CHAPTER VI
ANALYTIC FUNCTIONS

§ 1. Introductory remarks, In Chapter I (§§ 9, 10, 11) we have
already introduced certain multiple-valned expressions such as e. g.
argz, logz, }'# and in Chapter IV (§§ 3, 10) we hdve considered the
topological properties of regions in which single-valued continuous
(holomorphic) ‘“branches” of these expressions exist. Analogous
investigations in the real domain would be trivial. If z assumes
only real values, then, taking e.g. f(x)=-+}2 for 2>0 and
fle)=-+i) |z| for £< 0, we obtain a continuous branch of Vx on
- the entire real axis; of course, we could also define still other
continuous branches of }/x on the real axis, and it would be super-
fluous to distinguish special linear vegions on which such
branches can be defined. The essential difference between the com-
plex plane and the real axis is made clear by the fact that on the
plane we can, in general, pass from one value of the multiple-
valued expression under consideration to another one in a ‘“‘con-
tinuous” manner, starting from some point with one value, and
returning to it along a eertain closed curve with another value. For
example, if we move along the circumference z=¢", where 0<t< 2,
starting from the point z=1 for t=0 with the value 1 for /%, then,

varying the value of this square root in a continuous manner, we

return  to the point z=1 for ¢=2rx with the value.of J/z
equal to —1. This example shows that on the circumference under
consideration it is not possible to define a single-valued "and con-
tinuous branch of )z and at the same time it leads in a natural
manner to the eoncept of a multiple-valued function. The defi-
nition of such a function obviously must be more then a formal
generalization of the notion of a single-valued function which
merely assumes that to each value of the “independent variable®
there corresponds in general not one but several values of the “depen-
dent variable”. In the general definition of 2 multiple-valued ana-
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lytic funection it is a matter, first of all, of associating with each
other the various values of the function in a natural manner, and
of establishing methods of passing ‘“‘continuosly” from ome value
to another. We owe such a definition to ‘Weierstrass who has

-based it on the notions of analytic element and analytic continuation.

The first sections of this chapter will be devoted to these con-
cepts.

§ 2. Analytic element. A pair {F,d}, consisting of the point
a and the function F(z) meromorphic at this point, will be called
an analytic element ; the point o will be called the cenire of the
element {F,a}‘ We shall also say that the fuction F(z) deter-
mines -the analytic element {F,a} at the point a.

Let us consider circles K with centre a, to which the function
F(z), meromorphic at the point a, can be extended with a preser-
vation of meromorphism, 4. e. cireles in which there exists a mer-
omorphic function identical with F(2) in the neighbourhood of the
point a. Among these circles there exists a largest one; we shall
call it the circle of the element {F,a}, and its radius the radius of
this element. The meromorphic function in the cirele of the element
{F,a}, identical with F in the neighbourhood of the point a, will
be denoted by F,. '

Deviating somewhat from the definition of the circle given
in the Introduction, § 8, we shall here regard the closed plane
as a circle. i

Distinguishing between the function F and the function F, is some-
times indispensable. For example, when a function F{(z) is given in a region
@, then at every point ae@ it determines an element {F,a} with a certain
circle K . The function F(z) then coineides with F, (2) in that component of
the open set K,-G' which contains the point a. However, the set K -G need
not be a region and may have other components in which the functions F, (2}
and F(z) can differ. ‘

Two elements {F,a} and {G,b} are considered to be identical,
and we write {F,a}={@,d}, if a=b and if the functions ¥ and @
are identical in a neighbourhood of the point a=b; these
elements then have a common circle and F,=G,. In ,particular,
{F,a}={F,,a} always. '

The circle of an element {F,a} can be the entire plane; as fol-
lows from theorem 7.3, Chapter ITI, this occurs if (and only
if) ¥ is a rational funetion.
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Every analytic element {Fa,b}, where b is an arbitrary point
of the circle K of the element {F ,a}, will be .called a direct con-
tinuation of the element {F,a}. The function F,(z) is defined in
the entire circle K, and hence the element {F,,b} is defined ab
each point beK. If astoo, then the radius of the element {Fa,b}
is at least equal to the positive number r— [b—al|, where r denotes
the radius of the circle K, since the circle with centre b and ra-
dius r— |b—a| is eontained in the circle K.

A point z, lying in the interior or on the boundary of the
circle of an element {F,a}, will be called & point of continuability
of this element if it is contained in the interior of a circle of at
least one element which is a direct continuation of the element
[F,a}; in the contrary case, the point # will be called & point of
non-continuability of the element under consideration. Obviously all
the interior points of the circle of an element are points of
continuability.

(2.1) The set of points of non-continuability of an analytic element is
closed and,. except for the case when the circle of an element is the
entire plane, non-empty.

Proof. Let {F,a}, a 500, be an analytic element with the circle
K=K(a;R). We may obviously assume that the function F(z) is
meromorphic in the entire circle K. It is evident that if some point
2 of the’ circumference of the circle K i a point of continuability
of the element, then all the points of this circumference situated
sufficiently close to the point 2z are also points of continuability.
The set Z of points of non-continuability is therefore a closed set.

In order to show that the set Z is

A non-empty, let us denote for every point

beK by K, the circle of the element

{#,b}={F,b}, and by G the sum of all

circles K, for beK. The functions Fy(z)

é jointly determine one function H(z)in the

entire open set @, 4. e: if some point 2

belongs to two circles K, and K, , where

beK and byeK, then F, (2)=Fj, (2). In-

at once (see Fig. 19), also K- K, - K; #0.

- Fig. 19. In the regions K-K, and K-K, we have,
however, F(z2)=F,(2) and F(2) =1, (#), respectively, and hence
- Fy (2)=F (2) in the set KK, - K, . From this, however, it follows

deed, if K, K, #0, then, as we see
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(Chapter III, theorem 8.6) that the functions F,(z) and Fy (2)
are identical in the entire region K, -K, and that, in particular,
Iy (20) =F'p,(2)-

The function H(2) is obviously meromorphic in @& and identical
with F(z) in K. Now, if the circumference of the circle K did nof
contain points of non-continuability, then we.should have K CGQ.
Hence there would exist a circle K* such that KCEK*C@, and in
it a meromorphic function H(2), identical with F'(2) in the circle K.
Therefore the circle K would not be the cirele of the element {#,a},
except in the case when K=K, 4. e. when K is the entire plane,
and hence, when the funcfion F(2) is a rational funetion.

The case a=co reduces to the case considered above by
an inversion.

On the other hand, the set of points of continuability of an element

on the circumference of its circle can be empty even when the radius of
the element is finite. The simplest example is the element {F,0}, where

F(z)= g’z’ﬂ".

n=0

‘We have, namely, for every pair of positive integers %k, p, and for r<1

kmt o )
F(TBXP —) = | Yr™exp 2" kmi| >~ (p+ 1)+ X%
2p n=0 n=pl
whence
[
(2.2) lim F(’rexp ﬂ)T:oo.
—1- 27 )

The points of the form z=exp (kwi/2”), where & and p are positive in-
tegers, form an everywhere dense set on the circumference C(0;1); and since
a meromorphic function can assume the value co in an isolated set at most,
it follows from (2.2) that X(0;1) is the circle of the element under con-
sideration, and at the same time that none of the points of the circumference
of this cirele is a point of continuability of this element.

The preceding definitions depart somewhat from the tradi-
tional ones. Weierstrass’s original definition of an analytic
element (and of related notions) differs from the definition given
in this section, namely, instead of the condition of meromozr-
phism of the functions under consideration there appears in
it the condition of holomorphism, which is more restrictive.
Moreover, since every function holomorphic at a given point is
expansible in the neighbourhood of this point in a power series,
and the circle of convergence of this series is the largest circle with
centre at the given point to which the function can be extended

8. Saks and A. Zygmund, Analytic Functions. 16
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with the preservation of holomorphism it follows that an analytic
element, in the sense of W eierstrass, with cenire a may be regardet simply
as a power series with centre a and positive radius of convergence.
The analogues of the centre, circle and radius of an analytic
element are then the centre, circle of convergence and
radius of convergence of a power series. Changing
similarly the definitions of a direct continuation of an
analytic element as well as those of the points of continu-
ability and non-continuability, we obtain the definitions of a
direct continuation of a power sertes (which is again a eertain
power series) as well as those of the points of continuability and
non-continuability of a power series. Further considerations of this
chapter (in particular theorem 2.1) carry over formally into the
theory of the analytic continuation of a power series. The example
considered above (p. 241) of an analytic element without points
of continuability on the circumference of its circle is at the same
time an example of a power series which does not have points of
continuability on the circumference of its circle of convergence.

The points of non-continuability of a series are frequently
called singular points of the series.

The following examples illustrate the preceding relations. A rational func-
tion determines at each point of the plane an analytic element whose circle
is the entire plane, and at every point z,, not a pole of the function — a power
series with radius equal to the distance of the point 2, from the nearest
finite pole. A function holomorphic in the entire open plane determines
at each of its points an analytic element as well as a power series with an
infinite radius. The function expl/(¢#—a) determines at each point z,#a an
analytic element as well as a power series with radius equal to g(a,#,) (also

when z=o00). The only point of non-continuability for this element (as also
for the power series) is the point a.

EXERCISES. 1. The functions considered in exercises 5-8, § 2, Chap-
ter IV, determine analytic elements with the circle K (0;1), non-continuable
at any point of the circumference of this circle.

2. Let ¢ be a regular arc, and f(2) a continuous function on O. The
function

1@ ,
g & z
is then holomorphie in the entire completement of C. Show that if the function
/() is defined and holomorphic in the neighbourhood of a point & of the
curve U, which is not an end-point of this curve, then for every point b,

not lying on ¢ and sufficiently close to the point @, the circle of the ele-
ment {F,b} contains the point a.

F(z)=
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3. In order that the power series }'a,2" with circle of convergence K(0;1)

have exactly one point of non-continuability on the circumference of this
circle, namely, a simple pole at the point 1, it is necessary and sufficient
that lim sup |a,,,—a,|"" <1 (Pringsheim).

(The point a on the circumference of convergence of a power series is
said to be a k-tuple pole of this series if the function equal to the sum of
the given series in its circle of convergence is extensible as a meromorphie
function with a k-tuple pole at the point a to a region containing the point a.)

4. If
(*) F(z)= %",'a,,z"

is a convergent power series in the circle K (0 ;R) with finite radius, then, for
every point z,=r¢?eK(0;R), the series
F(")(~o)
%) n‘_' —(R—2
is a direct continnation of the series (*) and has a radius of convergence
>R—r. If %0, then, in order that the point Re™ be a point of non-con-
tinuability of the series (*), it is necessary and sufficient that the radius
of convergence of the series (}) be equal to R—r.
5. If a series } a,2" with real non-negative coefficients has radius

of convergence 1, then the point 1 is a point of non-continuability of this
series (Pringsheim, Vivanti, Dienes).
6. Let }'a,2" and J'B,2" be series with real coefficients and with radii

of convergence >>1. If the point 1 is a point of continuability of the series
2 (a,+1B,)2", then it is also a point of continuability for both given series.

Deduce from this that in exercise 5 the condition that the coefficients
a, are real and non-negative can be replaced by a somewhat more general
condition, namely, that |9a,|<0-Ra, for n=1,2,..., where C is a positive
finite constant, and also by the condition that ®Ra,>0 for n=1,2,... and
that the series .Z'(i)ean)z“ has radius of convergence 1. :

7. Let {n}, ., be an increasing sequence of positive integers such that

Ny —m>>an, for k=0,1,2,..., where a>0.
Then every power series of the form
*) Zas™

provided it has a finite radius of convergenece, is non-continuable at each point
of the circumference of its circle of convergence (Hadamard: theorem on
“gap™ power series).

[Hint. Assuming that the series (*) has radius of convergence 1 and
that it is continuable, say, at the point. 1, let us denote by F(z) a function
holomorphie in a region containing the circle K(0;1) as well as a mneighbour-

16*
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hood of the point 1, and defined in K(0;1) by the serifss (*). The function
G(;)=F[5*(3+1)/2], where p>1/a is a positive integer, is thfsn holomorphie
in a certain circle |3|<r, where r>1. We obtain the power series of the func-
tion G{(z) in the circle |5|< 1, replacing the terms a,2™ in the series (*) by
the expansions of the terms a,[3"(5-+1)/2]* in powers of the variable 7 (see
Chapter IV, § 9, exercise 5); and since the series of the function G(3) is con-
vergent in the entire circle |3|<r, it follows that returning again to the
variable z, we should obtain the result that the series (¥) is convergent at
all the points of a certain neighbourhood of the point 1, and therefore at
points outside its eircle of convergence (Faber, Mordell).]

