
is counted as many times as its multiplicity indieates. Then

(3.10) ay+ay+ . coAa=b;4+by,+ ... +b, (mod w,w’).

Proof. Let us suppose, first, that #(2) does not have any roots
or poles on the perimeter of the parallelogram R under consider-
ation. Let us denote its vertices by 2,2y}, 2-Fw-+o’ and 2,4+ w'.
The difference between the left and right sides of formula (3.10),
multiplied by 2=, is equal to the integral of the function 2F'(2)/F(2)
(see Chapter IV, theorem 7.5), taken along the perimeter of R, . e.

311)]1”3) f F(z +f Fz) +f F(z)
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The sum of the first and third integrals is
F (z—l— ')

J.z—ﬁv—d-i—fz—{— z—{—w)

z,,+a) Zyto

s [ire e T

0

Since, by hypothesis, the function F(2) is holomorphic and
different from zero on the side [#,,2,+w], the integral of the funec-
tion #'(2)/F(2) along this side is equal to the increment of log F(z)
(Chapter IV, § 5, p. 185), which, in view of F(z)=F (2t w), is equal
to 2nnt, where n is an integer.

Consequently, the sum of the first and third integrals in (3.11)

is —2nme'i. Similarly, the sum of the second and fourth integrals

is equal to 2mnwi, where m is an integer. Therefore the difference
atas+...+a,— (by+bs+...+0b,) is equal to mow—ne’, and the
formula (3.10) is proved. In the above reasoning it was sufficient
to agsume that R is only a translation of a period-parallelogram.

In the case when R contains roots or poles of the funetion
F(z) on the perimeter, we proceed as in the proof of theorem 3.5.

(8.12) If ¢' and ¢ are arbitrary complex numbers, finite or not, and
ay,a,...,a, and aj,as,...,a;, the roots of the equations F(z)=c’ and
F(z)=c", respectively, lying in a period-parallelogram of the elliptic
function F(z) of order r>0, then

3.13) a;tas+.. .+a;_a'1'—}-aq+ .

Proof. If ¢'=co, for example, and ¢" is a finite number, then
(3.13) is a consequence of theorem 3.9 applied to the function
F(z)—c¢*. On the other hand, if ¢’ and ¢” are finite, then by theo-
rem 3.9, applied successively to the functions F(z)—c¢’ and F(z)—c",
the left as well as the right sides of formula (8.13) are congruent
to by+by-+...+b, (mod w,w’), where b,,b,,...,b, are the poles of the
function F(z) in the parallelogram under consideration. Therefore
also in this case formula (3.13) is true.

‘We shall introduce still another notion. Let a,,a,,...,a, be
the set of all roots of the function F(2) in the fundamental
parallelogram, where the multiple roots are counted with the cor-
responding multiplicity. The set of numbers a;,as,...,0, will
be called a complete system of roots of the function F(z), if

..ta; (mod w,w’).
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o=a; (mod w,w’) for i=1,2,...,r

The system ay,a,,...,0, obviously represents the roots of the
function F(z) in the entire plane equally as well as the system ay,
@zy...,a, does, since by translating the points ay,a,,...,aq, through
mo-+nw’, where m and n assume all integral values, we obtain all
the roots of the function F(z). We similarly define a complete system
of poles of the function F(z), as well as a complete system of roots
of the egquation F(z)—e=0. '

- Formula (3.10) remains valid if by a,,as,,...,a, and biybaye..,b,
Wwe mean arbitrary complete systems of roots and poles of the
function F(z). Similarly, in (3.18), ai,a3,...,a, and ay, gy
may respectively denote complete systems of roots of the equa-
tions F(z)—¢'=0 and F(z)—c"=0.

§ 4. The function p(2). In § 3 We proved a series of theorems
~on elliptic functions; so far, however, we have not given any
example of such a function (different from a constant). We shall
now show that the meromorphic fumction P()=p(z;0,0') (see §5,
Chapter VII) 4s elliptic. _

) Let @,0" be a pair of complex numbers different from 0 and
such that 9(w'/w)>0. Let us consider the set Q of points w=maw -+
+new’ in the plane, where my,n=0, +1, £+2,... Let us arrange
all these points in an infinite sequence

Wo=0,W1,Wq, ..., Wy,...
Then '

s 1 e
(41) P(550,0')=" + (

1 1

(2 —10y)? wk)

~ The fl.mction p is holomorphic in the entire open plane, with
t].le exception of the points w,, where it has double poles. At points
different from the points Wy, the series (4.1) is absolutely converg-
ent, a,nfi hence its sum does not depend on the order of the terms,
In addition, in every circle of finite radius the series (4.1) is uni-
formly convergent after discarding a sufficient number of initial

terms. We can therefore differentiate term by term, which gives
the formula '

. T\ e 2 s oo. 1
e e
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If z is not a period, then the series (4.2) is absolutely converg-
ent, as a consequence of the convergence of the series >'1/ |wk|3,
' k=1 -

proved in § 5, Chapter VII.
We shall show, first, that the function p’(2) has periods o
and o’. Now, from formula (4.2) it follows that

: PSS I S T SR
P (etw)= ué;[z_(wk_w)],— 2%;@_%)3—@,(2*),

because like wy, the expression w,—ow also assumes all the values
of the set Q. In view of the symmetric role played by « and o,
we also have p'(z-+w’)=p'(2).

Integrating the equation p’(2+w)—p’(2)=0 we get the formula

Pt+o)—pR)=0,
where C is a constant. In order to find its value, let us note that
9 (2) is an even function of the variable z, because formula (4.1) gives

10& 1 1y 1, % 1 1
plma=5+ ) (@?W'z’é’%)_z? +£(£z—(—wk>]2 “(—wm)’

k=1

and —w;, assumes, like wy, all the values of the set Q. Putting
2=—ow/2 in the equation defining the constant C, we find

O=p(0/2) —p(—0/2)=p(/2) —p(w/2)=0.

Consequently, p(¢+w)=p(2). Similarly, @(z+o’)=p(2). The
funetion @(z), being doubly periodic and meromorphie, is therefore
elliptic.

We have shown that the numbers w,=mo-+no’ are periods
of the funetion @(2). This function has no other periods. This follows
from the fact that 2=0 is a pole of p(z); hence, if there were
periods different from the numbers wy, then the function p(z) would
have poles at points different from wy, which is not true. Conse-
quently w and o’ form a pair of primitive periods for the function
P(2;0,0"). Since p(2) has one double pole in every period-parallel-
ogram, p(z)14s an elliptic function of order 2. The derivative @'(2)
48 an elliptic function of order 3, and w, w' is again o pair of prim-
itive periods. '

Elliptic functions form only a special, although the most impofta,nt, class
of doubly periodic functions. An example of a non-elliptic doubly periodic
funetion is the.function exp @ (¢). It is meromorphic and doubly:periodic in

S. Saks and A. Zygmund, Analytic Functions. - 24
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the open plane minus the points w,, at which it has essential singularities.
Tor, in the neighbourhood of the point z=0 we have

exp @ (¢)=exp {z+ G (2)} =H (2)exps,

where G(z) and H(z) are functions holomorphic at the point 0, a:Tld hence
2=0 is an essential singularity of the function exp@(z)'. Not bt?mg.; mer-
omorphic in the entire open plane, the function exp @ (2) is not elliptic.

By theorem 3.6, the order of an elliptic function (different
from a constant) is at least 2. Functions of order 2 are therefore
the simplest elliptic functions. In the theory of doubly periodic
functions they play the sa,mer»fundg;menta,l role as the exponential
function in the theory of periodic functions. c

Let us now consider the derivative p'(2). As i3 easily seen
from formula (4.2), it is an odd function. If w is its period, then
we have the equations

(4.3) p'(—wf2)=—p'(w/2),  p'(—w[2)=p"(w2),

of which the first is a conse(iuence of the oddness, and the second of
the periodicity, of the function p’(2). We get from this

(4.4) h p'(w/2)=0.

In this argument we assumed implicitly that the number w/2
is not itself a period, because otherwise both sides of the formu-
lae (4.3) would be infinite for z=w/2. Limiting ourselves to the
fundamental parallelogram, let us consider the points belonging to
it which are half-periods, but not periods. There are three such points,
" namely:

1 1

(4.5) 5 9 S

1 ’
3 B E(a)—{—w ).

By formula (4.4) these are roots of the function p’(z). Since
p'(z) is an elliptic function of order 3, it has exactly three
. roots in the fundamental parallelogram. Hence, the numbers (4.5)
are the only roots of p‘(z) in the fundamental parallelogram.

It follows from this that, except for 2=0, only the values assu-
med by the function p(z) at the points (4.5) are multiple; the
values assumed by p(2) at the remaining points of the fundamen-
tal parallelogram are simple.

Let

(4.6) plof2)=6, p(o'[2)=6, p(o2+0’[2)=¢,.
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The function p(2) is of order 2; therefore, if ¢ is a constant,
then the equation p(2)—c¢==0 has exactly two roots in the funda-
mental parallelogram. Therefore, the function p(z) assumes in it
each of the values e,,¢,,e; only at one point, but‘doubly. Conse-~

- quently, the numbers e,,e,,e, are distinet, because otherwise the

function @(2) weuld assume the same value in the fundamental
parallelogram at least four times. Now, if ¢ is different from
€1,¢5, 63, then the equation p(2)—c=0 has two distinct simple roots
%y and 2, in the fundamental parallelogram. In order to find a rela-
tion between z, and 2y, let us note that the function p(z) is even,
and hence together with z, —2, is also a root of the equation
p(2)—c=0. Consequently, 2; is a point of the fundamental par-
allelogram congruent to —z,(mod w,w’).

EXERCISE. Let @ and b be real numbers different from 0. Show
that the function 2= (2;0,bi) assumes only real values on the straight lines
‘Rez=an/2 and on the straight lines 9z=bn/2, where n=0,4+1,+2, ... These
straight lines divide the plane into a net of rectangles. Prove that in the
interior of each of them the function @(2;a,bi) is uniquely invertible and
transforms this interior either into the half-plane 92>0, or into the half-
plane 92<0.

§ 5. Differential equation of the function p(2). The properties
proved for the funetion p’(2) enable us to derive the differential
equation of the function p(z). To that end, let us note that p’(2)
has a triple pole at #=0 and simple roots at the points (4.5). Con-
sequently, p2(z) has a sextuple pole at =0, and double roots at
the points (4.5). Let us consider the product

(5.1) [p(2)—es] [p(2)—ea] [P (2) —es]-

The point 2=0 is a sextuple pole of this expression, and the
points (4.5) are double roots. In view of theorem 3.3, p'?(2) differs
from the product (5.1) only by a constant factor. In order to find
this factor it is sufficient o compare the principal parts of these
functions at the point z=0. From formulae (4.1) and (4.2) we
find that the principal part of the function. p2(s) is 42—%+...,
and the principal part of the product (5.1) is 2—*+4... Therefore
the desired factor iz 4, and consequently, :

(5.2)  pR)=4[p)—allp(e)—e.][p(2)—es]-
This is precisely the differential equation of the function P(2)
which we were seeking. » )
24*
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 We shall give still another form of this equation. Let us put,
for n=3,4,5,...,

o

(5.3) 5’

where the sum extends over ’Lll the periods w,, different from 0,
For >3 the series (5.3) are absolutely convergent (see p. 316),
and, if » is odd, then s,=0, since the terms corresponding to
periods differing in sign eaneel each other.

