CHAPTER VII

ENTIRE FUNCTIONS AND FUNCTIONS MEROMORPHIC
IN THE ENTIRE OPEN PLANE

§ 1. Infinite produets. Let a sequence of complex numbers
QyyQyyeney@p,y... be given. We form a new sequence of numbers
P1sPay-++sPrs---y where
(n==1,2,...).

The number p, is called the n-th partial product of the infin-
ite produet

D=0 Q... 0y

(1.1) @10y ly...=[]a,.
n=1

The number a;, is called the k-th factor, or the k-th term, of the
product (1.1).

If we wanted to follow exactly the definitions from the theory
of series, we sghould say that the product (1.1) is convergent
to the value p if p,—p as n—>co. Such a definition, although basic-
ally correet, would be inconvenient for many reasons. For example,
every product having at least one factor equal to zero would be con-
vergent, while the deletion of this factor could bring about divergence
(e. g. in the product 0-1-2-3-...). Because of this, the above defin-
ition must be changed.

Let us first suppose that all the factors a; are different from 0.
I p,~p, where p is a finite number different from 0, then we
say that the product (1.1) 4s comvergent to p, and we call p ‘the
value of the produet. In the general case, we say that the product
(1.1) is convergent if the following two conditions are satisfied:

(a) an index v exists such that for #>» we have a,540,

(b) the product a,,a,, ,a,.5... is convergent in the sense of
the preceding definition.

Denoting by ¢ the value of the product a, $10, 20, 43..., W&
then take as the value of the product (1.1) the number
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P=0,04...4,q.

Therefore the value of a convergent infinite product is equal
to zero if and only if at least one of its factors is equal to 0.

It is easy to see that inserting, or deleting, a finite num-
ber of factors in a convergent product does not affect convergence.
Because of this, when investigating a convergent product, we may
assume, when convenient, that all the factors of this product
are different from zero.

EXAMPLE. Both products
' = 1 |
1.2 I+-1, I—-
= ) 0=
are divergent, because for the corresponding partial products we have the

formulae

2 3 4 n-41 123 n—1 1
=n-+1, e — e — e b ——m
L + Pn 2 3 4 n n

The first product is therefore divergent to --oco; concerning the second,
we majy say that it is divergent to 0, because the partial products tend to 0.
However, the infinite product 0-1-1-1-..., for example,is convergent to 0.

(1.3) A necessary and sufficient condition for the convergeme' of the
product (1.1) is that for an arbitrary >0 there exist an n, such that
for every n>n, and for every k>0

(1-4) ) Ian+1“n+2‘-~a'n+k_1l<a~

This theorem is the analogue of Cauchy’s condition for
the convergence of a series (or sequence). It says that if we go
sufficiently far out in a convergent infinite product, then every
block. of successive factors will have a product arbitrarily close
to 1.

For the proof of the necessity of the condition, let us sup-
pose, discarding if necessary the- first few terms, that all the
factors a, are different from 0. Consequently, p,=a,a,...a,—>p 70,
and hence there exists a positive number w such that [p,|>w for
n=1,2,... In view of Caucliy’s theorem mentioned above, there
exists a number m, such that [p,.,—p,|<<we for n>n,. Dividing
this inequality by |p,| and remembering that o< |p,|, we get (1.4).

For the proof of sufficiency, let us at first take e=1/2 in
the formula (1.4) and let p,=a, 14, (3...4, for n>n,. From ine-
quality (1.4) we get 1/2<<|p,|< 3/2 an@ hence, if the sequence {p;}
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approaches a limit, then this limit is certainly not zero. Considering
now an arbitrary e, we see that (1.4) may be written in the form

4
pn+k
(28

—1 ‘ <&,
and therefore
3
[Prie—DPnl<<e lpnl<§8-

In view of Cauchy’s theorem, the sequence {p,} is convergent.
Since it has a limit different from 0, the product (1.1) is also con-
vergent.

Taking %=1 in the inequality (1.4), we obtain [a,.;—1|<e
for n>mn,. Therefore:

(1.5) A mecessary condition for the convergence of the product (1.1)
18 that the terms a, tend to 1.

That this condition is only a mnecessary condition, and not
a sufficient one, can be seen from the products (1.2), which are
divergent even though their terms tend to 1. ‘

Because of theorem 1.5, it is sometimes convenient to write
the product (1.1) in the form

38

(1.6) (1 +-utn).

n=1

A necessary condition for the convergence of the product
(1.6) is that u,—0.

In further considerations we shall make use of the following
lemma:

(1.7) For every real x the following inequality holds :
(1.8) 14z

Proof. For >0 inequality (1.8) is obvious (see formula (7.1), -

Chapter I). In order to prove it for #<0, it is sufficient to observe
that the difference ¢*—(1-+2) has a negative derivative for z<0,
and hence is a decreasing function in the interval [—oo,0]. This
difference vanishes for #=0; it is therefore positive for x<0..

(1.9) If all the numbers u, are non-negative, then & necessary and
sufficient condition for the convergence of the product (1.6) is the con-
vergence of the series w;~+u,-...
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e

Proof. We shall base the proof on the following two inequal-
ities: ’

(1.10)
(1.11)

(u) (L +us). . (14, 2144y Uy 4. vy,
1<,

The inequality (1.10) is obvious if we take into consideration that
its right side contains only some of the terms arising after performing
the multiplication or the left side, and that the numbers Uy Ugysn.
are non-negative by hypothesis. Inequality (1.11) is a consequence
of inequality (1.8).

Let us now denote the n-th partial sum of the series Uy +us ...
by s,, and the n-th partial product of the product (1.6) by p,. Since
the numbers u,,%,,... are non-negative, the Sequence P, Ps,...

" is non-decreasing. It is therefore convergent if and only if it is

bounded. Let us now consider the inequalities:
(1.12) Paz1-4-8y,

The first of these is identical with (1.10). The second arises
when we multiply inequalities (1.11) for k=1,2,...,n. From formulae
(1.12) we see that a necessary and sufficient condition for the
boundedness of the sequence {p,} is the boundedness of the
sequence {sn}, which proves our theorem.

The product (1.6) is said to be absolutely convergent, if the
product

(1.13)

Pa< 6™

o0

TI(1+ lual)

n=1
is convergent, or — what in view of theorem 1.9 amounts to the
same thing — if the series f;m is convergent. If the product (1.6)
is convergent, but (1.13) gj?érgent, then we say that the product
(1.6) is conditionally convergent.
- The product (1.1) is therefore absolutely convergent if the

series '|a,—1| is convergent.
n=1 |
‘We shall now prove that the properties of absolutely converg-
ent products are analogous to the properties of absolutely con-
vergent series.

(1.14) If the product (1.6) is absolulely comvergent, them:
8. Saks and A. Zygmund, Analytic Functions. 19
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(a) @t is convergent in the orvdinary semse,

(b) it remains convergent after am arbitrary change of the order
of the factors,

(¢) the value of the product does not depend on the arrangement
of the factors.

Proof. (a) follows from theorem 1.3 and the inequality

](1+un+1)(1+un+2) s (1+un+k) —1]
KL+t a]) Tt ga]) - (1 [t pe) — 1

In order to obtain this inequality, let us multiply out the left
side and cancel the terms 41 and —1. If we now replace all the
terms by their absolute values, and then reintroduce the terms -1
and —1, we obtain the right side.

(b) follows from (a) and from the fact that the convergence of
the series |u;]-|u,|+ ... is independent on the order of the terms.

To prove (c) we may suppose that none of the factors of the
product (1.6) vanishes. For in the contrary case it is obvious that
no matter what the order of the factors, the value of the product
is always the same, namely, equal to zero.

Let p, and p, denote, respectively, the n-th partial products
of the product (1.6) and the product arising from (1.6) by an arb-
itrary change of the order of the terms. Affer cancelling common
factors in the numerator and denominator, we may write

Pn (Lwe)A4u) .. (14ug,)
P (A+u) (A 4ug,). .. (1+u,,)

‘We have here k,<k,<<...<k, and kj<k;<...<ky,, where these
indices depend on . Since any given term of the product (1.6)
appears in p, as well as in p, for n sufficiently large, the initial
indices %k, and k] increase indefinitely as n-—>oo. Let us note now
(ef. (1.15) and inequality (1.11), in which we replace u; by |uzl),
that

[(X A0 ) (1 4-20g, )+ (L, ) — 1| << (XA ) (- [ ) - - (ot ) — 1

(1.15)

(1.16)

<exp( Siml)—1<exp( Siwy1) -1,

and that the last expression tends to 0 as n—oco. Consequently,
the numerator of the fraction (1.16) tends to 1 as n increages in-
definitely. By symmetry, the same can be said of the denom-
inator. Therefore p,/p,—1 and part (c) of the theorem is proved.
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In the case when all the numbers u, are non-positive, we have
a theorem analogous to (1.9), namely:

(1.17) If v,20 for n=1,2,..., then the product
(1.18) [1(1—2,)
n=1

i convergent if and only if the series v,+v,--... is convergent.

Proof. If the series v;4v,4... is convergent then, by theorems
1.9 and 1.14 (a), the product (1.18) is convergent.

Let us now assume the convergence of the produet (1.18)
and let p denote the value of this product. Discarding, if necessary,
the first few factors, we may suppose that 1—v,>0 for n=1,2,...
Therefore, it we set p,=(1—v,)(1—2y)...(1—72,) and 8, =v,4+v,-+...
...+v,, then substituting x=—v, in (1.8), for k=1,2,...,m, and
multiplying by sides the inequalities obtained, we get p,<le™.

From the assumption of the convergence of the product (1.18)
and from the fact that all its factors are positive and not greater
than 1, it follows that p,>p>0 for n=1,2,... From the ine-
quality p,<e™™ we obtain ¢ *>p, and hence the sequence {sn} is
bounded from above. Since the numbers v, are non-negative, the
series v, +v,-+... is convergent and the theorem is proved.

We shall now be concerned with functional products, i.e. prod-
ucts of the form

8

(1.19) (1+un(2),

n=1

where u,(z),u45(2),... are funections of the complex variable z. If

" the product (1.19) converges at every point of a given set Z

and if the sequence of partial products p,(2) of this product is uni-
formly convergent on Z, then we say that the product (1.19) is
uniformly convergent on Z. In the case when the produect is uniformly
convergent on every closed subset Z of an open set ¢, we ghall-
say that the product is almost uniformly convergent in @.

(1.20) If uy(2),%s(R),-.., Un(R)s... 8 @ sequence of functions holomor-
phic in o region G, and the series ‘
(1.21) J16 (2)] -Fla(2)] -+ . ..+t (2)| + ..

s uniformly convergent in G and has a sum bounded there, thew
the product (1.19) is, for ze@, absolutely and wniformly comvergent to
. ' 19%
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a function F(z) holomorphic in G,‘ and F(z) vanishes in G where
and only where af least one factor of the product vanishes.

Proof. The absolute convergence, of the product (1.19) follows
immediately from the hypotheses of the theorem. Next, let us de-
note by M the upper bound of the sum of the series (1.21) for
ze@. If p;(2) is the m-th partial product for (1. 19) then

@< [T O+ huate)) <exp  huste ) <exp .

We verify immediately ‘that Pr(?) —Pr_1(8)=Dp_1(2) uy(2) for
k=2,3,... Consequently,

Pa(?)=p1(2 +Z[p;c

The right side here is the n-th partial sum of a series uni-
formly convergent in &, because |pp_y(2)ux(2)]<<|ug(2) exp M and
the series |uy(2)|-+ |#o(2)|+ ... i3, by hypothesis, uniformly conver-
gent. Consequently, the produet (1.19) is wuniformly convergent
in @ and the funetion F(2)=1imp,(z) is holomorphic in @.

N

(@) =P1(2) +k§72pk_1<z) usl2).

The remaining part of the theorem, concerning the roots of
F(z), is & consequence of the definition of a convergent product.

‘We now prove a theorem on the logarithmic differentiation
of a functional product,

(1.22) If the region G does not contain the point oo, then, under the
hypotheses of theorem 1.20, at every poini zeG at which F(z)#£0, we
have the formula

(1.23) F'(2) _y 1, (2)

Fe) & l4u,()
. €. the logarithmic derivative of the product (1.19) s equal to the
sum of the logarithmic derivatives of the factors. The series on the
right side of formula (1.23) contains ot most a finite number of terms
having singular points (poles) in Q. If these terms are discarded, the
remaining series will be almost uniformly convergent in Q.

Proof. From the hypothesis it follows that u,(2) tends uniformly
to zéro in @ as n->oco. Hence, one can choose an index n, so large
that 1-+u,(2)540 on the set @, when »>n,. In particular, for v>n,
the terms of the series (1.23) are holomorphic in G. Let us set

Qn(z)=[1+uaz,+1(z)] [1 +un°+2(z)] v '[1+ u'n.(z)] for 'i’b>?’b0,
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and let &(z)=lim @,(2). By theorem 1.20, the sequence {@,(z)}

100 .
tends uniformly to @(z) on the set ¢ and the function ®(z) is hol-
omorphic in this set. ‘
Now, let Z be an arbitrary closed set contained in G. The abso-
lute value of the function @(z), since it is continuous and different
from 0 in @, is bounded from below by a positive number 7 in
the set Z. In view of the uniform convergence of the sequence
{@.(2)}, we shall have |@,(z)|>7/2 for n>n,. On the other hand,
the sequence of derivatives {&,(2)} tends uniformly to &'(z) on
the set Z (cf. theorem 6.1, Chapter II).
Now, since @,(2)—?(z) and &;(2)—&’(2) uniformly on the set Z,
and |D,(2)|>n/2 for n>n, and z€Z, it follows that
D) o Puld) Z’% UR) 5 Uy (2)
D(2)  ns00 Dn(8)  moveo , L, 14u,(z) S 11+’“/ (2)°
for zeZ, and the last series is uniformly convergent on Z.
To conclude the proof of the theorem, it is sufficient to notice

that F(z)=0>(z) H (1 “+u, (z)) and that for a finite number of factors

the logarithmic denvatwe of a product is equal to the sum of the
logarithmic derivatives of the factors.

oo
- EXERCISES. 1. For [¢]<1 we have the formula ]] 1+ =1/(1—2),

where the product on the left side is almost umformly convergent in the
circle K(0;1).

2. If a,#0 for n=1,2,..., then a mnecessary and sufficient condition
for the convergence of the product

(%) 4,8, 0. ..

_ is the convergence of the series

(3) Loga,+Loga,+Loga,+ ...

If p denotes the value of the product (x), and s the sum of the series (}),
then p=exps.

3. In the precedmg exercise, a necessary and sufficient eondition for
the absolute convergence of the product (x) is the absolute convergence of
the series (}).

4. Theorems 1.9 and 1.17 are not true for arbitrary products (cf ¢ g-
exercise 6 further on). However, show that if the series ) |u,|* is convergent,

then a necessary and sufficient condition for the convergence of the prod-
uet J7(1+wu,) is the convergence of the series Y'u,.
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[Hint. For |¢/<1/2 we have |Log (1+#2)—2|<Ale’, where 4 is a constant.]
5. More generally, if for a positive integer & the series X |u,[** is con-

vergent, then a necessary and sufficient condition for the convergence
of the product JJ(1-+wu,) is the convergemce of the series J'v,, where
N n

o=, —u2[2+ud[3— . (— 1) -
6. Let us consider two products J7(1+4u,), where respectively

=y

; = for n=1,2,...,
(8') 'l.l/" l/’l'b
' —1 1 1
T = - { =—'1,2,.'.
(b) ‘ Ugp—1 ﬁ’ Uon 1/n +n or n

Show that in case (a) the series Y'w, is convergent, and the product
n
JT(1+w,) divergent (to 0), while in case (b), conversely, the product [JJ(1-+u,)
n n
is convergent and the series Ju, divergent. '

7. Let G be an arbitrary region, {¢,} & sequence of points everywhere
dense on the boundary B of the region G, and {b,} a sequence of points in
which every point ¢, appears infinitely many times. For simplicity, let us
agsume that. B does not contain the point oo, Let {a,} be an arbitrary se-
quence of points belonging to G and such that the series }'|a,—b,| is con-

k

vergent. Show that the product

* X e—a,
(&) ‘ IQ 2,
is absolutely and almost uniformly convergent in & and that it represents
a function F(z) for which G is the natural region (see Chapter VI, § 4)
(Osgood).

' ‘[Remark. A construction of other functions having analogous prop-
erties was given on p. 252. If the boundary B did not contain isolated
points, then we would not have to consider the sequence {b,} and in the
product (z%) we could replace b, by ¢,. The assumption that B .does not

contain the point co is not an essential restriction, since, by applying an

inversion, we may assume that the point oo belongs to G.]

