CHAPTER V
CONFORMAL TRANSFORMATIONS

§ 1. Definition. By a single-valued conformal tramsformation of
an open set we mean a uniquely invertible transformation of
this set, defined by a meromorphic function.

We use the term “single-valued” generally, in order to
distinguish these transformations from econformal transformations
defined by multiple-valued analytic functions (see Chapter VI).
In this chapter, however, we shall be concerned exclusively with
single-valued mappings, so that instead of “single-valued
conformal transformation” we shall say, for brevity, “con-
formal transformation”.

From theorems 12.2 and 12.3, Chapter III, it follows that
under a conformal transformation an open set is transformed
into an open set, a region into & region, and that the inverse trans-
formation of a conformal transformation is also conformal. Further-
more, it is evident that if {=F(2) is a conformal transformation
of an open set @ into the set H, then for every function W({),
holomorphic and nowhere vanishing in H, the existence of
a branch of logW(¢) in H is equivalent to the existence of
a branch of log W[F(2)] in G. Hence, applying theorem 10.2,
Chapter IV, we deduce that ‘ y

(1.1) A conformal mapping transforms an open set not separating the
plane into an open set which does not separate the plane ; in other words,
the non-separability of the plane by an open set, and therefore, in par-
ticular, the simple commectivity of a regiom, is am tnvariant of con-
formal tramsformations.

In the same manner, applying theorem 12.6, Chapter IV, we prove that

(1.2) The degree of connectivity of a region is an invariant of conformal trans-
formations.
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It should be noticed that the properties mentioned in theorems 1.1 and
1.2 are invariants not only of conformal transformations, but more generally —
of homeomorphic transformations.

The geometrical significance of conformal transformations is
expressed by the following theorem, which is associated with the
concepts introduced in Chapter I, § 15:

(1.3) In order that a uniquely imvertible and continuous transforma-
tion w=W (2) of an open set G be conformal, it is necessary and suffi-
cient that it be a similarity transformation at every point of this set,
with the exception, possibly, of the point co and the point z at which
W (2)=o00 — when these points belong to the set G. '

Proof. The necessity of the condition follows immediately
from theorem 15.8, Chapter I, gince by theorem 12.1, Chapter IIT,
for every function W(2), meromorphic and uniquely invertible
in @, we have W'(z)#0 at every point ze@, with the exclusion per-
baps of the two exceptional points mentioned in the theorem. Con-
versely, if the continuous and uniquely invertible function W-(z)
defines in @ a similarity transformation everywhere, with the ex-
ception at most of a finite number of points, then, again by theorem
15.8, Chapter I, this function is holomorphic in & everywhere with
the exception at most of a finite number of points, and therefore —
in view of continuity (cf. ChapterIIL,§6, p.145) — is meromorphic
in the entire set G.

EXERCISES. 1. The function w=Logz transforms conformally the
open plane from which the negative real axis has been removed, into the
unbounded strip —r<Jw<m. The function w=2, where 0<a<l, transforms
conformally this same region into the angular region —ax<CArgw<am.

2. The function w=(2+1/2)/2 transforms conformally the annulus
P(0;0,1), as well as the annulus P(c0;0,1), into a region which is obtained
by removing the segment [—1, +1] of the real axis from the open plane; the
circumferences C(0;7), where rs1, are transformed into confocal e]]ipses
(the circumference C(0;r) is transformed into the ellipse with foei —1, 41,
and sum of axes equal to 2r or 2fr, depending on whether r>1 or r<l1).

3. If P(z) is a polynomial of degree <m, and [P(z)|<<M for —1<z1,
then |P(2)|<<Mr™ on the ellipse with foci —1, 41, and sum of axes equal to
2r (8. Bernstein). )

[Hint. See example 2; estimate (see Chapter 111, theorem 12.6) the ab-
solute value of the polynomial

3"P[%(a+§)] for = [zl=r.]
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4. The function w=2z/(1—7)* transforms conformally the circle K(Q;U

into the region which is obtained by removing the real points w<{—1/4 from
the open plane.
[Hint. w=1/5, where 3= (1—g)*fe=2+1/2—2; cf. example 2.]

G =T
\ =

9?:)-%

)
/-1

5. The function 4 =cosz trans-
forms conformally the unbounded
strip 0<Rez<m into the region which
is obtained by removing the real
points w>1 and w<<—1 from the

Fz{ g—
1< open plane; the straight lines Wz=¢

(where 0<e<m, c#mn/2) are trans-
formed into confocal hyperbolie
arcs, and the straight line Rz=x=/2
into the imaginary axis (see Fig.
18).

Pig. 15.

§ 2. Homographic transformations. As follows directly from

the definition of a homographic transformation (Chapter I, § 14), '

every such transformation is a conformal transformation of the
plane (closed) into itself. This theorem can be inverted:

(2.1) BEwery conformal transformation of the plane E, or, more generally,
of the plane without one point, is a homographic transformation.

Boery conformal transformation of the open plane E, into itself
18 o linear tramsformation.

Proof. Let W(2) be a meromorphic function uniquely in-
vertible in the plane lacking the point a; let K denote a circle nob

containing this point inside or on the circumference. The set W(K) ’

is an open set and the function W(z), being uniquely invertible,
does not assume in the exterior of the circle K any value belong-
ing to W(K). Therefore, in view of the Casorati-Weierstrass theo-
rem (Chapter ITI, theorem 6.1) the point & is a removable singular-
ity, or at most a pole of the function W(z), which is then ex-
tended to the entire plane as a meromorphic and — as is evident

immediately — uniquely invertible function. Hence (cf. Chap- .

ter III, theorem 7.3) the function W(z) is a rational function, <. e.
a function of the form P(z)/Q(z), where P(z) and Q(z) are polyno-
mials without common roots. Since the function W(z) can as-
sume every value, and in particular 0 and oo, at most once,
each of the polynomials P(2) and @(2) has at most one root, and
in view of theorem 12.1, Chapter III, these roots cannot be mul-
tiple. The functions P(z) and @Q(z) are therefore at most of the first
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degres and the function W(z) has the form (az--b)/(ce-d); the

" non-vanishing of the determinat ad—be is a direet consequence

of the fact that the function W(z) does not reduce to a constant.

The second part of the theorem follows immediately from the
first, since for a homographic transformation transforming an open
plane into itself, the point co is obviously an invariant point.

As was already proved in Chapter I (§ 14, theorem 14.9), under
a homographic transformation, circumferences (proper and improp-
er) are transformed into circumferences. We shall complete this
theorem as follows: '

(2.2) If €y and C, are two circumferences (proper or improper), and
2, and 2, two points not lying on Cy or (', respectively, then there al-
ways exists a homographic transformation which transforms € into
C, and z, into 2,.