Let us note now that

11
‘ (‘z _wk)z w;i (1 ____z_)n

Wy

_,_}_0 5_!.. 4-{—-... fQI' |2] < [0
Wr,

Let us apply this formula to each of the terms on the right
side of equation (4.1). By theorem 5.9, Chapter III, for z suffi-
ciently close to the point 0, we obtain the expansion

(5.4) p(2)=2"2-F38422+-Bsee*+ ...,

whence p'(2)=—2z"2+068,2+208:2°1 .. p2r)=4r8 248,82
—8085+ ..., pP(2)=2"%+498,2 2158+ .. From the last two formulae
we see that @'%(z)—4p3(z)=—60s22—1408,+ ..., and therefore

(5.5) p'%(2) —4p3(2)+ 60,0 (8) = — 14085+ ...

The left side, which is an elliptic function, can have poles
only at the points wy. As is seen from the last equation, the func-
tion under consideration is holomorphic at the point z=0. It is
therefore holomorphic everywhere, and consequently a constant.
The value of this constant, as also follows from (5.5), is ~—140s,.
The function g(z) therefore satisfies the differential equation

(5.6) 9 2(2) =40%(2) =920 (2) —0a,

where, following Weierstrass, we use the notation

, o |
(5.7 gz=6084=601§ e g3 =1405= 140}%’-—-

The numbers g; and g,, whiéh play an important role in the
theery of elliptic functions, are known by the name.of mvariants.

(The reason for this name will appear in § 11, p. 391.)°
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The left sides of equations (5.2) and (5.6) are equal. The
same can therefore be said of the right sides, which by comparison
of coefficients gives the relations:

' 1 1
(5.8) e1tet+e;=0, 3132'1'5293“{‘3331:_192’ 313233=193-

One more relation between the quantities e, and ¢, deserves
attention. The numbers eq,e,,e; are the roots of the cubiec equation
1 1

(5.9) _Zgaw_“gz—“o
Now, it is known from algebra that if e;,e,,e; are the roots
of the cubic equation «®-+ps+g=0, then the expression

(61 —32)2(61 —e3)?(es—6,)%

known as the diseriminant -of the equation, is equal to
—4p3—27¢% For equation (5.9) we therefore obtain

(5.10) 16(e;—e5)*(e,—es)*(e '—33) !72—2793

The equation (5.10) can also be obtained directly. To that end, let us
differentiate the formula 4(z—e,)(r—es)(#z—e;)=42"—g,2—g,, and then put
z=¢,. We obtain (el——ez)(el——ea)=32%—gg/4. The permutation of the quant-
ities e,,6,,6; gives two other analogous formulae; by multiplying them to-
gether we obtain

(3¢} —g2/4) (3¢3—9,[4) (35— ga[4)-

If we carry out the multiplication on the right side and take into
account the equations

— (6g—€3) (63 —e1)* (61—~ €5)* =

e +ei+ef=(e1Fey165)*—2(es8stes€1+e165) = 0,

MI)—‘

1
o
eeiteleiteles= (ezea‘i“eael""e132)£—2316233(31+62+33)=E92:

1
2 9 2 2
e1exes— T, (03
169 s

then we obtain the formula (5.10).

In § 4 we showed that the numbers e;,¢,,¢5 are all different.
From the equation (5.10) it follows therefore: that the- number
gs—27¢; is differemt from zero.

Let us return to equation (5.6) and. let us substitute in it for . (2) the
geries from formula (5.4). Carrying out the indicated operations we can obtain
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relations ‘among the quantities s, by comparing coefficients. In order to
simplify the calculation, let us first differentiate the equation (5.6). Dividing
by 2pP’(2) we see that

1
(5.11) P7(e) =692 — 50-

Let us introduce one more simplification by putting (2n—1)s,,=¢, for

(o]
7=2,3,... Formula (5.4) now has the form @ (2) =22+ e,z

n=2

Since g,=608,=20¢,, we can also rewrite (5.11) in the form

co 1 © 2
627+ 3 (2n—2) (2n~3) ¢, 2™ *= —10¢,+ 6 (;ﬂ—}- cnz"“‘) .
n=2 Y a=2
Comparing the coefficients of 2**~* we have the formula
(n—3)(2n-+1)e,=3(cy6,_a+C€4C,_s+ ... 40, _5C5) for

In particular:

n=4,5,...

2
Cy=—Cy €5== == Cy03
3 11 ’

1 o L2 .,
cﬂ=l—3(20304+03)=i§ gcn-{—c3 ,... otc.

All the numbers ¢, are therefore polynomials in ¢, and ¢; with rational
coefficients. In other words, we have the following interesting theorem:

(5.12) The quantities 8,,8;,855...585,,..., defined by formula (5.3), are ex-
pressible as polynomials in the imvariants g, and g¢; (and hence also in s,
and sg) with rational coefficients.

We recall that the quantities s;,85,8,,... are equal to zero.
Theorem 5.12 is the analogue of the more elementary theorem con-
cerning the numbers 8,=J3""1/%", where the summation is extended over all
x

the integers k54£0. From formula (5.7), Chapter VII, it follows that §,, is a ra-
tional multiple of the number n™ and hence also & rational multiple of S;.

Thus far we have treated p(z) exclusively as a function of the
variable 2, having & fixed pair of primitive periods w, w’. In certain
problems, however, it is also necessary to consider the dependence
of the function p on the periods o and w’. Let us note that the
function p(z;0,0"), treated as a function of all three variables, is
homogeneous of degree —2, 4. e., that for an arbitrary As40 we have

P (42;40,40")=2"2p (2; 0, @"). -

This is immediately evident if we replace z in formula (4.1)
by A2, and wy=mo-+no’ by iw,.

The numbers e,,e,,6€;, defined by formulae (4.6), are functions
of o and "w’; 4. €., =¢(w,0’) for i=1,2,3. From the preceding
observations it follows that the numbers e; are homogeneous functions
of degree —2 of the variables w and w'.
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EXERCISE. Show that
P/(@)P (e +0[2)p’ E+0’[2)P (+0[2+ 0’ [2)=g3— 2745

[Hint. Having verified that the left side is constant, investigate its value
when 2—0. To that end apply formula (5.11).] .

§ 6. The functions {(2) and ¢(2). The functions o(2) and (o),
with which we have met earlier (cf. Chapter VII, § 5), also play an
important role in the theory of elliptic functions. The first one
of these is an entire function defined by the absolutely con-
vergent product '

1/ 2\2
- 2\ wm+ali)
(ﬁ.l) | o(2) =z1£11 (1——-;”;)6 s

extended over all the points wy=mw-+nw’ different from 0. The
function o(2) has (simple) roots at the points wy and only at these
points. The function £(z) is the logarithmie derivative of the fune-
tion o(?):

62) ="

)1 1 2
+;§<z'—wk+@; wl%)

and has simple poles at the points wy. All of its resi_dues are equal
to 1. I ’

The functions o(2) and ((z) are related to p(2) by the equa-
tions ‘

d a ,
(6.3) ‘ @(z)=—agé(z)=—-5;10ga(@-

From formula (6.1) we see that the function a(z)‘ changes its
sign when we replace z by —2 (since at the same tlme' we may
change w; to —wg). Consequently, o(z) is an odd function of the
variable z. ' . .

- Similarly, replacing the variable #z by —=z in the series (6.2)
defining - the function {(z), and wy by —wy, we deduce that L(=)-
is an odd function of the variable z.

From the equation

(6.4) gz-[c(z+w>—~c(z) — [p(etw)—p(2)]=0

and from an analogous équation obtained by replacing o by o’
we. get
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65)  Cete—tE=r  lete)—tE=n,

where 7 and 7' are certain constants. Applying (6.5) repeatedly,
we obtain the general formula
(6.6) L(e+ma+no’)=C(2)+mn+nn’.

We see, therefore, that the function (z) has a certain “pseu-
dopenodlclty” by increasing the independent variable z by the
quantity w;, we change the function only by an additive constant.
It may happen that one of the numbers #, n’ is equal to 0, but both
cannot vanish simultaneously, because the function {(2) has only
one (simple) pole in the fundamental parallelogram, and hence it
would then be an elliptic function of order 1 (cf. theorem 3.6).

Let us put 2=—w/2 in the first of the formulae (6.5) and
#=—0'[2 in the second. Taking the oddness of {(2) into account,

we find:
1 14 1 7
77=2C(—2—w), 7 ::2&'(560 )

The quantities #,7',w,»’ are connected by a certain rela-
tion. In order to find it, let us consider the integral of the func-
tion [(2) along the perimeter of the parallelogram R with successive
vertices 2, Z-+w, 2%+w+o’ and z,+w’, where z, is an arbitrary
number, not a pole of the function C(z) This integral may be
written in the form

Zt+ o’ 2t
f {leto)—t@))de— [ {tz+o")—t(@))de=0m—oy .

2,
Smce E contains only one pole of the function {(=2), with res-
idue 1, we have
(6.7) o'n—on’=2ni.

This is precisely the relation which we were seeking. It ig
known as Legendre’s equation. We recall that the pemods o and
.»' were chosen so that 9(w’/w)>0.

Let us take:

w=mw-+nw’, f=mn-+nn’.

Writing the formula (6.6) in the form
o'(e+w) o'(2)

a(z—[—w) o(2)
and integrating, we get the equation
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(6.8) o(z+w)=Ce™ o(z),

where C is a constant. Let us suppose, first, that o(w/2)s£0 and
let us set z=—w/2 in the last equation. Taking the oddness
of o(2) into account, we obtain C'=—exp (fw/2).

The preceding reasoning fails when o(w/2)=0, because in
that case, after substituting z=—w/2, both sides of formula (6.8)
become equal to zero. But let us note that since ¢(z) is an odd
function, ¢'(2) is an even function. Let us now differentiate equation
(6.8) and take z=—w/2. If o(w/2)==0, then o' (w/2)s0, because
the roots of the function o(z) are simple. Let us divide both
sides of the equation by o'(w/2) and let us take the evenness
of the function ¢’ into account. In the case under consideration
we get C=exp(7w/2), and therefore an expression differing in sign
from the one in the preceding case.

Let us note now that w,/2 is a root of the function o if
and only if m and n are even simultaneously. Since m and n are
both even if and only if the expression mn4m-+n is even, we
get the general formula

o(2+w)=(
In particular, putting m=1, =0, and m=0, n=1, we have:
(6.9) o(r+w)= o(at+w")=—eTErDg(z),

Consequently, the function o(2) is also “pseudo-periodic’, al-
though in another sense than {(z): by increasing the variable z by
w or o’ the function is multiplied by an exponential factor.

EXERCISES. 1. For 1#0 we have:

g(Az;lw, Ao’)=Ao(z;0, ), {Azhw, Ao’ ) =11 (z; w, ).
. 2. Prove that the function o(nz)/[c(2)]"® is elliptic. Show that o(2z)/c*(z
=—'(?)-

3. Let w’/o=7 and z/w=v. Show that:

—1yrnEmingietudg(2), where w=mo-+no’, j=mn-ny’.

_en(z+w/2)0-(z)’

o0 in 2 B
® . sin?nw

o (# 0, 0")= — %% sin nv l I (1—— — s
=l 1IN NTT

E]

{(yw,07)= nv+»~(cotnv+2(cotnu—l—'m)—i—cotn('v 'm)))

n=1

m\? % 1

N T (T
plesw,a)=— "1+

s
w)"__m gin? (v +-nr)w

where n=2¢(w/2;w,w’) (Weierstrass).
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[Hint. In order to obtain for example, the formula for ({(z), we first
sum in formula (6.2), where w, assumes the values mw--no’, with respect
to the index m, and then make use of the expansion of the function
meotww into simple fractions (cf. formula (5.11), Chapter VII). Then, for
{(2), we obtain the expression )

213
)

(i + Z‘w 1 )v+ —Z (cotmz-}- f’(cotn(v—l—m)—{-cotn(v—nr))),

6 & sin?nnt a=1

In order to find the coefficient of the linear term in v, substitute z=w/2.]