‘8. Let a,,8,,05,... be an arbitrary sequence of points belonging to the
circle X¥=X(0;1) and such that the series }'(1—|a,|) is convergent. Prove

that in this case there exists in K a holomorphic and bounded function
F(2) having roots at the points a,,a,,..., and otherwise different from zero.
If the number 0 appears exactly % times in the sequence {a,}, and if {b}
is the sequence of all those numbers a, which are different from 0, then e. g.

the funetion ‘

11;(2)‘: 2 ﬁ b,

*!
=1 #—0;

icm

§ 2 Weierstrass’s theorem. 295

where bf=1/b,, has the required properties and the product on the right side
is absolutely and almost uniformly convergent in K. A root z, of the
function F(2) has multiplicity 1 if the point z, appears I times in the
sequence {¢,} (Blaschke).

[Hint. Cf. Chapter IV, § 4, exercise 1, and Chapter V, § 4.]

§ 2. Weierstrass’s theorem on the decomposition of entire
functions into products. Functions which are holomorphic in the
entire open plane are called entire functions. The point at infinity
is a singular point for an entire function unless the function is
a constant (cf. theorem 5.11, Chapter IT).

Every entire function F(z) can be represented by a power
series

2.1) . S e,
n=0

with an infinite radius of convergenee. This series determines the
value of the function F(z) for every finite 2. From this point of view,
the enfire functions can be regarded as having the simplest sfruc-
ture of all analytic functions.

The polynomials form a special class of entire functions. They
can be defined as those entire functions which have at most a pole
as a singularity at infinity. Entire functions which are not polyno-
mials are called entire transcendental fumctions. They can be char-
acterized by the property that their Taylor expansions (2.1) have
infinitely many coefficients different from zero. In other words,
entire transcendental functions have an essential singularity at
infinity.

Let P(2) denote a polynomial of degree n. Let us suppose for
simplicity that all the roots 24,2,,...,2, of the equation P(z)=0 are
different from zero. We have then the decomposition

P(z)=0(1——5—1) (1—:—2)...(1_—;“),

where C denotes a constant (it is easy to see that C=P(0)).
This decomposition is unique. Since entire transcendental functions
are a generalization of polynomials, the question arises as to what
degree these poperties hold for entire transcendental functions. The
present section is devoted to this problem. We shall start with
general considerations concerning the roots of entire functions.
Let F(2) be an entire function. The number -of its roots may
be finite or infinite. In the second case they cannot have a finite
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point of accumulation, unless the function is identically equal to 0.

* Consequently, if an entire function has infinitely many roots, and is
not identically equal to zero (we exclude this case, once and for all,
from the considerafions of the present chapter), then these
roots can be arranged in & SeQUENCE Z1,2,...,2y,... tending to infin-
ity. For example, they may be arranged according to inereaging
absolute values, i.e. it can be assumed that |ey|<les|<|es|<. ..

~ That nothing more general than this can be said about the roots
of an entire function follows from the next theorem:

(2.2) If 21,25,...520,... U8 an arbitrary sequence of complex numbers
and z,—>oo, then there exists an entire function F(z) vanishing at the
DOVNES 21,%35...,%,... and only at these points.

(It should be remembered that not all the terms of the se-
QUENCE 2y ,%zy... 42,,... Need differ from each other. If some number
{ appears in the sequence exactly I times, this means that F(z)
has an I-tuple root at the point z=¢.) '

Let us assume, initially, that all the numbers #, are different
from zero. If [2,| tends to co so rapidly that the series 21/lz,| is
n=1

convergent (e. g. if |2,]=n?), then it is easy to find the desired
function. It is sufficient to set \

kY

< 2
(2.3) FER=[] (1- -) ’
n=1 Zn. :
gince in view of theorem 1.20 the pi-oduct (2.3), which is almost
uniformly eonvergent in the entire open plane, represents an entire
function having roots at the points 21y%g,... and only at these points.

o0
However, if the series 3'1/|2,| is not convergent, then the prod-
n=1

uct (2.3) may be divergent and need not represent any function.

An essential idea in this domain is due to Weierstrass. The
idea consists in providing each term of the product -(2.3) with
an additional factor which, on the one hand would make the
product converge, and on the other hand would not introduce
new roots. Since the exponential function ¢° does not vanish
anywhere, it is natural to take advantage of it to construct
convergence-producing factors. To that end we ghall introduce
the functions '
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[

N 22 zi,
¢ C;_(z):(l—z) exp1z+§+_‘+7 ,

| where 4=1,2,... In addjtion, let us set ¢,(2)=1—z The functions

¢,(z) have only one root: at the point z=1. For 2=0 we have
&,(2)=1. In the proof of theorem 2.2 an essential role will be
played by the inequality:

Lo

(2.4) [E2(R) =13 for 2|
For A=0 this inequality is obvious. In the case when Ax>1
and |2|<<1, we have 1—z=exp Log (1—2)=-exp(—2—2%/2—2%/3—...).
Consequently, ,
%) 2
where g,(z) = — 2 —-
v=l+1v

Therefore, if we assume additionally that |2|<{1/2, then

(2:5) €a(2) =expg,(2),

v _1 S 1™ i
— L= 2 == —— L |2|*T
(2.6) 1gl(z>1<v§+1v ,,\2,5;1” 5 T <H
In order to prove (2.4) the following two further inequal-
ities will be needed:

— 1< w6,

where ¢ denotes an arbitrary complex number, and & & real num-
ber. We obtain the first of these inequalities by replacing every
term in the power series expansion of the function ¢f—1 by its
abgolute value. The second inequality follows from (1.8) if we re-
place z there by —u. '

In order to conclude the proof of inequality (2.4) it is suf-
ficient to note that .

A+1
€4 (2) —1| =" — 1| < 10 — 1< |g,(2)] €94 < o+ e L Bl

1
since exp |¢|*t'<e< 3 for el <5-
To prove theorem 2.2 we shall need the following lemma:

(2.8) If a sequence of mumbers {zn} tends to oo, and zn%O for
n=1,2,..., then there erists a sequence of non-negative integers
AiyA3y... Such that the series
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X 5 z]ln‘l'l
(2.9 =
> 2l

8 uniformly convergent in every circle X (0;R) with R< oo,

It is sufficient e. g. to set A,=n—1. In fact, since |2,|>2R
for all » sufficiently large, then for all these » and for [z <R we
shall have

WL ™ [R\" 1
ol S \oR) = 2

! 2

2

Zn

which proves the uniform convergence of the series (2.9) in the
circle X(0;.R).

We shall now prove theorem 2.2 in a more precise form:

(2.10) If 21,255 ...y2p,... is an arbitrary sequence of numbers different
from 0 and tending to oo, and k is any mon-negative integer, then there
exisis an entire function F(z) having roots at the points 2,,2,, ... ,2, yeeny
@ root of multiplicity % at the point 0, and otherwise everywhere
different from 0.

If {ln} is an arbitrary sequence of non-negative integers such that
the series (2.9) is almost uniformly convergent in the entire open plane,

then such a function can be defined by the absolutely convergent prod-
uck

© 2 i 2 z2  1fz\2 1/z\%
(2.11) & én(——)zz" (1—~\)exp{—+—(—) +... _(_) }
e i L C e Pt B il
Proof. Applying theorem 1.20 and writing ¢ n(2fen) =1+
+[€:,(#/2,) —1] we see that the product (2.11) is almost uniformly
convergent in the open plane to an entire function, provided that

the series
@&(Z_ﬂ)ﬁli

(2.12) S’

is uniformly convergent in every circle K(0;R) of finite radius.
Now,. if |¢|<R, then for all n greater than a certain 7, we shall
have |2/2,]<1/2, and applying inequality (2.4) we see that for n>n,
the terms of the series (2.12) do not exceed 3|2/z,|»*%. It is sufficient
now to note that the series (2.9) is, by hypothesis, uniformly con-
vergent for |z|<R. .
That the function F(2) defined by the product (2.11) has the
Prescribed roots is obvious. Theorem 2.10 is therefore proved.
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The above reasoning remains valid when the sequence 2,,2,,...
is finite. We may then set A;=1,=...=0 and the produet (2.11)
reduces to a polynomial. '

Let us now suppose that two entire functions F(z) and G(2)
have the same roots, with the same respective mulbiplicities.
Their quotient H(z)=G{2)/F(2) is a nowhere vanishing entire fune-
tion. Conversely, if H(z) is an arbitrary nowhere vanishing entire
function, then the function G(z)=F(2)H (2) has the same roots as

. F(z). Consequently, the most general entire function having the same

roots ‘as the entire function F(2) can be represented in the form
F(z)H(z), where H(2) is an arbitrary mowhere vanishing entire func-
tion.

On the other hand, we already know (cf. theorem 3.1, Chap-
ter IV) that every entire function H(2), everywhere different from 0,
can be expressed by the formula

H (2) =6,

where h(z)=1log H(z) 4s also an entire funmction. Taking this into
account and using theorem 2.10 we obtain the following corollary:

(2.13) If F(2) is an entire function having a k-tuple root at the
point 0, and 2,,2,,... is the sequence of roots different from zero, of
the function F(z), then

ERLTE R YES

2 *3
(2.14) F(z) =@h(z)zk”(l - ;) " ’

where h(2) is an entire function, and the non-negative intégers Ayy Ay, ...
have the property that the series (2.9) is almost uniformly convergent
in the open plane. o :

The product (2.14) is absolutely and almost uniformly convergent
in the open plane. In particular the value of the product (2.14) does
not depend on the order of the factors.

This theorem, proved by Weierstrass, plays a fundamental
role in the theory of entire functions. It is the analogue of the
theorem on the decomposition of polynomials into linear factors.
The decomposition (2.14) is however not u.nique,. since t.he se-
quence {,1,,} can be chosen in various ways. Particularly impor-
tant is the case when we can take for A;,4s,...,4,,... the same
number A This will always be so when the series
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: 1

2.15 SN

( ) 7“{:’1 lzn{ A+1

is convergent.

The functions &, (2/2,) are called the Weiersirass primary
factors, and the decomposition itself (2.14) is usually called the
decomposition of an entive function into primary factors. The expres-
sion €z (2/z,) differs from the linear factor (1—z/z,) by the presence
of an exponential factor. This factor does not have roots and it
was introduced to make the product (2.3) converge.

The application of formula (2.14) to particular cases may offer
difficulties, the most important of which is the problem of finding
the function %(2). In the later sections of this chapter we shall
become acquainted with theorems which will be very helpful in
the application of this formula. The reader will find several
concrete examples below in § 5.

EXERCISES. 1. Let a;,a,,... be an arbitrary sequence of points dif-
ferent from O, belonging to the circle K=X(0;1) and tending to the circum-
ference of this circle. Show that there exists a funetion F(z) holomorphic in
K, having roots at the points a,, a k-tuple root at the point 0, and other-
wise different from 0. If we set a,=|a,|é¥* and b,=¢, then such a fune-
tion F(z) is given by the formula ‘

el _
Flo)=d) 2 Hi%%(a" b"),

a=1? C bn

where h(z) is a function holomorphic in K, A, are suitably chosen non-
negative integers, and ¢, are the Weierstrass primary factors (Picard).

[Hint. The proof is analogous to the proof of theorem 2.13.]

2. Let {2} be a sequence of distinct complex numbers tending to oc,
{m} an arbitrary sequence of complex numbers, and w(z) an entire func-

. o0
tion with simple roots at the points z,. Show that if the series Y |n,/2, w’(2,))
. k=1

is convergent, then the. formula

oo
Fe) = N @@
@ ﬁ 0’ (2) z—2

represents an entire function assuming the values 7, at the p?)ints 2, (cf.
Chapter IV, § 7, exercise 2).

3. Let {z,,} be a sequence of distinet complex numbers different from
0 and tending to oo, and {7}1:} an arbitrary sequence of complex numbers.
Show that there always exists an entire function assuming the values 7,
for z=2,. Such a function can be defined, for example, by the formula
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ALY

£ 0'(2) 2—2,\%

where w(¢) is an arbitrary function with simple roots at the points z, and
g, are non-negative integers. (The factors (2/2,)% play here th? same
role as the factors ¢; in the Weierstrassian product. They are introduced in order
to bring about the convergence of the series defining F(z)). If we also want-
od to consider the point z,=0, then we should add the term no(z)fzw’(0)
in the series defining F(z), assuming that ©(0)=0, and w’(0)70 (Pringsheim).

§ 3. Mittag-Leffler’s theorem on the decomposition of mero-
morphic functions into simple fractions. A function F(z), mero-
morphic in the open plane, will be called in the present chapter
simply a meromorphic function. The only finite singularities of.a, mer-
omorphic function are poles. There can be a finite or an infinite
number of these poles. In the latter case, since they cannot accu-
mulate to any finite point, they can be arranged in an infinite
SEQUeNCE Zp,Z5y..)%ny..ry WHELE Z,—>00.

We already know (cf. theorem 7.3, Chapter III) that a mero-
morphic function F(z) having only a finite number of poles in the
closed plane is a rational function. Denoting by 21,%y...5% those
finite points at which F(z) has poles, we. have the formula (see
theorem 7.5, Chapter IIT)

k

where the functions @(2),G»(2),...,Gx(?) and P(2) are polynomials,
and G;[1/(z—#;)] is the principal part of the function F(z)' at the
pole z;. Taking for G,Gs,...,G; and P arbitrary polynomials, we
obtain the most general form of a rational function. Formula (3.1)
— the decomposition of a rational function F(z) into simple frac-
tions — makes clear the behaviour of the function F(z) in the
neighbourhood of its singular points. : o

In the present section we shall consider the denvafmon of
an analogous formula for the general meromorphic fu‘n.ctlon. To
that end, we shall prove, first, that except for the condition z,—>oc0
the poles of a meromorphie function (in the case when t}_lelze are an
infinite number of them) are not subject to any other hmltat{ons.
Similarly, the principal parts for finite points can be prescribed
arbitrarily. More precisely:

(8.2) Let 2,=0, 2;,2,,... be an arbitrary sequence of distinct finite
numbers tending to oo and lat {Gn(2)], where n=0,1,2,..., be an
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arbitrary sequeme of polynomials with constant terms equal to 0. Then
there emists a meromorphic function F(z), holomorphic at all finite

values of z except al most at the poinis 2,,21,%,,..., and such that
. 1 '
its principal part at the point 2, is Gn( ———) for n=0,1,2,...

b
Tn

The reservation which we have made in this theorem concern-

ing the polynomials @,(¢) is natural, since by definition the prin-
cipal part of the expansion of a function in the neighbourhood of
a singular point does not contain & constant term (see p. 137). We
do not exclude, futhermore, the possibility that some of the
polynomials @, are identically equal to zero, and hence that the
corresponding points 2, are points of holomorphism of the funec-
tion F(z). .

In a particular case the proof of theorem 3.2 is immediate.
Namely, let us suppose that the series

Zo=)
“~ 2—2,
is uniformly convergent in every finite circle K(0;R), provided
that the terms having poles in this cirele or on its boundary are

discarded (in particular, this is always so when the number of
poles is finite). Then we may set

(3.3) F(z)=;’ G—n(z _1%)

That the function F(z) can have singularities only at the points
%,%1,---, 18 evident. For this reason, discarding the term -corre-
sponding to n=m in the series (3.3), we obtain a function holomor-
phic at the point z=¢,,. Replacing the discarded term, we see that
F(2) has a pole at 2, with the principal part @, [1/(z—zu)].

In general, however, the assumption of convergence of the
series (3.3) is not satisfied. To overcome this difficulty, we apply
a device similar to the one used by us in connection with the ex-
pansion of an entire function into an infinite product: from each
term of the series (3.3) we subtract a certain expression which, on the
one hand, does not affect the character of the singularity, and,
on the other hand, makes the series convergent.

We shall base the proof of theorem 3.2 on the following lemma:

(3.4) Let H,(2), Hy(2),... be a sequence of polynomials such that the series
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(3.5) | G(—i—) +§f [Gn(fg)—ﬂn(z)]

is absolutely and wuniformly comvergent in every circle X(0;R) with
finite radius, after discarding a finite number of terms having sing-
ularities in this circle or on its boundary. Then the sum F(z) of
the series (3.B) 48 a funmction satisfying theorem 3.2.

Proof. We reason as in connection with series (3.3). The func-
tion F(2) can have singularities only at the points z),2,%s,..., and
discarding the m-th term in the series (3.5), we obtain a function
holomorphic at the point z,. Adding this term back again, we see
that the principal part of the function F(z) at the point 2z, is the
same as the principal part of the function Gp[1/(2—2mn)]—Hmn(?)
(or the function Gy(1/2), if m=0), and hence it is equal to
Qn[l/(2—2,)]. Lemma 3.4 is therefore proved.

In order to find the polynomials H,(2) having the properties
required in this lemma, let us suppose that m>0, and let us con-
sider the expansion of the function Gy,[1/(z—=2,)] into a power se-
ries in the neighbourhood of the point 0:

) ="+t ...