8. Examples of series satisfying the condition of Hada-
mard’s theorem in exercise 7: the series }%#%/2%, 3'2#/2* with radius of
k 13

convergence 1 (uniformly convergent on the entire closed circle K(0;1));
more generally: every series of the form J'a, 2" and of finite radius of con.
k

‘vergence, where {mk} denotes an increasing sequence of positive integers in
which every successive number is an integral multiple of the preceding one.
Prove directly, without appealing to Hadamard’s theorem, that every such
series is nmon-continuable at all points of the circumference of the circle of
convergence. :

9. Generalize Hadamard's theorem of exercise 7 as follows. Let {nk}kuo.l,.,.
be an increasing sequence of positive integers and let

(**) : a2

be a power series with a finite radius of convergence, such that a,=0 for
n<n<(l4+ayn,, k=0,1,..., where a>0.

If {5,(2)},0,,. denotes the sequence of parfial sums of the series (*%),
then the subsequence {s,,k(z)}kﬂo,l'"_ of this sequence is uniformly convergent
in the neighbourhood of every point of continuability of the series (**) (Os-
trowski).

" [Hint. The method is analogous to that indicated in exercise 7 for the
proof of Hadamard’s theorem (Estermann).]

10. A power series is said to be over-convergent in a region @
containing the circle of convergence of the series, if it is possible to select
from the sequence of its partial sums a subsequence which converges almost
uniformly in &. If this region extends beyond the circle of convergence, then
all the .points of the circumference of this circle which are contained in @
are points of continuability of the series under consideration.

An example of a power series which is overconvergent
in a region extending beyond its eircle of convergence. The
given series is

o ’ 1_ 4%
(*) F(z)zzu.

Prove that: 1° this series is almost uniformly convergent in the region
K(0;1)+K(1;1) and the function F(z) defined by it is, therefore, holomor-
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phic in this region; 2° the expansion of the funetion F(z) in a power series
with centre 0 is obtained formally by dropping the parentheses in the se-
ries (*) and arranging the terms according to powers of the variable z (see
Chapter IV, § 9, exercise 5); 3° the circle of convergence of this expansion
is the circle K (0;1).

Moreover, since the sequence of partial sums of the series (*) is a
subsequence of the sequence of partial sums of the expansion of the
fanetion F(z), the power series of the funetion F(z) is over-convergent
in the region K(0;1)+K(1;1) extending beyond the circle of convergence
K(0;1) of this series.

[Hint. We have |2(1—=2)|<2 for zeK(0;1)+K(1;1), and jz(1—2) =2
for z=—1.]

11. Let G be a simply connected bounded region containing the circle
K(0;1) in its interior and having at least one point of the eircumference of
this circle on its boundary. Construct a power series with centre 0 and
radius of convergence 1, over-convergent in the region G (see exercise 10).

Fig. 20.

Fig. 21.

[Hini. Let o be a point common to the circumference C(0;1) and the
boundary of the region @ (Fig. 20). Let a,=(1—1/8"a, K,=K(a,;1—la,]).
We represent G as the sum of an increasing sequence |{F,} of closed sets, tak-
ing as F, the set of all points ze@ such that o(z,CG)=>2/8" (then a,¢F,
for k=1,2,...,n—1; however, F,-K,=0 for n=1,2,...). Making use of Runge’s
theorem (Chapter IV, theorem 2.2) we define by induction a sequence of
polynomials {P,(2)},_,, . a8 well as an increasing sequence of integers {m,}“],?rj
such that: (a) the number m, is larger than the degree of the polynomial
Z™-1P, (2), (b) &P, (2)|<<1/2" for 26F,, (¢) [&™P,(2)|=n for z=a,.

The series Y'#™P,(z) becomes a power series (see Chapter IV, § 9, exer-

cise 5) with the desired property.]

12. A power series can be divergent even at those points of the circum-
ference of its circle of convergence at which it is continuable (example: the
geometric series 14z-2%--... is continuable at all the points of its cheumferen({,e
of convergence with the exception of the point 1, but at none of them is
it convergent). However:
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If a power series Y'a 2" has radius of convergence 1, and if a,~>0 as
L]

n—>co0, then this series converges at every point of the circumference C(0;1)
at which it is continuable (Fatou, M. Riesz).

[Hint. Let 1 be a point of continuability of the "geries under consider-
ation; we can determine a closed circular sector W (Fig. 21), extending be-
yond the circle K(0;1) and containing the point 1 inside, such that there
exists a function F(2) holomorphic on 7 and equal to the sum of the given se-
ries in the part of the sector contained in the circle K(0;1). Taking s,(2)=a,+
+-a,2+...+a,2", we consider the function

F2)—s,(2)
A s

B, (2)= (z+a)(z—a)

(ef. Fig. 21). It is sufficient to prove that R, (2) tends uniformly to zero on
the perimeter of the sector W, and hence (Chapter III, theorem 12.7) on
this entire sector; to that end, we estimate |, (2)] on the perimeter of the
sector, considering successively the segment [0, —a] minus the point —agq,
the segment [—a, —b], the arc [—b, b] and the remaining analogous parts
of the perimeter.]

§ 3. Analytic continuation along a curve. We say that a
family of analytic elements {P(t)}aggb, depending on a real pa-
rameter ¢ ranging over the interval [a,b], is a chain of elements
along the curve C, given by the equation z==z(f), where a<{t<b, if:
P 1° for every fe[a,b] the point 2(?) is the centre of the element

(1),

2° to every te[a,b] there corresponds a number £>0 such that
if |h|<<e and t+he[w,b], then the element P(t-+h) is a direct
continnation of the element P(i).

An analytic element P, is called a continuation of the element
P, along the curve z=z(t), where a<(t<b, if there exists a chain
of elements {P(f)},<;<» along this curve, such that P,=P(a) and
P,=P(b); then, we also say that the chain {P(t)} joins the element
P, to P;. It is evident that if the element P, is a continuation
of the element P, along the curve (, then the element P, is a
continuation of the element P, along the curve —C.

From the above definitions we have immediately the follow-
ing theorem: : )

(3.1) If F(2) is a meromorphic function in an open set @, then for
every curve z=2(t), where a<{i<h, lying in G, the family of analytic
elements P(t)=[F,z(t)} i a chain of elements along this curve.

An ana.lytlc element P, is said to be a continuation of the
element P, if it is a continuation of P, along some curve. In particular,
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it P, is a continuation of the element P, along a curve lying in
some open set @, then P, iy said to be a continuation of the ele-
ment P, in the set G.

(8.2) Buery element has at most one continuation along a curve eman-
ating from its cenire.

Proof. Let us assume that {P(t)] and {R(t)} are two chains
of elements along the curve z==z(t), where a<(i<b, and that
P(a)=R(a). Let T, denote the set of those points ¢ of the interval
[a,b] for which P(t)=R(t), and let T, be the set of the remaining
points of this interval. If ¢, is a point of accumulation of the set T,
then for values ¢ of the set T, sufficiently close to the point ¢, the
elements P(f)=R(t) are direct continuations of the element P(i)
as well as of R(t); and since the elements P(t,) and E(i;) have
a common centre, P(t,)=R(f,) and t,eT,. Similarly, if 4, is a
point of accumulation of the set T,, then P(t,)7#E(%,), and
hence t,¢7,: indeed, were P(t,)=R(t,), then for every value ¢ suffi-
ciently close to the point t, the elements P(f) and E(#) would be
direct continuations, with a common centre, of the same element;
we should therefore have P(f)=R(t), and hence teI,, which is
contrary to the fact that t,6T,. Both sets T, and T, are therefore
closed; hence, one of them is certainly empty. Moreover,
P(a)=R(a), i.e. aeT,; consequently, To=0 and therefore P(t)=R(t)
for every t of the interval [a,b]. In particular, P(b)=R(b).

§ 4. Analytic functions. Every (non-empty) family P of
analytic elements with centres in a region @, such that:

1° given any two elements of the family B, one is a con-
tinuation of the other in the region @,

2° every analytic element which is a continuation in the
region G of an analytic element belonging to B belongs to P,

will be called an analytic function in the region G.

Tf G is the entire plane, an analytic function in G will be
called simply analytic function.

 If P is an arbitrary analytic element with centre in a region @,

then the set of all continuations of this element in the region &
is an analytic function in this region, containing P. It is the
only analytic function in @ which contains P. Consequently, every
analytic element with centre in a region G, delermines an analytic
funection in this region.


Yakuza


248 CHAPTER VI. Analytic functions.

If P is an analytic function in a region ¢, and H is a region
contained in @, then every element of the function P with centre
in the region H determines an analytic function in H. Every
such function is called a branch of the analytic function P in the
subregion H of the region G'; obviously all its elements also belong
to the function P.

Conversely, when R is an analytic function in a region H,
and @ an arbitrary region containing H, then the function
R can be considered as a branch of a certain analytic function
B in @. This function — which we call the continuation of the func-
tton R in the region G — is obtained as the set of all the contin-
uations in the region G of an arbitrarily chosen element of the
function K.

(4.1) If P is an analytic function in a region G, and P=|{F,a}
8 an element of this function, then all the direct continuations of this
element, with centres belonging to a certain neighbourhood K of the
point a, are also elements of the function P; if G is the entire plane,
then the circle of the element P is such a neighbourhood.

Proof. Let K be a circle with centre ¢ which is contained si-
multaneously in & and in the circle of the element P. For every
point beK the element {Fa,b} is therefore (by theorem 3.1) the
continuation of the element P along the segment [a,b], contained
in @, and hence belongs to .

If {F,a} is an element of an analytic function 9, then F(a)
is called the walue of the function P at the point a. The values
of the function P at the point a are generally denoted by P(a).
We also frequently write — traditionally, even though not entirely
with justification — PB(2) instead of P, denoting by = the variable
point of the region in which the function B is defined.

The values of the function P are defined only at those points
which are centres of the elements of this function. In view of
theorem 4.1, the set of these points for the function %, analyt-
ic in the region @ is an open subset G, of the region G-
Moreover, since any two elements of the function P are contin-
uations of each other along a curve joining their centres, it is
immediately evident that @, is & connected open set, ¢. €. a subre-
gion of the region G. We shall call it the matural subregion of the
analytic function P in the region @, and in the case when G is
the entire plane — simply the natural region of this function.
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"I {F,a} is an element of the analytic function 5, then by
theorem 4.1 the values of the function F(z) at the points of a cer-
tain neighbourhood of the point @ are at the same time the values
of the function P at these points; in other words,

(4.2) In a sufficiently small neighbourhood of every point of the
natural subregion of an analytic funciion B, there exists a meromor-
phic function whose values at the poimis of this mneighbourhood are
at the same time values of the function B at these points.

Let P be an analytic function in the region G. If there exists
a finite number p such that every point of this region is the cen-
tre of at most p elements of the function B, then this function
is said to be finitely valued in @, and in the contrary case — infinitely
valued. If every point of the region G is the centre of at most p
elements of the function P, and in addition there exist points
ze@ which are the centres of exactly p elements, then the fune-
tion ‘B is said to be p-valued in G. Finally, if every point of the
natural subregion of the function ¥ is the centre of the same
number p of elements of the function, then we say that the
function B is strictly p-valued, or p-valued in the strict semse, in
the region @.

It is easy to see that if P is a p-valued (p #oo) apalytic fune-
tion in the region @, then the set of those points ze¢ G which are
the centres of p distinet elements of the function is an open set.

At a point which is the centre of p elements of an analytie
function, the funetion may assume fewer than p distinet values.
However, the set of such points is at most denumerable. More
precisely: if, for pstoo, every point of a set Z is the cenire of at
least p distinc  elements of the fumction P, then the set of those
points 2€Z at which the funciion assumes fewer than p distingt
values 1is isolated and closed in Z. In fact, if the point a is the
centre of p distinet elements {W®™),a}, {W®, a} . [(WP, a} of the
function ¢, then (Chapter ITI, theorem 8.6) no two of the fune-
tions W, for =1, 2,..., p, assume the same value at any point
z5a of a sufficiently small neighbourhood of the point a. In partic-
ular, therefore, every strictly p-valued analytic function in a region
@ assumes exvactly p distinct values ot every point of ils natural subre-
gion, with the exception at most of poinis of an mla.ted set closed
in this subregion. ,
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If W(z) is a function meromorphic in a region ¢, then the
set of analytic elements which this function determines at the points
of the region @ is, in view of theorems 3.1 and 3.2, a sin-
gle-valued analytic function in @ Its values are obviously iden-
tical with the corresponding values of the given meromorphic func-
tion W at every point of the region @G.