§ 7. Construction of elliptic functions by means of the fune-
tion o(2). Let F(2) be an elliptic function of order r, and a;,a,,...,aq,
and By,Bs,...,5, complete systems (p. 367 and 368) of roots.and
poles. By theorem 3.9 and the remark at the end of § 3, the
difference between the sum of the numbers o; and the sum of
the numbers f; is of the form mw-tnw’, where m and = are
integers. Replacing fB,, for example, by f,-+mw-+nw’, we may
assume that

(7.1) oy tagt .. a=pF+F+. .. B

Let us now consider the meromorphic function
o(z2—ay)o(2—a,)...0(8—a,)
o(z—py) o(2—Ps)...o(2—pB,)

‘We shall show that @(2) has the periods o and o’. For let «
and f denote two arbitrary constants and G(z)=o(z—a)/o(z—p).
From the first formula of (6.9) it follows that G(z-+w)=e"?""G(2).

Let us apply this to the right side of (7.2). Taking condition (7.1)
into account, we see that

(7.2) B(2)=

D(z+w) =g ertPrart et oD () — B(2).

Consequently w, and similarly ', is a period of the function
O(z). The latter has the same roots and poles as F(z), and hence,
by theorem 3.3, it differs from F(z) by a constant factor. Whence:
(7.3) Ewvery elliptic function F(z) of order r can be represented in the
form '

(7.4) F(z)___co(z—al) a(z~a._,)...o(z—a,)’
o(z—p1)o(e—ps)...0(2—p,)
where C is a constant, and a,,a,,...,a, and B1sBas- .., Br are, respectiv-

elg,{, complete systems of roots and poles of the function F(z), satis-
fying condition (7.1). Conversely, every function of the form. (7.4)

b4
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where ay,005...50. and By, fy,..., B, are arbitrary numbers satisfying
equation (7.1), is an elliptic function.

EXAMPLES. 1. Express p’(z) in terms of the function
o(2). The function p’(2) has a triple pole at z=0 and the roots
/2, (0-+©")[2 and »'/2 in the fundamental parallelogram. There-
fore, if we set: :

1

=0 ay=——(w+ow' ag=—0m'
1=5 2 2( +o’), 3 )

2

then the condition a;-+a,+as=p,+p,+pf; will be satisfied, and by
virtue of theorem 7.3,
o(z—ow/2)o(z+w/2+w’'2)o(z—0’[2)

o%(2)

ﬂl——‘ﬂa:ﬂs: 0:

(7.5) p'(e)=0C

In order to determine the constant C, let us consider the co-
efficients of #=* in the expansion of both sides in a Laurent series
at the point 2=0. We get

2

T o(0)2)0(w/2+0'[2)o(w[2)

2. Bxpress the function F(z)=p(2)—p(u) in terms of
o(¢), where u is a constant,not a period of the function g.

Let us suppose that w is not a half-period. The function F(z)
has a double pole at z=0 and two simple non-congruent roots
w and —u. We may therefore put a,=u, ay=—u, and g,=f,=0
in formula (7.4), which gives

_Qz(z—u) o(z+u)

ST

Considering the principal parts of both sides at z=0, we get
C=—1/c*(u), i. e.
' o(z—u)o(z-+u)

(7.6) p(2)—p(u)=— (@) oM w)

By continuity, we verify this formula also for the case when u
is a half-period.

EXERCISES. 1. In some cases it is convenient to write w, instead of

w, and w, instead of w’, and to consider an auxiliary period w, defined by the
condition w,+ wy-+ wy==0. Let ¢,={ (w,/2) for i=1,2,3. Prove that the fune-
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tions 1/(@ #)—e, are all gingle-valued, and therefore meromorphie, in the entire
open plane. Choosing the value of the root so that the residue at 2=0 is 1,
gshow that

0 VeE—amenen ZELOR
oz} o(w,/2)

Therefore, if, following Weierstrass, we introduce the auxiliary func-
tions

where #,=20(w,/2; 0y, w,) (1=1,2,3).

s O 0,/2) ;
0,(s) =2 LE T2 (i=1,2,3),
AG) o(@]2) ‘ )
then the formula (*) may be written in the form

Vo —o= 28 (=1,2,3).

a(2)
[Hint. Apply (7.6).]
2. Show that the functions o,(z), 02(2);

o5(2) (exercise 1) are even (the
function o(z) is odd).

3. Prove that the funection 1/ 9 (2) —e,, defined by formula (*) of exercise
1, is an elliptic function of order 2, having two distinet poles in a period-
parallelogram, and that (w,;,2w,)is a pair of primitive periods (i,%k==1,2,3;
i#k).

4, Show that

B —o2)= (6, ) @), (eg—e) 02 (e)+ (e —e,) 52(2) + (6, 0,) 02(2) = 0.

5. Show that Q'(2)= —20,(2)0,(2)0s(2)/ 6%(2).
6. Prove the formula
I pw) p’'w)
1 po) p'() [=2
1 pw) p’(w)
where %, v, w are arbitrary numbers.
[Hint. If Q(v)@ (w), then the left side of the formula is an elliptic func-

tion of the variable w, having a triple pole at the point w=0 and roots at

the points’ u=v, w=w, and uw=—(v+w) (cf. theorem 3.9). In the calcula-
tion of the constant C in formula (7.4), apply (7.6).] :

o(v—w)o(w—u)o(u—v)o(ut+v+w)
a®(u) o%(v) 0% (w)

§ 8. Expression of elliptic functions in terms of the functions
{(z) and p(z). We shall now be concerned with formulae expressmg

an elliptic function F(2) in terms of the function {(z). We shall
start with the case in which the poles of F(z) are simple. Let
B13Bas---,B, be a system of these poles, belonging to an arbitrary
period-parallelogram, and O“,0®,...,C") the corresponding resi-
dues. Let us consider the meromorphic function

(81  GA=09— )+ 0L (z—p)+ ...+ CIE(z—p,).
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The function G(2) has the periods o and o', for if we
increase z by o, for example, then G(2) will increase by the number
(O 4-CP+ ... 4+0"), which is equal to zero in view of theorem 3.5.
Being meromorphic, @(2) is therefore an elliptic function. It has
the same poles as F(2) and the same residues. By theorem 3.3, F(z)
differs from G(z) by an additive constant. Therefore:

(8.2) If an elliptic function F(z) has only simple poles, then

(83)  F(&)=0+0V¢(2—B,)+CPi(e—ps)+ ... +C"(z—F"),

where Py, Pas---5Br 1S a system of all the poles of the function belong-
ing to am arbitrary period-parallelogram, the numbers C,0%,..., 0"
are the corresponding residues, and C 1s a constant.

Proceeding to the general case, let us consider an arbitrary pole
with multiplicity %>>1 of an elliptic function F(z). The principal
part of the function F(z) at the point f can be written in the form
C, 1! 0, (—1Y %k —1)! Cy

—L L+
e—f  (e—pP (e—B)F

Since the principal part of the function {(z
B is equal to 1/(2—§f), the function

(8.5) 018(2—B)+0st" (2—P)+ - . +C L (2—)

will have the principal part (8.4) at the point 5. Let By, fa,...,fs,
be a system of all the distinct poles of the function F(z),
lying in a period-parallelogram, with the respective multiplicities
Fy,Kgy... k5. Let us write the principal part of the function F(2)

at each of these poles in the form (8.4), replacmg B by B, k by
ki, and Cy,0,,..., by C9,09,... (i=1,2,...,s). Therefore, if we put

Ge)= 3] (OVE (2 B) + 0L (a—BI+ ..+ OPL (e — ),

then the difference F(z)—G(2) will be an entire function. We assert
that it is doubly periodic. In fact, the functions {'=—p, {=—p...
are all doubly periodic; consequently, if we increase z by «, the
expression (8.5) increases by €7, and hence G(2) increases by the
quantity (CO4+0P+ ...4+CP)n, which is equal to zero in view
of theorem 3.5. Consequently, the function G(z) has the period o,
and similarly the period o’. The same can be said of the funetion
F(2)—G(z). This function, being doubly periodic and entire, must
be a constant. From this we obtain the following theorem:

(8.4)

—pB) at the point
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(8.6) Every elliptic function F(z) can be represented in the form
(8.7) A+ J(C¥1(e—pi) +ODL (a—B) + .. HORE TV (=51,
where A is a constant, and the sum Z is extended over all the distinct

poles of F(2) in an arbitrary period-parallelogram. The numbers c§p,
C,...,00 are the coefficients of the principal part of F(z) at the
point B;, written in the form (8.4).

Comversely, every fumction of the form (8.7) is elliptic, provided
that 3 C{"=0. '

i ,

Obviously, we may replace (’,¢",¢(”,... in formula (8.7) by
—p, —p'y —9",..., Tespectively.

We shall now consider the problem of expressing an elliptic
function in terms of the function p(2), and we shall begin by mak-
ing some observations.

(a) If an elliptic function G(z) is odd and is holomorphic at
a point z,=w/2, which is a half-period, then G(7)=0. Indeed,
on the one hand, in view of the periodicity, we have G(—z)=G(z,),
and on the other hand, in view of the oddness of the function,
Q(—2)=—G(2,). Consequently, G(2)=—G(%), and since the value
G(z,) is finite, it is equal to zero.

(b) If F(=)is an even function, then the derivative F''(2) is odd;
similarly, the oddness of the function F(2) implies the evenness
of F'(z). From this it follows, generally, that if F'(2) is an even funec-
tion, then the function F®¥(z) is even, and F***D(z) odd; if F(2)
is an odd function, then the function F™(z) is odd, and F®*1(z)
even (k=0,1,2,...).

(¢) If an even elliptic function F(2) has a root at a point
%=w/[2, which is a half-period, then the multiplicity of this root
is even. This follows from the fact that, in view of (b) and (a),
all the derivatives of odd order vanish at the point .

Sinee a pole of a function F(z) is a root of the function 1/F(z),
we see that, if zy)=w/2 is a pole of an even elliptic function F(z),
then the multiplicity of the pole is even.

Let us now consider an arbitrary even elliptic function F(z)
and let a be a root of F(z). In view of the evenness of the function
F(z), the number —a will also be a root, not convergent to a, pro-
vided that a is not a half-period. In the latter case, « will be a root
of even multiplicity. In any case, therefore, there exist nurbers
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01,05y..+,05, Which together with —a,, —a,,..., —a, form a com-
plete system of roots of the function F(2). (It follows from this,
in particular, that the even elliptic functions are of even order.)
Similarly, we can find numbers B,,p8s,...,8; forming together with
—B1y —PBay..oy —Ps & complete system of poles of the function
F(z). Let us assume for the moment that the periods w are neither
roots nor poles of the function F(z). Since p(z) is an even function,
it is easy to see that the function F(z) has the same roots and
poles as the function

88) [p(2)— ()] [P (8)—p(as)]... [P (2)—p(as)]
: [p(2)— @ ()19 () —p(Ba)]..- [P (2)—p(Bs)]

By virtue of theorem 3.3, F(z) differs from the quotient (3.8)
by a consgtant factor, and therefore

(8.9) E"very even elliptic function F(z) can be expressed as a rational
function of the function p(2). '

We have proved this under the assumption that 2=0 is mnei-
ther a root nor a pole of the function F(z). If the point =0 is
a root or a pole, then in any case it is one of even multiplicity,
in view of the evenness of the function F'(z). Therefore, there exists
an integer % such that F(z)[p(z)]" is a function holomorphic and
different from zero at z=0. Applying the result obtained to the
last function we see that theorem 8.9 is true in the general case.