Proof. Since every circumference can be transformed into the
real axis by means of a homographic transformation, we may assume
at once that both of the given circumferences C, and C, coincide
with this axis.

Let 2, and 2, be a pair of points not on the z-axis. If these
points lie on a straight line parallel to the axis, then the translation
w=2-+ (2,—2,) is the desired transformation, since it fransforms the
real axis into itself and the point z; into the point 2,. However,
if the straight line joining the points z, and 2, cuts the real axis at
a point z,z%co, then these conditions are satisfied by the linear
transformation

L By
w=2;+ ——— (2—2),

which is a dilation with centre z,, or a dilation with centre 2, and

a rotation through the angle =, depending on whether the points

2,,2, lie on the same or on different sides of the real axis.
EXERCISE. Generalize theorem 2.1 in the following way: every con-

formal transformation of the plane from which an arbitrary denumerable
closed set has been removed, is a homographic transformation.

§ 3. Symmetry with respect to a circumference. Two points p
and ¢ will be said to be symmetric with respect o a _cirewmference
C if they coincide and lie on this circumference, or if every circum-
ference passing through these two points is orthogonal to the cir-
cumference C, 4. ¢. intersects this circumference at a right angle.
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It is evident that in the case when the circumference C is im-
proper, 4. e. a straight line, this definition is equivalent to the usual
definition of symmetry with respect to a straight line. Let us
also note that the centre of an arbitrary circumference ¢ and the
point co are symmetric with respect to ; for every circumference
passing through the point oo is a straight line, and hence, if it passes
in addition through the cenfre of the circumference ¢, then it
cuts this circumference at a right angle.

Furthermore, since homographic transformations are con-
formal, angles are preserved, and, moreover, circumferences are
transformed into eircumferences, it follows that symmetry with
respect to a circumference is an invariant of homographic tramsfor-
mations, 4. e. if the poinis p, ¢ are symmetric with respect to the
circumference C and if under a given homographic transformation
the points p, q and the circumference C are transformed into the
points p', q' and the circumference O, respectively, then the points
p', g are symmeiric with respect to the circumference C'. Transform-
ing an arbitrary circiumference into a straight line, e. g. into the
real axis, we deduce that fo every point there corresponds evactly
one point symmetric to it with respect to the given circumference.
Symmetry with respect to a circumference vyields therefore a
one-to-one transformation of the plane into itself. We shall giv
an explicit formula for this transformation. )

To that end, let p, ¢ (p+#gq, p 700, g#o0) be points symmetric
with respect to the proper circumference O'=C(a;R). Since all the
circumferences passing through these two points are orthogonal
with respect to the circumference O, it follows, in particular, that
the straight line joining the points p and ¢ is perpendicular to the
circumference € and hence passes through its centre a. On the other
hand, let us consider an arbitrary proper circumference C,, passing
through the points p and ¢. This circumference is also perpendicular
to the circumference C' and therefore, as is easily seen, the centre
a of the circumference ¢ lies outside the circumference Op. It
follows from this that the points p and ¢ lie on a straight line
passing through a and on the same side of the point a. And since,
denoting by b the point of intersection of the circumferences ¢
and Gy, we have R*=|b—a|’=|p—a|-|g—a|, therefore finally

2 2

(p—a)=

(3.1) g—a= — .
[p—al? p—a
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It is seen immediately that this formula extends to the tempo-
rarily excluded cases when p=q, or when one of the points p, ¢
becomes oo (and hence when the second point coincides with the
centre of the circumference C). In particular, taking a=0 in (3.1),
we obtain g=R*/p as the formula for symmetry with respect to
the circumference C(0;R); this symmetry is therefore the product
of an inversion and a symmetry with respect to the real axis.

We say that the set E is symmetric with respect to the circum-
ference C if every point symmetric to any point of the set E
with respect to the circumference ¢ also belongs to this set. Since
symmetry with respect to a circumference is, as we have seen, an
invariant of homographic transformations, we immediately obtain
from Schwarz’s principle of reflection for a straight line (Chapter I,
theorem 8.6) the principle of reflection for a circumference in the
following form:

(3.2) Let K be an arbitrary circle, C the circumference of this circle,
G an open set symmetric with respect to C, and finally W(2) a function
continuous on the set G-K, meromorphic in ils interior (i. e.
in the set G-K) and assuming at those points of the set G-K which
lie on the circumference O values lying on a circumference I

The function W (2) can then be estended as a meromorphic func-
tion to the entire set G in such a way that at the poinis of the s G
symmetric with respect to the circumference C it assumes values
symmetric with respect to the circumference I

EXERCISES. 1. The general form of a homographic transformation
which transforms the half-plane ‘Rz>0 into the circle K(0;R) in such
a way that the point a of this half-plane is transformed into the point O,
is given by the formula w=Re? (z—a)/(z+a@), where 6 is an arbitrary real
number.

The general form of the analogous transformation for the half-plane
92>0 is given by the formula w=Re" (z—a)/(z—a&). "

2. Verify that the transformation
(142 —i(1—2"°
(*) W=~ 5 )
(1 +2Fi(l—2")
where m is a positive integer, transforms conformally the circular sector
0< |z <1, 0<Arg z<mfn into the circle K(0;1). This transformation, as a ho-
meomorphic transformation, extends to the closure of the sector. Distinguish
the ares of the circumference C(0;1) which correspond in this transformation
to the arc and radii bounding the given sector.
3. For n=1/2 the formula (¥), exercise 2, defines a conformal fransfor-
mation of the circle K(0;1) mirius the segment {0, 1] (radius) into the complete
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circle K(0;1) (¢** is to be interpreted here as any one of the two holomor-
phic branches of Jz on the plane minus the positive real axis).

4. If ay,a5....,a,,... are roots of the function Wi(z), holomorphie,
bounded and not vanishing identically in the half-plane Nz>0, and Oy
denotes a sum extended ovel those values of » for which |a,|>=7r, then for

every r>0 the series )Z 7{5— is convergent; snmlarly, if Z(’) denotes a sum
n ‘n

extended over those values of # for which |[a,/<Cr, then for every r>0

the series Y'()Na, is couvern‘ent (Carleman).

[Hint. See Chaptel IV, § 4, exercise 1; apply the transformation of the
half-plane ®z>0 into the circle K (0;1) using the formula of exercise 1.]

' 5. Prove a following generalization of Lerch’s theorem (Chapter III,
§ 8, exercise 2):

It the funection f(t) is finite and continuous in the interval [0,b5] and if
b

[ jt)redt=0 for k=0,1,..