Conversely, if I is an analytic function in a region @,
having exactly one value at each point of its natural subregion G,
then, taking W (z)=2(z) for zeG,; we obtain by theorem 4.2 a me-
romorphic function W in @,, and we see at once that the funec-
tion I is the set of analytic elements which the function W de-
termines at the points of the region G4

The notions of a meromorphic function and an analyt-
ic function single-valued in its natural region (or subregion)
are therefore equivalent; accordingly, in the future we shall be
able to identify without fear of misunderstanding a single-valued
analytic function with its corresponding meromorphic function.
On the other hand, from the above considerations it follows, at
the same time, that in order that an analytic function be single-val-
ued it 5 mecessary and sufficient that it assume exactly one value at
each point of its natural region (or subregion ).

A function analytic in a region @ is said to be wunivalent?)
if it does not assume the same value at any two distinet points
of this region. The term “univalent function’ and the term ‘single-
valued funection? are completely unrelated, since a univalent func-
tion need not be single-valued.

As an example of a univalent function (which is at the same
time multi-valued) , we shall define the logarithm. For every point
o different from 0 and oo, let us denote by L (z) the single-valued
branch?) of logz in the circle X(a;lal), taking the value Loga at the

point a, and let I¥)(2)=1IL,(z)+2kni. In this way we obtain, when %

!y The corresponding terms in French and German are: fonction wuni-
valente' and schlichie Funkiion, respectively. We also say, more generally,
that an analytie function is p-valent (French: fomction p-valente (Momntel)),
if it assumes each of its values at at most p points, and if there exist
values which it assumes at exactly p distinet points.

*) The word branch is here understood in the sense established in
Chapter I, § 11. As will appear later on, the branch of a logarithm in this
sense can be considered as a branch of logz also in the sense now given
for analytic functions in general.
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rung through all the integers, all the gingle-valued branches of
logz in the circle K{a;|a]) (cf. Chapter I, § 11). Let us de-
note by £ the set of all the analytic elements {L{?,a}, where
a#0, asto0, k=0, 41, 42,... We shall prove that this set is an
analytic function.

To that end, let us consider one of these elements, ¢. g. {L{”,1},
and let ‘£, be the analytic function determined by it. Since
exp I{"(2) =2, it follows that continuing the element {L{”,1} to any
point b along any curve not passing through 0 or co we always obtain
an element {F ,b} such that expF(z)=¢, and therefore an element
of the form {L{",b}. Consequently £,CQ. On the other hand,
if b is an arbitrary point different from 0 and oo, then denot-
ing by O, the circumference z=>bexpi, where 0<{< 2=, passing
through b, we verify immediately that by continuing an arbitrary
element {L{",b} along C,, from the point b to this same point, we
obtain the element {L{”+2mi,b}, and, more generally, continuing
this element along the curves n(, we obtain all the elements
{L$)4-27ni, b}, where m=0, 41, 42,..., 4. e all the elements of
the family & with centre b. It follows from this that RCS,,
and therefore finally &=2g,.

" The family & is consequently an analytic function and we
define it as the amalytic fumction logz. Analogously, we define the

analytic function 1/5, which is an example of a double-valued func-

tion, the analytic function 7{/2 (where n is an arbitrary integer dif-
ferent from zero), which is an example of an n-valued function
(in the strict. sense), etc. The natural region for each of these
functions is the plane minus the points 0 and oo.

EXERCISES. 1. A single-valued branch of arctanz exists in the neigh-
bourhood of every point as%--¢ and determines an analytic element at this
point. Find the radius of this element. Verify that all the elements - de-
termined in this way by the single-valued branches of arctanz form one
infinitely valued analytic function. This function is called the analytic
function arctanz. Determine its natural region.

A similar exercise for arccosz and arcsinz.

2. The matural region of the function exp {1/(1+%)} is the entire plane
minus the points 0 and co. This function is double-valued, however, not strictly
double-valued : every zs£1 of its natural region is the centre of two elements,
but the point z=1 is the centre of only one element of the funetion.

3. If every point of a set Z is the centre of infinitely many elements
of an analybic funetion 9P, and at the same time the function . assumes
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only a finite number of different values at each of the points of this set, then
the set Z is at most denumerable.

4. If 9 is a univalent analytic function in a region @, then the number of
values which this function assumes at each point ae@ is equal to the num-
ber of elements of the function ¢ with centre at this point. Therefore, in
order that a wunivalent analytic function in the region & be strictly p-valued,
it is necessary and sufficient that it assume exactly p distinct values at
every point of the region.

5. Let 3’1, be an absolutely convergent series with terms different from

&

zero and let A={al,a,,...} be a sequence of (distinet) points on the eircum-
ference C(0;1). The series .

is then almost uniformly convergent in the circle K (0;1) as well as in the interior
of this circle, 4. e. in the circle X (oco;1). Let F,(2) and F,(2) denote the holomor-
phie functions given by the series (*) in the circles K(0;1) and K{oo;1), re-
spectively.

Prove that if the set 4 is everywhere dense on the circumference C(0;1),
then these circles are, respectively, the natural regions of the functions F,(z)
and F,(z); however, if the set A is not everywhere dense on C(0;1), then the
set C4’ (where 4’ denotes the set of the points of accumulation of the
set A) is a region containing K(0;1) and XK(oo;1), and the series (*) re-
presents a meromorphic function in the region CA4’, for which this region is
its natural region.

6. Let an arbitrary region @ be given. Construct a function holomor-
phic in &, for which the region @ is its natural region.

(a) Method I. Let B be the boundary of the region @. It may be as-
sumed.- that B does not contain the point co. Let A={a,} be the sequence
of isolated points of the boundary (provided such points exist), and B={b,}
a sequence everywhere dense in R—.A. With each point b, we associate a
sequence {b{M}, ., of points of the region & converging to b,.

Let 7, denote the lower bound of the numbers |b(¥—b_|, and g, the lower
bound of the number exp [—1/[b® —a, |1, where m=1,2,...,n—1and k=1,2,...

Then the function
0.6xp[1/(z—a,)] 7,
Flo)= Y 2L 7ald —
) 2 r +Z P(e—b,)

has the desired property.

(b) Method II, based on Runge’s theorem (Chapter I'V, theorem 2.1).
For every n we can cover the boundary R of the region G by a finite
system of circles E{",E(,... ), with radii < 1/n and centres on R. In each

of the circles K{", where ;p__l 2 »m,, We choose two distinet points p{e@

'n?

and ¢f®e@ (as on Fig. 22 for 9—1 and j=2). Denoting by H(™ the sum
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of these circles, we can determine the system EM,EM,...
in such a way that the sequence {H,} is decreasing and

n

,K'(,’;), for n=1,2,.

pgu) EG—oH(”ﬂ), ggu)EG _H(n+l)

for j=1,2,;..,m

Making use of Runge’s theorem, we
morphic functions W, (2) in the region G
in such a way that

1° |W,()|<1/2" for 2e@—HM, Fig. 22.

2° W)+ Wa(z)+ ...+ W (2)] <1/2* for z:pg"), and >2" for z=g¢™",
where j=1,2,...,m,

iy *

The series )W, (¢) is then almost uniformly convergent in @ and its sum

is a holomorphic function with the desired property (this function does not
have a limit, finite or infinite, at any point of the boundary R of the re-
gion G upon approaching it from the interior of this region),

7. Let H denote a space whose elements are functions holomorphic in
an arbitrarily fixed region G (Chapter II, § 7, exercise 3).

Let K;,K,,...,K, be an arbitrary system of circles with centres on the
boundary of the region @, and s an arbitrary positive number. Let P
denote the family of all functions P(z) holomorphic in @, such that for
every j=1,2,...,n the set K -G contains points at which |P(z)|<e, and
points at which |P(=)[>1/e. Prove that the holomorphic functions in & which
do not belong to P form a nowhere dense closed set in the space H.

Deduce from this (not appealing to the result of exercise 6) that
holomorphic functions in’ the region @ exist for which @ is their natural region
and, moreover, all functions holomorphic in @ have this property, with the
exception, at most, of functions forming a set of the first category in H
(Mazurkiewicz).

(Cf. analogous exercises 6-8, Chapter IV, §2.)

8. Example of a double-valued analytic function such that
every point of a certain region is the centre of only one
element of the function (cf. exercise 2).

Let H denote the sum of the half-plane Uz<0 and the cirele |2j<1
(Flg 23) and let @(z) be a holomorphic function for which H is the natural

region (cf. exercise 6). On the

other hand, let & denote the

doubly connected region obtained

' axis from the plane (Fig. 24). The

Fig. 23. Fig. 24. region @ is then the natural region

of the function 45(]/ #).. Moreover, every point of the region @ belonging to

by removing the point 0 and
the interval [1,4o00] of the real
the circle K(0;1) is the centre of two distinet elements of this function,
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while each of the remaining points of the region @ is the centre of only one
element. .

§ 5. Inverse of an analytic function. An analytic element
R:{F ,z{,} is said to be dnvertible, if the function F(z) assumes the
value w,=7F(z,) at the point 2, once (Chapter IIT, § 8). The func-
tion. F(2) then has in a neighbourhood of the point w, an inverse
function F~'{w) (Chapter ITI, theorem 12.4); we shall call the
element {F~,w,} the inverse element, or the inverse, of the element
R=|{F,z} and denote it by B

It is easy to see that every analytic function R, which is not
a constant, has invertible elements. In fact, if {F,2,} is an arbitrary
element of the function @R, then (cf. Chapter III, theorem 12.1)
abt every point 2,7z, sufficiently close to the point 2, the func-
tion F(z) assumes the value F(z,) once, and hence the corresponding
element {F,z,}, which — as a direct continuation of the element
{F,zo} — also belongs to R, is an invertible element.

(6.1) If Ri={F,2} and R,=|®,2,} arc invertible elements of a
function R, then they can be joined by means of a chain consisting
exclusively of invertible elements.

Proof. Let R(f)={F%z2(1)}, where a<t<b, be a chain of
elements joining the element R, to R,. Let us denote by 7' the
set .of those values ¢ of the interval [a,b] for which the element R(t)
can be joined to R;=R(a) by a chain of invertible elements. Let
i, be the upper bound of the set 7' and let K, denote a sufficiently
small neighbourhood of the point 2(f,), so that the function F®)(z)
assumes everywhere in K,, with the exception at most of the point
2(ty), each of its values once. Furthermore, let ¢, be a point of the
set T for which z(t,)eK, and for which R(f,) is a direct continua-
tion of the element R({,); finally, let ¢; denote the curve along
which the chain of invertible elements joins the element B(t,) to
the element R(a).

Let us note now that i,=5. In fact, supposing that ¢,<b,
we should be able to determine a point ¢, such that #,<<t,<b,
#(ty)e Ky, 2(f,) #2(4), and such that the element R(t,) is a direct con-
tinuation of the element R(f,). Let O, denote an arbitrary curve
lying in K, and joining the points 2(ty), #(t,). Moreover, if 2(t,) % 2(t,),
we could assume that this curve does not contain the point
2(t). Then, continuing the element E(a) along the curve C;+0,
we should obtain a chain of invertible elements joining the element
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R(t,) to BE(a). We should therefore have ?,¢7, which is impossible
in view of the fact that f,<t,.

Consequently #,=b. The function F® ()= () therefore assumes
its values at all points of the segment [z(f;), 2(b)]CK, only once,
and the direct continuations of the element R,=R(b) with centres
on this segment are all invertible. Hence, continuing the element
R(a) along the curve C,-[2(t), 2(b)], we obtain a chain of invert-
ible elements joining the elements R,=R(b) and R,=R(a).

(b.2) If P, and P, are two invertible elements of an analytic function
B, then the elements PT' and P7' also belong to one analytic function.

Proof. By theorem 5.1 the elements P, and P, can be joined
by a chain of invertible elements P(f)={F",z(t)}, where a<i<b.
Let £(t)=F®[2(t)] and let H®() denote the inverse of the fune-
tion F¥(z) in the neighbourhood of the point z(f). The elements
P(t)y={H",{(t)}, where a<{t<b, form then a chain along the
curve [=((f) joining the elements P'(a)=P;"' and P (b)=P;".
These elements therefore belong to one analytic function.

From theorem 5.2 it follows that all the inverses of the
invertible elements of an analytic function P deftermine the
same analytic function. We sghall call this funetion the inverse
of the fumction P and we shall denote it by P~'. We see at ohce
that the function P is in turn the inverse of the funetion P
In addition to the inverses of the elements of the function P,
the function P~ may contain other elements as well; these ele-
ments, however, as is easily seen, cannot be invertible. For example,

the inverse of the function ]/; (all of whose elements are invertible)
is the funection 2, whose elements with cenfres 0 and oo are not

the inverses of any element of the funection V 2 and are, IOTeover,
not invertible at all.

EXERCISES. 1. Distinguish the non-invertible elements, if any, of the fune- .
tions expz, cosz, sinz, tanz. Verify that the functions logz (§ 4, p. 251),
arc cosz, arcsing, arctanz (§ 4, exercise 1), are, respectively, the inverses
of the functions expz, cosz, sinz, tanz.