If F(2) is an odd elliptic function, then the quotient F(z)/p' (=)
is an even elliptic function, and, therefore, a rational function of
p(2). In other words, an odd elliptic function is the product of p'(2)
by a rational function of the function p(2). Moreover, since for every
function F(2) we have ‘

1
F(e)= 5 [F(0)+F(—)]+5 P& —F ()}

where the first term on the right side is an even function and the
second odd, '

(8.101) Every eiliptféc function F(z) can be written in the form
(8.11) ° R(9)+ ¢ Bi(p),

where R(u) and R,(u) are rational functions of the variable w. Con-
versely, every function of the form (8.11) is elliptic.
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Let W(z,y) be an arbitrary rational function of the variables z
and y. The function W(g,p’) is elliptic. On the other hand, every
elliptic function has the form (8.11), and therefore is a rational
function of p and ¢’. Consequently,

(8.12) The class of elliptic functions is identical with the class of func-
tions of the form W(g,p"), where W(z,y) is an arbitrary rational
function of two variables.

Theorem 8.12 is equivalent to theorem 8.10, since the expres-
sion W(p,p’) is only in appearance more general than the expression
(8.11). For, it is sufficient to note that, in view of equation (5.6),
every even power of p’ can be expressed rationally in p, and hence
W(p,p') has the form (8.11).

EXERCISES. 1. Let 8, and 8, be two distinet points of the fundamen-
tal parallelogram. Show that the most general elliptic function of the sec-

ond order, having poles at the points f, and f,, can be written in each
of the two forms: :

P (z—B)— P (Bi—B)

where A and B are constants, and f is the mid-point of the segment [8,,8,].

A{C(z"ﬁl)”‘c(z—ﬂﬁ)}'l‘B: +B,

2. Every elliptic function of the second order, having a double pole 8
- in the fundamental parallelogram, has the form A (z—pB)+B, where A and
B are constants.

3. Prove that

) __PRpw
Pl =P e = e

4. Prove that

1 1
P)—pPe) Z 30(2,,)

{C (z—zm,n) +C(zm.n)]:

where zmz(mw—l—nw’)/.‘&, and m and n assume the values 0,1,2, but are not
simultaneously zero.

§ 9. Algebraic addition theorem for the fumction 9(z). We
say that a meromorphic function F(z) satisfies an algebraic addi-
tion theorem if there exists an algebraic relation among the quan-
tities F(z), F(y), F(zt+y), 4. e. if

W(F (@), F(y), F(z+y))=0 .

ident_iea,lly,. where W (u,v,w) is a polynomial in the variables u,v,w,
_not identically equal to zero. For example, an algebraic- addition

icm

§9 Algebraic addition theorem for the function (z). 385

theorem is satisfied by the funetions ¢*, cosz, tanz. We shall
show that '

(9.1) The function @(z) satisfies an algebraic addition theorem.

Proof. Let us write (7.6) in the form
a(w+y)o(@—y)
o*(x) o*(y)
Taking the logarithmic derivatives of both sides, first with
respect to », and then with respect to 4, we obtain the equations:

P oty) Lea—y)—2t (@)
p(@)—p ) I,
A
2 () —p ()

whence, by addition,

p@)—p(y)=—

={(z+y)—L{o—y) —2(y),

p'(x)—p"(y)

2Lp(@)—p )]

Let us differentiate this formula e. g. with respect to z. We
get

={(x+y)—{(2)—L(¥).

1 0 fp'(z)—p’
(9.2) p(w+y)=@(w)—2'ai[g@g))-—g(%]'

If we now carry out the differentiation and apply the equa-
tion p”"=6p2—g,/2, we obtain a formula expressing g(r-+y) in terms
of p(x), p(y), p' (@), p'(¥) (just as e. g. sin(w+y) is expressed in
terms of sinz, siny, (sinz)’, (siny)’). Of course, by making use
of the equation p'2=4p*—g,p —g; we could express, in the formula
obtained, p’(x) and p'(y) in terms of p(x) and p(y), using radieals,
which could then be removed by raising to a power.

The addition theorem for the function p ecan be given a more
symmetrical form. Let us write (9.2) in the form

P e’ @I’ @—p' W]

1
(9.3) p(w+y)=p(m)—§{p(w>_@@j“ [p(x)— p(y) P

Let ug interchange here x and y and add the formula so ob-
tained to (9.3). We get

8. Saks and A. Zygmund, Analytic Functions. 25
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. 1 p (@) —py)  1[p'@)— @LQ}
2p(z+y)=p@)+eH)— 2 o@)—ply) 2 PO —o®)

Let us apply the equation p”=6 p:—g,y/2 (cf. (5.11)). We get.

the formula

C1fe'@)—e )]
(9.4) @(m+y)+@(W)+@(y)=il%fTT]-

This is precisely the form of the addition theorem which
we were seeking.

EXERCISES. 1. Prove that
+ (GL—_QE!.:@,
(&)

where the number triple i,j,% is a permutation of the triple 1,2,3, and the
numbers wy,w,,w; are defined as in exercise 1, § 7.

2. Show that

P t+in)=

4 24 29, 1
p(an = O TARTE200 ¥ e,
40°—9:0 —9s
where §=p(z).

§ 10. Algebraic relations between elliptic functions.

(10.1) Between every two co-periodic elliptic functions F,(2) and F,(z)
there exists an algebraic relation, i. e. a relation of the form

(10.2) W(F,(2), Fa(2))=0,

where W (u,v) is a polynomial in the variables u, v, not identically
equal to zero.

Proof. Let w,0’, be a common pair of periods of the func-
tions F,(z) and Fy(2), and 2,2,,...,2, the system of all the dis-
tinet points which are poles of at least one of the functions F,(2),
Fy(2), and which lie in the parallelogram with vertices 0,w,w-w’,
w’. Let k; and %k;, respectively, be the multiplicities of the poles
of the funetions F,(z) and Fu(2) at the point e#==2;, and let
%;=Max (k;, k;). Finally, let N be a positive integer such that
N4+3>2(k;+ky+...-+k,). The general form of a polynomial V(u,v)
in the two variables u,v, of degree W, is

N
V (uyv) =059+ 2 oo,

kl=0
O0<k+I<N
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where the number of non-constant terms on the right is 24+3-...+
4+ (N +1)=N(N—3)/2. Let us substitute in this equation F,(z). and
F,(z) for w and o, respectively, and let G(2)=V(F,(2),F:(2)). The
function G(2) is elliptie, with periods w,w’, and can have poles only
at the points 2,,2,,...,2, (or points congruent to these). A pole
of the function G(2) at the point z; has & multiplicity at most

‘% N. In order that the function G(2) be holomorphic at 2;, the

coefficients ¢;;, where k-+1>0, will have to satisfy at most kN
homogeneous linear equations. Therefore, in order that the funetion
@(2) be holomorphic at all the points z,2,,...,%,, —and hence in
the entire open plane — the coefficients mentioned will have to
satisfy at most N(k,+%k,+...+%,) homogeneous linear equations.
By virtue of the definition of the number N, the number of equa-
tions here is smaller than the number of unknowns, which is
N(N-+38)/2. The system of equations therefore has a non-zero sol-
ution. The function @(z), corresponding to this solution, being
elliptic and entire, is therefore constant, which leads immediately
to a formula of the type (10.2). .

In particular, for F,(#)==F;(#), we obtain from theorem 10.1
the following corollary: '

(10.3) Bwvery elliptic function F(2) satisfies an algebraic differential
equation of the first order of the form

W(E (2),F'(2))=

where W(u,v) is a polynomial in the variables w,v (not identically
equal to zero).

§ 11. The modular function J(z). Let us consider a pair of
primitive periods w, o’ of the function p(2;w,w’), Where, as always,
we assume that 9(w’'/w)>0.

Let the numbers g,=g)(o,w’) and gs=gs(»,0’) be the in-
variants (ef. § 5, p. 372), 4. e. let .

. 1
¢z (w,0")=160 _—
m,;lm mo—+now )
(11.1) )
=140 _—
gs(w, 0 mﬂg’w mo-+new )

where the gign ’ indicates that the term corresponding to the indi-
ces m=n=0 is omitted in the summation. In § 5 we proved
25*
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that the discriminant gi—27¢% is different from zero. The follow-
ing problem is important for the theory of elliptic functions: Two
arbitrary numbers a and b, satisfying the condition @ —27b2£0, are
given. Does there exist a pair of periods w,’, such that g,(w,w’)=a,
gi(w,w’)=b? The solution of this problem will be given in
§ 13. It will be based on the properties of a certain special function,

the so-called modular funetion J(z), with which we shall be

coneerned presently. :

‘We shall first introduce certain general definitions. A function F
meromorphic in a region G is said be automorphic with respect to
a given group T of transformations of the region G into itself (see
Introduction, § 7, p. 15) if for every transformation T'e T we have
F(T(2))=F(z), identically in the region G!). For example, if w0
is an arbitrary complex number, and @ denotes the entire plane
or strip bounded by two parallels to the straight line 0w, then the
transformations of the form 3=2-+mw, where m=0, 41, £2,...,
form a group of transformations of the region @, and in order that
the meromorphic function F in & be automorphic with respect to this
group it is necessary and sufficient that the function F be per-
jodic with period w. Similarly, if w and o' denote complex numbers
different from zero, having a non-real quotient, then the transform-
ations of the form 3=z-}+mw-+nw’, where m and n are arbitrary
complex numbers, form a group of transformations of the open
plane, and in order that the meromorphic function F be automor-
phic with respect to this group, it is necessary and sufficient that
it be doubly periodic with periods o and o' '

As we verify immediately (cf. Chapter I, § 14, p. 82 and 33),
the homographic transformations which can be written in the form

_ w+p

11.2 =
(11.2) ers’

where a,f,y,0 arereal integers, and adé—pfy==1, form a group of
transformations of the closed plane. This group is known as the
modular group and plays a particularly important role in the theory
of functions. Two points, one of which can be carried into the other
by means of any transformation of this group, are said to be con-
gruent with respect to the modular group.

') An introduction to the theory of such funections can be found in the
monograph of R. L. Ford, Automorphic Functions, New York 1929.
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Every transformation belonging to the modular group maps the
upper half-plane 92>0 into iiself. Since the coefficients of the
transformations (11.2) are real, the real axis is mapped into itself
under these transformations, and it is sufficient to show that under
transformations (11.2) at least one point of the upper half-plane
goes into a point of the same half-plane; now, substituting e. g.
z=1 in (11.2), we find in fact that

o, @0—By
3= N >0.

From this it follows at the same time that the modular group
constitutes not only a group of transformations of the entire closed
plane, but also a group of transformations of the open upper
half-plane.

A funetion F(z), meromorphic in the upper half-plane, is
said to be a modular elliptic function if it is automorphic with re-
gpect to the modular group, or at least with respect to a sub-
group of the modular group (i. e. to a family of transformations
contained in the modular group and forming a group) not reduc-
ing to the identity transformation only. Before we give examples
of modular functions, we shall prove the following lemma:

(11.3) Let w, 0’ be a pair of primitive periods of any elliptic function,
and w,w’ & pair of periods given by the formulae :

(11.4)
where a, B,y,d are integers. Then a necessary and sufficient condi-
tion that the pair w, w’ also be a pair of primitive periods is the relation
(11.5) ad—pBy=-1;

and in order that the numbers J(w'jw) and :7(vw_’/-w) be of the same
sign, @ mecessary and sufficient condition is the relation ad—py=1.