) ., where {n,} is an increasing sequence of real num-

1
bers such that 2;1—:—]-00, then the . function f(t)
kg
zero (Mintz).

§ 4. Blaschke’s factors. If three points 2, 2,, 2, are given, at

least two of which are distinet, then the quotient ?gfg is called
B3 —Rsy

the ratio of these three points and we denote it by (2,,2,,2,).

If four points 2, 2,, 25, 2, -are given, no three of which coincide,

then the quotient

’ Rg— =Ry By—%
(21:22,23;24) (211223“3) (21722724) 1:4——‘}

YRy By—%p
is called the cross ratio of these four points. ’

It is immediately evident that the ratio of three pomts (and
therefore a fortior: the cross ratio of four) is an invariant of lin-
ear transformations; moreover, the cross ratio of four points is
an invariant of inversion. Hence by theorem 14.8, Chapter I,
the cross ratio is an invariant of homographic transformations.

Let us consider two points p, ¢ symmetric with respect to the
real axis. Then for every real point z we have |(p,q,2)|=1, and
therefore for every pair of real values 21,24,

|(p,q,z1,32)| =1,

Since sym}netry with respect to a circumference is an invariant
of homographic transformations (cf. § 3, p. 218), therefore trans-

is identically equal to
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forming the real ax1s into an arbitrary cireumference ¢ we obfain
the theorem:

If p and q are points symmetric with 9espect to the czrcumference
C, then
}21*—1’:2‘22 b
EN IRl )
for every pair of points 2, 2, of the circumference; in other words,
the ratio

g—p

2—q
has a constant absolute value when the point
ference C.

Thig value can be easily calculated by substituting for z any
point of the circumference C, e.g. the point of intersection z, of
the circumference ¢ with the half-line originating at its centre and
passing through p. Taking for simplicity C=C(0;R), we find
z=Rp/|p| and (cf. § 3, p. 219) q=R?/p=R*p/|p*. Substituting these
expressions for z and ¢ into the ratio (2—p)/(z—q), we obtain
IplJR as the constant absolute value of this ratio. It follows from
this that
(£.1) If p 4s an arbitrary point which does mot lie on the circum-
ference C(0;R), then the holomorphic function
(L2) o=t Por _El 2o

bl =—Ep  p p—FE
has on the circumference C(0;R) a constant absolute value which is
equal to R, and hence transforms this circumference inio diself ;
moreover, it vanishes at the point p, and hence trangforms this point
into the centre O of the circumference C(0;R).

The existence of a homographic function having these prop-
erties follows from theorem 2.2; however, we gave it here explic-

z traverses the circum-

Jitly in the form of the expression (4.2). This expression is

frequently called Blaschke's factor (corresponding to the point p),
gince it appears as a factor in certain produets connected with the
roots of functions holomorphic in 2 cirele.

EXERCISES. 1. If a funetion W(z), continuous on the closed circle
K(0;1) and meromorphic in its interior, has a “constant absolute value (fi-
nite and different from 0) on the circumference of this circle, then
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r—a z—a,) (bya—1) b,2—1)
SN o NPT ot NI U @,2—1)
(@,2—1) (@,2—1) (2—by) (z—0,)
where O is a constant, and ay,...,q,, as well as D;,...,b,, denote the roots

and poles, respectively, of the function T in the circle K(0;1) (every root
and pole is written as many times as its multiplicity indicates).

2. The general form of a homographic transformation w=W(z), which
transforms the circle K(0;R) into itself in such a way that the point o
of this cirele is transformed into the point b, is given by the formula

w—> o R0

1—bw/B: ~ 1—azR*

where a is an arbitrary real number.
3. In order that the cross ratio of four points be real, it is necessary
and sufficient that these points lie on one circumference (proper or improper).
4. If z,, 2, are two points of the circle X(0;1), then the non-Euclidean
distance between these points is defined to be the number

(*) D(21,20)=Log (21,22, 81,0l

where ¢, and {, denote the points of intersection of the circumference C(0;1)
with the circumference ((z,,%,) pasging through the points #,, 2, and ortho-
gonal to the circumference C(0;1). Such a circumference always exists;
moreover, it is uniquely defined if z;542,; and if 2,=2,, then independently
of the choice of the circumference C(2,,%,) the formula (*) gives D(zy,2,)=0.
Notice that the value of the expression (*) does not depend on the order
of the points {;, £,. )

The non-Euclidean distance is an invariant of the homographic transfor-
mationg of the circle K(0;1) into itself; 4. e. if under a homographic trans-
formation of the circle K (0;1) into itself the points 2,2, are transformed
into the points w;, w,, then

] D (wy,we) =D (2,,2,).
Formula (*) ean be written in the form
Lh(es,2)
1—h(2;,2,)°

(in this formula the auxiliary points {,,{, no longer appear).

2y —8

D(Zl,@=L0g where h(z,2,)=

1—22,

- § 5. Schwarz’s lemma. In § 2 and § 4 homographic transforma-
‘tions of & circle into a circle were considered. We shall now prove
that every conformal transformation of an open circle into an open
circle (in particular, every conformal transformation of a circle
into itself) is homographic. The proof of this theorem is based on
the following lemma of Schwarz:

(5.1) If W(z) is a function, holomorphic and bounded in the circle
K=K(0;R), such that W(0)=0 and |W(2)|<M for zeK, then:
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M
(5.2) Iﬁ”anh<3§:
JI/
(5.3) W< oy cex,

and if W (0)=M|R, or if [W(=)|=M|z|/R for some point z£0
of the circle K, then the function W(z) is a Unear function of the
form ¢ Mez|R, where a is o real number.

Proof. Let F(2)=W(z)/z for zeK (at the point 0 we take
F(0)=W’'(0)). Since W(0)=0, the function F(z) so defined is holo-
morphic in K. Let us note, first of all, that

M .
|F(zo)|<~j8~ for every point z,eK.

In fact, if zeK and |z|<r<R, then denoting by M(r) the
maximum of [F(2)]| on the circumference C(0;r), we have by the
maximum modulus principle (Chapter ITI, theorem 12.6) the ine-
quality |P(z)| <M (7)<M/r, and passing to the limit as r—FK, we
obtain |F(2,)|<M/R. And since, except for the case when the func-
tion reduces to a constant, |F(z)| does not attain its maximum

" at any point of the circle K (cf. Chapter III, theorem 12.5), either

|F(2)|<M/R in this entire circle, and hence |W'(0)|<M/E and
|W(2)|<M|z|/R for zeK and 2520, or at a certain point z we have
|[F(2)|=M/R and the function F reduces to a constant C, where
obviously |C|=M/R, i.e. C(=¢“M|R, where a is a real number;
we then have W(z)=2F(z)= Ce=c"Mz/R.