2. In order that the inverse of an analytic function P be a single-val-
ued funetion (i. e. meromorphic, see § 4, p. 250), it is necessary and sufficient
that the function P be univalent.

§ 6. Analytic functions arbitrarily continuable in a region.
If each element R of an analytic funetion in a region & has a con-
tinuation along every curve emanating from the centre of E and
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lying in @, then we say that the function is arbitrarily continuable in
G; the natural subregion of such a function obviously coincides with
the entire region @, and every point of this region is the centre
of the same nuinber (finite or infinite) of elements of the function.

The simplest example of analytic functions arbitrarily continuable in @

are meromorphic functions in @ (cf. § 4). Examples of analytic multi-val-
ued functions arbitrarily continuable in a region are the functions logz,

Vz, ete. (§ 4, p. 251), in the region obtained by removing the points 0 and oo
from the plane. Here, the double connectivity of this region plays an essen-
tial role, since, as follows from the monodromy theorem (theorem 6.3, helow),
every analytic function arbitrarily - continuable in a simply connected re-
gion is single-valued in this region.

(6.1) If an analytic funclion P in a region G is arbitrarily con-
tinuable in this region, them, except for the case when G is the plane,
the circle of every element of the function P has, inside or on iis
boundary, points of the complement of the region Q.

If @ is the plame, i. e. CG=0, then the entire plane is the circle
of every element of the function P.

Proof. Let P,={¥,a} be an arbitrary element of the function
P and let K be the circle of this element. Let us suppose that K
is not the entire plane and that KCG. Let b be an arbitrary point
of the circumference of the circle K and let 2=g(f), where 0<{i<1,
g(0)=a, g(1)=>b, be an arbitrary curve joining the points ¢ and b
and lying in the circle K for 0<{i<1. Continuing the element P,
along this curve we obtain a chain of elements .P(t), such that
(cf. theorem 3.1 and 3.2) P()={F,,g(t)} for 0<<t<1; in particular,
P(0)=P;. The elements P(t) are therefore direct continuations of
the element P, for iz£1. On the other hand, for values of ¢ suffi-
ciently close to 1, the element P(f) is a direct continuation of
the element P(1) with centre b, and the circle of the element P(t)
contains the point b. Consequently, every point b on the circum-
ference of the circle of the element P, would be a point of con-
tinuability of this element, which contradicts theorem 2.1.

- From this follows immediately the monodromy theorem for the
circle : '

(6.2) If an analytic function P in a circle K is arbitrarily con-
tinuable in this circle, then it is a single-valued function, i.e. a me-
romorphic function. Hence, if K 1is the entire plane, then B 48 a ra-
tional function.
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Proof. Let a be the centre of the circle K and let Py=|F,a}
be an element of the function P. From theorem 6.1 it follows that
the circle K is contained in the circle of the. element P,, and hence
that the function F,(2) is defined in the entire circle K and mero-
morphic in K. Therefore (cf. theorem 3.1 and 3.2) the function B
has for each point beK exactly one element with centre at this
point, namely, {Fa,b}, and is therefore a single-valued function,
qg.e. d. -

Let W(z) be a uniquely invertible meromorphic function in
the region ¢ and let H=W(G). With each element P={F,w,}, where
weeH, we can then associate uniquely the element {F'W,z,), where
2o=W " (w,)€@; let us denote this element by PW. We obviously
have P=PW.-W~" and the established correspondence between ele-
ments with centres in the regions H and & is one-to-one.

It {P()} is a chain of elements along a curve w=g(l)
(a<t<b) lying in the region H, then the elements P ()W form
a chain of elements in G along the curve z=W~[g(t)], where
a<t<b. Therefore, if the element P, i3 a continuation in H of
the element P,, then the element P,W is a continuation in @
of the element P,W; the same occurs when we interchange the
regions H and G, replacing simultaneously W by W—'. Hence,
if P is an analytic function in the region H, then the set of all
elements of the form PW, where Pe®3, is an analytic funec-
tion in G. Let us denote this function by PRW. If the function
B is arbitrarily continuable in H, then the function PW is arbit-
rarily continuable in @; if the function P is single-valued in H,
then the function PW is single-valued in G. The converse theo-
rems are obviously true, since P=PW W

Now, let H be a simply connected region, and P an analytic
function arbitrarily continuable in H. As the region ¢ we take an
open circle, -and as W(2) a meromorphic function transforming
the circle @ into the region H conformally (see Chapter V, the-
orem 6.14). (If the region H were the entire plane or a plane minus
one point, then it would also be necessary to take as G the entire
plane or the open plane.) The function PW is then arbitrarily con-
tinuable in the circle G and by theorem 6.2 is single-valued in @.
Therefore the function P is single-valued in H. Thus, we obbain
the general monodromy theorem :

(6.3) An analytic function in a simply connected region H, arbitra-
rily continuable in this region, is single-valued im this region. ‘

S. Saks and A. Zygmund, Analytic Functions. - - 17
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Theorem 6.3 may be considered as a generalization of theorems 3.1 and
3.2, Chapter IV, on the existence of gingle-valued branches of the logarithm
in simply counnected regions. At the same .time, the monodromy theorem
contains an analytic definition of the simple connectivity of a region.
Namely: In order that the region G be simply conmected, it is necessary and suffi-
cient that every analytic function in the region G, arbitrarily continuable in @,
be single-valued in this region (Radd’s criterion). The necessity of the condition
is already contained in theorem 6.3. For the purpose of proving the suffi-
ciency of the condition let us assume that the region @, satisfying the above
condition, is not simply connected. Applying, if necessary, an inversion and a
translation, we may assume that the points 0 and oo belong to different compo-
nents of the complement of the region G. Every element of the function
logz is then arbitrarily continuable in the region G, and nevertheless deter-
mines a multiple-valued function in this region (ef. Chapter IV, theorem 10.3).

EXERCISE. Let @ be a plane minus the points 0 and oo, and ZCG
an arbitrary denumerable set. Construct an analytic funetion P arbitrarily
continuable in ¢ and such that: 1° every point of the set Z is the centre of
infinitely many elements of the function P, 2° at every poin of the set Z
the function ) assumes only a finite number of distinet values (ef. § 4, exer-
cise 3).

§?. Theorem of Poincaré-Volterra. This theorem states that:

(7.1) If B is an analytic function, then every point of the plane is the
centre of at most a denumerable number of elements of the function P.
An analytic function can therefore assume at each point at most a
denumerable number of distinet values.

The proof is based on a few simple auxiliary arguments. We
say that a finite sequence of elements P;,P,,...,P, joins the
analytic elements A and B, if every successive element in this
sequence is a direet continuation of its predecessor, and if the
extreme elements P; and P, are, respectively, direet contin-
uations of the elements 4 and B.

(7.2) If one of the two elements B and C is a direct continuation of
the other, and if the element B can be joined to a given element A
by a finite sequence of elemenis with rational centres, then the ele-
ment C com also be joined to A by a finite sequence of elements
with rational cenires.

Proof. Let P,,P,,...,P, be a sequence of elements with ra-
tional centres joining the elements 4 and B. Let p,,ps,...,0, be
the centres of the elements P,,P,,...,P,, and K,,K,,..., K, ,Kg,K¢,
the circles of the elements P,,P,,...,P,,B,C, respectively. Fi-
nally, let B={F,b}. We may assume that F(z) is a meromorphic
function in the entire circle Kg.
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Let us assume that ¢ is a direct continuation of the ele-
ment B. Consequently, C={F,c}, where c¢Kp. In addition, P,=
={F, Pn}, Where p,eKp. Hence we can define in the circle Ky a fi-
nite sequence of circles K, 1,K, 5,...,K,.,n With rational centres
Pnily Prssse--s Pnom 10 sSUCh a way that p,. ;e K,y g for j=1,2,...,m,
and PpymcKe. Taking P, ={F,p,.;} for j=1,2,...,m, we see
immediately that the sequence P,,P,,...,Puy,...,Ppy is the
desired sequence of elements with rational centres, joining the
elements A4 and C.

If the element B is a direct continuation of the element C,
we obtain the same result by means of a similar argument.

(7.3) Bach two elements of an analytic function can be joined by
a finite sequence of elements having rational cenires.

Proof. Denote by A and B two elements of the analytic func-
tion 9. Then, there exists (cf. §§ 4, 3) a chain of elements P(t), where
a<t<b, such that P(a)=A4 and P(b)=B. Let T denote the set of
those values of ¢t of the interval [a,b] for which the element P(t)
can be joined to A=P(a) by a finite sequence of elements with
rational centres. Let ¢, be the upper bound of the set T. Since for
all values of t of the interval [a,b], sufficiently close to the point
1y, all the elements P(t) are direct continuations of the element P(t),
it follows from theorem 7.2, first of all, that #eT, and next, that
all the points ¢ of the interval [a,b], sufficiently close to the point
i,, also belong to 7T. Since ?, is the upper bound of the set T, we
have #,=—b, and therefore beT, q. e. d.

Proceeding now to the proof of theorem 7.1, let us consider
an arbitrary analytic function 9P -and let us fix ome of ifs ele- -
ments P,. With each element P of the function B we can, by theo-
rem 7.3, associate a finite sequence of rational points, such that
there exists a sequence of elements with centres at these points,
joining the elements P, and P. It is evident that to the differ-
ent elements P of the function P with a commeon centre there
will thus correspond different sequences of rational points. More-
over, since the set of all finite sequences of rational points is
denumerable, the set of all elements of the function {§ with a com-
mon centre is also at most denumerable. !

*§ 8. An analytic function as an abstract space. Let E de-
note the set of all analytic elements. This set can be thought of as
a certain abstract space, where by neighbourhood (see Introduction,

17+
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§ 3) we mean the set of elements determined at the points of an
arbitrary circle K(a;r) by an arbitrary meromorphic function in
this circle. In other words, a neighbourhood in the space E is an
analytic function arbitrarily continuable in a circle. This circle
is called the circle of the meighbourhood under consideration. A
neighbourhood having a rational eircle (Introduction, § 8, p. 21)
will be called, for brevity, a rational neighbourhood.

It is easy to see that the family of neighbourhoods defined
in this manner for the space E satisfies the conditions of the postu-
lates I and IT of the Introduction, § 3.

Analytic functions (understood as sets of analytic elements)
coincide with the components of the space E, and analytic fune-
tions in a region G (§4) — with the components of the set in
the space E formed from the elements with centres belonging to G.
The proof does not present any difficulties and may be left to th
reader. '

Every analytic function P itself can also be considered as
an abstract space. The family of neighbourhoods for ¢ consists
of all those neighbourhoods of the space E which contain only
elements of the function P. By the Poincaré-Volterra theorem
(theorem 7.1), the rational neighbourhoods in this family constitute
2 denumerable set which is at the same time, as we easily verify,
a denumerable base of the family of neighbourhoods (Introduction,
§ 3). Consequently:

(8.1) An analytic function, considered as an abstract space, is a se-
parable space. The elements of this function with rational centres form
in 4t a denumerable everywhere dense set.

If F(z) is a meromorphic function in the circle K(a;r), then,
assigning to each element {F,z}, where zeK(a;r), the point (z—a)/r,
when az£co, and the point 1/rz, when a=oco, we obtain a homeo-
morphic mapping of the set of these elements onto the circle
K{0;1). In other words:

(8.2) Ewery single-valued analytic function P in the circle K(a;r),
considered as an abstract space, is homeomorphic with the circle X (0;1);
we oblain, namely, a homeomorphic correspondence associating with the
element of the fumction P with centre zeX(a;r) the point (z—a)/r,
or the point 1frz, of the circle X(0;1), depending on whether a oo,
or a=oo,
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. This correspondence between the elements of the function P
and the points of the circle K(0;1) will be called a canonical cor-
respondence.

Theorem 8.2 can also be formulated as follows: every neigh-
bourhood in the space of amalytic elements is homeomorphic with the
circle.

EXERCISE. Every analytic function can have at most a denumer-
able number of non-invertible elements (§ 5, D. 254) and, if the analytic funec-

tion is considered as an abstract space, then the set of these elements is an
isolated closed set.

§ 9. Analytic functions in an annular neighbourhood of
a point. Let W(2) be a function meromorphic in a region G and not
reducing to a constant, and let H=W(Q). If %, is a point of the
region @, and P={F,w,| an arbitrary analytic element with centre
wo=W(2)¢eH, then the element {FW,z) will be called an eement
PW. This notation was already introduced in § 6 for a uniquely
invertible function W(z). If the function Wi{z) is not uniquely
invertible, then there exist in general many points 2y ¢ @, satisfying the
condition w,=W(2) for a fixed point wycH, and hence for a
given element P :{F, w,} there exist in general many elements PW.

If P is an analytic function in H, then every element PW,
where Pe®B, determines an analytic function in G. The functions
thus obtained will be called functions PW.