Proof. Let us put 4=ad—py. Solving the system (11.4) for
o and o', we obtain:

w'=aw'-+fo, w=yw"+} dw,

If A=-1, then » and o’ are the sums of integral multiples
of the numbers w and w’. Therefore every period of the elliptic
function under consideration, as the sum of integral multiples of
the numbers w and w’, is the sum of integral multiples of the
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numbers w, w'. The pair of periods w, w’' is, consequently, primit-
ive and the sufficieney of the condition (11.5) is proved. Pro-
ceeding to the proof of the necessity of the condition, let us assume
that the pair w, w’, defined by the formulae (11.4), is a primitive
pair. Then A0, and from (11.6) it follows that all. four of the
coefficients .
0 5} ¥ a

L i U e L
must be integers. Let us put D=ad—bec. It is easy to verify that
D=(ad—py)/A2=1/4. Moreover, since D and A4 are integers,
A=+1.

In order to prove the second part of the lemma let us note that

it we take o'fw=# and w'/w==z’, then from (11.4) it follows that
ol — (12—[—5
’ N -—yz—i—é,
and the point 2’ lies in the same half-plane (upper or lower) as the
point z if and only if ad—py>0, 4. e. if A=1. Lemma 113 is
therefore proved.

Returning to the invariants g, and g, let us note first of all
that they are homogeneous functions of the periods » and «’, of
degrees —4 and —6, respectively. If we put w'/w=r, then

ga(w,0")=w""g,(1,7), ga(w,0")=w"05(1,7).

The discriminant 4(w,w’)=g3—27¢3 is therefore a homogeneous
function of degree —12. The ratio g3/4, as a homogeneous function of
degree 0 of the variables w,w’, depends therefore only on the ratio
7=0'/w. The ratio g3/4 will be denoted by J(v). Consequently,
AL gy 2T
4@1,7) 4(1,7)

(11.8) The function J(t) is holomorphic in the half-plane I(z)>0
and automorphic with respect to the modular group, i. e.

at+f
119 J(r)=dJ
(11.9) 0=s(52E
for every system of integers a,f,y,8 for which ad—py=1.
Proof. First, we shall show that the function
(11.10) 2(1,7)=60 Z

MmN=—0o0

(1L.7) J(7)=

) when 97>0,

m-{—m

§11 ' The modular function J(z). . 391

is holomorphic for Jz>0. Since every term of this series is hol-
omorphic in the upper half-plane, it is sufficient to prove that -
the series is uniformly convergent in every half-strip S defined
by the inequalities —a<<{Rr<a, Iv>b, where a and b are arbi-
trary positive numbers. To that end, let us denote by b the smaller
of the two altitudes of the parallelogram with vertices 0, 1,141 T
If v belongs to 8, then the altitude % is bounded from below by
some number £>0, and — as follows from the considerations on
p. 316 — the absolute values of the terms of the series (11.10)
do not exceed in S the terms of a certain convergent numerical
series. This proves that the series (11.10) is uniformly convergent
in 8. Consequently g,(1,7) is indeed a holomorphic function in the
upper half-plane.

The same result is obtained for the function g,(1,7). It follows
from this that A(1,7) also is a holomorphic function in the upper
half-plane, and since 4(1, 7:)—,_0 the . funetlon J(7) is also holomor-
phic there.

For the proof of the remaining part of the theorem let us con-
sider the transformation (11.4), where o, B, y, 6 are integers and
ad—Py=1. If w,w’ is a pair of primitive periods of the function
p(2), then w, w’ is also a pair of primitive periods; this means that

“when m and n» assume all integral values, the set of periods

mw—+nw’ is identical with the set of periods mw-+nw’. By the same
token, as follows from (11.1),
9a(@, ') =g, (w,w’), gs(wy ) =gg(w,w")

(whence the name invariants of the numbers g, and g3) There-
fore A(w,w’)=A4(w,w’) also, and we can write
ga(w, ' ): ga(w,w’ )= (ar-}—ﬂ)
(d(w,0") 4w, w’) yt+8)
since w'jw=(ar+p)/(yr+48) in view of (11.4). Theorem 11.8 is
therefore proved.

Particular transformations of the modular group are the trans-

J(7)=

- formations:

, 1-v+41 1 0741
T ='L‘—{~1= y T == —— = I ey
0-7+1 7 —1-740

Consequently:

{1L11)  Ja4l)=J(z), J(—=1r)=Jd(r), for Ir>0.
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EXERCISES. 1. Given are: a family 9N of transformations belonging
to the modular group (although not necessarily forming a group) and a
function F(2), meromorphic in the half-plane 9z>0 and such that ¥ (T (=))y=F(2),
when Oz>0 and TeSR. Then there exists a subgroup & of the modular group,
containing R and such that the function F(z) i automolphle with respect
to the group .

2. The transformations z’=(az4p)/(y2+6) of the modular group, where
g and y are divisible by the integer m, form a group (and hence a sub-
group of the modular group). In the case »=2 we obtain the so-called even
subgroup of the modular group (the numbers « and § are then odd).

3. Let A(t)=(e;—eé.)/(e;—e€s), Where the numbers e;,e;,e; are defined
by the formulae (4.6). If 7’ is congruent to = with respect to the modular
group, then A(z’) assumes one of the 6 values:

o 1 1 1 A(x) L.
(+) e v vy 1= U T )
Investigate, when A(z')=A4(t).

[Hint. If the pairs of primitive periods o, 0’ and w,w’ are related hy

formula (11.4), then the number triples

P o), PGo) PRot+ie’), P(dw), QGFw),
differ in order at most.]

4. The function A(z) in exercise 3 is holomorphic in the half-plane 970,
does not assume there the valumes 0,1, and is automorphic with respect to
the even subgroup of the modular group. (Next to J(z), the funefion i(z) is
the most important modular elliptic funetion.)

5. Let A=A4(r). The function

1 1 A 1
%) F@=0(+1) (1—2+1) (1+ 1) (m+1) (-1——3»»1) (17+1)

(A1) (2—Ap (22—1)°
21—y
is a modular elliptic funetion, automorphic with respect to the modular group.

(If we simply took the produect of the functions (%) in exercise 3 instead of
F(z), we should obtain 1.)

6. Show that the function F(r) in exercise 5 satisfies the equation

F(r)=27(1—J (7)),

P (w3’

and hence that
4 (1-—a4np
27  B(1—Ap
[Hint. Express 1 in formula (#%) in terms of the quantities e¢,,é,, e,
and apply the formulae (5.8), (5.10), (11.7).]

J(z)=

§ 12. Further properties of the function J(7). The first of
the formulae (11.11) indicates that the function J(z) has the
period 1. Because of this (see §2), J(v} is a holomorphic fune-
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tion of the variable {=¢= in the annulus P(0;0,1). We shall
prove that

(12.1) J(7) as a function of the variable {=exp2wit has a simple
pole at the point [=0.

Proof. To that end, we shall proceed from the expansion of
the function cotwr into simple fractions (see Chapter VII, for-
mula (5.2)):

T—N n

. (12.2) ncotm=%+ V’(-1-—+})

T =-—00

and we shall make use of the following formula, true for “Yr>0:
7 0ot nr=—mi(1+2{+20+...),

C — 6211.'7:1

where

‘(ef. (2.5)). In this formula, let us replace meotrr by the expansion

(12.2) and let us differentiate the equation obtained three times
and five times with respect to v, remembering that df/dr=2nil.
We get the equations:

5 1
— - et .
Vmu_oo('m—i—‘t)‘ 16n4(L+88+...),
(12.3) | o
0 y 4-7)8 _647':6( +320+ ..,

m =-OO

which we shall make use of when investigating the invariants ¢,
and g,. To that end we shall also need the equations:

: o1 mt o 17 2n8
(12.4) M D S=a
L omi 4B’ A ms 945

which we can obtain e.g. by differentiating the equation (12.2)
three and five times, respectively, and putting 7=0 (ef. also Chap-
ter VII, formulae (5.4) and (5.6)).

) Let us now replace 7 by ne in the first of the equatmns, and
hence & by ¢*, where n=1,2,... Since (m—m)4~—( m-+nt)?,

g2(1,7)=60 ( 2 ,,7{4_}_02 2 (m—{—nr )

M= 00 N=1 M=—00

754 16754 s 2n
—60 (qut—g—g_; (&8¢ +...)).

Let us denote by @,(¢) the sum of the power series 8L,
standing under the last summation sign. The series G (5 G (D) - -
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is almost uniformly convergent in the circle K=K(0;1) to the
sum G(¢) holomorphic in K. Therefore we obtain the expansion of
the function G(Z) in a power series by adding formally the power
series defining the functions (), Gz(L), ... (Chapter III, theorem
5.9). It follows from this that

4
gz(l,r):n:‘*(?)—l— 32074 .. )

Reasoning similarly we obtain

=2, 1 2 & 1

— \11_ .

= Yierd B )

276 1678 & 8 448
=140 — — 89t Y ==nt | = — Lol
(945 Y )); n(27 St )

From the formulae for g,(1,7) and g5(1,7) it follows that
A1, 7)=g3(1,7)—27g3(1,7)=="* (4096 { +...),
which gives for J(z)=g3(1,7)/4(1,7) the expression
(4/3+320¢+...)° ,
100601 ... Iresg ettt ‘

Theorem 12.1 is therefore proved. From it there follows, in
particular, that J(t)->co when Ir—>-+oco. Because of this, we can
extend the definition of the function J to the point oo, taking
J(c0)=00. ’

Let us consider an arbitrary pair of numbers o,w’, different
from zeroc and with a non-real quotient. If the integers a, 8, ¥, 0
satisfy the condition ad—py=1, then the pair of numbers w, w’
defined by formulae (11.4) will be called a pair equivalent to the.
pair w, w’. The pairs o, o’ and w, w" obviously play a symmetric
role in this definition. We shall prove the following lemma:

(12.5) Given an arbitrary pair of numbers w, w’, different from zero

and with a non-real quotient, one can choose an equivalent pair w, w’
such that

(12.6) o'l =], ' dw(=w].

Proof. Let us consider the set Q of points mw-+nw’, where
m and n are arbitrary integers. This set can here be considered
-as the set of periods of a doubly periodic function p(2). Liet w he

.an arbitrary element of the set @ different from 0 and having
the smallest absolute value. Let us consider the subset 2,, consisting
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of all the clements of the set £ not lying on the line 0w, and let
us take for w’ that point of the set £, which has the smallest
absolute value. Changing the sign of %', if necessary (because, like
w', —w' also belongs to 2,), we may assume that the numbers
I(w'|w) and I(w'jw) are of the same sign. We obviously have
|w'|>>|w|. From the definition of the number w’ it follows that
the numbers w’-w do not lie on the line Ow, and hence the sec-
ond of the conditions (12.6) is also satisfied. Reasoning such as thab
on pp. 357-358 indicates that the pair w, w’ is a pair of primitive
periods of the function p(z), and therefore, by virtue of theorem
11.3, is equivalent to the pair o, »’. Hence lemma 12.5 is proved.

Let G, denote the set of all those points v of the upper half-
plane for which

w2l =

<WrLo, [Tzl or O<“721:<%, fr]>1.

The point oo is also included in G,. Consequently, G, is &
curvilinear triangle bounded by two half-lines parallel to the imagi-
nary axis and by an arc of the circumference C(0;1) (see Fig. 33
on p. 396). Of the boundary points, however, we include in G, only
the side Aoo and the arc AB, and exclude the side A'co as well
as the interior of the arc A’B. We shall call the set ¢, the fundamen-
tal region, and the points A4,B, and oo, the wvertices of the funda-
mental region.

(12.7) For every point v of the upper half-plane there exists a poini
congruent to it with respect to the modular growp and lying in the
fundameéntal region.