(5.4) If w=W() s a conformal transformation of the ocircle
E=X(a;R), where aoo, into itself, and if in addition W(a)=a,
then this transformation is a rotation with cenire a.

Proof. We may obviously assume that a=0. We then have
W(0)=0 and W1(0)=0 as well as |W(z)|<R and |[W'(2)|<E
for zeK, where the inverse function W(z) is also holomorphic.
Therefore, denoting by %, w, & pair of points corresponding to
each other in the transformation w=W(2), we obtain by succes-
sive application of Schwarz’s lemma 5.1 to the functions W(z)
and W(z)

wel Lleol as well as 2] lwol,
0 0
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whence we have. wy =12/, % 6 |W(z)l=[%] and, again by
Schwarz’s lemma, W (2)=¢'%, where a is a real constant. The trans-
formation under consideration is therefore a rotation.

(5.5) Bvery conformal transformation of an open circle into an open
circle is a homographic transformation.

Proof. Let the transformation W transform conformally the
open circle K,=X(a,;R;) into the circle K,=K(a,;R,), and let
b=W(a,). Furthermore, let (cf. theorem 2.2) H be a homographic
transformation such that K,=H(K,) and a,=H(b). Hence taking
G=HW, we have K,=G(K,) and a,=G(a,). Therefore, if a,7oco,
then by theorem 5.4 the transformation G is a rotation and,
consequently, the transformation W=H"'G is homographic. The
case a;=oo is reduced to the case a,=0 by an inversion.

Schwarz’s lemma, although very simple, is the basis of various impor-
tant estimates. As an interesting application of this lemma we give here
Radd’s simple proof of Study’s theorem on conformal transformations of
a circle into convex regions. (The set F is said to be conver if every segment
whose end-point helong to the set F, is contained entirely in this set.)

(5.6) StupY's THEOREM. If a transformation w=W (2) transforms conformally
the cirele K=K(0;1) into a convex region G, then every circle K,=X(0;7),
where 0<r<1, is also transformed into a convexn region.

Proof. We may assume that W(0)=0 (in the contrary case we should
replace the function W(z) by W(z)—W(0)). Let 0<r<1, and &,=W(XK,). To
prove the convexity of the region @, it is necessary to show that when w,,w,

are two points of this region, then every point w, of the segment [w,,w,]
also belongs to @,.

To that end, let 2;,z, be points of the circle K, such that wlﬁW (241),
wy= W (2,). Obviously we may assume that
(5.7) 2] <I2al,
(5.8) |25 > 0.

Furthermore, let ¢, be a real number such that

(6.9) 0<ty<<1, Wo=toW; + (1 —1to) Wy =1, T (21) + (L —15) T (2,)-

In virtue of (5.7) we have 22,/2,¢K, and so W(zzllz,,‘)eW (K)=@, for every
point zeX. And since the set @ is convex, taking

(5.10) F(2)=t, W (22,/25) + (1 —1,) W (2),

we shall have F(z)e@ for zeK. The function WF(z) is therefore defined in
the entire circle K, and for every zeX we also obviously have W™'F(z)eK,
i.e. W™ F(2)[<1. Moreover, in view of W(0)=0 as well as of (5.10), we have
WF(0)=W~1(0)=0. Therefore, by Schwarz’s lemma, | *F(z)|<|2| when-
ever [z|<1, and hence, in particular, |W™'F(z,)|<|e,|<r. And since, in view
of (5.10) and (5.9), we have F(r;)=0,, it follows that |W~ (w,)|<r, 1. e.
W"l(wo)EKr, or, equivalently, woeG,.
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EXERCISES. 1. If W(2) is a function holomorphic in the circle

E=K(0;R), and |W(z)|<<M<oo for zeK, then

Wi{z)—W(0) < 12l
M-W(O)W(), ME
for |2|<R, and, if the equality holds at any point 250 in the circle K, then
this equality holds identically and W(2) is either a constant or a homograph-
ic function of the form [e®M*z+4+ MRa])/[MRE+¢e*“Gz], where a is a real num-
ber and |a|<M. (Taking W(0)=0, we obtain Schwarz’s lemma.) -

9. For every real number M<1 there exists a number P< 1, depending
only on M, such that if W(z) is a function holomorphic in the circle K(a;R),
satisfying the conditions |W (z)|<1 for zeK(a;R) and | W (a) | <M, then |W (2)|<P
for every z¢K(a;E/2).

3. Generalize the result of exercise 2 in the following way: Let G be
a region containing the point 0, FCG a closed set, and M<1 areal number.
Then there exists a number P<1 depending only on &, F and M, such that
if W(2) is a holomorphic function in @ satisfying the conditions W (=)<l
for ze¢G and |W(0)|<M, then {W(2)|<P for zeF.

4. Let W(z) be a function holomorphic in the circle K=K(0;1), such
that |W(2)|<1 for ze K. Then, if z,¢ K, z,¢ K, w,=W (2,), wy=W(2;), we have
Dw;, w) <D (21,2:). (D(21,2:) and D(wy,w,) denote, respectively, the non-
Euclidean distance between the points z; and 2, and between w; and w, in
the circle K; sée § 4, exercise 4) (Piek).

5. Let W (2) be a function holomorphic in the eircle K=K (0;1) such that
[W(2)|<1 for zeK. Furthermore, let {z}, {2/} be two sequences of points
in the circle K, converging to the same point and such thab the sequence
{D(,2))} .10, Temains bounded. Then lim W{z,)=1 implies lm W(z;)=1
{Seidel). * : "

6. A region @ is said to be siar-shaped with respect to a point ae@
if every segment [a,p] joining the point a with any point pel is contained
entirely in G.

Prove that if the transformation w =W () transforms conformally the circle
E=X(0;1) into a region star-shaped with respect to the point W(0), then
every circle K,=K(0;7r) is also transformed into a region star-shaped with
respect to this point (Study, Seidel).

[Hint. The proof is analogous to the proof of Study’s theorem 5.6.]

§ 6. Riemann’s theorem. We shall now prove a fundamental
theorem in the general theory of conformal. mapping, stating that
every simply connected region which is neither the entire plane
(closed), nor a plane minus one point, can be transformed conform-
ally into an open circle. We shall show first of all that

(6.1) Every region G whose complement has at least one component P
not reducing to a point can be transformed conformally into a bounded
region. :

S. Saks and A. Zygmund, Analytic Functions. 15
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Proof. This theorem is obvious when the complement of the
given region contains interior points; for in this case an inversion
with respect to an arbitrary circle contained in the complement
of the region transforms the region considered into a region situated
inside this circle. Therefore it is sufficient to show that the region
G can be transformed into a region whose complement containg
interior points. In addition, it can be assumed that the continuum
P contains the point co; in faet, if this were not so, then, denot-
ing by @ an arbitrary pomt of th.ls continuum and applymg the
inversion 3=1/(z—a), we should transform the continuum P into
a continuum containing the point co.