(3.6) Gm(z—-zm
Thig series is convergent in the circle K(0;]z,]), and its convergence
in the circle K(0;]2,|/2) is uniform. Let H,(2) denote the partial
sum of the series (3.6), such that

Gm<~1—) —H(2)

—fm

(8.7) <2™™  for 2ze€K(0;en|/2).

We shall show that series (3.5) will then satisfy the hypothe-
sis of lemma 3.4. To that end, let us fix B>0 and let us suppose
that R<C|¢n|/2 for m>m,. The inequality (8.7) will therefore be
satisfied for 2¢K(0;R) provided that the index m is not smaller
than m,. It follows from this that by disearding the first m, terms
in the series (3.5) we obtain a series uniformly convergent in K(0;R).
Obviously the series (3.5) will also be uniformly convergent. in
K(0;R) provided that we discard only those terms which have sing-
ularities in this circle. We have therefore proved the existence of
polynomials H,(z) satisfying the hypotheses of lemma 3.4, and
theorem 3.2 follows.
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If F(z) and F,(2) are two functions satisfying the conditions
of theorem 3.2, then the difference F'y(2)—F(2)=H(2) is an entire
function. Conversely, if H(z) is an entire function and F(z) satisfies
the conditions of theorem 3.2, then F,(z)=H (z)+F(2) also satisfies
these conditions. Therefore:

(3.8) The most general function F(z) satisfying the conditions of the-
orem 3.2 1is given by the formula

6O Fe=HE+6() + T{‘ ()~ Emie)

Mm=1

where H(z) is an arbitrary entire function, and [ m(?)} a sequence
of polynomials such that the series on the right side of formula (3.9)
is uniformly and absolutely convergent in every circle K (0;R) with
the finite radius, after discarding o finite number of terms having sing-
wlarities n this circle. For H,(2) we may take any partial sum of
sufficiently large index of the series (3.6).

Theorems 3.2 and 3.8 are due to Mittag-Leffler. The ex-
pansion (3.9), which is usually called the decomposition of a mero-
morfic function into simple fractions, plays a similar role in the
theory of meromorphic functions as the Weierstrassian decompo-
sition in the theory of entire functions. The decomposition (3.9)
is obviously not unique.

"Completing theorem 3.8, we shall consider somewhat more
in detail the case when the points #y,2;,2,,... are simple poles. Let

Oyy01,049,... denote the corresponding residues. Then for m\-O we
have the formula. ‘

1 am - 4
G = = — — jf
m(z—zm) Z—2m Z amz;’,;"l ’

v=0

(3.10) 2| <|2mi.

Denoting by H,, the sum of the first 1,--1 terms of the se-
ries (3.10), we ‘obtain after a simple caleulation

Gm(~L) —Hon(e)= am(i)z"‘“,_l__ :

—2m, Zm B—2&m

(3.11)

We may take here as {A,} an arbitrary sequence of non-neg-
ative integers, so long as the series with terms (3.11) is absolutely
and uniformly convergent in every circle X (0;R) after discarding,
if necessary, the first few terms. For example, it is sufficient
that the inequalities (3.7) be satisfied.
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In applications, we frequently meet with the case in WhiohA all
the residues a,, are bounded in absolute value by a positive number C.
Then it is sufficient to choose as 4, such numbers that the series

2 Jm+1

R<+4oo (cf, lemma 2.8). In fact, if [2,|>R-+1, which holds for
all m sufficiently large, then for z¢K(0;R) the absolute value of

the right side of the equation (3. 11) does not exceed O |z/z,|*+.

is uniformly convergent in every circle K(0;R) with

In particular, if the series 2 | 71 18 convergent for an

integer A0, then we may take Zl—lz—...=l.
We shall now prove the following theorem:

(3.12) A necessary and sufficient condition that a function F(2) be
meromorphic, is that it be the ratio of two entire functions G.(2) and
G (2), of which Gy(2) does mot vanish identically.

Proof. The sufficiency of the condition is obvious, since
if G, (2) and G,(z) are entire, then the ratio F=@,/G, is holo-
morphic at each point where the denominator does not vanish,
and can have at most poles at the points where G,(2) is zero. To prove
the necessity, let us denote by G,(2) an entire function whose roots
are the poles of F(z) and such that the multiplicity of the roots
G,(?) is the same a§ the multiplicity of the corresponding poles of
F(z). Because of this, the product F(z)G,(z) will be an entire
function @,(z) and F=@/G,.

Let us note that — as follows from the construction itself —
the roots of the functions & (2) and G,(¢), considered in the proof
of the necessity of the condition, are distinet; consequently, the
roots of the function F(z) are identical with the roots of the
function G,(z), and the poles of F(z) with the roots of G,(2).

EXERCISE. Deduce theorem 2.2 of Weierstrass from theorem 3.2 of
Mittag-Leffler.

[Hint. If 24,2,,... is a sequence of distinct points tending to oo, and
Ny,Mg,... an arbitrary sequence of positive integers, and F(2) an entire
function having an m,-tuple root for z=z,, then the logarithmic derivative
F’(#)/F(z) has the principal part m,/(z—z,) for k=1,2,..., at the point z,]

§ 4. Cauchy’s method of decomposing meromorphic functions
into simple fractions. The chief difficulty in applying Mittag-Lef-
fler'’s theorem to concrete examples i (as in Weierstrass’s theorem)

S. Saks and A. Zygmund, Analytic Functions. 20
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the determination of the entire funetion H(2) appearing in the for-
mula (3.9). Because of this, a certain method, given before Mittag-
Leffler by Cauchy, which enables one to obtain expansions
in simple fractions for a rather extensive class of meromorphic
funetions, merits attention.

Let F'(2) be a meromorphic function with poles 2;,25,...,2y,...,

and let G, (——1;) be the principal part of the function F(z), cor-
m

responding to the pole 2,. It will be convenient to assume that
2=0 1s a point of holomorphism. If this were not so and if G,(1/z)
were the principal part of the function at the point 2=0, we
should apply the considerations given below to the funetion
F(=z)—Gy(1/2).

Let 0=C(0;R), where 0 <R<+ o0, be an arbitrary circumference
not passing through any of the poles of the function F(z). Let us
consider the integral .

1. (P

2miy [—2

ac,

where 2 is an arbitrary point lying in the circle K=K(0;R) and
different from zy,2,,... This integral differs from F(z) by the sum
of the residues of the function F({)/({—¢), extended over those
points among 2;,2,,... which lie in the circle K. Let 2, be one
such point, and @,(1/({—=,)) the principal part of the funection
F({) corresponding to it. We shall show that the residue Om Of
the function F({)/({ —#) at this point is —@u(1/(2—2,)). This residue
Is equal to the residue of the function ,,(l)=Gu(1/(l—#n))/((—2)
at the point z,. The function @,(f) is holomorphic at every
point of the closed plane different from z,, and 2. Let om denote
the residue of the function &,,(¢) at the point 2. It is easy to see
that o= Gn(1/(2—2y,)). Since z and 2, lie in K, therefore 27 (0,,--0,)
is equal to the integral of the function &,,(%) along C. Let us note
now that &,({) is a function holomorphic in the complement of

the circle K and that its Laurent series Z%/C" with centre oo is
Nn=0

uniformly convergent on the circumference ¢. The integral of the
function @,(%) along C is therefore obtained by integrating the
Laurent series along C term by term. However, since @,,(£) has
at least a double root at the point oo, we have g,—a,=0 and the
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integral of the function @,() along C is equal to 0. Consequently
0= —0p,= “Gm(l/(z—zm))-
The preceding remarks give us the formula

_ 1\, 1 (FQ
(4.1) F(z)-—_gjem( )+2m. Of az,

where the index ¢ under the summation sign indicates that we are
considering only the poles lying in K.
Let & be an arbitrary positive integer. Since

1 _ 1 1 e AT
t—2  (l—2f0) ¢ 2T F TR
we have,
‘ 1 (R ..
(2 Sy o
1 1 =z *1) 1 [ 2F(©)
— S T E i — | ac.
et g F(@)(C+@+ +5 dc+2m.c T X

The first integral on the right side is equal to the sum of
the residues of the integrand at the point {=0 and the points 2,
lying in K. Let us take z=0 and let 0,,=C(z,;s), where ¢ is s0
small that the circles K(z,;£) are disjoint and are all contained
in K. The residues considered are equal to

1

27

1z 21
(43) [refi+2 ot )
c £ ¢ g
and are therefore polynomials of degree <<k with respect to z. Let
us denote them, for m=0, by Hy(2), and for m>0 by —Hpy(2).
Since £=0 is a point of holomorphism of the function F({), Hy(z)
is the sum of the first % terms of the expansion of F(z) in a power
series in the neighbourhood of the point 0. Taking this into ac-
count, we obtain from (4.1) and (4.2):
F'0) | F(0) PE0)
1 1 FR(C)
—H, — | 5 d

20*
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"In order to determine the polynomials H,,(z) for m>0, let us
note that in the integral (4.3), equal to —H,(z), we may replace
the function F({) by its principal part @, (1/(Z—2,)) at the point
2y. Let ¥,(l) denote the new integrand. Hence —H,(z) is the
residue of the function ¥y,({) for {==,. This function has only
two singular points: {=2,, and (=0, and since ¥, (Z) has at least
a double root at infinity, the sum of the residues at these two
points is equal to 0. But the residue of the function ¥, () at the
point {=0.is equal to the sum of the first % terms in the expan-
sion of the function Gm(l/(z—zm)) in a Taylor series in the neigh-
bourhood of the point #=0. Therefore the polynomials H,,(z) in for-
mula (4.4) are, for m>0, equal to the sum of the first k terms in
the expansion of the funciton Gm(l/ (z—zm)) n a power series in the
neighbourhood of the point z2=0. '

Let us suppose now that there exists a sequence of circum-
ferences C™=C(0;R,) with radii increasing beyond all bounds and
such that

(48) |F(Q)I<elt* for [eC™, where e,—0 a5 n-—>oo.

‘ Let us replace ¢ by O™ in formula (4.4). The integral appear-
ing there will tend to zero as m->oc. For, if R, exceeds 2], then

the absolute value of the integral will not be greater than the num-
ber

I <R - aBn B
o T BB D) M Rl
tending to 0 as n—oco
Thus we obtain from (4.4) the following formula:

k—1 v
(4.6) Fle)= 3700 1 Z[Gm( !

Z—2py,

y—0

) —H,m(z>] :

in which the last series is extended over all the finite poles of the
function F(z).

It sh'ou’ld'be remembered, however, that this series was obtained
as the limit of the sum } as n—>oo, so that we must here, in

o™

genex:a,l, take into account the order of the terms and combine
certam terms In groups. If, however, as sometimes happens, the
series in (4.6) is absolutely convergent, then the order ag well as

5
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the grouping of terms plays no role. The decomposition (4.6)
obviously falls under the general theorem of Mittag-Leffler.

Summarizing, we obtain the following theorem of Cauchy:

(4.7) Let F(2) be a meromorphic function having poles at the points
21,%,-.. different from oo, holomorphic at 2=0, and such that for
a sequence of circumferences C™=C(0;R,) with radii increasing in-
definitely the condition (4.5) is satisfied, where & is a positive integer.
Then formula (4.6) holds, where G(1/(z—=2,)) denotes the principal
part of the function F(z) at the point z,, and H,(z) the sum of the
first k terms of the expansion Gn(1/(z—2,)) in a power series in the
neighbourhood of the point 0. The second sum on the right side of
(4.6) is understood to be lim ).

n-300 On)

Theorem 4.7 remains true (and the proof is the same) if (™ denotes
e. . the perimeter of a square with centre at the point 0 and sides increas-
ing indefinitely. Slight changes — at least, if one considers the computational
gide — in the proof permit one to generalize this theorem to curves C(") which
are considerably more general. In applications, however, the consideration of
circles and squares is entirely sufficient.

Formula (4.6) becomes simpler-in the case when the poles -
2n have multiplicity one. Let the corresponding principal parts
be equal t0 a,/(2—=2y). If condition (4.5) is satisfied, then, as
an easy calculation shows, we may take '

8 - O k—1 2\”
(4.8) ) o)

In particular, if the function F(z) is uniformly bounded on
the circumferences O™, then we have (4.5) for k=1. Therefore we
may then take H,,(2)=— ay/pn.

§ 5. Examples of expansions of entire and meromorphic
functions.

a) Expansion of the function cotz in simple fractions.

The function cotz is meromorphic in the entire open plane.
Its singularities are the points z,=mr, where m=0, £1, £2,...
These are all simple poles with residues equal to 1. In order
to obtain the desired expansion it will be most convenient to
make use of theorem 4.7, considering the function F(2)=cotz—1/z,
holomorphic at the point 0, instead of cote.
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Let C™=0(0;(n+1/2)w) for n=0,1,2,... In view of theorem
9.12, Chapter I, the function F(2) is bounded on the circumferences

O™, We can therefore apply formula (4.6) with k=1. In our case’

(cf. remarks at the end of §4):

1 1 1
== — H, (2)=——
) z—mm’ w(2) mz’

F(0)=0, Gm(z_zm

where m assumes the values 41,--2,... In view of theorem 4.7,

we therefore have
te—gmtim 35

(5.1) Flz)=co

“IL—)DO

where the symbol * indicates that the term corresponding to »=10 is
dropped from the summation.
Let us suppose that || <R and let [»| be so large that [v|n=>2R.

The absolute value of the »-th term in the sum (5.1) is then
E R __2E
[vir(|v|-n:—R)

4

v(2—rn) =l (|| — 3|vi ) Toem

Formula (5.1) may therefore be rewritten as follows:

1 b 1 1
D) S B -
(57") cot 2 +V=Z_m (z—vn'+wﬂ)’

where the series on the right side is absolutely and uniformly con-
vergent in every finite circle K(O;R), provided that we discard
the terms having singularities in this circle or on its boundary. This
is the desired decomposition of cotz into simple fractions. Combin-
ing the terms corresponding to the indices +», we may rewrite
(5.2) in the form

(5.3) cotz———i—zy

2 'VaTC?'

The same remarks apply to this formula as to (5.2).

We shall derive certain formulae her'e which we shall use
in Chapter IX. :

The function eotz—1/z is holomorphlc for [z|<m. We may
therefore write

Q|

(5.4) cotz — =Zanz”, where |z|<m.
. n=0

icm
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The arithmetical structure of the coefficients a, is interesting.
Let us observe first of all that, for |z|<m,

22 22 1 2
(5p) —0 o — __Z_(l 2 )

P2 et 1—22/v2r2 P2 Vo v‘* 4

In view of (5.3) as well as of theorem 5.9, Chapter I, we ob-
tain the power series (5.4) by formally adding together the series

(5.5) for »=1,2,... Consequently:
5 2 vy 1
{b.6) @y=0, “2’€+1=_Tk+_2./_lvT+2’ where k=0,1,2,...
y=l
The numbers
2 (2k)!
(5.7) ) Zlvz"’ where k=1,2,...

are called Bernoulli numbers. They appear in some expansions
of functions. Since, as it is not difficult to see, the successive de-
rivatives of the function cotz—1/z at the point 0 are rational num-
bers, it follows, in view of the second formula (5.6), that the
Bernoulli numbers are also rational.

From the equations

iz e"’—l—l 2
ot —=—1——-=—1— )
7 2 e —1 € —1
\ Bl (—1)* By
(‘Ot—————z a ( ) -+ 2k+1
9 g 276+1 Z 2k+9

we obtain, after some easy simplifications, the formula

1 1 —1'B -
= _‘_y( el 1

5.8
&8) “—1 z = 97:)'

b) Expansion of the function sinz in an infinite
produect.

‘We shall apply theorem 2.13. The roots of the entire function
They are simple roots. If we
write their sequence in the form #,=0,2,,%,,..., then it is easy to
see that the series (2.15) is convergent for 1=1 and divergent for
A=0. This enables us to take A;=1,=...=1 in (2.14). The product
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obtained is, as we know, absolutely convergent, and hence we
may write it in the form

2
sin z= ¢ g n ( —

m=1

We shall now show *that h(z)=0 identically, 4. e. that

(5.9) smzmzn(1—~ fmﬁnz)

This formula could be proved directly, but it will be shorter
to derive it from formula (5.3). In this last mentioned formula,
let us transpose the term 1/z from the right side to.the left, and let
us congider the remaining series, limiting ourselves to real values of 2.
The series considered will be uniformly convergent in the interval
0o, if {<<n. Let us integrate this series term by term over
the interval [0,(]. Since the funection (sinz)/z assumes the value
1 for 2==0, we obtain the equation '

2712

sing b
ng - Z,é;Log(

Removing the logarithms here and replacing { by 2, we obtain
formula (5.9). This last formula, therefore, has been proved for
0<2<{n. Since both sides of formula (5.9) are entire functions, it
is true generally.