Proof. Let us consider the pair of numbers 1,7. By virtue of
lemma 12.5, we can find an equivalent pair w,w’ satisfying condition
(12.6). We therefore have w'=azr+p, w=yr-+05, where the numbers
a, B, y, & are integers and ad—py=I1. If we put w'/w=1", then
7*=(av+B)/(yr-+06), and from (12.6) it follows that |7¥|>1 and
|7* £1]>|¢*|. Consequently, 7* lies either in G;, or on the side A'oo,
or else is an interior point of the arc A’B. In the first case the
lemma is proved. Therefore we may assume that one of the two .
remaining cases holds. \

Now, the side Aoco is obtained from side A'co by means of -

" the transformation t’=tv—1. Similaily, the arc AB is obtained

from the are A’B by means of the transformation ¢'=—1/v. Both
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of these transformations belong to the modular group. Applying
an appropriate one of these to the point 7¥, we obtain a point
congruent to = with respect to the modular group and lying in 6.

From theorems 11.8 and 12.7 it follows that in order to in-
vestigate what values the function J(z) assumes for Jr>0 it is
sufficient to limit ourselves to the fundamental region.

(12.8) The equation
(12.9) J(7)=¢,
where ¢ is an arbitrary number (finite or infinite), has exactly one
solution im the fundamental region G,.
Proof. Sinece J(r)=cc at the vertex oo of the fundamental

region G, (cf. p. 394), the theorem is true for ¢=oco. We may
therefore assume that ¢ is a finite number.

Let s be a positive number so
large that |J(z)|>|e| for Jr=s. There-
fore, if we denote by H, that part of

Dy ---==-m-==5]’ the set @, where Jr<(s, then all the
possible roots of the equation (12.9)
(&2, Py belonging to @, will have to lie in H,.

G, Let us denote the points —1/2--is
and 1/2-+is by D and D', respectively,
and by I'; the closed curve ABA'D'DA,
bhounding the set H, (see Fig. 33).
1° Let us first comsider the case
in which equation (12.9) does nct have
roots on I',. By virtue of theorems
. 7.5 and 5.4, Chapter IV, the number
N of roots of this equation in the
interior of I, (counting every root as
many times ag its multiplieity in-
dicates), multiplied by 2=, is equal to the increment of the argu-
ment of the funetion J(v)—c¢ along the curve [}. This increment
is equal to the sum of the increments along the ares DA, 4B,
pA', A'D’, D'D. But, in view of the relation J(v-1)=J (7}, the
increments along the segments DA and "D’A’ are equal, 4. e. the
sum of the increments of the arguments along the segments 1A
and A'D’ is equal to zero. Similarly, since J(—1/r)==J (), the sum
of the inerements of the arguments along the ares AR and B4’

Fig. 33.
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is equal to zero. Consequently, 2zN is equal to the inerement of
arg {J(r)—c} along the segment D'D=[1/2-+14s,—1j2+is].

But when the point v describes this segment, the point {=¢*"*
deseribes the circumference, C,=C(0;672™) oriented negatively. By
virtue of theorems 7.3 and 5.4, Chapter IV, 2zN is therefore equal
to 27 times the difference between the number of poles and the
number of roots of the expression J(z)—e, considered as a fune-
tion of the variable ¢, inside the circumference C;. From the
definition of the segment DD’ it follows that J(z)—¢ does not have
any roots inside C,, while by theorem 12.1 it has exactly one pole
inside C,, namely, the simple pole at the point {=0. It follows
from this that N=1 and the theorem is proved in the particular
case considered.

9° Tet us next consider the case in which the equation
(12.9) also has roots on the curve Iy, but at points different
from A and B (and hence also from '), namely, at the points
Ay Agre.oydp lying in the interior of the segment AD, and ab the
POINGS fy, fhoy.--spy in the interior of the arc AB (of course we
can. have k=0 or =0, On Fig. 33 (p. 396) we have taken for
simplicity %k=1=1.) Because of this, the equation (12.9) will also
have Toobs at the points Ay, A, .. ., 1, ka, - -, Symimetric, respectively,
to the preceding ones with respect to the imaginary axis. Let the
number 7, positive and smaller than 1/2, be so small that the circles
K=K (A;n) and K,=K({ug;7) do not contain the points D,4,B
or any roots of the equation (12.9) other than the centres 4, and
i, Let the transformation ¢'=7-+1 carry the circle K, into the
cirele K;,, and let the transformation r’=—1_/r carry the eircle
K~q into the circle ﬁ; (the centre of the circle K, need not go into

the centre of the circle 1%;). Let us consider the set
H2=Hl+ZKr+ZKs-2K;—-§K;-
r 8 T

Let us denote by I', the positively oriented curve which is
the boundary of the set H,. On the curve I', the equation (12.9)
does not have any roots, and inside I'; the number N of these roots
is the same as in Gy. The increments of the arguments on the ares
of the curve I'y, corresponding to each other by means of the trans-
formations ©'=v-+1 or 7v'=—1/r, are equal, and — reasoning as
before — we find that 2N is equal to the increment of arg{J (r)—¢}
along the segment D’D. This again gives N=1.
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3° There still remains for us to consider the case in which the
equation (12.9) has roots at the vertices 4 or B. These points
have the respective coordinates o= and 4. Let us note now
that, in view of the identity m—in=—i(n-+im), we have

1 . X 1 it 1 1
a0 9a(Li)= = = — —— §3(1,%).
P ST AP T2 T Tl

Consequently, g4(1,7)=0. Similarly. if we take into account
that ¢®*=1 and that ¢®+p-+41=0, we obtain
ple)_ & 1 10 1

60 < (m—+eon)* o 2 (mg*4n)t

mN=—00 mm=—aco

1
2 m—n)+mel*

When the system m,n runs through all possible pairs of inte-
gers, with the exception of the pair 0, 0, then the system m—n, m
does the same thing. Consequently, the last expression equals
g2(1,0)/60p, which gives g,(1,0)=0. Collecting the equalities ob-
tained and taking into consideration formulae (11.7), we have

(1210)  go(L,0)=0, ga(L,))=0, J(@=0, J(i)=

There have thus remained only the cases ¢=1 and ¢= 0. In consi-
dering these cases we shall make use of the following simple observa-
tion. Let F(z) be a function holomorphic in the circle K=K (7y;R)
with an m-tuple root at the centre of this circle. Let I, denote
an arbitrary are of the circumference O(r,;¢), and I, the angular
measure of the arc L,, where e<R. If, as &0, we have },—>a, then
the increment of the argument of the function F(r) along the
arc I, tends to ma. To prove this let us note that if 7,—=0, for exam-
ple, then F(7)=1"@G(z), where G(r) is a function holomorphic in
K, and G(0)7#0. As s—>0, the increment of arg G(r) along the arc
L, tends to zero and the increment of argz™ is ml, and tends
to ma. ‘

Let us suppose now that ¢=1. In addition to the roots
2..1,22,..., H1yphg,... considered in case 2° the root 4 of the equa-
tion J(r)—1=0 now enters in. Let m be the multiplicity of this
roqt. Let Hy=H,—K(i;¢), where H, is the set considered in case 2°
(with ¢=1), and ¢ is sufficiently small. Finally, let I, denote that
arc of the circumference C(i;¢) which lies in the closure of the set
H,, and N the number of roots of the equation J(v)—1=0 in H,.
Reasoning as before, we find that 2xN is equal to the sum of
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the increments of arg{J (r)——l} along the segment D'D and along
the arc —IL,. Applying the property of the inerement, mentioned
above, we find, when &0, that N=1—m/2. The number m is inte-
gral and positive, and the number N integral and non-negative.
From this it follows that m=2 and N=0. In other words, the
equation J(7)—1=0 has in @, exactly one root (double) at the
point T=i.

The case of the equation J(7)=0 is resolved similarly by con-
sidering the increment of arg.J(r) along the positively oriented
boundary of the set

Hz—K(egﬁ/sﬁ)_K(e’Ws HIN
where 0. Since the arcs AB and AD form the angle =/3 at the
point p=¢>""3, we find that the equation J(r)=0 has exactly one root

(triple) in the fundamental region @,, namely, r=p. Theorem 12.8
is therefore entirely proved.

Let G and G, respectively, denote the parts of the fundamental
region G, where Rr<0 and ‘Rz>0. Completing theorem 12.8, we
shall show that
(12.11) The function w=4dJ(r) maps the set Gy in a one-to-one manner
into the half-plane w0, and the closure of the set Go m a one-to-
one manner into the half-plane Jw<0.

Proof. We shall first show that J(v) assumes conjugate values
at points situated symmetrically with respect to the imaginary
axis, 7. e. that J(—7)= (1:). In fact

¢>(1,—7)=60 Z m+m)4

m n——oo

o0 , 1 .
m’n;ﬁo e = 0alLy%),
and similarly we  prove the formula gs(1,—%)==g4(1,7). From this
we obtain J(—%)=dJ(z). From this equation it follows that J(z)
assumes real values on the imaginary axis. If the point = is on
the boundary of the fundamental region G, then in view of the
formulae (11.11) we have J(—7)=J (z). From this and the preceding
equation it follows that J(7) is real. Comnsequently, the function
J () assumes real values on the boundaries of the sets G, and Gy.
When the point v describes the boundary of the region G,
namely, the half-line [oo,p], the arc [o,4] of the circle C(0;1), and
the half-line [4, o], the point w=/J(r) deseribes the real axis from
—oo through the points 0 and 1 to the point +oo. i
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~ In view of theorem 12.8 and of the continuity of the function
J(z), this function assumes on the boundary of the set Gg every
real value w at exactly one point. It follows from this that the
funetion J(z) does not assume real values in the interior of G.
We shall show that in the interior of Gy the maginary part of the
function J (z) is either always positive or always negative. For if there
were two points inside @, where the imaginary part of the fune-
tion J has different signs, then at some point of any are joining
these two points inside G, the function J(z) would be real, which
is impossible. Applying the theorem on the preservation of angles
(Chapter I, theorem 15.8), we easily see that for v belonging to
the interior of G; we have IJ(7)>0. Consequently, the funetion
w=4J (z) transforms the set G into the closed half-plane Ywz=0 in
a one-to-one manner. From this and from the equation J(—%)=dJ(z)
it follows that this funection transforms the closure of the set &
into the half-plane Jw<0 in & one-to-one manmner.

Let T,,T;,T,,... be a sequence of all the transformations
of the modular group, and let T, denote the identity transforma-
tion. Let G,=T4(@,) for k=0,1,... The points of the set G, info
which the tramsformation Tj carries the vertices of the set &, we
shall call the wertices of the set G4. The sets G, are curvilinear trian-
gles lying in the half-plane S>>0 (some of the vertices lie on
the real axis), and, in view of theorem 12.8, the function J(7)
assumes in G4 every value exactly at one point. From theorem
12.7 it follows that the set Gy-+G ... covers the entire half-plane
97>0. We shall now show that

(12.12) Two different sets Gy, and @, can have at most one vertex as
a common point.

First we shall prove the following lemma:

(12.13) In the fundamental region G, there exist exactly three poinis
which can be carried into points belonging to @, by some tramsforma-
tions of the modular group other than the identity. These are the
vertices oo, g, 4, and each of them can be carried only into itself.

Proof. Let us suppose that = and ' are two peints of the
rvegion @, and that the transformation t'=(az-p)/(yr+4), where
o, B,v,8 are integers satisfying the condition ad—py=1, is not the
identity transformation. If one of the points 7,7’ lies at infinity,
then the same can be said of the other, because the transforma-
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tions of the modular group either preserve the point oo, or
carry it into a finite point of the real axis (and hence mnot
belonging to G;). We may therefore limit ourselves to the case
in which v and =’ are finite numbers. We may assume that 97> 9.
A simple calculation shows that 9t'= 9t/|yr-+6[2, and hence that

|y 8|2=y2 |72+ 2y 8 Rr -+ 2L,

Let us suppose, first, that y£0 and §+#0. Hence, if at least
one of the inequalities |z|>>1, |“Rz|<1, is satisfied, then the number
fyr40* exceeds 2—|pd|+-62=(|y|—|d|)*+|yS|=1, which is im-
possible. On the other hand, if we have simultaneously |z[2=1
and [“Wz|=1/2, then we must have v=0=¢"""3. Now, |yo-+d=
=(0—y)*+y0 and in order that the latter expression be not greater
than 1 we must have d=p=-41, from which it follows that
'=-4a-—1/(v+1). Since r=p and r'eG,, we must have a=0, and
consequently t’'=og.