Let now b be an arbitrary point (different from oo) belonging to
the set P. Let G, be the component of CP which containg G.
By theorem 9.14 of the Introduction, &, is simply connected,
and because it does not eontain the point oo, it follows from
theorem 3.2, Chapter IV, that a holomorphic branch of log(z—b)
can be defined in it. Let us denote such a branch by L(z). The
function L(z) is obviously uniquely invertible in G; hence it
transforms conformally the region @ into a certain region H=L(@).
Tet us next take into consideration one more branch of log(z—b),
e.g. L*(2)=L(2)+2ni, and let H*=L*(¢). We shall first prove that

6.2) . H-H*=0.

In fact, if the point w, were a common point of the regions
H and H*, then we should have:

(6.3)  woy=L(2)

as well as  w,=L*(z}), where z,€G, 2j¢G.

From this follows, however, that zy—b=exp wy, 2 —b=exp wy,
and hence z,=# and, in view of (6. 3), L(zy)=1L"(#), which is ob-
viously false. hquahty (6.2) is therefore proved.

From this equality it follows that H*CCH, and since H* is a re-

gion; CH certainly contains interior points. The transformation.

w=IL(z) is therefore the desired transformation.
‘We shall also prove the following lemma:

(6.4) If G is an arbitrary simply connected region containing the point O

and contained in the circle K,=X(0;1), but not coinciding with this
circle, then there exists a holomorphic and uniquely invertible func-
tion F(z) in @, such that

(6.5) \Pe)| <l Jor 266,
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(6.6) F(0)=0, [F'(0)]>1, [F(2)|>]z]

Proof. Let a be an arbitrary point contained in K,—G.

We shall define the function #(z) as the product of three con-
formal transformations of the region G. The first of them will be a
homographic function F,(z) transforming the circle K, into itself
and the point a into the point 0 {cf. theorem 2.2). Consequently,
the point 0 does not belong to the simply connected region F,(G)
and by theorem 3.1, Chapter IV, we can define a single-valued
branch of y/z in F,(G); we denote this branch by F,(z). Finally,
by Fi(z) we denote the homographic funetion transforming the
circle K, into itself and the point #,[F,;(0)] into the point 0. Let
F=F,F.F,. C

The function F(z2) is obviously holomorphie in &. Moreover,
since |F(z)|<1 and |[Fy(2){<<1 for ze Ky, and |[F,(2)|<1 for 26 F,(G),
the function F(2) .satisfies the condition (6.5). Furthermore, we
have

(6.7) : F(0)=F,[F,F,(0)]=0,

and hence the first of the conditions (6.6) is also satisfied. In order
to prove that the function F(z) also satisfies the remaining two
of these conditions, let us note first of all that the funections F;
and Fy are uniquely invertible in the entire circle K,, and the
function F, in the region F,(G); therefore the funetion F'(z) holo-
morphie in & has the inverse

(6.8) O(z)=F7'F7'F7 Y,

defined in the region F(G)CK,.
Moreover, although the function F(z) is in general holomorphie

if ze@ and z3£0.

[y

~only in the region @, its inverse extends immediately as a holomorphic

function to the entire cirele K,, satisfying: the condition

|B(2)|<1 for zeK,,

‘because the functions Fr'(z) and F3'(z), as inverses of the fune-

tions F,(z) and F,(2), are homographic transformations of the circle
K, into itself, and F3'(z)=2". Furthermore, by (6.7) the function
©®(z) vanishes for z=0. Therefore in virtue of Schwarz’s lemma
(theorem 5.1) we have (i) |@’(0)|<1, whenee

|F (o}z—} 1>1

1
@°(0)
15%
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and (ii) |@(2)|<]¢| for zeK, and z+0, whence

l2|<|F(2)] for zeG and =740,

provided that the function @(z) does not reduce to a linear function

(rotation). However, if the function @(2) were linear, then, as
we see from (6.8), the function Fy;'=F,0F; would be homograph-
ie, which is impossible, because T () =22

(6.9) If G is a simﬂy connected region whose complement contuing
more than one point, and a is an arbitrary point of this region, then
there always exists a conformal transformation w=W (2) of this region
into the interior of the circle Ky=XK(0,1), such that W(a)=

Proof. In view of lemma 6.1 we may assume at once that the
region @ is bounded; next, that a=0, and finally, applylng if
necessary a dilation with centre 0, that GCK,.

Let us consider the family SIR of all functions F(z), holomor— '

phic .and uniquely invertible in @, and satisfying the conditions
F(0)=0 as well as F(G)CK,. We shall denote by m the upper bound
of all the numbers [F'(0)| for functions F belonging to this family.
The function F(2)=z obviously belongs to the family I, and
|F'(0)| =1. Hence we certainly have m>=1.

Let { n(z)} be a sequence of functions of the family IR, such
that Lim|#;(0)|=m. The functions {Fn(z)} are uniformly bounded

{namely |F,(2)|<1) and therefore by theorem 7.1, Chapter II, the
sequence {F,(2)} contains a subsequence {F=x(z)} almost uniformly

convergent in @. Let W(z)=lim F, (2). We have (Chapter II,
k

theorem 6.1)
{6.10) [W(0)] =lim [F; (0)] =m>0,
. k

and hence by theorem i1.3, Chapter III, the function W(z) is hol-
omorphic and uniquely invertible in G. We assert that it defines

the desired conformal transformation of the region @ into the cir-.

cle K,. First of all we have W(0)=0 and, moreover, obviously
W(@R)CK,. Let us assume that W(G)#£K;. Then, in virtue of lemma

6.4, a holomorphic and uniquely invertible funection ®(z) would .

exist in the open set W(@), such that
(6.11) D(0)= |D(z)]<<1 for zeW(@),
(6.12) |®7(0)[>1

icm

§ 6 Riemann’s theorem. 2929

In view of (6.11), the function ¥(¢)—®[W(2)] would also be-
long to the family im and in view of (6.10) and (6.12) we should
have

|(0)] =|@/(0)- W (0)| >m,

which contradicts the definition of the number m.
‘We can complete theorem 6.9 in this way:

(6.13) If G, and G, are two simply connected regions whose comple-
ments contain more than one point each, and if a,,a, are, respectively,
two -arbitrary poinis of these regions, then there exrists one and
only one conformal mapping which transforms the region G, into G,,
the poini a, into a,, and an arbitrarily given direction at the
point a; into a given direction af the point a,.