If the function W(z) is uniquely invertible,.then there exists
for a given function P only one (cf. § 6, p. 256) function PW,
and this function is the set of all elements of the form PW, where
PeP. However, if the function Wi(z) is not uniquely invertible,
then there may be many functions W and these functions can
contain elements not necessarily of the form PW. For example,
taking H and @ to be the entire plane, W(z)=2, and PB(w)=yw,
we obtain as PW the linear functions z and —=.

(9.1) If W(2) is a meromorpic function, not reducing to a constant,
m a region G, and if P is an analytic function arbitrarily con-
tinuable in the region H=W(Q), then each of the funciions PW s
arbitrarily continuable in the region G and is formed exclusively of
the elements PW, where Pe%.

Proof. It is sufficient to prove that every element of the form
P,W, where Pye®, is continuable along every curve emanating from
the centre of P, and lying in @, and that the continuation obtained
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along this curve is also an element of the form P,W. To that

end, let P0={F,w0}, where w,=W(2,) and 2ze@, be an element
of the function P and let Ry={FPW,%}. Let z=g(t) (a<<I<<b) be
a curve in G with initial point z,. The curve w=W]g(?)]
(a<<t<b) lies in H, having w, as its initial point. Therefore
there exists a chain of elements P(t)={F® W[g(t)]} of the func-
tion P along the curve w=WI[g(t)], such thab P(a)=P,. The ele-
ments R(t)={F®W,g(t)} form then a chain along the curve z=yg(%),
with R(a) ={F9W,g(a)} ={FW,z} =R,; on the other hand,
R(b)={FOW,q(b)} is the element P(b)W, where P(b)e®P, g. e. d.

If W(z) is a function meromorphic in a region H, then with
each analytic element P={F,a} such that F(a)eH, we can associ-
ate the element {WF, a}, which we shall denote by wp. If R
is an analytic function in a region @, all of whose values be-
long to the region H, then to each element Pefd there corresponds
an element WP. It is evident that if P, and P, are elements of
the function B, and if P, is the continuation- of the element P,
along a given curve lying in @, then WP, is the continuation of
the element WP, along the same curve. Therefore all the elements
WP, where P, determine the same analytic function in &
we shall denote it by WP. It is evident that if a function P
is arbitrarily continuable in the region G, then the function WP is
also arbitrarily continuable in G and is the set of all elements of the
form WP, where PePp.

Finally, if §§ and R are two analytic functions, and P={F,a},
R={c15,b}, respectively, are elements of these two functions, such
that ®(b)=a, then the function F@P(z) is meromorphic in a neigh-
bourhood of the point b and the element {F®,b} determines a cer-
tain analytic function. An analytic function obtained from the
functions P and R in this manner will be called a function
PR. Of course, it may happen that the functions P and R
do not have elements P and R satistying the condition given
above; in that case no function PR exists.

(9.2) If a function R, analytic in the annular neighbourhood P=P(a;0,7)
of a point a, is arbitrarily continuable in this neighbourhood,
and if some element R of the function R is identical with its
continuation dalong the curve p-C, where p is an integer, and O de-
notes the eircumference with centre a with its origin ot the centre of
the element R, then the function R is af most p-valued and is of
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the form ®(Y/z2—a) (or of the form ®(1[}/z), if a=co), where ®(z)
is a fumction meromorphic in the ammulus P(0;0,77),

Proof. We may obviously assume that a=0 (applying a trans-
lation or, if a=oco, an inversion). We may also assume (applying,
if necessary, a rotation) that R={F,ro}, where 0<<r,<r, and hence
that C=C(0;r,).

1° We shall consider first the case p=1. Let C; and C, de-
note the upper and lower semi-cireumferences of the circumference C.
Since the element R is identical with its continuation along C, it
has the same continuation along each of the semi-circumferences
C, and C,; let R*={F*,—r,} be this continuation.

Let us now denote by G, and G, the gimply connected regions
which we obtain from the annular neighbourhood P by removing,
respectively, the segments [—r¢,0] and [0,7¢] of the imaginary
axis; we shall denote by H and H” the parts of the annulus P
situated to the right and the left of this axis.

By the monodromy theorem (theorem 6.3), the element R
determines meromorphie functions in the regions @; and @; let
us denote them by F,(z) and F,(2), respectively. We therefore have
F.(2)=TFy(2)=F(2) in the neighbourhood of the point 7,, and
F.(2)=TF,(2)=F*(2) in the neighbourhood of the point —r,.

Since 7,6 HCG,-G, and —r,e H*C@,- G4, we have F,(2)="F,(2) in
the region H as well as in the region H*, and therefore in the entire
open set G-G,. The functions Fy(z) and Fy(z) together determine,
then, in the entire region P=@,-+@,, one meromorphic function.
This funection, since it is identical with ¥'(2) in the neighbourhood
of the point 7,, coincides with the function R as determined by
the element R={F,r,} in the region P.

2° Now, let p be an arbitrary positive integer and let W(z)=2".
The function W(z) transforms the annulus P,=P(0;0,r'/%) into
the annulus P=P(0;0,7), and, in particular, the circumference
0,=0(0;7%7) into pC. The element {FW,r;”} therefore is trans-
formed into itself by a continuation along the circumference 0.,
and, on the other hand (cf. theorem 9.1), it determines an arbitrarily
continuable analytic function in the annulus P,. By 1° (for
the case p=1) this function is a function ®(z) meromorphic
in the annulus P,. Consequently, in the neighbourhood of the
point 7i? we have F(2”)=FW(2)=®() identically, and therefore
F(z2)=®[G(2)] in the neighbourhood of the point r,, where &{z)
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denotes that single-valued branch of ’f/& in the neighbourhood of
the point 7, which assumes the value ra/® at this point. Therefore
the analytic function %R, determined by the element R={F,r],
is identical with the function ®(}/2), determined by the element
(DG, n,}- .
(9.3) Every analytic function R, arbitrarily continuable and n-val-
ued (where m s a finite number) in the anmnulus P=P(a;0,7), has
the form ®(}/z—a) if aztoo, or the form ®(1/Y/%) if a=oo, where
®(2) is a function meromorphic in the annulus P(0;0,7'").

Proof. As in the proof of the previous theorem, we may assume
that a=0. Let R:{F,ro} be an arbitrary element of the function
R with centre at a point 7,>0 and let C=C(0;7,). Since the
function R has only » distinet elements with centre 7y, there exists
a number p<n such that the -element R is transformed into
itself by a continuation along the curve p-C. The function R is
therefore of the form @(T]’/E), where @ (3) is a function meromorphic
in the annulus P(0;0,7'/7). We find, at the same time, that
p=mn: indeed, we have on the one hand p<n, and on the other
p>m, since the function &(}/2) is at most p-valued.

EXERCISE. Every arbitrarily continuable -analytic function in the
annular neighbourhood P(0;0,7) of the point 0 is of the form ®(log z), where
®(w) is a function meromorphic in the half-plane Rw<Log 7.

*§ 10. An analytic function in an annular neighbourhood
as an abstract space. In § 8 we established a certain (canonical)
“homeomorphic correspondence between the points of the unit circle
and the elements of an analytic function arbitrarily continuable (and
hence single-valued) in a given circle. An analogous result can be
obtained for an analytic function, finitely valued and arbitrarily
continuable in an annular neighbourhood P(a;0,7). '

Let us suppose for simplicity that a=0 and let us take into
consideration the function }/z in the annulus P(0;0,r). Associating
the element {@,2} of this function with the point @(z)/r'", we ob-
tain, as is immediately evident, a homeomorphic correspondence
between the elements of the analytic function ’f/é in P(0;0,r) and
the points of the annulus P(0;0,1). In this correspondence, an ele-

ment; of the function }/z with centre z=r3" is associated with the
point 3eP(0;0,1).
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Let us now consider any analytic function R, arbitrarily
confinuable and n-valued in the annulus P(0;0,7). By theorem 9.3,
the function R is the set of elements of the form {®@,2}, where &
is a certain function meromorphic in the annulus P(0;0,7/*), and

{@,2} an arbitrary element of the function V7. We shall associate

every element {@,2} of the function }/z with the element {0@,s)
and show that this correspondence is one-to-one, 4. e. that if the
elements {G,2;} and {G,,z2,} of the function J/z in the circle K(0;r)
are distinet, then the elements {®Gy,z), {DG,,2,} are also dis-
tinet. This is obvious when z,+#2,. However, if z,=g,, then, as we
see immediately, in the neighbourhood of the point z, we have
G, (3)=04(z)exp(2nki/n) identically, where 0<<k<<m in view of
G1(2)#G,(2). Therefore the element {G,,z,} is transformed into
the element {@,,2;}, and the element {@G,,z;} into the element
{®@s,2,}, by a continuation along the curve k- C, where C=C(0;]z,)).
Therefore, if the elements {#@,,2,} and {@G,,2,} were identical,
then by theorem 9.2 the function R would be at most k-valued,
which contradicts the fact that kr<<n.

Hence the correspondence established between the elements
of the functions R(z) and }/z is one-to-one and, moreover, as we
easily verify, invertibly continuous (Introduction, § 7). On thé
other hand,  we have already established above a homeo-
morphic correspondence between the elements of the analytie funec-
tion 'f/E in the annulus P(0;0,7) and the points of the annulus
P(0;0,1). In this way we obtain a homeomorphism between the
function R and the annulus P(0;0,1). As a result:

(10.1) Between the points 3 of the annulus P(0;0,1) and the elements
of an analytic function R, arbitrarily continuable and n-valued in

“an annulus P(a; 0,7), where r=£oo, a homeomorphic correspondence

can be established in such a way that to the point 3 there corresponds
an element of the fumction with cewire z=a-+r3", if as=cco, or with
centre 1/r3", if a=oco.

§ 11. Critical points. If R is an analytic function in a re-
gion @, and a an arbitrary point of this regiom, then, in order
that a branch (see § 4, p. 248) -of the function R exist in every
neighbourhood of this point, it is necessary and sufficient thab
this point lie in the interior or on the boundary of the natural
subregion. A point a€@, lying in the interior or on the boundary
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of this subregion will be called an ordinary point of the function R if
it has a neighbourhood in which every branch of the function R® is ar-
bitrarily continuable and therefore, by the monodromy theorem
(theorem 6.2), is a meromorphic function; in the contrary case the
ponit a will be called a critical point of the function R. As follows
immediately from this definition, every ordinary point of an analytic
function lies in its natural subregion, and hence by the same token,
every point on the boundary of this subregion, belonging to the
region & of the function, i3 its critical point. An ordinary point
of the analytic function R is called its pole if at least one branch
of this funection, arbitrarily continuable (and hence meromorphic)
in a neighbourhood of this point, has a pole at this point.

The set of critical points of an analytic function in a re-
gion @ is, obviously, closed in this region. The isolated points of
this set are called isolated critical points.

(11.1) If R is an analytic fufnctz'on: i a region G, then every ele-
ment B of this function is continuable along every curve C eman-
ating from its centre, lying in G and not containing critical points of
the fumction.

Therefore, in order that the fumction R be arbitrarily continuable
in its region G it is necessary and sufficient that G contain no cri-
tical points. ' :

Proof. Let the curve C be given by the equation z==z(f), where
a<t<h. Let us denote by T the get of all points = of -the interval
[a,b], such that the element R is continuable along the arc [a,7]
of the curve C (. e. along the curve z=2(t), where a<t<{7). Let
i, be the upper bound of the set 7. The point z(f,) therefore cert-
ainly lies in the interior or on the boundary of the natural subregion
of the function; and because the curve ¢ does not contain critical
points, the point 2(f) has a neighbourhood K in which every ele-
ment of the function R is arbitrarily continuable. Let t; be an
arbitrary point of the set 7, such that the arc [£1,%] of the curve ¢
is' contained entirely in K, and let E, be the continuation of the
element B along the arc [a,,] of thiz curve. Continuing the ele-
ment- B, along the arc [t,,f,], we therefore obtain a continua-
tion of the element R along the entire are [a,t], from which it fol-
lows that ¢,e7. In addition, we have {,=b; for, in the contrary case,
we could obtain in this way a continuation of the element R along
an arc [a,i,] of the curve C, choosing the point #, such that
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t,<<ty<b and such that the arc [4,,f,] of the curve C is contained
in the circle K; hence, we should have t,<t,eT, which contradicts
the definition of the point #,. Consequently, b=teT, and hence
the element R is continuable along the entire curve C.

From theorem 11.1 it follows immediately that:

(11.2) In order that a critical point of an analytic function be an iso-
lated critical point, it is necessary and sufficient that it have an
annular neighbourhood in which every branch of the fumction is
arbitrarily continuable.