Let us suppose, next, that y==0 or §==0. The relation between
7 and 7’ can then be written in the forms ¢'=7--8, and 7'=qa,—1/r,
respectively, where B,=-4p8, a;=-a« In the first case the vertex
oo is the only point of the set @, which will belong to G, after the
transformation, and this point is transformed into itself. In the
second case, only the vertices 4, o will be carried into points of G,,
and this only when o,=0 and a;=-—1, respectively. Lemmsa 12.13
ig therefore proved.

Proceeding to the proof of theorem |
12.12, let us suppose that 7, is a ;
common point of the sets G, and G, —
where ks£l. Let =,=Ty;'(z,) and =g,
15="T7(7,). The points =, and 7, be- |
long to Gy, and z,=T(r;) where ‘
T=T7'T,+#T,. Consequently, 7,=1,
and this point is a vertex of the
set @,. It follows from this that
1, is a vertex of each of the sets
G, and Gy, and theorem 12.12 Iis
proved.

Tig. 34 shows the distribution of a certain number of the
triangles of Gy. Shaded are those parts of the triangles where the
imaginary part of the function J(r) i§ positive.

Fig. 34.

& Saks and A. Zygmund, Analytle Tunctions. 26
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EXEFCISES. 1. In an arbitrary neighbourhood of any point z, of the
real axis there are contained infinitely many sets G,. i

[Hint. Tt is sufficient to consider the case when 7,=u/y, where « and y
are relatively prime integers. As is known, we can then find integers f and
6 such that ad—fy=1. Lét T'(r)=(ar+p)/(yr+3d) and let I', denote the gset
@, translated through ». Consider the sets T'(I').] "

2. Every closed and bounded set contained in the half-plane 97>0 is
eovered by a finite number of sets G,.

3. The half-plane J7>0 iz a natural region for J(r) (ef. Clapter VI,
§ 4). .

4. The funetion J(z) tends to oo as 7->0, remaining in the angle eCArg 7
<n—eg, whatever >0 is,

5. The inverse function J~* of the modular function J is an infinitely
valued analytic function having critical points at the points 0, 1, oo only
(Chapter VII, § 11); all its values belong to the half-plane J¢>>0. If F(z)
is an entire function not assuming the values 0 or 1, then each of the funec.
tions J'F (cf. Chapter VI, §§ 5, 9) reduces to a constant. Deduce from this
‘the small theorem of Picard” (Chapter VII, theorem 12.1).

[Hint. Cf. theorem 12.8 and Chapter VI, theorem 11.1. By the monod-
romy theorem (Chapter VI, theorem 6.3), the function J~'F is single-val-
ued and therefore holomorphic; apply the theorem of exercise 6, Chaptes
T, §5.]

6. In addition to the properties mentioned in exercise 5, the function
f] ~* has the following property: if P is a closed and bounded set contained
in the half-plane 970, then the set of those points of the plane at which
the function J~ assumes at least one value zeP is also hounded.

[Hint. Cf. theorem 2.] ‘

7. Using the properties of the funetion J™' prove Montel’s theorem:
If {F,‘(z)} is a sequence of functions holomorphic in a region G' and none
of the functions of this sequence assume the values O or 1 in G, then the
sequence {F,:(z)} is normal (Chapter VII, theorem 13.12; this theorem
implies “the’ great theorem of Picard”).

[Hint. One may assume that G is a ecircle and it is sufficient to show
that 13he sequence {Fk(z)} containg a subsequence almost uniformly conver-
gefxt_m @, or almost uniformly divergent in @ to oo. Let us assume that
this is not so. Hence, there exists in & a sequence of points {z,}, such that
2,2 6@, Fk”(zn)—wn, where k,—o0, ¢,5£0,1, co. Let J(7))=¢,; then T, 00,
§7Eu1>0 (see theorem 12.8). Let us now fix, for every n, one of the functions
J7F, (Chapter VI, § 5, 9), denoting it by ®,. By virtue of the monod-
romy theo_ren.u for the circle (Chapter VI, theorem 6.2), the functions @, are
holomorphic in @, and they can be 5o chosen that D,(2,)>7,. Finally, from
the sequence {@,} (cf. Chapter IIT, theorem 11.4) one can choose a subse-
quen(fe {din]_.}, almost m:ufo’rmly‘ convergent in ¢ to a function @. If the
fugmtwn [ is not a constant, then the region (@) is contained, together
with the regions & (@) (ct. Chapter III, theorem 11.2), in the open half-
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plane 9t>0, r3c0. On the other hand, if @ is a constant, then D(GF) re-
duces to the point z,=lim @, (2,). In both cases, therefore, denoting by K an

arbitrary closed circle contained in &, we verify that O(K) is a closed
and bounded set in the half-plane Iv>0. Therefore all the sets @"!(K),
beginning from a certain §, are contained in a closed and bounded set P,
contained in the half-plane 9v>0. The functions Fﬁ,., are therefore uniform-

ly bounded on K (see exercise 6), and hence form a normal sequence.
Contradiction !]

§ 13. Solution of the éystem of equations g.(v,0)=a.
glw,0)=b. From theorem 12.8 there follows a positive solution
of the problem formulated at the beginning of §11, namely:

(13.1) If a, b are arbitrary finite numbers satisfying the condition
a®—27b2=£0, then there always exists a pair of periods w,w’, with
a non-real quotient, such that

(13.2) falw,0)=a,  gy(w,0)=b.

Let us suppose, first, ' that a=0 and b540. If the equations
(13.2) are satisfied, then we have
ga(w, ") a FACKY)

a
3.3) o ) - el
133)  we)— 2@’ #—2T8  galwa) b

conversely, if the expressions g, and g, satisfy equations (13.3),
then the equations (13.2) also hold. The systems (13.2) and (13.3)
are therefore equivalent. Setting w’'/w=7, we write the first one
of the equations (13.3) in the form J(v)=a?/(a®—270%). By theorem
12.8, this equation always has a solution in the upper half-plane.
If 7 is already known, then the second one of the equations (13.3),
which can be written in the form ‘ .

gal;) _

a
517 b
gives us w, and therefore also o'=owt.

Next, let us suppose that e=0, for example. The system of
equations (13.2)is therefore equivalent to the system 93/(93 —2743)=0,
g;=Db, or — what amounts to the same thing — to the system
J(z)=0, w’gs(1,7)=b. By virtue of the third ome of the equa-
tions (12.10) we may therefore take v=p, and from the equation

26+
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o %,(1,0)=>b determine w. We consider the case of b=0 in a simi-
lar manner. Theorem 13.1 is therefore entirely proved?).

EXERCISE. Given are three distinet numbers ey,e6,,6;, satisfying }the
condition e;4-e;+e;=0. Then there exists a pair of periods w,w’ such that:

P(o/2i0,00=e, P0[2;0,0)=¢€,  P(0/2+0’2;b,0")=¢.

§ 14. Elliptic integrals. In the present section we shall denote
a complex variable by 2. Let P(x) be an arbitrary polynomial
without multiple roots. Let us consider the equation

(14.1) y*=P(x).

This equation defines y as a double-valued function of the
variable 2. If the circle K=X(z,,r) with a finite centre does not
contain any root of the polynomial P, then there exist in K two
holomorphic branches of the function y, differing from each other
‘in sign. By fixing the value of y/ P(%) at one of the points of the circle
K, we choose a definite branch of the function y. This branch ig
continuable along every curve whose initial point is , and which
does not pass through the point oo or through any of the roots
of the polynomial P.

By a definite elliptic integral we mean a curvilinear integral ,

of the form
(14.2) | W(2,y)das,

L(x,%,)
where W(x,y) is a rational function of two variables, y is a fune-
tion of the variable z, defined by equation (14.1), in which P(z)
is a polynomial of degree 3 or 4 without multiple roots, and
L(w,,@;) i8 & regular curve with initial point , and terminal
point z;, not passing through any of the roots of the funection
P(z). In addition, we assume that the integrand W(z,y) does not
reduce to a rational function in 2 only, and does not assume
the value oo on L, ‘

(The conditions concerning the curve L(zy,x,) and the values
assumed by W(z,y) along L, are not necessary and can be disre-
garded in certain cases. We should then have to deal with tmproper
elliptic integrals. We $hall not congider them, however, in order
not to introduce unessential difficulties.)

') The above proof of the solvability of the system gg=a, g;=>b is

taken from Hurwitz-Courant, Funktionentheorie, 3rd edition, Berlin 1929,
p. 227.
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Obviously, the integral (14.2) becomes defined only when we
fix the value of the function y at some point of the curve IL(z,x,),
for example, at the point x,. Then the values of y are determin-
ed along the entire curve L(z,,,).

If we fix the point #, and vary the point z,=:x, then the in-
tegral (14.2) will depend on z and on the curve L. Suech an inte-
gral, to which we add an arbitrary constant, will be called an in-
definite elliptic imtegral. We shall write it in the form

(14.3) [W(z,y)dr.
In view of the equation (14.1), we have
A4-By
W(“f‘,?/)—'é“_;ﬁjy":

where A4, B, C, D are polynomials in x. Multiplying the numerator
and the denominator by ¢ —Dy, we see that W(z,y)=E(z)+S(x)y,
where R=(4C—BDP)/(C*—D2P) and S=(BC—A4D)/(C>*—D*P) are
rational functions of the variable a.

‘We shall now show that in considering elliptic integrals we
may limit ourselves to the case in which P is a polynomial of the
3rd degree, and that of a rather special form. For let us suppose that

P(z)=ayz*+a, 8> +a,r*+as5-+-a,,

where ¢, 0, and let & be a root of the polynomisal P(x). Let us
set @==&-}1/& Then P(z)=0Q(&)/&, where Q&) is a polynomial of
the 3rd degree without multiple roots. The integral (14.3) assumes
the form [W,(§n)dé where n2=Q(£).. We may obviously assume
that Q(§)=48+4b,8+b,&-+b;. Let us make one more change of
variable, substituting &=&—05,/12. The polynomial @Q(&) will
be transformed into a polynomial of the 3rd degree, not containing
the square term. In other words, we may limit ourselves to the
elliptic integrals (14.3) in which y is a function defined by the
equation

(14.4) YE=42%—gx—gs.

The function y has 4 critical points, namely, the three roots
of the right side of equation (14.4) and the point oo. The coeffi-
cients g, and g, are here constants, and the polynomial 42°—g,x--g,
does not have multiple roots.
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The last condition states that ¢g3—27g3£0. By virtue of
theorem 13.1, we may therefore consider the numbers g, and g,
as the invariants g,(w,0’) and g(w,o’) for a certain pair of per-
iods o, with a non-real quotient.

(14.8) If go=gs(0,0"), gs=gs(@,0"), and p(u)=p(u;w,0’), then to
every pair of mumbers ,y satisfying equation (14.4), there corre-
sponds in every period-parallelogram R of the function @(w) exactly
one point & such that =@ (%) and y=g'(4).