In particlar. if a is an arbitrary point of the simply connected
region @, then the only conformal transformation w=W/(z) of this

region, such that W(G)=G, W(a)=a, and W' (a)="RW'(a)>0, is the

identity transformation.

Proof. In view of theorem 6.9, we may assume that
G =0,=K(0;1)=K,, \

and that a,=a,=0. By theorem 5.4, the only conformal transfor-
mations w=W{z) such that W(K,) =K, and W(0)=0 are rotations
with centre 0, and among these rotations there obviously exists
exactly one which transforms a given direction .at the point 0 into
another given direction.

The simply connected regions not coming under the hypo-
theses of theorems 6.9 and 6.13 are: the plane and the plane minus
one point. However, by theorem 2.1 it follows that every conformal
transformation of these regions is homographie, so that the image
is again either the closed plane, or the plane minus one poinf, and
hence in no case a circle of finite radius. By means of an
inversion with centre at the point removed, we can, of course,
transform the plane minus an arbitrary point into the open plane.

The most essential part of the -considerations of this section
can therefore be stated in the form of the following theorem
of Riemann:

(6.14) Every simply connected region can be transformed conformally
into ome and only one of the following three regions : 1° the closed plane,
2° the open plane, 3° the circle X(0;1).
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The above theorem, although formulated by Riemann, was nof comple-

tely proved by him. Moreover, the method used by Riemann referred only

to regions bounded by a closed curve without multiple points, and it connect-
ed the problem of a suitable mapping with the so-called Dirichlet boundary
value problem in the theory of harmonic functions. Furthermore, even with-
in these limits the original proof of Riemann contained gaps.

The complete proof of Riemann’s theorem in its entire generality we owe
to Koebe and Carathéodory. The proof of Carathéodory, based on methods
of the theory of functions of a complex variable, underwent many further
simplifications, of which we should mention first of all the ingenious idea of
Fejér and Riesz of using the method of normal sequences for avoiding
certain direct but arithmetically tedious proofs of convergence. Further mod-
ifications of the proof were given by Ostrowski and Carathéodory.

It is worth noting, however, that these methods are not applicable to
analogous problems dealing with a (single-valued) conformal transformations
of multiply connected regions info certain canonical regions. In such cases
it seems essential to refer to Riemann’s method, with suitable modifications
of course (cf. e.g. Hurwitz-Courant, Funktionentheorie, 2nd ed., Berlin
1930).

To be sure, by the method of Carathéodory-Fejér-Riesz it is possible to
transform conformally an arbitrary doubly connected region into an annulus,
or a circle, or the open plane minus a point (see Cremer, Ber. Sichs. Ak.
Wiss. 82 (1930), p. 190-192), but this method fails in connection with triply
connected regions. - )

EXERCISES. 1. If 20 is a family of functions holomorphic in a region
G and none of the functions of this family assumes values belonging to a given
continuum C, then 2§ is a normal family (Fatou: generalization of theo-
rem 11.4, Chapter III; further generalizations in Chapter VII).

2. In exercise 1, §4, Chapter IV, show that the condition that the
function W{(z) is bounded in the circle K (0;1) can be replaced by the condi-
tion that. this function does not assume values belonging to a given con-
tinnum 0.

Similarly, in exercise 2, § 4, Chapter IV, the condition that the sequence
{W.()} is bounded in K(0;1) can he replaced by the condition that none of
the functions of this sequence assumes in' K (0 ;1) values belonging to a
given continuum (. :

3. Let G be a simply connected region contained in the cirele K(0;1)
and containing the point 0; let <N denote the family of holomorphic functions
F, uniquely invertible in & and satisfying, in addition, the gonditions F(0)=0
and [F(z)] <1 for zeG. We fix a point as£0 'in the region G and
denote by m the upper bound of the numbers |F(a)], where F is an arbit-
rary funetion of the family M. i

Show that there exists a function F, in the family. ¢, such that |Fy(a)|=m,

and that this funetion transforms the region & conformally into the circle
K(0;1) (Carathéodory).

4. Let I'be an arbitrafy bounded continuum. Then there exists a real-valued
function RE(z), continuous and finite in the entire open plane, equal to 1 on
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T and such that for every polynomial P(2) we have |P(z)|<<M[R(z)]", where
n is the degree of the polynomial, and M denotes the upper bound of the val-
ues of [P(z)|.on I' (Mazurkiewicz-Szmuszkowiczéwna).

[Hint. Denoting by @ that component of the complement of the con-
tinuum I" which contains the point co, and by W a function which trans-
forms G conformally into the circle K(0;1) in such a way that W(co)=0,
we may take R(2)=|1/TF(2)] for ze@ and R(z)=1 for 2¢C@; cf. § 1, exercise 3.]

*8 7, .Rad()’s theorem. In this book we shall not consider con-

formal transformations of multiply connected regions in general,

but we shall limit ourselves to the generalization of the second
part of theorem 6.13 to arbitrary regions. This generalization, which
was given by Radd, is based on the following theorem of Koebe,
known as the theorem on distortion (“Verzerrungssatz’):

(7.1) If {Wn(z)} is a sequence of holomorphic functions wuniquely
invertible in the circle K=X(0;R), and if

(7.2) Wo.(0)=0 for n=1,2,... and supg[O,CWn(K)]<+_oo,

then the sequence {Wn(z)} 18 almost bounded in K.

Proof. Let a, denote a point on the boundary of the region
Wa(K), such that |a,|=0p[0,CW,(K)]. Let F,(z)=W,(z)/a,. The
functions F,(z) are, together with the funections W,(z), holomor-
phic and uniquely invertible in the circle K ; therefore, in view
of theorem 1.1, the regions F,(K) are simply connected. Moreover,
each of these regions contains the_circle K,=XK(0;1), and has the
point 1 on the boundary. Hence, by theorem 3.1, Chapter IV, in
each of these regions there exist holomorphic branches of log(2—1).
In particular, let L,(z) and L,(z) denote the branches of log(z—1)
in the region F,(K), assuming respectively the values =i and
3me at the point 2=0. As in the proof of lemma 6.1, we verify
immediately that the regions L,F,(K) and L,F,(K) are disjoint,
and hence :

(7.3) L, Fy(E)- Li(Ey)C LyFy (K)- LyFy(K)=0.