Let us substitute z= 7:/‘) in (5.9). After ‘some easy simplifi-
cations we get

2m 2m
2m—1. 2m-+1

2
1

ol
Ul

6 6
57

[SUR

o] d

This equation is called Wallis’s formula.

¢) Construction of an entire function F(2) having
simple roots at the points 0,—1,—2,..., and not vanishing
anywhere except at these points.

‘We may again apply theorem 2.13, taking A,=1,=...=1. We
get then
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z

(5.10) Fle)=d"z ﬁ (1 + %} P

A certain ba,rﬁmﬂar case merits special attention here. In for-
mula (5.10), let us take h(2)=yz, where y denotes Euler’s constant,
defined by the formula

. .y 1
(5.11) y=1lim (2; -Logn) ),
0 \y=1

In this way we obtain an entire function whose reciprocal is
denoted by I'(z) and is called Euler's gamma function or simply

~ the gamma function. Hence,

1 vor T 2\ -3
mzey Zg(l—*—ﬂ) [

The function I'(z) is meromorphic and has simple poles at
the points 2=0, —1, —2,... It is different from 0 everywhere
and assumes real values for real z. It plays an important role in
Analysis.

Let us note that, in view of formula (5.11), 1/I‘ 2) is the limit,
as n—>oco, of the expression

1
exp{(g;;—Logn) } Q( ) exp{—zg; }
from which it follows immediately that .
n'n!
SR ) 1) e |
This formula for the function I'(z) is due to Gauss.

The existence of the limit in formula (5.11) is a consequence of the fol-
lowing general theorem which — usually in a somewhat weaker form — is
known as the integral test for the convergence of series.

I'(z)=

(6.12) Let f(u) be a function defined for uz=l, bounded, positive and
monotonically decreasing to 0 as u—-oo. Let :

S,,=2”; f), I= [ j(u)du.

1) The proof that the limit appearing in (5.11) exists, will be given
shortly.
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Then, for m increasing indefinitely, the difference S,~—1I, tends to a finite
limit g. In particular, the series f(1)4F(2)-+f(8)+... is convergent if and

+o0
only if the integral f f(u)dw is finite.
1

Proof. Since f(u)=>0 as u—>co, it is sufficient to show that S,—1I,,,-g.
If we set
r+1 »+1

8,=1(v)— [ fw)du= [ {j(v)—f(u)} du,
then » »

0<8,<f)—f0+1).
Since the series with terms f(v)—f(v+1), where v=1,2,..., is convergent

(its n-th partial sum is f(1)—f(n-+-1), and hence tends to f(1)), it follows,
in view of the inequalities satisfied by the numbers d,, that the series d,+,+ ...

is also convergent. Let us denote its sum by ¢. From the definition of the °

numbers 4§, we see that §;,+0,+...+06,=8,~I,,,. Consequently S,—1I, . g
and the theorem is proved.

From Gauss’s formula it follows easily that

I'(z+1)y=2T"(2). )

Since from Gauss’s formula it also follows that I'(1)=1, we

obtain by induction that
I'(n41)=n! for n=1,2,...

In other words, the function I'(z) is a generalization of the

factorial.

We shall give a more detailed discussion of the behaviour of

I'(z) a8 #—oo in Chapter IX. At present we shall only prove the
formula

(5.13) I

.

IR

w
-
€

which is sufficient for many applications. The sign =, which we
use here, is called the sign of asymptotic equality and can be defined
as follows. If two numerical sequences {a,} and {b,} are given,

then we say that a, is asymplotically equal to b,, and write
Up22by,
if the quotient a,/b, tends to 1 as n—sco.
In order to prove formula (5.13) let us note that

n n ™ n" n n?
e=1+—4. —(1
1! +(n—1)! +n! +n—|—1+ (n+1) (n+2)+"')

Nt e n\ n®
<t — M |——) =(2 2.
n!+n!§(n—l—1) ( n+1)n!
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On the other hand, it is obvious that ¢">n"/n!. Consequently,

n" (2n-+1)n"™
? <n! L

Formula (5.13) is obtained from this inequality by extracting

the n-th root and taking into account that 7]L/27'L—[—1—>1 as n—>oo.
d) Let o and o’ be two complex numbers different
from 0 with a non-real quotient. Construet an entire
function F(2) having only simple roots situated at the
points ‘
(5.14) mow-+nw’,
where m and n range independently of each other over
all integral values (positive, negative and zero).
In order to orient ourselves in the system of points (5.14) in the
plane, let us draw a straight line I through the origin 0 and through
the point w; similarly, let 1’

denote the straightline 0w’ !

Through the points mew, [2wsaw [@¥307 |2 o
lying on I, we draw straight e ot
lines parallel to '; through A 1
the pointsne’ onl’, straight ow “w 0 @ |2

lines parallel to I. The two
families of parallel straight ~w
lines so obtained will di-
vide the plane into a net
of parallelograms (as in Fig. 32.
Fig. 32). The vertices of these parallelograms are precisely the
roots of the desired function. _

Let 2,=0,21,2,,... denote the set of numbers (5.14), arranged
in a sequence. We shall first prove that the series

o 1

(5.15)

P
has a finite sum. '

To that end, for every integer k>1 let us denote by Gy the
set of all points mw-+ne’ for which either m=-+k and —k<n<k,
or n=-k and —k<m<k. There are obviously 8k of these points
and they lie on the perimeter of a parallelogram with centre
at the point 0 and sides parallel to the straight lines 0w and Ow’.
Every vertex different from 0 belongs exactly to one set G .
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Let §; denote the sum of terms 1/|z,|% extended over all the
vertices 2, belonging to G;. Let us denote by h the smaller of the
two altitudes of our parallelograms (see Fig. 32). It is easy to
see that when z,¢G;, then |2,|>kh, and hence

Sy < 8% t 81
T AT T T
Since the sum of the series (5.15) is equal to 8,+8,+8;+...,

it follows, in view of the last inequality, that this sum does not

8wl
exceed ﬁ,‘; T and hence is finite.

If we denote by A’ the larger of the two altitudes of our parallelograms,
then we obtain |s|<<kh’ for 2,eG,. Using an argument analogous to.
the one given above, and making use of the divergence of the harmonic se-
ries, we deduce easily that the series (5.15) will be divergent, if we replace
in it the exponent 3 by 2.

In order to obtain the desired function Wwe may now apply
theorem 2.13, taking k=1, 1,=2,=...=2. In addition, let us set
h(z)=0. We obtain the produef, :

=]

_ z 1 z 2
(516) n(l_—‘)e v ?- 2, _z” ( wzw+nw )emm-{-nw't.?(mm-}-nw') ,

»=1 m,n

where the sign ' means that we drop the factor corresponding to
m=n=_0.

The function defined by the product (5.16) is denoted by o(2).
It is known as Weierstrass's' sigma function.. The function o(2) has
(simple) roots at the points (5.14) and only at these points.

e) Construction of a meromorphic function having
simple poles at the points (5.14), with residues equal
to 1, and holomorphic elsewhere in the open plane.

Here, the numbers w, w’, m and n have the same meaning
a§ in example d).

Let us apply Mittag-Leffler’s theorem (3. 9), taking H(z)=0.
In the case considered the pringipal part G,,(1/(z—2,,) )) of the desired
function at the point 2z, is 1/(#—%y). Since the gseries (5.15)
is convergent, we may take for H n(?), when m>0, the sum of .
the first two terms in the expansion of 1/(z—2y) in a Taylor se-
ries in the neighbourhood of the point z=0 (cf. p. 304). Conse-
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quently H,,(2)=—1/2,—2/?y, . The required conditions are there-
fore satisfied by the function

1 271 1z
(5.17) C(z)=2+§(z—z, . —z?)’

where. 2y,%,,..., is the sequence of all the points (5.14) different
from 0. :

The function £(z), defined by formula (5.17), is called Weier-
strass’s  L(z)-function (to distinguish it from Riemann’s {-func-
tion which we shall meet in Chapter IX). Comparing (5.16) with
(5.17) and applying theorem 1.22, we immediately obtain the
formula

_a 1 _d'(2)
(b.18) C(z)—é og o(z)_ e ’
for _points. which are not roots of the function o(2) (log ¢(2) is & mul-
ti-valued funection, but since its single-valued branches differ by
constants, differentiation removes the multi-valuedness).

Series (5.17) is uniformly convergent in every circle of fin-
ite radius if we discard the first few terms. The same can
therefore be said of the series which we obtain from (5.17) by formal
differentiation. Let us denote by —g(2) the sum of the different-

iated series. Thus
1 i 1 1
p<z>=;z+§(<z_zv>z—zs)’

where the numbers 2, have the same meaning as in the expressions
(5.16) and (5.17). The function p (read: p) is usually called Weier-
strass’s p-function. It is meromorphic and has poles of order two
at the points of the form mw-ne’; it is holomorphic at the re-
maining points of the plane. From the definition of the function
p(z) and from formula (5.18) it follows that
az o’'2(2)—o () e (2)
p(e)=— mlog ofe) = D2,

To make clear the dependence of the functions a(2),((2),p(2)
on o and o’, the notations o(z;w,0’), {(¢2;0,0') and p(z;0,0") are
sometimes used.

These functions play a fundamental role in the theory of ellip-
tic functions. We shall discuss them in detail in Chapter VIIL
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EXERCISES. 1. Prove the formulae:

1 1“( 1 +1) 1o o (—1)"
a = —_— —_ -] = - 3] e 3
(@) gin 7z z+ Z (=1 2—n  n, z 22 —mn?
n=—co n=l
(o]
k] 2 1
(b) ( s )= —
sin rt2 Z (e—m)?
n=—00
) . )
ginaz 2 L msinna cos az 1 22 , Cosna
(e) - =— E (—1)" 7 —_—— = (—1) PO
sinme  mw&ed 2—n? sinwe mwr oW &S 22—n2

The sign ’ in (a) indicates that the term corresponding to m=0 is
dropped from the summation. In formulae (c¢) we assume that a is real
and ~— in the case of the first formula — not an integral multiple of .

e [ (142
2. Prove the formula & —1=e% 14+ —) .
o 4nin?

3. Prove directly, without using formula (5.3), that for the funection h(z)
in the formula

o 22
(%) sin z=¢"2 ! l (] — -—-—)
mAr?

m=1
(see p. 312) we may take 0.

[Hint. Form the logarithmic derivative of both sides of formula (%)
a.nd differentiate the result once more; make use of theorem 9.12, Chapter I,
and 5.8, Chapter II.]

4. For an arbitrary complex a and for |z|<1 let

A AEe AP

(l_z)a-i-l
where the left side is understood to be exp(— (a--1)Log (1—2)). Show that
) 4@ (a+1)(a+2)...(a+n) z(oz—}—a) , b) e fn"_&’
al n " =T(a+1)

where, in formula b), a%—1, —2,...

5. The partial sums of the Taylor series of the function F(z)=(1—z)7,
where ¢ is the imaginary unit, are uniformly bounded on the closed circle
K(0;1). (By (1—=2)~* we mean the function exp(—i Log(1—z)).)

[Hint. Apply the preceding exercise 4, and exercise 4, Chapter III, § 2.}

6. Leb ¢+ci2+e,2®+... be the Taylor series of the function considered
in the preceding exercise. Show that the series

o0
¢
Logn ?
n=32 e

converges uniformly, but not absolutely, on the circumference C{0;1) (Bohr).
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[Hint. Apply the preceding exercise and theorem 2.6 (h), Chapter IIL.}

7. A necessary and sufficient condition for the absolute convergence of
a series
iad n!
(%) Ma,

i 2(z4+1)(z+2)...{z+n) v

=

at any point z#0, —1, —2, ... is the absolute convergence of the series

n=1

at this point. (Series of the form () are ecalled factorial series, and those of
the form (x*) are known as Dirichlet series. We shall consider the latter
in Chapter IX.)

§ 6. Order of an entire function. The remaining part of this
chapter will be devoted to a somewhat more detailed investigation
of the properties of entire functions. We shall begin with a discus-
sion of the so-called order of an entire function. .

Let F(z) be a function holomorphic in the circle K(0;R). Let
us consider the expression

M (r; F)=Max |F(z)|.
|2l=r

Tt is defined for all valu es of r satisfying the inequality
0<r<<R. Clearly M(0;F)=|F(0)]. When there is no fear of
ambiguity, we shall write simply M (r) instead of M(r;F). In view
of the maximum modulus principle (see p. 163) the quantity
M(r) may also be defined as the maximum of |[F(z)] for [2|<r.
From this follows that M(r) is a non-decreasing function of the
variable ». Moreover, excluding the case when F(z) is a constant,
we may say that M(r) is an increasing function of 7.

In the case when F(z) is an entire function, M (r) is defined
for all non-negative . Theorem 5.11, Chapter II, says that if F(2)
is not a constant, then M(r) increases indefinitely together with 7.
The rate of growth of the function M(r) as r->co gives us some
information about the behaviour of the function F(z). It is natural
to charactérize the function M({r) by comparing it with some
simple functions of the variable 7 tending to infinity together with 7.

The simplest function of this kind would appear to be e. g.
the function #*. Theorem 5.8, Chapter II, says, however, that if
for all r sufficiently large we have

M(r)<ort,
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where ¢ is a constant, then F(2) is a polynomial of degree
not exceeding k. Therefore, if we remove from our consideration
the case of a polynomial, we must compare M(r) with functions
increasing faster than every power of 7.

From many points of view, the most appropriate selection for
the “model” function is the exponential function exps*. For a given
entire function F(z) one of two possibilities can occur: '

1° there exists a finite number A4 .such that, for all # suffi-
ciently large, the inequality
6.1) M(r; F)y<e™
is satisfied;

2° no such number A4 exists.

.In case 1° we say that F(z) is a function of finite order; in
cage 2° that it is of infinite order.

Therefore, if F(z2) is of infinite order, then, no matter how
large the number A is, inequality (6.1) will be false for a. sequence
of values of r increasing indefinitely. On the other hand, if F(z)
" is of finite order, then we may consider the lower bound of the
positive numbers A for which inequality (6.1) is satisfied, at
least beginning from some value of ». Let us denote this
lower bound, which is a non-negative number, by ¢. The number o
is called the order of growth, or simply the order, of the entire funec-
tion F(2). Consequently, for every >0 the inequality

(6.2) ' Mr)<et®

is satisfied, provided that r is larger than some 7,=7,(¢). How-

ever, if £<0, then the inequality (6.2) is not satisfied . for certain -

arbitrarily large values of r. Nothing can be said about the case
&=0. When F(e) is of infinite order, we write o= oo.

Taking the logarithm of the inequality (6.2) twice, we easily
verify that the order ¢ may be defined by the formula

L
(6.3) 9=]jmsup M.
00 LOg’l’

The following remark is useful in many cases. If the inequality

(6.1) holds then, obviously, ¢<<4. Now, if instead of (6.1} one of
the inequalities
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M@r)<Bd, or Mr)<e®

holds for rzr,, where B is a constant, then ¢<{4 aiso. For the
proof it is sufficient to note that, for an arbitrary >0, each of
these inequalities implies M (r)<expr*®, provided that r is suf-
ficiently large. Consequently, the order p does not exceed the num-
ber A-+¢ and, since ¢ can be arbitrarily small, p<<A4.

EXAMPLES. 1. Let F(z)=¢ For z=re” we obtain the equation |F(2)|=
=exp (rcosf). It follows from this that M(r)=e', and hence g=1.

2. Let F(z)=exp (expz). Then M(r)=exp (expr), and hence the function
F () is of infinite order.

3. If F(z) is a polynomial, then p=0.

4. Let F(2)=expP(z), where P(z)==0p-F¢;2-+Cy2%-F...-+c2"° i8 a polynom-
ial of degree k. Let us set ¢,—a,—ib,, where a, and b, are real numbers
and §=0,1,...,%k Then it is easy to verify that

%
|F(re®) | =exp RP(re'?) =exp( 37 (a,cons04b,sin se)r').
=0
The coefficients of r* are bounded functions of the variable 6. Denoting
by B a certain constant, we have M (r)<{exp Br*, when 7>1. It follows from
this that o<{F.
Let us now denote by 6, a number for which the binomial acosk6+-

’ ~+b,8in k6 reaches its maximum v Ei——ijlﬁ"——lckl. For all sufficiently large r we

ghall therefore have

: -
J (a,c08 56,-+b,sin s6,) r* = !ckzl ,  and hence M(r)>exp (

a=0

lc,,lf)
)

- Consequently o>k, which together with the opposite inequality gives
e=k. )

— 2 zﬁ
5. The function cos ]/z=l——§ + T is of order 1/2. In fact, on the
one hand, for 2=rel we always have
_ &VE e_w; _
Icos1/z]= _; <eé”,

and on the other hand for z=—r we have cos]/;=(e";+e“’;)/2>e‘”/2.
‘We shall now prove a few theorems about the order of entire
functions.