(11.3) In order that the set of critical points of a function R, ana-
lytic in a region G, be isolated, it is mecessary and sufficient that
every element of this function be continuable along every curve eman-
ating from the centre of the element, contained in G and not coniain-
ing poinis of a set B isolated and closed in the region G.

If this condition is satisfied, then the function R does not contain
critical points outside the set E.

EXERCISES. 1. A function, analytic in a region &, can have at most
a denumerable number of poles in this region.

2. Let @ denote the plane minus the points 0 and oo, and let BC@ be
an arbitrary denumerable set. Construct an arbitrarily continuable analytic
function in G which has a pole at every point of the set B.

(Such a function can be constructed for an arbitrary region @ having
a degree of connectivity >2.)

§ 12. Algebraie critical points. Let a be a point lying in the
interior or on the boundary of the natural region of an analytic func-
tion R. A number A (finite or infinite) is called the limit of the func-
tion R at the point a, if to each number £>0 there corresponds
a number #>0 such that all the values of the function R in the
circle K(a;7) belong to the circle K(4;e).

An isolated eritical point ¢ of an analytic function R is called

an algebraic critical point, if in some annular neighbourhood
of the point a every branch of the function R is finitely valued
and has a limit at this point. Isolated critical points which are
not algebraic are called #ranscendental.
(12.1) In order that the critical point a of an analytic function R
be algebraic, it is mecessary and sufficient that in some an:nula,r
neighbourhood P(a;0,7) of this point every branch of t};e mfumtwn R
have the form @(’f/z_:(_z) if askoo, or the form 45(1/]1/2) if a=o0,
where @ is a funmction meromorphic in the circle K(0;7'™).
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Proof. The sufficiency of the condition is evident. In
order to prove the necessity of the condition, let us take for
simplicity a=0, and let us note that, when the point 0 is an alge-
braic critical point of the function R, then by theorem 9.3 an
annular neighbourhood P(0;0,7) of it exists, in which every branch
of the function R has the form @(}/2), where ®D(z) is a function
meromorphic in P(0;0,7). Since the branch & (J/2) has a limit at
the point 0, the function @(z) also has a limit (finite or infinite)
as #—>0, and, after a suitable definition of its value at the point 0,
it is also meromorphic at this point (cf. Chapter III, § 6, p. 145).

A function, analytic in the entire plane, finitely valued, and
not having critical points other than algebraic points, is said to
be algebraic. Since an isolated and closed set in the entire plane
is finite, an algebraic function can have only a finite number of
critical poinfs. An analytic function (in the entire plane), which
is not algebraic, is called tramscendental.

The function }/z has only two critical points: 0 and co, both algebraic.
The function logz also has only two ecritical points: 0 and oo, but both

transcendental. The function }/logz has’three critical points: algebraic at the
point 1 and transcendental at the points 0 and oo.

EXERCISES. 1. Distinguish the poles and critical points (algebraic,
transcendental) of the analytic furctions arc cosz, arctanz, log (arctanz),
¥log (arc tan 2).

2. Determine the critical points of the analytic function obtained by
continuing the holomorphic function ‘

1
Flo=—— [18) g

2ty 5—2

where f(z) is a function holomorphic in the entire open plane and not
vanishing identically (cf. § 2, exercise 2).

§ 13. Auxiliary theorems of algebra. In the sequel we shall
make use of several fundamental theorems of algebra concerning

the resolution of polynomials into factors. We shall consider poly-
nomials of the form

(181) - T(ew) =A@+ 4,@) 0" ...+ A, (),

with coefficients 4;(2) meromorphic in a fixed region G. If 4,(z)
does not vanish identically, then the polynomial (18.1) is called
a polynomial of the n-th degree. If T'(2,w)=Q(z,w) P(2,w), where
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Q(z,w) and P(z,w) are also polynomials of the form considered,
then each of the polynomials ¢(z,w) and P(z,w) will be called a di-
pisor of the polynomial T'(s,w). If a polynomial of degree n has
a divisor of positive degree less than n, then this polynomial is
said to be reducible. Polynomials having a common divisor of posi-
tive degree are called co-divisible.

(13.2) If for zeG we have identically

(13.3) wh A ()" . A, (2)

=[w"+ B, () W™ ... 4+Bp(2) ][ +0; () wP T ... F-Cp(2)], -
where A;(2), B;(z) and C;(2) are functions meromorphic in the region @,
then the coefficients B;(z) and C;(2) do not have poles other than
the poles of the coefficients A;(z). ‘

Proof. Let us assume that the point az:co is a pole of one
of the functions B;(2) or C;(z), but not a pole of any one of the
coefficients A;(z). Let k and h denote the highest multiplicities’)
of the point a, as a pole of the functions B;(2) and the functions
C;(#), respectively. Let .

B;=lim(z—a)*B;(z), Cj=lim(z—a)"C;(2),

where, for symmetry, we have taken Bo(z)=(10(z)=1.. Multip’lying
both sides of the equation (13.3) by (2—a)***, we obtain identically

(Byw™-+Byw™ 4 .. .4+ Bp) (Cow? +Cyw? ... +05) =0,
which is impossible, however, since neither all the coef:fieients. 13.’,,
nor all the coefficients C; vanish simultaneously. We reason simil-
arly if a==co. -

. Let us now take into consideration two polynomials:

T, (2,w) =A,(2) 00" + A, (2)w" ...+ 4, (2),

Ty(2,w) =By(2)w™ +By(2)w™ "+ ... +Bn(2),
with coefficients meromorphic in a region G. Let s assume that
n>m>0. Applying Euclid’s algorithm (successive division) to t]'lese
polynomials, we determine two finite sequences of po}ynommlg,
Q1,Qs,.--,Qps and T4, T,,...,T,, satisfying the following condi-
tions:

1) If a function iz holomorphic at.a poinh,v then by thg maultiplicity
of the point, as a pole of this function, we mean the number 0. .
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(134) T=Q,T,+T;, Ty=QTs+Tyy ..., Tp——2=Qp_2Tp_1+Tp,

(13.5) the degrees of the polynomials Ty, Ts,..., Ty form a decreasing
sequence, and T, is of degree 0 in w, and hence is o function of the
variable z only.

It is evident that the polynomials @; and T; are defined u-
niquely by these conditions; their coefficients are expressed rationally
in terms of the coefficients of the polynomials T';(2,w) and T',(z,w),
and hence are also meromdrphic with respect to # in the region @;
in particular, meromorphic in @& is the ‘last remainder”
Tp:;Tp(z). Let us denote by E the set (isolated and closed in &)
of points at which at least one of the coefficients of the polyno-
mials Tj(z,w) and @;(2,w) has a pole.

We verify immediately that if the last remainder T,(z) van-
jshes for some value 2=z,6G —K, then denoting by w, & root
of the equation T, ,(2,w)=0, we have directly from (13.4)

Ty (20 wo) =Ta(20,Wo)= - .- =T} _1(2,%,)=0,

which means that the equations 7', (2, w)=0 and T',(z,w)=0 have
a common root w=1w,. Conversely, if w, is a common root of these
two equations (for z,¢eG—ZXE), then from (13.4) we find in a simil-
ar manner that T,(%)=0. On the other hand, either 1° the seb
of roots of the function 7T),(¢) is isolated and closed in &, or 2° this
function vanishes identically.

In case 2° as we see directly from (13.4), the next to the last
remainder T, ;(z,w), which is a polynomial of degree >0 in w,
is a common divisor of the polynomials T, (2,w) and T',(z,w). There-
fore, if the polynomial T, ,(z,w) is, in addition, of degree <n
(with. respect to w), then the polynomial 7,(z,w) is cerbainly re-

ducible; however, if T, ;(2,w) is of degree n, then we verify that

p—1=2, n=m, and the polynomials T,(z,w) as well as
To(zyw)=T,_4(2w).
differ, in view of this, at most by a factor depending only on =z.

Summarizing the above results, we obtain the following the-
orem:
(13.6) If T,(2,w) and T,(z,w) are polynomials of degree n and m
in w, respectively, with coefficients meromorphic in 2z in a region @,
and n>m>0, then either 1° for no value of 2, except for a set iso-
lated and closed in &, do the polynomials Ti(z,w) and Ty(z,w) have
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common roots, or 2° these polynomials are co-divisible and hence
either differ at most by a factor independent of w, or the polynomial
T,(2,w) 4s reducible.

Taking T,(z,w)=T(2,w) and T,(2,w)=T,,(2,w) in the above
theorem, and considering separately the trivial case when T'(z,w) is
of degree 1 in w, we obtain the following corollary:

(13.7) If T'(2,w) is a polynomial of positive degree in w, with coeffi-
cients meromorphic in z in a region @, then either for every value of
%, except for am isolated set closed in @, the polynomial T(z,w) has
no multiple roots, or this polynomial is reducible.

§ 14. Functions with algebraic critical points. In Chapter
ITI, § 14, we considered the existence of functions w=W(z) deter-
mined by an equation of the form F(z,w)=0, where F(z,w) is a hol-
omorphic function of the variables # and w. However, these consider-
ations had an exclusively local character and were limited to the
proof of the existence, in the neighbourhood of a point z, of
a holomorphic function W(z) assuming at this point the value w,
given initially. The concept of an analytic function permits one,
in certain cases, to unite these local solutions into one whole.

Let us consider, for an arbitrary region &, an equation of the
form

(14.1) T(2,w)=w"+4,(z)w" " +...+A,(2)=0,

in which the coefficients A (z) are fumctions meromorphic in G-

We shall say that an analytic element R={W,z}), where
% €@, satisfies this equation, if in a neighbourhood of the
point 2z, we have T'[z,W(2)]=0 identically. Concerning an analytic
function R in @, we shall say that it satisfies equation (14.1) if
each of its elements satisfies this equation; it is evidént that in
order that the function R satisfy equation (14.1) it is sufficient
that it be satisfied by any element of this function.

(14.2) Every equation of the form (14.1) 4s satisfied by at least one
analytic function in the region G.

Bvery function R(z) satisfying equation (14.1) is at most n-val-
wed and has mneither poles mor critical points other than the points
z which are poles of the coefficients of the equation, or for which this
equation has multiple roots; moreover, all the critical poinis of the
function R are algebraic.
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Proof. Let J denote the set of those points 2e@ which are
either polés of the coefficients of equation (14.1), or for which this
equation has multiple roots. In view of theorem 13.2, we may as-
sume that the polynomial on the left side of equation (14.1) is ir-
reducible, and hence, by theorem 13.7, that the set J is isolated.
Let z,6G—J.

By theorem 14.6, Chapter ITI, there exists, in view of the fun-
damental theorem of algebra (theorem B5.12, Chapter II), a hol-
omorphic function W (2) in the neighbourhood of the point z,, such
that T[z,W(2)]=0 identically. The element |W,2}, and therefore
also the analytic function determined by it in the region G, then
satisfy the equation (14.1).

On the other hand, let R be an analytic function in & sat-
isfying this equation. Let us consider an arbitrary point aeG—J.
There exist exactly n distinet values of w satisfying the equation
T(a,w)=0. Let w,,w,,...,w, be these values, and let

Wi(2), Walz)y.ery Wa(2)

be holomorphic functions in a neighbourhood KCG—J of the
point a, such that Wj(a)=w; for j=1,2,...,n, and Tz, W;(2)] =0
identically in this neighbourhood of the point a (cf. Chap-
ter III, theorem 14.8). Every analytic element ReR with
centre zeK is of the form {W;,2}, where j=1,2,...,n, and there-
fore determines a single-valued analytic function in the circle K,
identical with the corresponding holomorphic function W,(z). Con-
sequently, all the critical points and poles of the function R in @
are contained in the isolated set J. Moreover, since every element
of the function R with centre ae¢G@—J coincides with one of the
elements {W;,a}, this function is at most n-valued.

Let us_next consider an arbitrary point b of the region G.
Let PCQ be an annular neighbourhood of this point, containing
neither critical points nor poles of the function R. Therefore every
branch of this function in the neighbourhood P is arbitrarily con-
tinuable in this neighbourhood and, by theorem 9.3, is of the form

Fﬁ/z—b), where F(3) is a function holomorphic in the annular
neighbourhood of the point 0 (if b=oo, then z—b should of course
be replaced by 1/z). We shall show that the function F(3) has at most
a pole at the point 0. In fact, multiplying both sides of equa-
tion (14.1) by a suitable power of the binomial z—b, we can write
this equation in the form
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T, (2, w)=(2—D)2T (2,w) =By (#) w"+-B(2) 0" " +...+By(2) =0,
with coefficients B;(2)=/(2—b)%4,(2), holomorphic in the neighbour-
hood of the point b and not vanishing simultaneously at this point
(if b is not a pole of any one of the coefficients 4;(z), then we
take g=0). In a sufficiently small annular neighbourhood of
the point 0 we have T[b+3",F(3)]=0 identically, and hence
also T,[b+3" F(3)]=0. Therefore, if w denotes an arbitrary finite
limiting value of the function F(3) as 3—>0, then T,(b,w)=0, 1. 6.
w satisfies an equation of degree at most n, with coefficients not
vanishing identically. The function F(3) therefore has only a finite
number of distinet limiting values at the point 0 and by the Ca-
sorati-Weierstrass theorem (Chapter III, theorem 6.1) has a remov-
able singularity or a pole at this point. Therefore every point be@
is an ordinary point or a critical algebraic point for the function R.