On the other hand, in the circle K, there exists only one branch
of log(z—1) which assumes the value 3wi at the point 2=0. There-
fore the region I, (K,) does not depend on » and from (7.3) it
follows that none of the funetions IL,F,(2) assumes in K values
belonging to a certain fixed region independent of n. Therefore in
virtue of theorem 11.4, Chapter I, the funections IL,F,(z) form
a-normal family in the circle K, and because L,F,(0)=1L,(0)=mi,
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the sequence {L,F,(¢)} is almost bounded in K (cf. Chapter I,
theorem 3.5). Consequently, the sequence {Fn(z)=1~]—exanFn(z)}
is almost bounded in K, and, in view of the second of the
conditions (7.2), so also is the sequence {W,(2)=a,F,(2)}.

(74) If W(2) is a conformal transformation of the region G into it-
self, and if at"a finite point aeG: W(a)=a and W' (a)="RW'(a)>0,
then, except for the case when G is the closed plane or the plane minus
one point, we have W(z)=z, i. e. W(z) s the identity transformation.

Proof. We may obviously assume that a=0 and that G does

not contain the point co. Taking for brevity R=¢(0,0@), we shall
have 0<R<-oco. We may further assume that W’(0)>1, since in
the contrary case we could consider the transformation W~ instead
-of W.

Let us suppose that the transformation Wi(z) is not an iden-
tity. The expansion of the function W(z) in the circle K=K (0;R)C@&
can therefore be written in the form
(7.5) W (2) =ay2+ a e+ ap 5 L
where a,>1, or a;=1 and a;z£0.

Let {Wn(2)} be a sequence of successive iterations of W(z)
in the region @G, i.e. let W.(2)=W(z) and W,(z)=W[W,_,(2)] for
n>1. Each of the functions W,(2) is a conformal transformation

of the region @ into itself, and moreover, as is immediately evi-
dent

Wo(0)=0 and o[0,0W,(K)]<e[0,CW,(&)]=0(0,06)=R < -+ oo;

.hence, by theorem 7.1, the sequence {Wn(z)} is almost bounded in K.

Therefore, denoting by M the upper bound of the absolute values
of the functions W,(2) in the circle K(0;R/2) and by a{® and a{®
respectively the coefficients of 2z and 2* in the expansion of the
function W,(z) in K, we shall have:

M M
7.6 P — —
L ®Py |
But, as we see at once, a{?=a}, which in view of a,>1
and the first of the estimates (7.6) gives a,=1. Having established the
value of a, in this way, we verify by an easy induction that a§f)==nak,
which in view of the second of the inequalities (7.6) gives a;=0.

Thus we obtain a contradiction with our assumption concerning
the series (7.5). ’ '

laf?|< for n=1,2,...
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EXERCISE. If {W,(2)} is a sequence of holomorphic functions unique-
ly invertible in a region @,-and if sup|W.(a)]<oco at some point ae@, then

the sequence {W,(2)} is normal in the region G.

*§ 8. The Schwarz-Christoffel formulae. Applying a homo-

- graphic transformation, -we may replace the closed circle K in theo-

rem 11.4, Chapter IV, by the closed half-plane 9230 (with the
point oo added), and the eircumference of this circle by the real
axis. Namely: )

(8:1) If a function W, continuous on the closed half-plane Jz>0
and holomorphic in the open half-plane 920, is uniquely invertible
on the real awis and tramsforms this awis into a polygonal line L
(which is obviously closed and has no multiple points), then this fune-
tion transforms conformally the open half-plane 92>0 into the in-
terior region of the polygon L, and the closed half-plane J2>0 ho-
meomorphically into the closure of this region.

We shall consider a certain class of functions satisfying the
hypotheses of this theorem. '

Let @,,a,,...,a, and a;,a,,...,q, be finite real numbers such
that a;<<a,<<...<a, and

(8.2) %<l for k=1,2,...,n,
(8.3) ; aytagt ... 4a,>1.
Let us consider the integral
2
8.4 W= [ <
. - H
¢ B=a)* 3—ar)” ... 3—an)™

where by (3—ax)* we mean the function @;(3)=exp[a,Trog(3—a)],
holomorphic in the open half-plane 92>0 and' continuous in the

closed half-plane 920 (®;(a;)=0,1, co, depending on the sign of ’
b4

the number «). By f in formula (8.4) we mean the integral along
0

the segment [0,2]. As we see ab once, in virtue of Cauchy’s theo-

rem, this integral has the same value along every regular curve

joining the points 0 and z and lying in the half-plane J2>0.
We shall denote, for brevity, the integrand ianormu*la, (8.4)

by @(3). In view of (8.2) and (8.3), the real integral fj@(t){dt has
a finite value, and hence the function W(z) defined by formula (8.4)
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is, like the functions @, holomorphic in the open half-plane Jz2>0
and continuous on its closure. “We emphasize the fact that this
closure containg the point co and that the funetion W is, by conti-
nuity, extended to this point also. In fact, if # is an arbitrary point
of the half-plane J2>0, thén, taking r=|z|, we can calculate the
difference W(z)—W(») by integrating the function & along an ar-
bitrary regular curve lying in the half-plane J2>0 and joining
the points # and 2. Integrating e. g. along an arc of the circumfer-

ence C(0;r) we obtain |W(z)—W(r)|< f |®(re®)|rdf, and since by
0
(8.3) the expression 2z@(z) tends to zero as z—>oo, it follows that

W(z)—W(r)—0, as r=|[¢]>+oco. On the other hand, when
r-—>+o0 through real values, W(r) tends to the value of the integral

+o0 . .
f D(t)dt#oo; therefore W(z) tends to the same limit as z tends
0

to co in an arbitrary manner in the half-plane 2> 0.

Let us investigate the curve into which the funetion W trans-
forms the real axis.

To that end, let us note that for real values of ¢ the function
Dy(t) has a constant argument (to within an integral multiple of

2w, of course) when t<<a; as well as when t>gq;. When we pass-

from values of {<a; to values of ¢>a;, the argument of &,(¢) de-
creases by a;m. It follows from this that the argument of the inte-
grand @(3) in formula (8.4) also has a constant value in each of
the n41 interwals of the real axis, defined respectively by the
inequalities:

3Ly B <<F<Tly, Ba<§3<lyy, ...y B 1<F<ly, 3>y,

and that in passing from each of these interwals to the next, the argu-
ment of the function increases by a;n. Consequently, in passing from
the values 3>a, to the values 3<<a, the argument of &(3) diminishes
by (a;-+as+...+a,)w, or — equivalently (omitting integral multiples
of 27 of course) — increases by (2—a;—a,—...—a,) 7.