(6.4) If F,(2) and Fy(z) are entire functions of order oy and g,
respectively, and if 0,<<g,, then the order ¢ of the sum X (2)=F(2) +Fy(2)
is equal to o,.

Proof. Let us suppose that g, is a finite number. Then, for
&>0, we have ‘
S. Saks and A. Zygmund, Analytic Functions. ' 21
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(6.5)  M(r; By+F)<M(r; Fo)+M(r; Fy)<e™ 4o <20,

provided that r is sufficiently large. It follows from this that ¢ does
not exceed p,+e for any positive ¢ and henee it also does

not exceed g,. On the other hand, as follows from the definition

of the order of a function, for a certain sequence of numbers r,—co
we have M(r,;F,)>exp(r&*), and hence,

01 +& 0 —E TQ;‘I'E 08,
| —

S 1 o
M(Tn5F1+F2)>6rﬁ —" =™ {l—¢ n )>§6r3 )

provided that ¢ is so small that ¢,4&<<p,—e¢, and the index n is
sufficiently large. Consequently o>>p,. In conclusion: the order
of the sum F,(2)-+F,(2) is equal to p,. The proof also applies with-
out essential changes to the case when g,=oo.

In the case g;=p, theorem 6.4 is false. It is sufficient to con-
sider the following example: I, (2)=¢", Fy(2)=—¢", where p,=g,=1
and the order g of the sum #,(2)+F,(2) is equal to 6. The estimate
(6.5) indicates, however, that if g,<Cp,, then p<{p,.

We have an analogous theorem for the product:

(6.6) If two entire functions Fi(z) and F,(2) have, respectively,
orders g, and p,, where 9, < 05, then the order ¢ of the product F(2) Fy(2)
does not exceed g,. :

Proof. For every ¢>0 and sufficiently large » we have

M(r; P Fo)<M(r; Fy) M(r; Fy)<er™ - e,

This gives the inequality o<{p,+e, and hence o< p,.
Theorem 6.6 will be completed further on (cf. theorem 10.19).
At present we shall only prove that

(6.7) If F(2) is an entire function of order g, and P(2) is a polyn-

omial of positive degree, then the product F(z)P(z) has order g-
If the quotient F(z)[P(2) is an entire function, then it is also of order o-

Proof. From theorem 6.6 it follows that the order of the prod-
uct F(2)P(2) is <, because the order of the polynomial P(z) is
zero. On the other hand, since |[P(2)|>1, provided that |s| is suf-
ficiently large, we have for these values of z the inequality
|F(2)P(2)|>|F(2)]. It follows from this that the order of the
product F(2)P(2) is >>¢. Consequently, the first part of the theorem
is proved. In particular, if the quotient F(2)/P(2) is an entire func-
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tion, then its order is the same as the order of the function
{F(2)/P(2)} P(2)=F(z). This proves the second part of the theorem.

(6.8) An entire function F(z) and its derivative F'(z) are of the same
order.

Proof. Let o be the order of the function F(z), and o, the
order of the derivative F'(2). Let us set M (r)=M(r;F) and M,(r)=
=M(r;F’). Since F(2)—F(0) is the integral of the derivative F’(z)
along the segment [0,z], '

M(r)<IF(0) |+ [ My(w)du<<|F(0)|+rMy(r),

which without difficulty gives o<o;.
Let us now consider the circumference C,=C(z;1), where |z|=7.
‘We have

1 PO
27”:6:/ (Zmz)2d[:g<M("‘+l),

because the maximum of |F({)| on the circumference €, does not
exceed M(r4-1). Consequently M,(r)<<M(r+1). Therefore, if r is
sufficiently large, : :

My (r) <M (r+1)<M(2r)<exp (2r)°F"

From this inequality it follows that g, < o, which in conjunction
with the opposite inequality already proved gives the equation
21=@- '

The definition of the order of an entire function is obtained by com-
paring the function M(r) with the function expr4. In certain problems a
somewhat greater precision is required in the estimate of the function M(r).
This can be attained by considering the so-called type of an entire function.

Let us suppose that the entire function F(z) is of finite and positive
order g. Hence, for every ¢>>0 and sufficiently large r we have the inequal-
ity (6.2). There are now two possibilities: either there exigts a positive
number B such that
(6.9 , M(r)<ePr®
for all sufficiently large r, or there is mo such number B. In the first case
the lower bound of the numbers B considered is a non-negative number;
we denote it by v and call it the type of the function F(z). Consequently,
for every &>0 :

{6.10) M(7) <6(7+“’)7'9,

provided that r is sufficiently large. However, it £<0, then the inequality

(6.10) is false for some arbitrarily large values of 7. The concept of the

type of a .function can also be e;tended to the second case, in which the

inequality. (6.9) is not satisfied, however large B is. We write then = oo.
. 21*

[F'(=)|=
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If =0, or if v=o00. then we say that F(z) is of order p and of min-
imal, or of maximal fype. If 0<r< 0, we say that F(2) is of order p and
of intermediate type.

If F(2) is of order p, where 0<<g<<oo, then from the definition of the
number 7 it follows that

. . LogM(r)
7=[lm sup —
7300

(6.11)

Entire functions F(z) satisfying the condition M (r)<expdr for r suffi-
ciently large, where 4 is a constant, are frequently called functions of expo-
nential type.

EXERCISES. 1. Show that the function F(2) in example 4, p. 321, has
type |

2. An entire function F(2) and its derivative F’(2) not only have the
same order (cf. theorem 6.8), but also the same type.

o 1k
) , where

3. Considering an everywhere convergent power series 2(;
- n=1
{}.n} is a sufficiently rapidly increasing sequence of natural numbers, show
that for an arbitrary real function ¢(r), defined for >0, bounded in every
finite interval and tending to infinity together with r, there exists an entire
function F(z2) such that M(r;F)>¢(r) for r==0. In other words, the function
M(r;F) can grow arbitrarily rapidly (Poincaré).

§ 7. Dependence of the order of an entire function on the
coefficients of its Taylor series expansion. A necessary and suf-
ficient condition that a series

(7.1) CoFeizte2 4. et ...

represent an entire function is that its radius of convergence be
infinite. Making use of the formula for the radius of convergence
of a power series (theorem 1.1, Chapter IIT), we see that this con-

dition is equivalent to the following: 111/ m should tend to 0 as
f—>oco. The purpose of the present section is to show that the

rate of this approach to 0 is elosely related to the order of the
functlon (7.1).

{7 .2) If a non-negative number & and an inder m, exist such that
n,—
(7.3) Vied<n™  for n>n,,

then the order g of the entire function F(z) given by the series (7.1)
does not exceed 1/E.

Proof. For £=0 this is obvious; hence we may assume that &
is positive. We may also assume that n,>1/£, or that n,é>1. Let
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P(z) denote the sum of the first n,-+1 terms of the series (7.1)
and let F,(z)=F(2)—P(z). Then
(571/5)6:@

o0 e o
2 lealr™ < --=n=%11 ()

i
n="n,+1 N=Ny+1 .

Let us denote the integral part of the number n¢ by m,. The
numbers m, form a non-decreasing sequence, in which each positive
integer k& appears at most 4 times, Where A is a constant depend-
ing only on & Let us take ry=&", Then, for 7,21, the last
sum in (7.4) does not exceed

0 od k

e ry Z _<¢1A2 D LA,

Na=ny+1 mﬁn n=n, +1
because k*>k! for k=1,2,... In other words, M (r;F,) <A &' exp &'t
Tt follows from this that for every ¢>0 and sufficiently large r we
have

(7.4) M(r; Fi) <

M(r,Fy)<expr#+e.
Consequently, the order of the function F,(z) does not exceed
1/¢. Since P(z) is a polynomial, the order ¢ of the function F(z)
is also <1/&.
‘We shall now prove a theorem which is, in a sense, the converse
of the preceding.

(7.8) If for an entire function F(z) and a given a>0 and r0>0 the

wnequality
M(r; F)<expr’,

holds, then for sufficiently large m the coefficients ¢, of the fume-
‘tion F(z) satisfy the inequality
(7.6) Viea < An=e,
where A is a constant depending only on a.
Proof. For r>r, we have (cf. Chapter III, § 4, p. 139)
- M(r) s
( 1) g,

when  r>7,,

(7.7) lenl < —
In order to obtain the best estimate for |e,|, we shall take
that r for which the right side of (7.7 ) is smallest. A calculation,
which we leave to the reader, shows that the expression r"expr”
attains its minimum for r=n'"a"" and the minimum itself is
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¢"*(a/n)™*, Let us substitute r=n'¢—"* into the right side of
formula (7.7). Sinee for sufficiently large » we have n'/*a=Ye>y,
consequently for sufficiently large n we also have }/|e,| << (ea)/on—10e,
7. ¢. formula (7.6).

If the order of a function F(2) is g, then in inequality (7.6)
we can take for a any number greater than p. Moreover, we can
then replace A by 1. From this and from theorem 7.2 it follows
that, when 0<g<oo, the number 1/o may be defined as the upper
bound o0f the numbers ¢ satisfying condition (7.3). From theo-
rem 7.5 it follows that this theorem holds for o=0, and from
theorem 7.2 its truth follows for g==oco also. Therefore, generally:

" (7.8) The reciprocal 1jo of the order of the fumction ' F(2), given by
the expansion (7.1), may be defined as the.upper bound of the numb-
ers £ satisfying condition (7.3).

Condition (7.3) may be rewritten in the form nf<|e,[™"™, and
hence the upper bound of the numbers ¢ satisfying this condition
is equal to the lower limit of the quotient Log |¢,|~2/nLogn as n—>oo.
Consequently:

(7.9) The order ¢ of the entire function (7.1) is given by the formula
1 .. Logl/le,

—=liminf
e nso  nLi0gN

EXERCISES. 1. Let a be a real positive number. All three entire funec-

tions:
Z;’E’ ;W’ ' ;T(cm—i—l)’

=1
‘are of order 1/a.
2. Let @(#) denote a continuous and finite function in a finite interval

4
a<\t<Ch. The function F(z)=e"@(f)dt is an entire function of the expo-
nential type.

3. If the series (7.1) represents an entire function F(z) of order p, then
- the type 7z of the function F(z) is defined by the formula '

(veg)*e=lim sup n*e}/|c,|. .
. S n—>00
. In particular, F(z) is of minimal type if and only if

lim/je,[n% = 0.
A=>00
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[Hint. The proof is analogous to the proofs of theorem 7.2 and 7.5 (see
formula (5.13)).]

4. The types of the functions considered in exercise 1 are afe, a, 1,
respectively.

5. With every power series

{*) o2ttt ...
we may associate the power series
(%) co+1le 2421622+ ... +nle, 2"+ ...

Prove that necessary and sufficient condition that the series (*) re-
present a function of the exponential type is that the series () have a pos-
itive radius of convergence. A necessary and sufficient condition that the
series () represent a function at most of order 1 of minimal type is that
the function (%) be entire.

6. A necessary and sufficient condition that F(z) be an entire function
of exponential type is that

Fo)= o f SER)a,
C

Where‘ G(¢) is "a function holomorphic at the point oo, 0=C(0;R), and B
js sufficiently large. F(¢) is at most of order 1 of minimal type, if and only if
G(f) is an entire function of the variable 1/C.

[Hint. Use exercise 5.]

§ 8. The exponent of convergence of the roots of an entire
function. Let 2;,2,,... be a sequence of all the roots (taking into
account their multiplicity) different from 0 of an entire function
F(z), which does not vanish identically. Let us consider the series

1.
2

[—;‘;iz’

8.1)

where « is a positive number. If it is convergent for a certain value
of a, then it will be a fortiori convergent for every a’>a. The
lower bound x of the positive numbers a>0 for which the series
(8.1) is convergent, will be called the exponent of convergence of

. 1 . ‘
the roots 2;,2s,... Consequently, the series ZW is convergent
n n

for ¢>0 and (if the sequence {zn} ig infinite) divergent for <0;
for s=0 this series may be either convergent, or divergent.
If the sequence 2;,2s,... is finite, then obviously #=0. In the case
when the function F(z) does not have roots, we also set u=0.
Conversely, the inequality x>0 indicates that the sequence z,2;,..-
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is infinite. If the series (8.1) is divergent for every «>0, we set
‘LL=OO.

The number x gives some information about the distribution
of the roots of the function F(2) in the plane. If x4 is small (or
equal to zero), the roots 2;,%,,... are ‘“‘sparse”. The opposite
is true when g is large.

EXAMPLES. 1. If z,=n% where n=1,2,..., and A>0, then u=1/A.

2. When z,=2" for n=1,2,..., then u=0.

3. If z,=Log n-for n=2,3,..., then u=ooc.

(8.2) The order o of an entire function F(z) and the exponent of conver-
gence p of the roots of this function are connected by the relation p<o.

This theorem says that the higher the order of an entire func-
tion, the more roots it’ can have in a given region.

In the proof we may suppose that g< oo, because in the contrary
case the theorem is obvious. If F(e) has a k-tuple root at the origin
of the system, then considering, instead of F(2), the function #(z)z~*,
which has the same order as F(z), we may assume that F(0)5£0.
Dividing by a constant, we may assume further that F(0)=1.

Let n(r) denote the number of roots of the function F(z) in
the closed circle K(0;7). The function n(r) is non-decreasing. Its
rate of growth tells about the density of the distribution of the
roots of the function F(z) in the plane. The function n(r) is con-
nected with F(2) by Jensen’s formula (Chapter IV, theorem 4.1),
which in view of F(0)=1 assumes the form

r

2n
w1 i0
Of - du—znhfllogm(re )| b.

We shall base the proof of theorem 8.2 on the following lemma:

(8.3) If an entire function F(z) s of order o, and & is a positive
number, then n(r)<re™® for r>ry(e).

Proof. Replacing r by 2r in Jensen’s formula, we obtain

{nlu)
(8.4) f = du < Tog M(2r).
0
On the other hand, n(u) is a non-decreasing function, and
therefore .

icm
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2 2r 2
n{u n(u d
(8.5) f ) > f ) g miry [ =n(r) Log 2.
5 U J U E u

Taking (8.4) and (8.5) into consideration, we get

Log M(27)

—Lo—g~2—<7ﬂ9+a for r>ry(e).

Proceeding to the proof of theorem 8.2, let us set |z,|=7,. Let
us substitute #, for » in the inequality n(r)<<r¢t®. By virtue
of lemma 8.3 we then obtain: '

a1t for m>n,,

where n, denotes a positive integer such that 1,>7y(e) for n>n,.

From this we conclude that the series (8.1) is convergent for
a=g-+2¢, for when n>mn,, its terms are, respectively, smaller than
the numbers n~@*+?e+d forming the terms of a convergent series.
Consequently u<o.

Let us note, besides, that the sign <{ in the last inequality cannot,
in general, be replaced by the = sign.

This is seen, for example, in the case of the function ¢°, for
which p=1 and u==0.

EXERCISES. 1. Retaining the previous notation, prove the following
theorem, which is a somewhat more precise formulation of theorem 8.2:

Log M (r)

o0
If the integral f Tdr is finite for some k>0, then the series
1

3%, 7% is convergent (Valiron).

[Hint, Using the first of the inequalities (8.6), estimate the number of
Toots of the function F(z) in the annuli P(0;2¥,2V+1), where N=0,1,2,...]

2. If an entire function F(z) has roots on every circumference C(0;n),
where n=1,2,..., and does not vanish identically, .then, for any k<l1,
F(2) satisfies the inequality M(r;F)>expkr, for all sufficiently large r
(Estermann).

[Hint. "Apply theorem 4.1, Chapter IV, and formula (5.13).]

§ 9. Canonical product. Let F(z) be an entire function of fin-
ite order, not vanishing identically, #;,2,,... @& sequence of its
roots different from zero, and %k>0 the multiplicity of its root at
the point'0. Let i denote the smallest non-negative integer for
which the series
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’ 1
(9.1) D

is convergent. The existence of such a number follows from theo-
rem 8.2. The Weierstrassian product (2.11) gives us an entire func-

tion with roots 2;,2,,... and a k-tuple root at the origin of the.

system. Because of the convergence of the series (9.1) we may set
Ay=As=...=2 and the product considered takes the form

(92) zk” (1—_3) gz—i+_;.(z_z’l_)2++—}(zin)l-
n 2y, .

We see, therefore, that with every entire function of finite
order, not vanishing identically and having roots, we may associate
2 precisely defined Weierstrassian product (9.2). This product is
known as the canonmical product of the function F(2). If the
function does not have any roots, then we take 1 as its canon-
ical product. The function F(z) differs from its canonical product
by an exponential factor exph(z). This factor can have an essen-
tial influence on the behaviour of the function F(z) and for that
reason the properties of F(z) may be different from those of ifs
-canonical product. ,

Let us note, moreover, that if the exponent of convergence u
for the sequence 2,,2,,.... i§ not an integer, then 1 is equal to
the integral part of the number x. If x is an integer, then A=p—1
or A=p, according as the series >'7,* is convergent or not.

n .