The converse of theorem (14.2) is the following theorem:

(14.3) If R is an n-valued analytic function in a region @, hav-
ing only algebraic critical points, then there exisis one and only one equa-
tion of the n-th degree of the form (14.1) which this function saiis-
fies. The left side of this equation is an irreducible polynomial whose
coefficients do mot have poles other than the poles and critical poinis
of the function R.

Proof. Let I be the set of critical points of the function R.
For every point acG—L, let us denote by {W$,a}, {WS,aly.es
(W™, a} the elements of the function R with centre a; let K, be
an arbitrarily fixed circle with centre a, contained in the region
G—1I and simultaneously in the circles of all the elements (WS, a}
for j=1,2,...,n.

Furthermore, let S(xy,%s,...,2,) be an arbitrary symmetric
polynomial with respect to the variables #,,%s;...,%, and let

Ba(2)=8[WE(2), WO (2),.-.., W (@],
for zeK,. We shall show that the meromorphie functions Sa(2),
defined in this manner in the- circles K,, jointly defermine a mer-
omorphic function in the entire region G—L.

To that end, it is sufficient to show that if ceK,-K;, where a
and b are points of the region G—LI, then §,(e)=8(c). In fact,
since ceK,, the analytic elements {W3,c}, where j=1,2,...,m,
constitute a set of # distinet elements of the function R; similarly,
the elements {W§’,¢} also form a system of n distinet elements

S. Saks and A. Zygmund, Analytic Functions. 18
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of the function R, having the same centre ¢. These two systems
can therefore differ at most in the arrangement of their elements,
and in view of the symmetry of the funetion 8(z;,a,,...,%,) we have
Ral0)=8[WG(e), ..., Wi (c)]=8[W((c),..., WE(e)1=F(0).

Hence, taking §(2)=48,(2) for zeG—L, we obtain a funetion
§(2), meromorphic in the region G—L, which in this region can
have poles only at those points which are poles of the function R.
Moreover, since the function R does mnot have transcendental
critical points, every branch of this function in an annular neigh-
bourhood of the arbitrary point z,6 G has a definite limit at this
point; hence, as is easily seen, there exists also a limit of the function
§(2) as z—z,. Consequently, none of the points z,¢@ is an es-
sential singularity of the function §(z), and this function is
meromorphic in the entire region @.

We shall apply the precesdingn?r result in particular to the fund-
amental symmetric functions 89 (z,,,,...,2,), 4. e. to the coeffi-
cients of the polynomial in w

(w—) (W—,).... (w—zy) =" +8D (24, ... )n_l‘l“ A8 (B1yen s )

These functions determine, in the manner established above,
n funections meromorphic in the region @;.let us denote them by
8,8%,...,8™. We verify immediately that the function R(z) sat-
isfies the equation in w

(14.4) w0 4§ () =0

with coefficients meromorphic in the region @ and having no sing-
ular points in this region other than the poles and critical points,
at most, of the function R.

It remains to show that equatlon (14.4) is the only equation
of the form (14.1) which is satisfied by the function R, and that
the polynomial on the left side of this equation is irreducible. To
that end, let us assume that the function R satisfies an equation
of degree m in w, whose left side is the product of two poly-
nomials T,(2,w) and T,(2w) of degree <<n in w. The function R
would then satisfy at least one of the equations T'(z,w)=0 or
Ty(2,w)=0, which is obviously impossible, since this funetion is by
hypothesis n-valued. Therefore, if the function R satisfies equa-
tion (14.1), then the left side of this equation is an irreducible
polynomial in w. At the same time, in view of theorem 13.6, it fol-
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lows from this that at most one equation of the form (14.1) can
exist, which the given function R satisfies.

Theorem 14.2 can be completed as follows:
(14.5) If the left side of equation (14.1) is an irreducible polynomial,
then there exists only ome analytic function in the region G which
satisfies this equation.

Proof. Let us suppose that there exist two analytic functions,,
a p-valued function R; and a g-valued function R,, satisfying
equation (14.1). By theorem 14.2 and 14.3, the function %R,
satisfies a certain equation of degree p in w

(14.6) wP B, ()W ...+ B,(2)=0

with coefficients meromorphic in the region G. The left sides of
equations (14.1) and (14.6) are therefore, by theorem 13.6, co-di-
visible polynomials, and because p<p--g<n, the left side of equa-
tion (14.1) would be a reducible polynomial.

§ 15. Algebraic functions. In view of theorem 14.3, every al-
gebraic function (cf. § 12) satisfies an equation of the form
(14.1) with coefficients 4;(2) which are meromorphic in the entire
plane, and hence (ef. Chapter III, theorem 7.3) are rational func-
tions. This equation can then be wriften in the form

(15.1) By(#)w"+By(2)w" "+ ...+ By (2)=0,

where B;(z) are polynomials. Conversely, if an analytic funetion
R satisfies an equation of this form, then by theorem 14.2 this
funection is finitely valued and has in the entire plane no critical
points other than algebraic; moreover, by the same theorem,
the function R has neither critical points nor poles other than
those values of z for which either (a) equ?.tion (15.1) has mul-
tiple roots, or (b) the coefficient By(2) vanishes, or (c) the value
#=oo (this lost only if the degree of the coefficient By(z) with
respect to # is less than the degree of at least one of the remain-
ing coefficients B;(2),...,Bu{#)).

Summarizing, we obtain the following theorem, which con-
tains a2 new definition of an algebraic. funetion:

(15.2) In order that an analytic fumction R be algebraic, it is nec-
essary and sufficient that it satisfy an equation of the form (15.1)
with coefficients which are polynomials in the variable z. ,
18¥
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Equation (15.1) can be arranged according to powers of the

variable z, and then the coefficients will be polynomials in w.
From theorem 15.2 it therefore follows that

»

(15.3) The inverse of an algebraic function is also an algebraic func-
tion. ‘

We also see that

(15.4) Every algebraic function assumes each of its values only a
finite number of times.

EXERCISES. 1. Let § be the analytic function which is obtained by
continuing in the entire plane the holomorphic function F(2) given in the
half-plane 92>0 by the formula (Chapter V, § 8, p.233)

dg

F(z):f—————- (a>0).

GF—a )P

Verify that the only eritical points of the function F are —a, @, and oco;
these points are algebraic crifical points. )

Show that the inverse function F~* (see § 5) is a function meromor-
phic in the entire open plane (with a transcendental critical-point at infin-
ity); the open plane can be covered by a net of non-overlapping equilateral
triangles such that: 1° F' transforms each of the triangles of the net
in a one-to-one manner either on the half-plane 92>0, or on the half-plane
920, 2° at the vertices of each of the triangles of the net the function
&' assumes, respectively, the values —a, a and oo.

Deduce from this that the function %', and hence the function 3F, is
not algehraic (although the function F has only a finite number of eritical
points, all of which are algebraic).

. Bimilaxly, investigate the analytic function 2 which is obtained by con-
tinuing the holomorphic function W(z) given in the circle K(0;1) by the
formula (Chapter V, § 8, exercise 3)

% da
W= [

[Hint. For the continuation of the functions # and W apply the re-
flection principle of Schwarz — with respect to the straight line and the eir-
cumference, respectively.]

2. If an analytic function P has only two critical points agd these points
are algebraic, then the function P is algebraic (the theorem ceases to be true
when the number of critical points exceeds 2; cf. exercise 1).

3. The natural region of the algebraic function w=W(z) satisfying the
equation w*t-w--z=0 is the entire open plane, however, this function is not
single-valued. (This example points out that in the monodromy theorem 6.3

icm

§ 16 Riemann surfaces. 277

the agsumption that the natural region of the function is a simply connected
region would not be sufficient) (Kierst).

[Hint. Notice that the left side of the equation is an irreducible polyno-
mial and that for no z does the equation have a triple root.]

*§ 16. Riemann surfaces. Every analytic function R in the
annulus P(a;0,7) which:

1° is arbitrarily continuable in P(a;0,7),

2° has an ordinary point or at most an algebraic eritical point
at the point a,

3° cannot be extended to any larger annulus P(a;0,0) and still
preserve condition.1°® (i. e. it is not a branch of any function, ar-
bitrarily continuable in the annulus P(a;0,p) for p>7)

will be called a Riemannian element with centre a and radius v (or
with annulus P(a;0,7)).

Analytic functions arbitrarily continuable in the region which
is obtained by removing the point a from the plane are also in-
cluded among the Riemannian elements with cenire a.

A Riemannian element will be called smooth, if it is a single-
valued funection, and ramified in the contrary case. If a Riemannian
clement is an n-valued funection, then the number n—1 will be
called the order of ramification of this element. From conditions
1° and 2° it follows that every Riemannian element is a finitely
valued function. v

Let R be an anulytic function in a region G. Let & be any
branch of this function, arbitrarily continuable in na annular
neighbourhood P(a;0,7) and having at most an algebraic critieal
point at the point a; this branch determines a Riemannian element
with centre a and radius r,>r. Every Riemannian element thus
obtained will be said to be determined (at the point a) by the
function R. Of course, the set of elements determined by a
function R at a point & may be infinite or empty; it is certainly
non-empty if the point a belongs to the natural subregion of the
function (it then contains, among others, smooth elements), or
if the point & is an algebraic critical point of the funetion
(for then every branch of the function in a certain annular
neighbourhood of the point a determines a Riemannian element
at this point); at ordinary points (§ 11) an analytic function
determines only smooth elements.
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I € is a Riemannia,xf element with annulus P(a;0,r), then
for every positive‘ and finite number o<{r the set of elements de-
termined by & at the points of the circle K(a;0) will be called
a neighbourhood of the element €. With this definition of a neigh-
bourhood, the set of all Riemannian elements can be considered
as & an abstract space; we verify immediately that our definition
of a neighbourhood satisfies the fundamental conditions I and II
of §3 of the Introduction.

Since the annulus of a Riemannian element does not contain
critical points, every neighbourhood of the Riemannian element €
contains smooth elements exclusively, with the exception at most
of the element G itself, which may be ramified. Therefore, in the
space of all Riemannian elements, the ramified ~elements form an
isolated and closed set.

If € is a smooth element with annulus P(a;0,7), then the
function € is a single-valued function, and hence meromorphic
in this annulus; moreover, since it has at most an algebraic critical
point at the point a, by a suitable definition of the value of the
function @.at this point we obtain a function E(z) meromorphic
in the entire circle K(a;r). This circle i3 at the same time
the circle of the analytic element {H, a,}, which we associate
with the smooth Riemannian element &. Conversely, to each
analytic element {E,a} with eircle E(a;r) there corresponds in this
manner exactly one smooth Riemannian element with annulus
P(a;0,r), namely, the function E(z), regarded as a single-valued
analytic function in this annulus. The one-to-one correspond-
ence between the smooth Riemannian elements and the analytic
elements defined in this way is at the same time, as is easily ver-
ified, invertibly continuous and establishes a homeomorphism
between the space of analytic elements and the set of smooth
elements in the space of Riemannian elements. This remark en-
ables us to identify, for simplicity of expression, the smooth
Riemannian elements with the analytic elements corresponding to
them. From this remark it also follows, in view of theorem 10.1,
that every neighbourhood of a Riemannian element is homeo-
morphic with the ecircle; therefore theorem 10.1 may now be
formulated as follows:.

(16.1) If W is a meighbourhood of & Riemannian element €,
with order of ramification n—1 and cenire a, then a homeomorphic
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correspondence between the circle K(0;1) and the neighbourhood 1
can be established in such a way that to the point 3¢ X(0;1) corresponds
the element € ¢l with centre 2=a-+r3" (with cenire z=1/rs", if a=o0),
where v is a positive constant depending on the neighbourhood 1.

The correspondence of the preceding theorem will be called
canonical. The existence of such a correspondence enables one to
establish an angular metric in the space of Riemannian ele-
ments. We shall prove at first the following corollary of theo-
rem 16.1:

(16.2) If U, and U, are, respectively, meighbourhoods of the
elements €, and €y, such that U=U;-U,50, and D, and D, are
the respective camonical mappings of these neighbourhoods onto the
circle X (0;1), then associating with each other the points 3.6 G;=0(U)
and 3.€G=0,(N), which in the mappings D, and O, correspond to
the same element € ell, we oblain a conformal correspondence between
the open sets Gy and G, in the circle X(0;1).