Considering now the function W(z) on the real axis and dif-
ferentiating W(3) with respect to the real variable 3, from (8.4)
we obtain that dW(3)/d3=®(3). It follows from this immediately,
sinece arg &@(3) is constant inside each of the intervals

[woo:al]y [aha’z]: ey [a‘ﬂ—laan], [an7+oo]
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of the real axis, that these intervals are transformed, respectively,
into the segments .
[W(c0),W(a)], [W(a),W(ag)], ..., [W(an_s),W(an)], [W(a,),W(c0)].

Consequently, the entire real axis is transformed into the cloged
polygon [W(oo), W(ay),..., W(a,), W(co)]. If this polygon does
not have multiple points, then the transformation W of

_the real axis into the closed polygon is one-to-one. The

function W therefore satisfies the conditions of theo-
rem 81 and transforms conformally the open half-
plane 92>0 into the interior region of the polygon
[W(co), W(ay),..., W(a,), W(oo)], and the closed half-plane
Jz>0 into the closure of this region. The “exterior”
angles of this polygon, 4. e. the angles between the successive
oriented segments :

(W (c0), W(ay)], [W (@), W(a)), .., [W(ay), W(eo)], [W (o), W(ay)l,

are equal to a7, ..., a7, (2—a;—...—a,)w, respectively. (This
polygon is in general an (n41)-gon; if a,+as+...4a,=2 (mod?2),
— - -

-

then the segments [W(a,), W(oco)] and [W(oo), W(a;)] form one
i o .

~ segment [W(a,), W(a,)] and the polygon becomes an n-gon).

The formulae of the type (8.4) are called the Schwarz-Christoffel
formulae. Various generalizations of these formulae (cf. e. g. exer-
cise 6, p. 237) depend on’ the consideration in (8.4) of those cases
also when a,=1 or o;+ay+...+a,<1; we then obtain a transfor-
mation of the half-plane into generalized polygonal regions
whose boundary may consist not only of segments, but also of
half-lines. ,

It should be noted that it is, in general, rather difficult to
tell from formula (8.4) whether the transformation W transforms
the real axis into a polygon without multiple points. This is easy,
however, in some of the simplest cases, e. g. when n=2, 0<a,<1,
O<a,<1, 1<a;+a,. The function W then transforms conformally
the half-plane J2>0 into a triangle with ‘‘interior” angles
equal to (1—a) 7w, (1—as)m, (a;-+a;—1)7. Choosing suitable values
of a;,a;, we can in this way obtain a transformation of the half-
plane into a triangle of arbitrary shape (and even into an entirely
arbitrary triangle, provided the function W (z) is replaced by a func-
tion of the form aW(z)--b, where a and b are constant coefficients).
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Another specialization of the Schwarz-Christoffel formula,
eagily investigated .directly, is obtained by taking n=3, a¢;=a,=
=0y;=1/2, in formula (8.4). The function W(z) then transforms
the half-plane 9220 into a rectangle.

EXERCISES. 1. Let

H V7% 5\ "% 3\ %
Te)= [[1=2) [1=2) *...(1—2) “as,
e j ( 61) ( a) ( a) @

where ,;3,,.--,5, are points on the circumference C(0;1), and a,,a,, ..., a,

ag
real numbers such that g,<1 for all ¥ and o +ay+...4+0a,=2; by(l——ﬁi) '
x
for k=1,2,...,n, we mean the principal value of the power.

Show that the function W(z) is holomorphic in the open circle K(0;1),
. continuous on the closed circle K (0;1), and transforms the circumference C(0;1)
into a closed polygon L with interior angles (1—a,)w, (1—ay)m,..., (1—a,)x.
If this polygon does not have multiple points, 4. e. if the function W (z)
is uniquely invertible on the circumference C(0;1), then the function V()
is uniquely invertible on the entire closed circle K(0;1) and transforms con-

formally the circle X(0;1) into the interior region of the polygon L.
2. If 3,.50+--.25, are points on the circumference C(0;1) and a,,a,,...,q
real numbers such that
() a,<—1 forall & - (i) o, ag+...+a,=2, (m) ——|— —|- +——

then the function

a 2 Oy,
W(z)=f(1_?-) ‘(1_-‘1)(‘“ ...(1~-5-) %,
s 3 3, v B
where 2 is an arbitrarily fixed point on C(0;1), is continuous on the closed
circle K(0;1) and meromorphic in its interior, and its only pole is the
point 0. Explain the role of condition (iii).

The function W(2) transforms. the circumference C(0;1) into a certain
closed polygon L with interior angles (1— —a))7, (1—ay)w,..., (1 —a,)w. If this
polygon does not have multiple points, then the funcmon W( )} is uniquely
invertible in the closed circle K(0;1) and transforms conformally its interior
into the exterior region of the polygon L.

[Hint. Cf. Chapter IV, § 11, exercise 1.]

3. The function W(z)=[(1—3")"%"d; transforms the circle K(0;1) con-
0

formally into the interior region of a regular n-gon, and the closed circle
K(0;1) homeomorphically into the closure of this region. The perimeter of

n-z F

this polygon is 2 ™ [ (sin 8)"¥"d#.
0 .
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4. The function II'(z):f(l—b")zi"wg, where 2, is an arbitrarily fixed
z bd

point on the circumference 83(0;1), transforms the circle K(0;1) conformally
into the exterior region of a regular m-gon, and the closed circle K(0;1) ho-
meomorphically into the closure of this regioi.

5. Let F(z) be a holomorphic function vanishing nowhere in a
neighbourhood K =X(0;7) of the point 0 and such that ArgF(z) has a con-
stant value in an interval [—e,e] of the real axis (this condition is satis-
fied, for example, when the function F(z) is real and different from zero
in this interval). The function

"F(2)
W)= | ——dz,
t (=) f . dz
where z, is an arbitrarily fixed point (in the neighbourhood K) of the hali-
plane 9z>0, is then holomorphic in the region 0< |z|<r, 920, and trans-
forms the intervals [—e,0] and [0,e] into two parallel half-lines having the
same direction. The distance between these half-lines is equal to =|F(0)|.
o d
6. a) The function F(z)= f 8
iVi—a

point of the plane F2>0, and a>0, transforms the haJiplane 9z>0 into
the half-strip of width =/)/a shown in Fig. 16.

—, where 2, is an arbitrarily fixed

F(0)=eo Glo)=oe E __Hla)

\

Fla) F{=o) ¢la) G(o0) H(0)=00
Fig. 16. Fig. 17. Flg' 18.
b) The function G(z)= f  transforms. the half-plame 9z>0 into
3(3—a)”
the closed region shown in Flg. 17.
5 , where 0<a<b, transforms the

¢) The function H(2)= f m

half-plane 9220 into the closed region shown in Fig. 18. Determme the width
of the two strips of which this region is composed.


Yakuza