The inequality
(9.3) I<p<atl
holds in every case. ) .
(9.4) For a canowical product we always have u=p, 1. €. the order

of a canonical product is equal to the exponent of comvergence of its
70018,

Since u<Cp for every function, it is sufficient to show that
uz=o. Moreover, we may assume that the canonical product has
roots, since in the contrary case theorem 9.4 is obvious. We shall
begin with the estimate of the primary factors &,(2), introduced
on p. 297. We shall prove, namely, the following lemma:

(9.5) For every i=1,2,..., we have the inequality
(9.6) @) |<exp Alz|* for Aa<A+1,
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where A is a constant depending only on a. Inmequality (9.6) also
holds for A=0, provided that A<<a<{i41.

Proof. Let us suppose, first, that 2>0. From formulae (2.5)
and (2.6) it follows that when |2/<1/2, then |[C,;(2)] does not
exceed exp|z|**!, and hence also explz|. When [2/>>1, then re-
membering that 1-4-[2|< exp|2], we obfain

o
|Ex(e)| < exp (2|z1+—;— otk 7 Izl‘) < exp (A1) el
<exp(A+1)[el" |

Finally, when 1/2<|¢|<1, the function expAlz|* tends umi-
formly to infinity together with A. Consequently, the inequality
{9.6) will be satisfied in the annulus 1/2<[2|<1, and hence also
in the entire plane, if we take A sufficiently large.

Let us now suppose that A= 0, 4. e. that ¢;(s)=1—2. For 1z1<1[2
we obtain exactly the same estimate as in the case 1>0. For [¢|>1 /2
the quotient Log (1-+|z|)/l2|* does not exceed a certain constant B;
consequently |&o(2)| does not exceed eoxpBlz|* Lemma 9.5 is
therefore proved. :

Passing to the proof of theorem 9.4, let us suppose, fivst,
that I<p<A+1, and let u, be an arbitrary number satisfying the
inequality A<{pu<<u;<A-+1. -

From the definition of the number g, it follows that the
series ) |#,/™ is convergent. Let us assume that we have k=0

n

in the expression (9.2) (division by 2* does not change the order
of the canonical product), and let us apply the formula (9.6),
writing u, instead of a. We see that the product (9.2) does not
exceed in absolute value ,

9.7) HeXpA zﬁ\"‘”:exp(ét ]z]"‘len]_"‘)'—‘eXPAllz“’l,

n » n
where A, denotes a certain constant. Since x, can be arbitrarily
near p, it follows that ¢<u in the case considered.

There still remains the case u=2A-+1. Let us set py=A+1.
Remembering that series (9.1) is convergent, we again find that
the absolute value of the product (9.2) does not exceed (9.7), and
hence p<<A+1=4u.
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EXERCISES. 1. Let p>1. Of the two entire functions:

oQ o o0 2
1+l), (1——)
the first is of order 1/p, the second of order 0.

2. Let P(2) be the canonical product formed from the roots z;,2s,... If
a is the exponent of convergence of the sequence {z,} and if the series 3 '|z,{~®

n

is convergent, then P(z) is a function of order a of minimal type, %.e. for
every £>0 we have
(= ‘ M(r;P) < exper?,
provided that r is sufficiently large.

[Hint. The reasoning is similar to the proof of theorem 9.4.]

3. The condition of convergence of the series 3lz,|[7" is a sufficient
but not necessary condition that inequality (%), exercise 2, hold. Considering

only the case a=1, show that if {a,} is an arbitrary sequence of complex
numbers different from 0, tending to oo and such that %/|a, tends to O,

then the function
- 2
Pe=]] (,1—;5)

n=1 n
is at most of order 1 of minimal type, i. e. we have (%) with a=1.
The last product is canonical, because it can be written in the form

H(l-——) (1+ ) o (Pringsheim).
a ﬂ

bt n,

[Hint. In estimating [P(z)] use formula (5.9).]

§ 10. Hadamard’s theorem. The following theorem, which is
due to Hadamard, plays an important role in the theory of entire
functions of finite order.

(10.1) If F(2) is an entire function of fimite order o, then

(10.2) F(2)=e"@P(z),

where P(z) is the canonical product of the function, and h(z) a poly-
nomial of degree not emceeding o.

We shall bage the proof on another theorem (or rather, on
a parficular case of it), concerning the estimate of an entire
function from below. Let
m(r)=m(r; F)=Min |F(z)].

lel=r
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In general, the function m(r) behaves in a less simple manner
than M(r), since if F(2) has a root on the circumference C(0;1),
then m(r)=0. We shall see, however, that if we omit these — and
the neighbourhing — values of 7, then we can give for m(r) an
estimate from below, where, roughly speaking, m(r) is of the
same order as 1/M(r)

We shall begin with the proof of the following lemma:

(10.3) Let P(z) be a canonical product of finite order o, and 1 an .
arbitrary positive number. Let 2,,z,,... be the roots of the function

P(z), different from 0, and let ]znl_f‘n, |#|==r. If we remove the open
circles K,=X(z,;r,%) from the plane, then at the remaining points
we shall have, for arbitrary e>0, the estimate

(10.4) , . IP(2)|>exp (—ret,
provided that r>ry(e).

Proof. Lebt us note, first of all, that the reasoning which
gives us the inequality [E,(2)|<Cexp (J2|*™") for [¢/<<1/2 (cf. (2.B)
and (2.6)), also gives the inequality [C,(2)|=exp(—|z|*"!) for
[¢]<<1/2. Morecver, it is not difficult to see that

1
for  |e|=>5,

z+++

where B, like B; and B, below, denotes a constant independent
of z. Let us fix [g|=r. Then, assuming that P(z) has the form

(9.2), we have
Ao 1ol g1l

P(z)|= MH |

if r>1. Applying the inequalities considered a while ago, and taking
into account the fact that if #,>2r, then [¢/z,[<1/2, we get for

=26

Ta22r
‘We shall now make use of the faet that the exponent of
convergence p of the sequence of roots of the canonical product
P(z) satisfies the inequality (9.3). '
Let us suppose, first, that u<i+41. Let p<p'<i-1. If r,2>2r,

(10.5)  Log|P(2)|> Z’ Log

Tal2r

R2r

 then (r/r,)**'<(r/r,)¥; and if 7,<2r, then
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)= (=)
7, ¥n, Tn

n

Applying this to (10.5) and remembering that the series DX s

is convergent, we find:

|
2 ’

(10.6) Log |P(z)|> ZLog 1—;}—13114‘ for r>1.
Ta<2r n

If p—7+1, then sebting u’'=p and taking into account the
convergence of the series >'r,*™, we again obtain the inequality

(10.6). Therefore, it will be true a fortiori for u'>pu.

If 2 does not belong to any one of the circles K,, then |1—z/z,|>
=771 -and hence the first term on the right side of (10.6) is not
smaller than =(2r)Log(2r)™, where =(r) denotes the number
of roots of the function P(z) for |2|<r. Taking theorems 8.3 and
9.4 into comsideration, we obtain n(2r)<B,r' for r>r,. Consequent-
ly, for r. sufficiently large,

(10.7) Log |P(2)|>=— (14-1) Byr* Log 2r — B r¥ > —1*,
where u"'>u'>pu. Since x'" can be arbitrarily close to wx, and p=p,
lemma 10.3 follows from (10.7). .

The reader no doubt has observed that the magnitude of the num-
ber I did not play any role in the above argument. However, if we
assume that I>p=p, then the series Y7’ will be convergent, and

n
hence the sum of the diameters of all the circles K,, will be finite.
Therefore, there exists a sequence of numbers R;—--co such that
the circumferences C(0;R;) do not have points in common with
the circles K,. In other words, for a certain sequence R;— oo,

(10.8) m(R;; P)>exp (—Rf),

For the proof of theorem 10.1 we shall need additional formulae
‘expressing the coefficients of a power series in terms of the real
part of the function. Let F(2)=U(2)+iV(z) be the sum of a
power series ¢,4c,2-cy2*-+..., where 2=r¢®, and U and V are
real funetions.

The formula 2mic,= [ F(2)2~"'dz may be written in the form
C(0;7) )

when §>7j,(e).

2

1 ) )
(10.9) Gn?”"=§; of F(re®)ye™ gp.
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Since F(2)2" " is a holomorphic function when n>1, its inte-
gral along the circumference C(0;r) vanishes, 4. e.

1 27
—_— 10\ inb yq __
%szﬂ(re )6 36— 0.

Let us replace the integrand by its conjugate. We obtain the
equation

27
(10.10) —1—fli’(7"e“)e““i"°d9=0 for n3>>1,
: 21 3

where F@:U(z)—iV(z). From (10.9) and (10.10) we obtain, by

- addition, the desired formula:

2w
1 . .
(10.11) 0,{)‘"’=—~f U(re®yeds for n=1l.
T
0
For n=0 it is not true, but taking the real parts of both sides of
(10.9) for n=0, we get :

. 2
1 A
s 30 70
(10.12) nJU(re Vd0=2R¢,.

 'We shall now prove one more lemma, which is a complement
of theorem 5.8, Chapter II.

(10.13) If for‘some sequence of values of r, imcreasing indefinilely,
the real part U(z) of an entire function F(z) satisfies the imequality

(10.14) U(rd®)<Crk, where 0<6<2m,

and C and %k are positive constants independent of r and 0, then
F(z) is a polynomial of degree not greater than k.

. Proof. Since the integral of the function ¢~™ over the inter-
val 0<{6<2x vanishes, equation (10.11) may be rewritten in the
form
' 1
"

(10.15) b= f{U(re‘")——Cr"]e‘”‘"’dﬂ for n>1.
0

Consequently, by virtue of (10.12), we have
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27

1
R k__ 10 _ —n —n
len] < ,,6{[07* U(re”)]de=2Cr 2R ¢y

for all values of » for which the inequality (10.14) is true.

Taking r arbitrarily large, we see that ¢,=0 for »>%, which
proves lemma 10.13.

Let us now return to the proof of Hadamard’s theorem. Let
us suppose that the function F(z) has roots. If F(z) is of order g,
then the exponent of convergence u for the sequence z;,2,,... of
its roots will be <p. By theorem 9.4 the canonical product P(z)
of the function F(z) is of order u. Let us note that P(z) satisfies
the inequality (10.8) for a sequence of numbers R; tending to
infinity, and since exph(z)=ZF(z)/P(2), putting h(2)=TU(2)+iV(2)

'~ 'we obtain

M (R;; F)
m(R;; P)

Consequently U(R;¢”)<2R¢*e, which in view of (10.13) indi-
caties that h(z) is a polynomial of degree <p+-=. But ¢.can be arbi-
trarily small; hence the degree of h(z) does not exceed ¢ and the-
orem 10.1 is proved.

Theorem 10.1, in turn, enables us to obtain from lemma 10.3
the following general result:

exp U (R;¢")=|exph(R;e®) | < < expR§te-expREH

(10.16) Let F(z) be a function of finite order 0, and 21,2,,... 18 roots
different from 0. Then, for z satisfying the same conditions as in lemma
10.3 and for arbitrary £>0, we have

(10.17) [F(2)|>exp(—r2™®),  when r>7(e).

Proof. Let us note that F(2)=¢""P(z), where P(z) is the
canonical product for F(z) and hence is of order < 9. The expres-
sion hA(z) is a polynomial of degree <, which gives |h(2)|< A4r®
for r>r7,, where A is independent of r. Consequently, taking into
consideration the inequality (10.4), in which we replace & by &/2,
we get

(10.18) | F(2)| > P(2)] > exp (— A7) exp(—re %) > exp (—re+)

for 2z not belonging to any one of the eircles K (2,375") and r sufficiently
large. Formula (10.17) is therefore proved.

icm

§ 10 Hadamard’s theorem. 337

Making use of Hadamard's. theorem, we now prove the fol-
lowing theorem:

(10.19) If Fi(2) and Fy(2) are functions of orders o, and o,, respec-
iipgly_, where 01, 02<X0, and if the quotient F,(z)|Fy(z) is an entire
function, then it is of order <p. '

Proof. Without restricting the generality of the theorem, we
may assume that F;(0)#0, Fy(0)5£0. Let 27,25,... and 2%,2%,...
be the roots of the functions ¥, and #,, respectively. Let us
consider the formulae » '

2 2
10.20)  Fy@)=[ f(;) Fi)=o] | é(;)

where the coefficient of ¢™ is the canonical product corresponding
to the function F;, and %; is a polynomial of degree <g;<o. Let
A=Max(4,,4,). In the products (10.20) we shall replace i; by A.
This may introduce additional exponential factors to &, but
their effect can be balanced by a correspording change of the pol-
ynomial k;. In view of (9.3) and of theorem 8.2 we have 1,<yp;,
and since g;<Cg, the new polynomial k; will not be of degree greater
than o. Of course, the new products in (10.20) need no longer be
canonical. :

Dividing the equations (10.20) we obtain

Fy(z)
Fule)

and £, denote those roots of F,; which are not roots of ;. The prod-
uet (10.21) is not necessarily canonical, but we can make it
canonical by incorporating superfluous exponential factors into ™.
The degree of the polynomial % thus changed will continue to
be <p. We may, therefore, assume that the decomposition (10.21),
which we write in the form. ¢*®P(z), is canonical. Since {f,} is
a sequence chosen from {z;L}, the order of P(z) is <g;<<g- The
order " is also <, and hence the same can be said of the

order of the quotient F,(z)/F,(?).

"EXERCISES. 1. Let {n"} be an increasing sequence of positive integers
satisfying the condition .

(10.21) ] 61(;—), where  h=h;—h,,
n = \em

(%) ‘ C lim‘ksup (ypy ~.n,‘)= co.

S. Saks and A. Zygmund, Analytic Functions. 22


Yakuza


338 CHAPTER VII. Entire functions.

Prove that if the transcendental entire function F(z)= %”akz"k is of fin-

ite order, then it assumes every finite value ¢ an infinite number of times
(Pé6lya).

[Hint. If the function F(z) assumed e.g. the value a=0 at most a fin-
ite number of times, then we should have F(z)=¢"“P(z), where hA(z) and
P(z) are polynomials. Differentiating we obtain (zF')P=F. (zP’—!—zh’P). C.o.m—
pare the Taylor series of both sides of this equation and consider condition
(*) and the fact that the series

2, 0,2 =2F"(z)
k
contains exactly the same powers as the series J'a, ¢ =F(2) (Biernacki).}
13

2. If a function F(2) is holomorphic in the circle K(0;R) and A(r) de-
notes the maximum of the function RF (2) on the circumference C(0;r), where
0 r<R, then, disregarding the case when F(z) is constant, A(r) is an in-
creasing function of r, .

[Hint. Cf. Chapter III, § 12, exercise 3.]

3. If a function F(z)=1/2+clz+cgz2+ «..}e,2"+ ... is holomorphic in the
circle K(0;1) and has a real positive part there, then |c,|<1 for n=1,2,...
(Carathéodory).

[Hint. Apply formulae (10.11) and (10.12).]

4. Let F(z)=c,+¢;2+c,2°+... be a function holomorphic on the closed
circle X(0;B) and let A(r) denote the maximum of the function RF(2) on
the circumference C(0;r), where 0<{r<{R. Prove that for 0<{r<<{R the inequal-
ity

2
5 M) <] 5 {ALB) —Rey}
holds, and hence a fortiori
) M(r)gg—i—:{A(R)—i-m(O)]} (Carathéodory).

[Hint. Apply exercise 3 to the function @(z)=4(R)—F(Rz), holomorphic
in the circle K(0;1) and having a positive real part there (see exercise 2).
Note that M (r)<leyl+]eyr+ leglr®-...]

5. Prove the theorems given in exercise 2 and 3, Chapter III, §11, by
means of Carathéodory’s inequality (%) in exercise 4.

§ 11. Borel’s theorem on the roots of entire functions. We:
shall discuss in detail the question of the distribution of the
roots of an equation F(2)—a=0, where a is an arbitrary com-

- plex number and F(z) an entire function of finite order. From
Hadamard’s theorem 10.1 it follows that if F(z) is an entire
function of finite order, mowhere vamishing, then F(z)=exp h(z),
where h(z) is a polynomial of degree not ewceeding o. It follows from,
this that an entire function F(z) of fractional order o must have infi-
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nitely many roots. It is clear that F(z) has roots, since in the contr-
ary case, being of the form exp h(z), where h(z) is a polynomial, it
would be of integral order (cf. § 6, example 4). However, if it had
only a finite number of roots %15%,...4%, then, by virtue of
theorem 6.7, the function

(B—21)(2—2,)...(2—2)

would be a function of order ¢ without roots and we would
have a contradiction again.