Proof. If Cell, 3,=0,(€) and 3,=0,(€), then in agreement
with 16.1 the centre of the element € is the point

(16.3) 8y +T7y35 =1+ 7131

where a, and a,, respectively, are the centres of the elements €,
and &,, n—1 and m—1 the respective orders of ramification
of these elements, finally 7, and r, constants different from
zero. Hence, denoting by &(3,) the point 3,6@, associated with
the point 3,6@, in the correspondence considered, we verify first
directly that the function @(3,) is uniquely invertible and contin-
uous in @,, and next, that the relation 3,=®(3,) implies equation
(16.3). With the view of proving that this correspondence is conform-
al, and hence that the function @ is meromorphic in &,, we shall
distinguish three cases:

1° m=1. Then, from (16.3), we have directly
Oy — 71 3?.
T2
2° §,—=E,. Then also a;=a,, m=n, and by (16.3) the fune-

tion &(3,), being continuous, has the form 3,=®(3,)=Fk3,, where
% is a constant coefficient (|k|=/(ry/rs)"™).

32=P(3)=
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3° m>1 and G,~@E,. Then the element E, is ramified; there-
fore it certainly does not belong to U;, and hence to U. Conse-
quently, the set &, does not contain the point 3,=0 and in the
equation
4y — Oy 7137
(@ ="

the left — and hence also the right —side does not vanish for any

point 3,6G,. The function @(3;), being continuous in G, is there-

fore a holomorphic branch of m]/al—a2+-r15’1‘ [r3™ in the open set G,.

In the preceding proof we have assumed that the. points a,
and a, are different from .co. The ecase when these points are at
infinity is treated similarly.

Let us now consider in the space of Riemannian elements an
arbitrary element &, and a curve £ emanating from &, (i. e. with
initial point at G,; see Imtroduction, § 12). Let I be a neighbour-
hood containing the element &, (not necessarily as a centre, how-
ever), and let 3, and L denote, respectively, the point and the curve
into which ¢, and £ are transformed under a canonical mapping
of the neighbourhood U onto the circle X(0;1); if the curve {

goes beyond the neighbourhood U, then we replace £ by a suffi- .

ciently small part of it emanating at &,. We shall say that the
curve £ emanating from the element &, has a definite direction if
the curve L has a definite direction from the point 3, (cf. Chap-
ter I, § 13). In view of theorem 16.2 this property does not de-
pend on the choice of the neighbourhood U. If 8, and £, are
. curves emanating from the same element §, and having definite
directions, and 3,, I, and I, are, respectively, the images of the
element &, and the curves £, and £,, under 4 canonical map-
ping of an arbitrary neighbourhood U containing E,, onto the
circle K(0;1), then by the angle between the curves £, and £,
at € we shall mean the angle between the curves L, and L, at
the point 3,. By theorem 16.2, we see again that this angle de-
pends only on the curves £, and £,, and not on the choice of
the neighbourhood . Establishing in this manner a measure of
an angle in the space of Riemannian elements, we obtain from
theorem 16.2 the fundamental metric property of canonical map-
pings of neighbourhoods:

(16.4) A eanonical mapping of a meighbourhood of a Riemannian
element onto the circle X(0;1) maps this neighbourhood in a homeo-
morphic manner, preserving the angle between curves. '
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The set of Riemannian elements determined by an analytic
function R (in the entire plane) is called the Riemann swrface of
this function. This set, as we see immediately, is simultaneously
2 continuum and a region (i.e. it is open, closed and connected). We
also easily prove that the Riemann surfaces of analytic funetions
coincide with the components of the space of all Riemannian
elements. ‘

If G, is an element of the Riemann surface of an analytic
function R, then each of its neighbourhoods is contained emtirely
in this surface; in fact, if a Riemannian element € belongs to
some neighbourhood of the element §,, then — except at most
for the case when E=GE, — the element € is a smooth element
and the analytic element corresponding to it belongs to R. A Rie-
mann surface can therefore be considered as an abstract connected
space with a fixed angular measure and system of neighbourhoods,
which by theorem 16.4 can be mapped in a homeomorphic manner
and with a preservation of angles onto the circle K(O;_l). One may
propose the problem whether every abstract space having thfase
properties can be considered as a Riemann surface, or as & region
on a2 Riemann surface. The precise and afirmative solution of this
problem is the essential part of the famous theorem “on unifor}n-
ization”. The scope of this book does nob permit the consid-
eration of these matters which belong to the deeper and more
beautiful results of the Theory of Functions?). N

As in the space of all Riemannian elements, the ramified
elements on the Riemann surface of an arbitrary analytic funetion R
form a closed and isolated set, while the smooth elements form
a set homeomorphic with the function R itself. Therefore by theo- n
rem 8.1 every Riemann surface contains a denumerable and eve-
rywhere dense set of smooth elements. Using this fact, we spalﬂ gshow
that the set of all ramified elements of a Riemann surface is of most
denumerable?). : ) .

Tirst of all we note that the set of all ramified elements with
a common centre is at most denumerable. To see this it is enough
to seleet from a neighbourhood of each of these elementska, smooth

1 T;ne reader will find a detailed djscussim% m the :wor]z 20;’ H'%Waizo]i
Die Idee der Riemanmschen Fliche, 2nd ed., Lea})zg-Berhu 1 é _‘s ° Sm‘
T. Radé, Uber den Begriff der Riemannschen Fliche, Acta Litt. Scient.
ged 2 (1925), pp. 101-121.

2) This theorem is used in th
l.e).

e triangulation of a Riemann surface (Weyl,
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element belonging to the denumerable and everywhere dense set
mentioned above and observe that this selected elements are all
different. In particular, therefore, the set of all ramified elements
with centre at the point oo is at most denumerable. It remaing
to show that the set of all ramified elements with centres ditferent
from oo is also at most denumerable.

To show this, let us associate with every such element § of
the Riemann surface that neighbourhood of € whose radius is half
the radius of the annulus of €. If we show that all this neighbour-
hoods are disjoint, our assertion will be established by considering,
as above, a denumerable and everywhere dense set of smooth ele-
ments. Let us therefore suppose that the mneighbourhoods of two
ramified elements €, and €, €,#E,, have an element in common.
Let K(ay, ) and K(a,,r,) be the circles of the neighbourhoods
under consideration and let e. g. 7,=>7,. The annuli of €, and G,
are therefore P(a;0,27;) and P(ay;0,27,), and it is immediately
seen that K(ay,2r;) contains®the point a,. Since neighbourhoods
of € and E, have elements in common, it follows that &, belongs
to a neighbourhood of ;. But a neighbourhood cannot contain
more than one ramified element. Hence &;=@,, contrary to
assumption, and this proves our assertion.

Therefore, identifying, as above, the smooth Riemannian
elements with the analytic elements corresponding to them, we
may say that the Riemann surface of an analytic function R
results from the closure of the set of analytic elements of the
funetion R by adding to it at most a denumerable number of
ramified elements. For example, the Riemann surface of the

k
funetion 1/;, where k is a positive integer, results from the addition
to this funection of two ramified elements of order k—1 with centres
0 and oo; the surface obtained in this way is homeomorphic with

the plane (closed), while the function ’f/z itself is homeomorphic
with the plane minus two points; the function logz is identical
with its Riemann surface and homeomorphic with the open plane
(the critical points 0 and oo of the function logz are transcendental
and the function does not determine Riemannian elements at these
points); the Riemann surface of the-function ]/@ resu1t§ from
the addition to this function of one ramified element of the first

order with centre 1, and it is also homeomorphic with the open
plane.
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It is easy to see that in order that an analytic function be al-
gebraic, it is mecessary and sufficient that its Riemann surface be
a compact set. In this way we obtain a definition of an algebraic
function based on an elementary topological property of its Rie-
mann surface.

Very frequently by a Riemann surface of an analytic function we
mean a certain intuitive geometrical model of the behaviour of the funetion,
homeomorphic with the Riemann surface understood in the sense of the formal
abstract definition given above. We give here constructions of such models
in a few simple cases.

1° The functionlogz We cut the plane along the positive real axis [0, + co]
{Fig. 25) and consider the sequence {a,}, _,,, — infinite in both direc-
tions — of identical replicas of the plane thus cut. We next join all these
replicas in this manner: we remove the points 0 and oo, and we paste
the negative boundary of the cut of the replica a, (where n=...,—1,0,1,2,...)
with the positive boundary of the cut of the replica a@,,. The model ob-
tained (Fig. 26) can be considered as a pictorial representation of the Riemann
surface for the function log 2, illustrating the behaviour of this function. Indeed,
exactly as we always pass from one element of logz to another when making
a “circuit” about the point 0, so upon making a circuit about 0 on the sur-
face obtained, we pass from one point of the surface to another, situated “above”
or ‘“below”, according to the sense of the circuit.

2° The function ]/; ‘When making a circuit about the point 0, e. g. along
a circumference with centre 0, we either return to the same element, or we
pass to another, according as the number of circuits is even or odd.

To represent this locus we construct a model of the Riemann surface ¥z,
joining two replicas a,,a, of the plane, cut as in example 1°, in such a way
that the negative boundary of the cut of the replica a, is “pasted” to
the positive houndary of the cut of the replica a,, and the negative bound-
ary of the cut a, with the positive boundary of the eut a,; the points 0
and oo, which are the (algebraic) critical points of the function 'z, are not
thereby removed (Fig. 27). With the exception of the boundary points of
the cuts, none of the points of the planes a, and a, considered are *“pasted”
together. Of course this ¢“pasting” cannot be realized in a three-dimensional
space; nevertheless the geometrical (topological) character of the model ob-
tained and its relation of the function ;/ 2 is clear. In particular, we see that
if the replicas a,,a, are ‘“pasted” along corresponding (and not opposite)
boundaries, the model obtained will be homeomorphic with the eclosed

“plane, i. e. with the surface of a sphere.

3° The funetion yz(z—1). By a continuation of an element of this func-
tion along a circumference enclosing only one of the critical points O or 1,
we pass — after ome cirecuit — to another element. On the other hand, by
a continuation along a circumference enclosing both points 0 and 1 we always
return to the initial element (Chapter I, § 11, exercise 6). To depict this
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" behaviour let us consider two identical replicas b, and b, of the plane cut along
the segment [0,1]. We “paste” (retaining the points 0 and 1) the negative
boundary of the cut b, with the positive boundary of the cut b,, and the neg-
ative boundary of the cut b, with the positive boundary of the cut &,. The
model obtained (Fig. 28) is the model of the Riemann surface of the func-
tion Yz(z—1) and is homeomorphic — as we easily verify — with the surface
which would be obtained by <pasting” the replicas considered along the
corresponding (and not the opposite) boundaries of the cuts. This surface,
in turn, is homeomorphic with the surface which would be obtained by <past-
ing” two identical spherical surfaces along identical circular openings, 4. e.
with a surface which is obviously homeomorphic directly with a spherical
surface. Thus we see that the Riemann surface }Yz(z—1) is, as in the case

of the Riemann surface ]/E, homeomorphic with a spherical surface.

a’l a'}
= a 0 1
0 a|
@,y

Fig. 25. Fig. 26. Fig. 27. Fig. 28.

@

Fig. 29: Fig. 30. Fig. 31.

4° The funection ]/z(z—l)(z—2). “We consider two identical replicas of

the plane, ¢, and ¢,, cut along the segments [0,1] and [2, +oo]. These repli-
cas, as in the preceding constructions, are “pasted” along the opposite bound-
aries of the corresponding cuts. We obtain a model of the behaviour of the ana-

lytic function j/z(z—l)(z-—-2), which is a model of its Riemann surface. By
means of transformations analogous to those used in example 3° we verify
that the Riemann surface obtained is identical with the surface which we
should obtain by “pasting” two spherical surfaces (which we must here imag-
ine to be made of plastic material) along two cirenlar openings (Fig. 29);
in other words, the surface conzidered is homeomorphic with a spherical sur-
face with one ear (handle) (Fig. 30), or — equivalently — with the torus, 1. e.
the surface generated by revolving a circumference about an axis lying in the
plane of this cireumference but not cutting ‘it.

“In this way one can construct generally a model of the Riemann surface
for the function y/ (2—2y)(z—2,)...(2—2,), where 213%2,...,%, i8 an arbitrary

icm

s 186 Riemann surfaces. 285

system of n distinct points. Sueh a surface for n=2k—.—1 and n=2k (vyhere
k is a positive integer) is homeomorphic with a spherical fsmf?,ce having &k
ears (handles) (Fig. 30 and 31), or a forus with % “opennilgs‘. Inste.ad of
a square root one could consider here, of course, a rooi.: with an arbitrary
integral index. It can also be proved, generally, (and this df)es not.present
great difficulties) that the Riemann surfaces of all algebraic fonctions re-

duce to these topological types.
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