Proof. The parallelogram R certainly contains one or ab
most two points « such that p(u)==2 (see theorem 3.8). Let us de-
note them by wu, and u,, taking u,=u, if there exists only one
point u satisfying this equation. We have u,=—1u,, and therefore
p'(u,)=—p"(u,) (this also holds when w,=u,, since in that case
p'(u)=p'(wy)=0). On the other hand (cf. (5.6),

(9 (we) P=41p (u) P — g2 () — s =40° — a2 — g5 =Y,

where k=1,2. It follows from this that y=gp'(u;) for one of the
values k=1,2. Denoting the corresponding point u; by 4, we have
2= (%), y=p'(4). .
(14.6) Let gy=gs(w,0"), gs=gs(w, "), and let x=wx(t), where a<<tLh,
be a regular curve not passing through any one of the roots of the right
side of equation (14.4). Furthermore, let y=y(t) be a continuous funmc-
tion in [a,b], related to w=x(t) by means of the equation (14.4).

. Then there exists a regular curve w=u(t), where a<{t<h, such
that: :
(14.7) ot)=pu®)], yO)=pu@®)], for a<i<d.

Proof. Let a<<t,<<h, @y=t(t,), and y,=y(f). Then y;j=
=425 — g%, —g; 7 0, and by lemma 14.5 there exists a point u, such
that p(up)==w,, p'(4,)=y,70. Therefore (Chapter ITI, theorem 12.4)
the  funection p(u) is uniquely invertible in the neighbourhood
of the point %, and its inverse transforms the arc of the curve
g=w(l) in a sufficiently small interval [{,—h,%+h] into a regular
arc 4=u(t) in the same interval (if {,=a or {,=b, we consider, of
course, only the interval [f,,%,+h] or [{,—h,t,]). For t,—h<{t<t)+h
we shall therefore have plu(f)]=w(t) and {p'[u(t)]}*=[y(?)P, and
because p'(u)=1, and y(t)7£0, we have precisely ¢ [u(t)]=y(t).

Applying now e. g. the Borel-Lebesgue theorem (Introduction,
theorem 6.4), we can divide the interval [a,b] into a finite num-
ber of subintervals [%,,t,], [ts,%5],- .., [En_1; tx], Where a=t, b=t,, in
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such a way that it is possible to define in them the correspond-
ing regular curves C, given by equations w=wu;(f), satisfying the
conditions p[ux(t)]=u(t), @Tur(t)]=y(#), for &<<I<t,,, Where
k=1,2,...,mn—1. In view of the periodicity of the functions p and
g’y we may assume that for £=2,3,...,n —1 the initial point of
the curve O and the terminal point of the eurve C,_; belong to
the same period-parallelogram. Then, in view of lemma 14.5, the
initial point of the curve O coincides with the terminal point of
the curve Cp_;. We can therefore define the function «(t) in [a,b]
talking u(t)=u(t) for &<ty q, k=1,2,...,m—1. The function u(t)
satisfies the condition (14.7). ‘

Let us denote by L and I, respectively, the curves z=uw(t)
and u=wu(t) appearing in theorem 14.6, and let us assume that the
function W(z,y) is finite along L. We then have

(14.8) I!W(m,?/)dw=lfW[@(u), P (w)] @’ (w)du;

for the left side is here equal to

b b
JWa),y o’ @) di=/ Wi [w®)]e Tu@]lle Tut)]w' () dt
(cf. (14.7)), and the last integral is identical to the right side of

formula (14.8).

Let us note now that the function F(u)=W[p(u), 9 (u)]1p’(u)
is elliptic, and hence by theorem 8.6 it can be expressed in the
form of a sum

A0 C(w—B) 0D (u—PBi)+ ..+ O ¢ D (w—p)],
K3 .
where the constants have the same meaning a8 in theorem 8.6.

Let us make use of formula (14.8) and let us replace the integral
on the left side by an indefinite integral. We obtain the equation

JW (@,y) do=C0+Au+ 3 [0V t(u—p) dut...+ CD [ B (u—B;) du),

where in the integrals on the right side we do not display the curve
of integration, because it depends on the curve of integration on
the left side. In other words,

JW (2,y)do=C+Au+ 3 CPlogo(u—p:)+ 3 00 L (u—-p)
— (09 0 (u—Bi)+ ... +-08) oD u—)] -
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The last sum is an elliptic function, and hence, in view of theo-
rem 8.10, it is a rational function in p(u) and ¢'(#). In addition
C(u—B;) =L (w)+ [E(u—PB;) —L(u)], where the difference {(v—p;)—C(u)
has the periods « and o' (cf. formula (6.6)), and hence is elliptic.
Consequently,

[W(z,y)do=C+Au+A’ L(u +20<‘>1oga u—p;)+RLp ), ¢ (1)],

where C, 4, A’, ({ are constants, and R[p(u), 9 '(%)] is a rational

function in @(u) and p’(u). We may therefore state the following
theorem:

(14.9) Every elliptic integral [W(w,y)dz, where y is defined by for-
mula (14.4), can, by means of a suitable substitution x==Q(w),
y=0'(u), be expressed as the sum of rational functions in @(u) and
p'(u), and a linear expression in wu, {(u) and a finite number of
functions log o(u—p;).

The definite elliptic integral (14.2) depends not only on the
end-points x,, #; of the curve of integration, but also on the curve

itself. By means of formula (14.8) one can investigate this depend-

ence. For simplicity let us limit ourselves to the integral
dw
(14.10) J= f
1/4933 gam”‘gs

called Weierstrass’s elliptic mtegral of the first kind. A change of
variables, x=p(u), y=p'(u) (cf. theorem 14.6), gives the formula

dz
ffv-=fdu=u1—zao,
AR

where -4, and %, denote the initial point and the terminal point
of the curve I

Let @, and »; denote the initial point and the terminal point
of the curve L, and y, and y, the values of the function y at
the points 2, and »;. Consequently,

(a) P (ue)=20, 0 (U)=Yo, (b) P(u)=w, @'(u)=Y;.
Let us now replace L by a curve I, having the same initial

point and the same terminal point as L, and let J denote the va- -

lue of the integral under consideration along L. In a,ddltlon; we

agsume that in integrating along I, we go from the same value ¥y,
of the function y at the point =,.
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Let @, and %, denote the initial point and the terminal point,
respectively, of the curve I corresponding to the curve I, We may
agsume that d,=mwu, If §, denotes the value of the funetion y at
the point w,, after the continuation along I, then either §,=y,
or 9j;=—%y. In the first case, from equation (b) and from the anal-
ogous equations @(d,)=z,, p' (i)=Y, we obtain &,=u,+mw-+nw’,
where m and n» are integers (see theorem 14.5). In the sec-
ond case we have #;=—u,+mo-+new’. From equations J=u,—u,
and J =i, —u, it follows, therefore, that:

(14.11) If in the integral (14.10) we replace the curve L by a curve L,
having the same initial point x, and the same terminal point as L,
and if in both cases we give the function y the same value vy, af the
initial point of the curve of integration, then the mew integral J will
be related to J by means of one of the two formulae:

(14.12) J=dJ +mo+nw’, J=—J —2uy+mo-+nw’,

where the numbers w and o’ have a non-real quotient, the coefficients
m and n are integers, and @ (Uy)=ax,.

The first one of the formulae (14.12) holds in the case when the
function y assumes the same values at the terminal points of the
curves L and L, and the sccond one when these values differ in sign.

Of course m and % can be arbitrary integers. For example,
in order to realize the first one of the formulae (14.12) it is suffi-
cient to choose two arbitrary curves of integration I and 7, hav-
ing a common initial point u%,, and terminal points differing by
mo-+new’, and to take for L and, respectively, I the cmves
obtained from I and [ by the transformation z=g(u).

If x, is a finite number, and the cirele K=K (%,;R) does not contain any
one of therootse,,e,,e; of the right side of equation (14.4). where g§—27¢3%0,
then the function
'fdm

5

F(g)=

Ly

where y’ 42 —gx—gs, £€K, and we integrate along the segment [r,,£],
is holomorphic in the eircle K. This function is continuable along every curve
not passing through any one of the points ¢;,e,,e,, co. It is easy to see that
all the values which the function F assumes at a point £ are given by in-

r dw , . .
tegrals of the form j -, where L(w,,&) i8 an arbxtrary curve not passing
L@t Y

through the points ej,e,,e;, with its initial point at the point m, and with
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N

its terminal point at the point & The analytic function F(x) which we obtain
in this way is also called Weiersirass’s elliptic integral of the first kind. If J is
one of the values of the function F at the point z, then -all of its values
are given by formulae (14.12). Consequently, F(x) is an infinitely-valued func-
tion, having at most the critical points é;,€;,65, 0. .

Expanding the function 1/y in the neighbourhood of the points e in
a Laurent series in (v—e,)"%, we easily verify that these points are algebraic
critical points of the function F(z), with order of ramification 1. In an anal-
ogous manner we verify the same thing for the point oo.

Applying a suitable substitution &= (u), y=g’(u), forxeK, we see with-
out difficulty that the function F(2) is the inverse (cf. Chapter VI, § 5) of
the function @ (u--u,), where u, is a constant.

In this way, going from elliptic integrals, we arrive in a natural manner at
elliptic functions. It was precisely this road which Abel and Jacobi took
to introduce elliptic functions for the first time. The theory of elliptic func-
tions based on the notion of double periodicity and developed in §§ 3-10 of
the present chapter is historically more recent, and is due principally to Liou-
ville and Weierstrass.

EXERCISES. 1. Let I and L denote two curves with initial point s,
and terminal point #;, mot passing through the point oo or through any one
of the distinet roots e;.e,,....e, of a given polynomial P(z) of degree n. If
the analytic function y, defined by the formula y*=P(z), assumes the value
¥y, at the point z,, and at the point #,, after a continuation along the curves

L and fr, the values y, and %, respectively, then a necessary and suffi-
cient condition that y,=y; is that the number

Zn’indae‘, where C=L-( —i}),

i=1
he even. .

2. If P(x) is a polynomial of the fourth degree with simple roots, and -

the circle K=X(x,;R) does not contain roots of the polynomial P, then the
function

) &
Fo= (2,
Yy

&Ly

where y*=P(x), and we integrate along the segment [x,,£], is holomorphic
in the circle K. This function is continuable along every curve not passing
through any one of the roots of the polynomial P. Prove that, with a suitable
choice of the periods w, »’, the function F is the inverse of the function

ap (u+ty; 0, 0”) b
cp(u+un;w,w’)+d'

where a, b, ¢, d, u, are constants.
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CHAPTER IX
THE FUNCTIONS I(s) AND ¢(s). DIRICHLET SERIES

§ 1. The funection I'(s). In Chapter VII, §5, we introduced
the meromorphic function I. At present we shall sbudy somewhat
in detail the properties of this function.

Let us congider the integral
+00
(1) [ v e,
0

where s=oc-it is & complex variable and «*'=exp [(s—1)Logu].
Integral (1.1) is known as Euler’s integral of the second kind.

Let us note that [4*'¢™¥|=u*""¢* and that the function v’ "¢
is integrable over the interval 0<Cu<1, provided that o>>0. On the
other hand, for every o we have the inequality wleTv e if
w is gufficiently large, and hence the function wle™ is integrable
over the interval 1<{u<<+oco. Consequently, the integral (1.1) is
convergent, and even absolutely convergent, if o>0.

Integral (1.1) is improper, because the interval of integration
is infinite and, in addition, if 0<“Rs<1, the integrand is unbounded
in the neighbourhood of the point u=0.

Tet us denote by F(s) the value of the integral (1.1). We shall
prove that the integral under consideration is almost uniformly
convergent in the half-plane ‘Rs>0, i.e. that if we take F,p(s)==

R

= fu ¢~du, then F,p(s) tends almost uniformly to the limit
4]

F(s) in the half-plane Ws>0, as 6—04 and R-—>+oco. It is suf-
ficient to prove that the function F,g(s) tends uniformly to F(s)
in every strip a<<'Rs<b, where 0<a<<hb<-oco. We may assume.
that 8<1<R. Then, if s belongs to the strip mentioned, we have
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