We can, however, prove something more: if F(z) is of fraction-
al order o, then the exponent of convergence 4 of the roots 2, z,,...
of the function F(z) is equal to e. In fact, we know that u<p, and
let us suppose, contrary to what we wish to prove, that u<<e.
Since the canonical product P(2) of the function F(z) is of order M
we have |P(z)|<exps*** for large . On the other hand, the function
h(z) in formula F(z)=¢"®P(2) is a polynomial of degree p<p, and
since ¢ is fractional, p<p. Therefore, for some constant 4 we have
(11.1) P (2) <P )| < 6" for r>7,.

Since p<p, u<g, it follows that, if ¢ is sufficiently small and »
sufficiently large, the right side of the inequality (11.1) does not
exceed expr®, which contradicts the hypothesis that F(z) is of
order p.

If a is a constant, then the order of F(z)—a is the same as
the order of F(2). Therefore the result obtained may be stated in
the following general form: '

(11.2) If F(z) is a function of fractional order g, and a an arbitrary
complex mumber, then the roots of the function F(z) —a have the ezpo-
nent of convergence o. In particular, there are an infinite number of
them. '

The example of the function F(z)=e¢* and the constant a=0
indicates that theorem 11.2 is false when o is an integer. However,
looking over the proof given above, we verify easily that theorem
11.2 remains true when F(2) is an entire transcendental function
of order 0. But the second part of the theorem is then no longer
a consequence of the first.

The fact that an entire function does not assume certain val-
ues is something exceptional. For.functions of finite order this
fact is covered by the following theorem of Borel:

22%
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(11.3) For an arbitrary a, let the sequence zl(‘a), Zo(@),... be thehsen
quence of all roots different from O of .an equation F(z)—a=0. Then,
if F(2) is of finite order o, the exponent of converge?zce of the sequence
z,(a),z5(a),... is equal to o for all va,lu_es of a, with the exception of
one at most. .

Proof. In view of theorem 11.2 we may assume ’[sha.t o is a pos-
itive integer. Let us suppose that there exist two different excep-
tional values @ and b. We have then the formulae:

(11.4) P()—a=e"P,(z), F(2)—b=¢"®Py(2),
where P, and P, are canonical products of order smaller than g,
and hence %, and hy are polynomials of degree exactly o. Subtract-
ing the equations (11.4), we get:
(11.5) b—a=€"“P,—¢"P,,

The left side of the last equation is of ord(?r o, and since P,
is of order <, P,exp (hy—h,) is of order o. Since, on the other
hand, P, is of order <p, exp (h,—h,) must be of order p, and
consequently h,—k, is a polynomial of degree o. -

Let us differentiate the first formula (11.5). We obtain
(11.6) & (R P, +-P;) =" (b Py +Py).

‘ By virtue of theorem 6.8, P; and P; are of sma,llfar order thal}
o, and hence the same can be said of the entire functions h;P,+P;
and h,P,+P;. :

Formula (11.6) can be written in the form

hy Py 4Py

WPy +-Py

where the quotient on the right side of the equation is an entire

function of order smaller than g (cf. theorem 10.19). We come to

s contradiction here, because h,—h, is of degree p. Theorem 11.3

is therefore proved. :

EXERCISES. 1. Prove the following generalization of theorem 11.3: If

F{(2) is an entire transcendental funection of order g< .+ co, then for all p-ol'
ynomials @(¢), with the exception of one at most, the roots of the equatio

- F(@@)—@()=0 have the exponent of convergence ¢ (Borel). .

2. The entire function

(b—a)e =Py —""P,.

ghx*’& 1

He= 3 (=1 g
" n=0
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hag infinitely many roots and their exponent of convergence is equal to 1.
The function J,(2) is called Bessel’s function.

[Hint. Jy(V/. ;) is an entire function of order 1/2 {(cf. theorem 7.9 and for-
mula (5.13)).]

§ 12. The small theorem of Picard. One of the most impor-
tant stages in the history of the development of the theory of

entire functions was the proof by Picard of the following the-
orem:

(12.1) Every entire function different from a constant assumes all
possible finite values with the ewception of ome at most.

The entire function ¢ is not equal to zero anywhere. Excep-
tional values can therefore really exist.

The original proof of Picard is short, but it is based on certain
deeper properties of the so-called modular function appearing in
the theory of elliptic funections?); it cannot therefore be called
elementary. Later, a series of other proofs were given, more
elementary, but also more complicated. It was only recently that
Bloch succeeded in obtaining a proof which is entirely satisfactory
both from the point of view of the elementary character of the
argument and of its simplicity. We give this proof below.

Theorem 12.1, called the small theorem of Picard, follows from

the fundamental theorem of algebra and the following so-called
great theorem of Picard: :

(12.2) If a is an essential singular pownt of the function F(z), then
m an arbitrary annular neighbourhood of the point a the function
F(2) assumes every finite value infinitély many times with the ex-
ception of one at most. ’ ‘
In particular, an entire transcendental function assumes every
finite value infinitely many times with the exception of one at most.

This theorem says considerably more than the theorem of
Casorati-Weierstrass, proved in Chapter ITI, § 6; the latter asserts
only that the values of the funection cover the plane densely. Let us
note, moreover, that for entire functions F(z), of finite order,
theorem 12.2 is a consequence of theorem 11.3 and the remark

following theorem 11.2.

In the present section we shall only give a proof of the small
theorem of Picard. The great theorem of Picard requires additional

) Bee Chapter VIII, § 11 and § 12, exercise 5.
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considerations and its proof is postponed to the following section.
At presént we shall proceed to the proof of several lemmas from
which theorem 12.1 will follow.

(12.3) If a function D(z), given by the series
(12.4) Bt+a,22+ ... Fadt-...,
is holomorphic on the closed circle K(0;1) and satisfies the inequality

[D(2)| <M there, then the set of values which the fumction ®(z)
assumes in K(0;1) completely fills the circle K(0;1/6.M).

Proof. Let us consider the difference @(2)—1,. If on the
circumference C(0;0), where o<1, we constantly have 1D (2)| =a>0,
then, by Rouché’s theorem (Chapter III, theorem 10.2), for an arbitra-
ry complex number w, satistying the inequality |w,|<a the equation

(12.5) B (2) —wy=0

will have as many roots in the circle K(0;0) as the equation D(2)=0
— and hence at least one, because ®(0)=0. Consequently, the val-
ues which the function @(z) assumes in the circle X(0;0), and a for-
tiori those in the circle X(0;1), fill the circle K(0;a).

Now, from the hypothesis it follows that [a,|<M for n=1,2,...,
and a;=1; for |2|=r<1 we therefore find '

1(2)| =[e-+{D(2) 2} =[] — Max | D (2) —zi
(12.6) lel=r

Let us set r=1/4M. Since M >a,=1, the right side of the
inequality (12.6) is

1 1

M el

1 160 1 16M _ 1

aM 1 “ar T3 —eu ™
aM 1

In the previous remark we can take o=1/4M, a=1/6M.
Therefore the values which the function @(2) assumes in the circle
K(0;1) completely fill the circle K(0;1/6M).

The coefficient 1/6 in the proof of lemma 12.3 is not essential ;
besides, it is not the best possible one. If 1/6 were replaced by

another arbitrary positive constant, the significance of the lemma
would not be changed.
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Lemma 12.3 can be stated in the following, somewhat more
general form:

(12.7) If F(2) is a function holomorphic on the closed circle K(0;R)
~and satisfies there the conditions |F(2)| <M, F(0)=0 and |F'(0)|=0a>0,
then its values completely fill the circle K (0; R2a2/6 M).

Proof. The function &(z)=F(Rz)/RF'(0) satisfies the condi-
tion |D(2)|<M/R|F’'(0)] for |z|<l and &'(0)=1, and. hence by
lemma 12.3 the set of values of the function @(z) contains the
circle with centre 0 and radius R|F’(0)|/6.M; from this, lemma
12.7 follows immediately.

It is worth noting that, with M constant, the radius of the
circle completely filled by the values of the function F(z) depends
only on the product Ra, and is large when Ra is large.

(12.8) If a function F(2) defined by the series (12.4) 4s holomorphic
in the closed circle XK (0;1), then its values cover a circle of radius
B, where B is a positive constant independent of F.

This lemma constitutes the nucleus of the proof of Picard’s
theorem and it differs from lemma 12.3 in that we do not assume
anything about Max|F(z)|, but then we also do not assert that
the covered circle will have its centre at the origin. For example,
since the function ¢ vanishes nowhere, the function

1, .. 1
Fn(z)=;b(e —1)=z+§nz2+...

does not assume the value —1/n, which may lie arbitrarily close
to O.

Lemma 12.8 will be established if we prove the existence of
¢eK(0;1) and a closed circle K=X({;p), contained in the circle
K(0;1), such that: '

1° |F(=)—F(0)|<1 for z¢K; 7

2° |F'({)|o=A4, where A is a positive constant independent of F.

For, applying (12.7) to the function G(2)=F(2s)—F({), consid-
‘ered in the circle K, and taking M=1, R=p, we find that the
values of the function G(z), and hence also F(z), cover a circle
of radius A4%/6.

o Condition 1° can be replaced by
3° o|P'(2)| <1 for zeK.
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For we shall then have

¢ .
[F'(u)d if zeK.
2

|F(2)—F(5)=

ul< 28 <1,
e

Therefore, it is sufficient that conditions 2° and 3° be satisfied.
Since necessatily p<1— |¢], it is natural, in view of 2° to consider
the function '
w(r)=(1—r)Max|F’'(z)], where O0<r<L
J2l=r

It is continuous, and w(0)=1, w(1)=0. Let 7, be the largest
root of the equation w(r)=1; consequently, w(r)<l for ro<r<l.
Let ¢, where |{|=r,, be the point of the closed ecircle K(0;7,)

where |F’(z)| reaches its maximum. Consequently,
(12.9) [F (D) (1 —19)=1.

Let us set p=(1—7,)/2 and r,=17,+¢;hence 7, is the centre of the
segment 7,<r<1. Equation (12.9) implies condition 2° with 4=1/2.
Condition 3° will also be satisfied, because K is contained in the
circle K(0;7,), and hence, since Max|F'(2)| (1— rl)—w(¢1)<1, it
follows that , #l=Ts

]

1

1
Max | ()<=,

Lemma 12.8 is therefore proved, and for B we may take
A6 =1/24.

The proof of Picard’s small theorem will depend on the appli-
cation of lemma 12.8 to a certain special function. Let us suppose,
contrary to what we have to prove, that there exists an entire
funetion F(z), different from a constant and not assuming the two
values a and f. Since the entire function. (F(2)—a)/(f—a) does
not assume then the values 0 and 1, we may suppose from the
start that a=0 and f=1.

Therefore, let F(2) be an entire function not assuming the
va.lues 0 or 1, Let us denote by L(z) the single-valued branch

of ————logF(z), assuming the value ———LogF( ) at the point 2=0.

.471:
Smce F(z) does not vanish anywhere, such a branch exists a.nd
is an entire function.
Moreover, since F(z) is different from 1, L(2) does mot assume
the integral values 0, L1, 4-2,... Next, let us set
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G(2)=y/L(2) —/ L(z)—1

Under the square root sign we here have entire functions differ-
ent from zero. By ]/ L(z) and ]/ L(2)—1 we mean here any one of the
branches of these roots. Consequently, G(z) is an entire function
and, as is immediately evident, everywhere different from zero. We
assert that G(z) also does not assume the values ]/9_7,:1:1/%“—1 ‘Wwhere
n=1,2,... In fact, if we had }IL(z)—VL(e)—l=}nLyn—1 for
a certain 2, then ‘takmg reciprocals we should obta,m

VL(z) (2)+ VL) —1= ]/n:F]/'n—l

Adding both equations, we should obtain IL(¢)=n, which  is
impossible.

The function G(z), as we have already mentioned, does not
vanish anywhere. Let us denote by H(z) the single-valued branch
of log G(2) assuming the value Log G(0) at the point z=0. Conse-
quently, H(z) is an entire function which is, clearly, different from
a constant and does not assume the values

(12.10) Log(]/n;};]/n-—l) 2mii,

where n=1,2,..., m= 0,;]:1,i2,... ,
If we had wanted to express H(z) directly in terms of F(z),

. we should have obtained the formula

(12.11)

_ log F(2) log F(2)
H(z)_log{]/ 2 _]/ i _1}'

The real numbers Log()/n-}/n—1) tend to +oo, respectively.

Putting x,=Log (1/n—|—1/n—1) we see that z,—x, ;—0 as n—>oco.
The numbers z;,=Log )/ n——]/fn-—l)=-—mn have the same property,
and hence the points (12.10) are the vertices of a rectang-
ular net covering the plane and having bounded sides. In other
words: ‘provided that O is sufficiently large, the yalues of the
function H(z) do not fill any circle of radius C.

Here we already come easily to a contradiction. For, if H'(£)+# 0,
then in the elosed circle K(£;1) the function

(z) —H (&)

H,(E) ( £)+a2(z £)2+

(12.12) H,y(2)=
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assumes values filling a circle of radius B (cf. lemma 12.8), and
hence H(z) fills a circle of radius B|H'(£)|. This is impossible if
B|H'(£)|>0, and yet we can always find a & such that the last
inequality is satisfied, provided that H'(2) is an entire function
“different from a constant. ’

But H'(2) is not a constant, because then the function H(z)
would be linear, and hence would assume all values, while — as
we know — it does not assume the values in (12.10). Therefore
theorem 12.1 is proved.

In view of further applications, we shall formulate lemma
12.8 in the following way:

(12.13) If a function D(z) given by the series (12.4) is holomorphic
in the closed circle K(0;R), then its values fill a circle of radius BR

In order to prove this it is sufficient to apply lemma 12.8 to
the function
1
Y()=—=d({R)=
(5)=% P(LR)
holomorphie for [{|<1. Since the values of P({) fill a circle of
radius B, the values of ®({R), when ]C|<1 will fill a circle of rad-
iug BR.

EXERCISES. 1. A namber a, finite or infinite, is called an asymp-
totic value of an entire function F(z) if there exists a continuous curve
with its terminal point at oo, such that F(2) tends to @ as 2z tends to oo
along the curve O.

Show that oo is an asymptotic value of every entire function F(z)
(Iversen).

[Hint. Each of the components of the set of points 2z at which
F(z)—F(0
(2) . (0) -1

Lt anlit. ..,

G(z)=

>

has the point at infinity as a boundary point.]

2. If an entire function F(z) assumes the value @ at most a finite num-
ber of times, then a is an asymptotic value of F(z).

[Hint. Let P(z) be a polynomial of degree p such that the function
®(2)=P(2)/{F(2)—a} is entire. Apply exercise 1 to the entire function

7 P()—Q(2)},

where @(2) is a polynomial of degree <<p—1.]
§ 13. Schottky’s theorem. Montel’s theorem. Plcard’s great
theorem. We shall base the proof of Picard’s great theorem on two
other theorems, which are important and interesting in themselves.
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The first one of them is called Schottky’s therem and reads as fol-
lows:

(13.1) If
(13.2) F(z)=ayt+a,z-1a,22+ .

8 a function holomorphic in the closed cir le K (0;R), not assuming
the values 0 or 1 in it, then in every circl K(0;6R), where 0< <1,
the function F(z) satisfies the imequality

(13.3) 1F(2)| < 2(ay, ),
where Q(ay,0) is a quantity depending only on 6 and on ay=1(0).

The inequality (13.3) is therefore satisfied by all functions
F(z) holomorphic for [¢|<R and not assuming the values 0 or
1 there. Such functions cannot therefore grow too rapidly as |2|
tends to K and this is the essential meaning of theorem 13.1.

Proof. Let us consider the function H(z) defined by the form-
ula (12.11). The function H(z) is holomorphie for j2|<<R and does
not assume the values (12.10) there. Let us now consider the
function H,(2), given by formula (12.12), where & is an arbitrary
point such that [§|<R and H'(£)7#0. It is holomorphic in the
closed circle K(£; R— |£]). Let B and ¢ have the same meaning as
in §12. By virtue of lemma 12.13, the values of the function H,(z)
fill a circle of radius B(R— |&|), and hence the values of the
function H(z) fill a circle of radius B(R—|&|)|H'(£)]. The last
expression cannot therefore exceed (, whence

C 1
B R—|f

This inequality is also true when H'(£)=0, and therefore for
every & of absolute value smaller than E.

Since H(£)—H(0) is equal to the integral of the function H'(z)
along the segment [0,&], we have, in view of (13.4),

(13.4) H'(&)|<—

15

dr
~——~mmw—LwR|ﬂ

Cc
O+

2 ()| <[H
Therefore, if ]z|<0R, then

c 1
[H (2)|<|H(0)|+ B Log I:E
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From this we shall deduce an estimate of |F(z). Formula
(12.11) gives

|F(2)|= % exp % nifexp 2H (2)+-exp [—2H ()]} |<exp n{exp 2|H (2)|},

whence, taking (13.5) into consideration, we obtain

. A
(13.6) IP(e)] <exp g
where k=2C/B, and the number A== exp 2|H(0)| depends only
on F(0)=a,. Inequality (13.3) is an obvious consequence of in-
equality (13.6), and therefore theorem 13.1 is proved.
We shall supplement the result obtained by several remarks.
1° The assumption that the function F(2) does not assume
the values 0 and 1 was made only to fix our attention. The essence
of theorem 13.1 remains unchanged if we assume that F(z) does
not assume any two finite values a and B. It is sufficient to
apply theorem 13.1 to the function G(2)={F(2)—a}/(f—a), Dot
assuming the values 0, 1, and having the constant term in the
Taylor expansion equal to (a,—a)/(f—a). We then get '

0

PE)I<lal +1A—al2(2—,0) tor [o|<OR.

. 2° In theorem 13.1 we may assume that the function F(z) is
holomorphic in the open circle X(0;R). For, let R'<<R. Since. F'(z}
is' holomorphic for [z|<<R', (13.3) is true for [2|<COR’. As
R'—>R, the inequality (13.3) turns out to be true also for [2|<{OR,
in view of the continuity of the function F(z).

3° We shall now show that theorem 13.1 can be generalized
as follows:

(13.7) If F(2) is a function holomorphic in ‘thev circle X(0;R), not
assuming the values 0 or 1 in i, and if ’

(13.8) SRS

where B is a finite number, then in every circle K(0;0R), with 0<0<1,
the function F(z) satisfies an inequality ‘

(13.9) 1B (2)| < 2%(8,9),

where Q*(B,0) is a number depending on B and 0 only.
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Proof. We shall show first that if, in addition to the in-
equality (13.8), the function F(z) satisfies an inequality |#(0)|>a,
where a>0, then . :

(13.10) P(2)|<Q'(a,8,0) for [I<OR,

‘where 2’ depends only on «, B, and 6.

Looking over the proof of inequality (13.6), we see that (13.10)
will be proved if we show that |H(0)| does not exceed an expres-
sion depending only on « and B. There will be no loss of
generality if we assume that 0<<a<<l<f.

In defining the function H(z) by the formula (12.11), we took

~as log F'(z) that branch of the logarithm which has for 2=0 the

imaginary part contained between —=n and = We imposed the
same condition on log G(2), where G(2) denotes the expression with-

in the braces of formula (12.11).

Let us put Log #(0)/2ri=u. The product of the numbers
VutVu—1 is equal to 1, and hence |‘)€H(O)|=Log|]/uj:1/u——1],
where, on the right side, we take that one of the signs 4 for which
the expression whose logarithm is being taken has a value >1.

Since |H(0)|<|%H(0)|+7¢,
Log|[F(0)] I 1 1

(13.11) |H(0) |<Log{]/

From the inequality o<{|F(0)|<f we deduce that |Log|F(0)||
does not exceed the larger of the two numbers Logf and Log1/a,
and therefore a fortior: their sum. By (13.11), |H(0)| does not exceed
an expression depending on o and B, and hence the inequality
(13.10) is proved. _

‘ Proceeding now to the proof of inequality (13.9) under the
sole assumption (13.10), we consider two cases:

Log|F(0 3
Log | )I1+§}+m

2r

. .
@ [FOZ5 B 0<IFOI<-

In the first eéée, by virtue bf_ the result just proved, we have
the inequality (13.10) with a=1/2:

"lF(z)l‘gQ'@,ﬂ,e) for [o|<OR.
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In the second case, let us put &(2)=1—F(z). The function
Q(z) also does not assume the values 0 and 1. Clearly, we have the
inequality 1/2<|P(0)[<f+1, and hence [1—F(z)|<2'(1/2,8-1,0)
for [2]<<6R, whence

1
FEI<O(5,6+1,0)41  for RI<OR.

Inequality (13.9) will therefore be satisfied if we take
for 2*(8,0) the larger of the two numbers £'(1/2,8,6) and
Q'(1/2, f+1,0)+1.

The second theorem, on which we shall base the proof of Pi-
card’s great theorem, concerns normal families of functions
(Chapter I, § 3). It is the following theorem of Monitel :

(13.12) Let § be a family of functions holomorphic in a region &
and not assuming the values 0 or 1 in it. Then § is a normal fa-
mily in G. )

Proof. In view of theorem 3.3, Chapter I, it is sufficient to
prove that in the neighbourhood of every point z,e@ the family §
s normal. To that end it suffices to show that, for any point
in @, there is a circle K(z, R) CG such that every sequence {F (z)f
of functions belonging to & contains a subsequence {Fn (z)}, W?Jich
in the cirele X(z,;.R) is either bounded or almost u_nifol;:mly diver-
gent to oo (see Chapter IT, theorem 7.1) choose the number R
80 small that K(z,;2R)CG.

Let us consider the only two possible cases:

(a) A sequence of indices ny<Mmy<...<Mmp<<... emists, such that
the sequence of numbers [Fn, (20)| 18 bounded. If |F, (2)|<p for
k=1,2,..., then, in view of theorem 13.7, we shall ha,ire |F ()<
<0%(8,1/2) for zeK(z,;R). A

(b) A sequence of such indices does mot exist, i. e. F, (% )—>o§
as n—>oco. The functions G,(z)=1/F,(z) are holomorphic 1; é and
do not assume the values 0,1 there, and G, (2,)—0. Hence, in view
of the result obtained in (a), there exists a subsequenoe’ {@..(2)}
which is almost uniformly convergent in K(2;R). Since G (nzk )=
=1/F, ()0, the sequence {Gnk(z)} tends to 0 in thenkci;clé
K(z;R) (cf. Chapter III, theorem 11.2). Therefore {F, (2)} tends
almost uniformly to oo in i, and theorem 13.12 is pro:fed.
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Proceeding to the proof of Picard’s great theorem, let us consid-
er a function F(z) holomorphic in an annular neighbourhood of
the point #,, an essential singularity of ¥(z), and agsuming each of
the two values o and B at most a finite number of times in this
neighbourhood. To fix our attention, let us suppose that 2,=0.
We may also assume that a=0 and f=1. Let & denote the annulus
P(0;1/2,2). Let us consider in & the sequence of funections

(13.13) F,(2)=F (“_) X

The function F,(z) assumes the same values in the annulus G
as the function F(z) in the annulus P(0;27",27"*"). Consequently
the functions F,(z) are, for n sufficiently large, holomorphic in
@ and do not assume the values 0,1 in & By virtue of theorem
13.12, the sequence {Fn(z)} forms 2 normal family in G. We can
therefore find a subsequence {F, (2)] which on the circumference
0(031), lying in @, is either bounded or tends uniformly to oo.

If the first case holds, then the function F(z) is bounded
on the sum of the circumferences C(0;27™). Hence, in view .
of the maximum modulus principle (Chapter III, theorem
12.6), the function F'(2) is bounded in an annular neighbourhood of
the point 0, and hence =0 is & point of holomorphism for F(z).
This is eontrary to the hypothesis that z=0 is an essential sing-
ularity of the function F(2).

Tn the second case, F(z) tends to 0 on the sum of the ecir-
cumferences 0(0;2~™) as z—0. Hence the funetion G(2)=1/F(=),
whieh is also holomorphic in an annular neighbourhood of the point 0,
tends to 0 on the sum of these circumferences as z—0. Consequently,
as in the previous case, G(2) would be holomorphic at the point O.
From this it follows that the point 0 would be at most a pole
for the function F(z)=1/G(z), and we again come to a contradic-
tion. Hence theorem 12.2 is proved. ,

The above proof gives us a theorem somewhat more general
than theorem 12.2. For let F(z) be an arbitrary function holomor-
phic in an annular neighbourhood of the point 2z, and having 2
as an essentially singular point. Let us suppose again that z,=0.
In view of the preceding argument, the sequence of functions F,(2)
defined by formula (13.13) does not form a normal family in the
annulus G=P(0;1/2,2). Therefore, there exists a point (eG such
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that, no matter what circle K=K({;¢) contained in G we take,
the sequence {F,(2)} does not form a normal family in K.

‘We shall now show that every complex number, with the ex-
ception of one at most, is in the circle K a value of an infinite
number of the functions F,(z). For suppose that there exist two
numbers « and §, which are the values in K of at most a finite
number of the functions F,(z). It would follow from this that the
functions Gn(z):{Fn(z)—a} [(B—a) do mot assume the values 0,1,
in K, provided that m>n,. Consequently the sequence {Gn(z)},
and hence the sequence {F,(2)}, would form a normal family in
K, which — as we know — is impossible. v

Recalling the relation (13.13), we can say that the function
F(z) assumes every finite value o, with the exception of one ab
most, in infinitely many circles K,=K({/2";¢/2").

_ In further consideratioms, by an angle, as the region formed
by two distinet half-lines with origin at a point z 7 oo (the
vertex), we shall mean each of the two regions into which these
two half-lines divide the plane. An angle with vertex oo we iden-
tify with an angle with vertex 0. Therefore, applying a transia-

tion or an inversion, we can always bring the vertex of an angle -

to the point 0. ;

Let us now consider the half-line with origin at the point 0
and passing through the point {. Let 6 be an arbitrary positive
number. The angle '—6+ArgC<Argz<6+ArgC contains all the
circles K,, for n sufficiently Iarge, provided that ¢ is taken suffi-
¢iently small. Congequently: ’

{13.14) If 2, is an essential singularity of the function F(z), then
there exists a half-line p with origin at the poimt 2z, such that in
every angle with vertex z,, containing p, the function F(2) assumes
all finite values, with the exception of one at most, an infinite num-
ber of times.

This generalization of Picard’s great theorem was proved by
Julia. The half-line is called the direction of Julia or the direc-
tion . T : : o

The exceptional values whose existence Picard’s great theorem
admits, are, by hypothesis, finite. If we had also considered the
value oo, then the funetion ¥#(2) in theorem 12.2 could have two
exceptional values; one of them would be oo. In this formulation
the theorem is true for a larger class of functions: <
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(13.18) If for a function F(z), meromorphic in an annular neigh-
bourhood P of the point z,, there emist three distinet values a, b, ¢
(finite or mot), each of which is asswmed by the function in P at

most & finite number of times, then the function F(z) has at most a
pole at the point 2,. ‘

Proof. We may assume that none of these values a, b, ¢ is
equal to oco. For otherwise the function would be holomorphic in
an annular neighbourhood of the point z, and the theorem would be
a congequence of theorem 12.2.

Let us now consider the function G(z)={F(2)—a}/{F(2)—b}.

* At each point where F(z) hag a pole, the function @G() is holo-
" morphic. Consequently, since F(2)sb, the function @(2) is holo-

morphic in P and the theorem is again a consequence of theorem
12.2.

EXERCISES. 1. The function expz has exactly two directions J at the
point z==co, namely, the positive and negative imaginary half-axes. For the
function expexpz every direction Argz=a, where —r/2<a<rn/2,is a direc-
tion J.

2. Let F be a family of functions F'(z), holomorphic in the region ¢ and
not agsuming the two values @ and b in G. -These values may vary with the
funection. F, but they satisfy the conditions:

lol<M,  PI<M,  |a—b]=e>0,

where ¢ and M are independent of the function F. Show that § is a nor-
mal family in G (Montel).

3. (a) If § is a family of functions holomorphic in a region @ and if
each function F(z) of this family vanishes nowhere in @, and assumes the
value 1 at most p times (p is independent of F), then § is a normal
family in @.

(b) Somewhat more generally: if each function F(z) belonging to % does
not assume a given value a in G, and assumes another given value b at
most p times, then § is a normal family in ¢ (Montel).

[Hint. (a) Let &,,,,...,5, be the (p-41)-st roots of 1. In the neighbour-

P+l :
hood of an arbitrary point 2,e¢@ the function &(z)= VF(z) is different from
a certain g,. Consider the functions &(2)/s,.]

4. We owe the following generalization of the notion of a normal family
to Montel: A family § of functions holomorphic in a region G is quasinor-
mal, if every sequence {If’"(z)} of functions belonging to § contains a sub-
sequence {Hy(2)}, almost uniformly convergent (to a finite limit or to o)
in the region arising from G by removing ¢ points. The points in wh?se
neighbourhood the sequence {Fw(2)} is not uniformly convergent (and which
we remove from &) are called drregular points for the sequence {F,‘(z)}.

9. Saks and A. Zygmund, Analytic Functions. 23
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They may vary with the sequence {Fw, (z)} however, the number ¢ has to
be independent of the sequence. The smallest possible number. g is called
the order of the quasi-normal family.

The reader will find a more detailed discussion of the properties of quasi-
normal families in Montel’s book quoted on p. 50.

Let P(2) be a fixed polynomial, and ¢ an arbitrary constant. Show that
the family of functions ¢P(e) is guasi-normal in the open plane and that
its order is equal to the number of distinet roots of the equation P(z)=0.

5. A family § of functions holomorphic in a region G, agsuming the
value 0 at most p times in it, and the value 1 at most ¢ times, is quasi-nor-
mal in @ of order r<<Min (p,q) (Montel).

[Hint. Let us suppose that p<{q. For a given sequence {F.(2)} of fune-
tions belonging to JF, consider the points of accumulation of the roots of
the functions Fa.(z). Show that there exists a subsequence {F,.L.(z)} and
a gystem of at most p points a,a,,..., such that after removing from @
arbitrarily small neighbourhoods K,,K,,... of these points, the functions
F,.(2) have no roots in any given closed circle contained in G— “Z’ K;, provi-

ded that % is sufficiently large. Apply the result of exercise 3.]

6. Let F(e)=a,+a,2+...+a,2"+...+a,2"+... be a function holomor-

phic in the circle K(0;R), not assuming in it the value 0 more than p times
and the value 1 more than ¢ times. Then in every circle K(0;6F), with
0<6<1, we have

[F@)I<0,
where C depends only on 6 and on ay,a,...,a, (Montel).

[Hint. All the functions F(z) satisfying the hypotheses of the exercise
and having a Taylor expansion beginning with ao+a,2+...+a,2", form
a quasi-normal family & ; it is sufficient to show that this family is normal.
If this were not so, there would exist a sequence {F,(2)}, extracted from 3,
tending uniformly to oo on every circumference C(0;¢) of sufficiently small
radius. Apply Rouché’s theorem (p. 157).]

§ 14. Landau’s theorem. Schottky’s theorem 13.1 says that
the hypothesis that a function F(2) holomorphic in the circle K(0;R)
does not assume two values, e. g. 0 and 1, i3 already a strong li-
mitation on the behaviour of the function. The following result,
which we owe to Landau, confirms this fact from another direc-
tion: ‘

(14.1) Let a and B be arbitrary complex mumbers, where p#0. If the
function

(14.2) F(z)=a+pfzta,s®+a,831-...

18 holomorphic in the circle K(0;R) and does not assume the values
0 and 1 in it, then R<L(a,B), where L(a, ) depends only on a and f.
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Proof. By theorem 13.1 and the supplementary note 2° (p. 348),
we have the inequality |F(2)|<Q(a,1/2) for zeK(0;R/2). Expressing
the coefficient § in terms of the function, we get '

1 7e) 1 0(a1/2) R 22(a1/2)
ey [— <»——. ey —_———— .
1=\ 50 2 “SoTwmEr 7T R
05 R/2)
Consequently,
20(a,1/2
<2 e

and theorem 14.1 is proved.

We can state theorem 14.1 in another way: For every a and %0
there ewists a number L(a,B) such that if the function (14.2) 4s holo-
morphic for |¢|<L(a,p), then it must assume there at least ome of
the values 0, 1. Since a function has at least one singular point on
the circumference of the circle of convergence, we can say in a still
somewhat different way: For every a and f+0, the function given by
the series (14.2) must assume the value 0, or the value 1, in the closed
cirdle |2|<L(a,B), or this series has a singular point in this circle.

The assumption g0 may be replaced by another more general
one: Let us suppose that A0 and that the fumction

(14.3) F(2)=a+1d+ap 17+ ars I
is holomorphic in the circle K(0;R) and does not assume the values

0 or 1 there. Then R<IL(a,A,l), where the magnitude L depends only
on the arguments a, A, 1.

The proof is the same as before. From the formula
1 F 1 2(e,1/2 R Q(a,1/2)
4 f _1_(.:3_1) del< (2,1/2) _ (a,1/

e L Dp— =
o7i 2 Son (R2YTT T2 (R/2Y
C(0;R/2) .

we have R<202"(a,1/2)/|A|"*=L(a,4,).

Every entire function F(z), different from a constant, can be
written in the form (14.3). Since the radius of convergence R of
the series (14.3) is then infinite, the inequality R<L(a, A1) is not
satisfied. This proves that F(z) must assume at least one of the
values 0, 1. Therefore Landau’s theorem includes Picard’s small
theorem, even in a stronger form. For it gives an estimate of the
radius B of a circle K(0;R) in which F(z) certainly assumes either
the value 0 or the value 1.

23*
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