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, o kid F(’w . . ) .
F (w)f_‘vZ‘ij—)=AnSnw"_l+ (SoAl+S1A0)’w“-g+ (Sods+ 814+ 83 d)w"?
=1 i o
oot (S 8id, gt o8 ady),
where Sj=w’1—[—wé+ - 4wl for j=0,1,2,...

Equating here again the coefficients on both sides, we have
(n—1)4,=8,4,48:4,, (n—2)Ay="8,A4,+8,4,48:4,,
,An_1=.SoA”_1+SlAn_z+ R Y- P
whence, since 4,=1, §,=n, we obtain successively the desired expressions for

A, 4,,...,4, , in terms of §,,8,,...,8,_;. The expression for 4, follows, in
turn, from the obvious equality :

Bt s,y Ay g oot = TF ()= 0.
j=1

(14.8) If F(z,w) is a function holomorphic at a point (2y,w,), and if
the function F(zy,w) has a simple root at the point w, (which in the
case wy#oo means that F(zy,wy) =0 and F,,(2y,w,) 70 ), then for a suf-
ficiently small value of »>0 there exists a function W (z), holomorph'ée
in the neighbourhood K(z,;7) of the point z,, such that for z2eX(z;7)
and weX(w,;r) the relations F(z,w)=0 and w=W(2) are equivalent.

Proof. Taking z,5500 and w,7#oo, and applying the equation
(14.2) with p=0 and k=1 to F(z,w), we verify immediately that
in a sufficiently small bicircular neighbourhood of the point (z,,w,)
the relation F(z,w)=0 is equivalent to the relation w—w,--4,(2)=0;
and hence it is sufficient to take W(z2)=w,—A4,(2). The cage when
Z=00 Or wy=oc is reduced to the case under congideration by
the usual substitutions z=1/3, w=1/w. '

CHAPTER IV

ELEMENTARY GEOMETRICAL METHODS
OF THE THEORY OF FUNCTIONS

§ 1. Translation of poles. The behaviour of a holomorphic fune-
tion in a region is in some measure already decided by the behav-
jour of this function in the neighbourhood of any one point of the
region. However, if instead of a region we consider an arbitrary
open set, then we can obtain a function holomorphie in this entire
set by defining it independently in the individual components of the
set. Tt is therefore an interesting fact that every function holomor-
phic in an arbitrary open set @ can be defined as the limit of a se-
quence of rational functions holomorphic in @, and even — when
the set G does not separate the plane and does not contain the point
oo — ag the limit of a sequence of polynomials. This beautiful theo-
rem was proved by Runge in the second half of the past century. .
_ The proof is in three parts: 1° & holomorphic function W(z),
given in an open set G, is represented on any closed set FCG as the
sum of curvilinear integrals of the form i me

: ~ 2ty 3—%
curves O lying in G—F; 2° these integrals, considered as fune-
tions of the variable z, are approximated uniformly on F - by
rational functions having poles on the curves C; 3° these poles
are “translated” to the complement of the given open get @, so
that the rational functions obtained become holomorphic in G.

The first part is obtained directly from lemma 10.1, Chapter IIL.
The second part is based on the following simple lemma:

(1.1) If f(2) is a function continuous on & regular curve C not having
points in common with a given closed set F, then for every mumber
e>0 there ewists a rational function Q(2) having poles exclusively on
C and such that ‘

fﬂﬁ%—Qm
05-z -

d3, taken along

<e for zeF.
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Proof. Let 3=3('t), where a<t<b, be the equation of the
curve ¢, and let M Dbe the upper bound of [3(t)| in [a,b]. The
function f[3(t)]/[3(t)—=] is @ continuous function of the variables
and ¢ when 2 ranges over the set F' and ¢ over the interval [a,b].
‘We can therefore divide this interval into & finite number of sub-
intervals [#;,%;,,], Where i=0,1,...,m—1, such that

01 il
3)—z  3(t)—2 |
Hence, taking

. n_l .
o= S s,

4

M(b—a)

for tigtgti_*_l aﬂld z6F.

. =0 3(tb)~z
we have for zeF
1% -0
kSid f[a ) f[a(t;-n e : ~

The third part of the proof of Runge’s theorem will be based
on the following lemma “on the translation of poles’:

(1.2) If F is a closed .set, and a,b two points outside F, such that
(1.3) Zo(ab)<e(a,F) and  2¢(a,b)<e(b, F),

then for every number e>0 and every rational function P(z) having
the point a as the only pole, there exists a rational funmciion Q(z)
having the point b as the only pole and satisfying the inequality

(14) IP(2) —Q(2)|<e

Proof. We shall distinguish three cases:

(a) @00, bskco. The function P(z) is therefore (see Chapter
III, theorem 7.5) a polynomial in 1/(z—a), and the sought for func-
tmn @(?) has to be a polynomial in 1/( z——b)
‘ We shall assume at first that P(2) reduces to one term 1/(z—a)".
From the second?) inequality (1.3) it follows that for z¢F we
have |[(a—b)/(2—b)|<|(a—b)/o(F,b)|<1/2. Consequently,

for every zelF.

) It may be noted here that in cases (g) and (b) we make use only
of the second inequality (1.3), and in case (c) only of the first.
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1 1 1 1 &, [a—b\
1 = .A I
(z—a)* (z—D)" ‘(1~a,——b)” (z-—b)",g; k (z——b) ?
2—b/ .

where Ap=(k+n—1)!/(n—1)!k!, and the series in the last member
of the above relation is umformly convergent on F. Condition (1.4)
will therefore be satisfied when, choosing a value of N sufficiently
large, we take

(z b)

If P(z) is an arbitrary polynormal in 1/(#—a), 4. e. has the

Q(z——’

8
form Y B;/(z—a), then, on the basis of the result already obtained,
=0

we can define for each j=1,2,...,s a function @;(2) which is a
polynomial in 1/(z—b>b) and satisfies the inequality

—Q,(2)| <>

' 1
Bl |————
=l (#—a)

on the set F.
The function Q(2)=B,+B1Q:(2)+B,Qx(2)+...+B;sQs(2) is then
also a polynomial in 1/(#—b) and satisfies condition (1.4).
(b) astoo, b=ococ. The function P(z) is again a polynomlal in
1/_(z —a) and, as before, it is sufﬁewnt to prove the theorem when
P(2) reduces to one term 1/(z—a)”. The desired function @(2)

must  this time, however, be a polynomlal, sinee it 1s to have

only one pole, namely the point b=co.
From the second inequality (1.3) it follows that, for z¢F,

1 2 ‘
> >2e]
e(a,00)” g(o0, F) ~ "7
and hence [2/a|<<1/2. The series
1 ~1)* 1), (=)
_ (U (D) ZAk(—)’
(z—a)* a™(1—z/a) a a

k=0

la|=

where A= (k+n—1)!/(n—1)!%k!, is therefore uniformly convergent
on F and condition (1.4) will be satisfied, when for a sufficiently
large value of N, we take

="

k=0
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(¢) a=oo, btoo. The function P(z) is then (cf. Chapter III,
theorem 7.5) a polynomial in #, and the first condition (1. 3)
expresses in this case that [b]>2/e(co, F)>2|z] for zeF. The set
F is therefore contained in the closed circle K(0; []/2). We write

w=1/(2—0). The circle K(0;]b|/2) does not contain the point b or. oo}
hence, when z ranges over the set F, the point u belongs (ef.
Chapter I, theorem 14.9) to a certain closed circle K(c,r), not
containing the point co or 0. Therefore we have ¢zoco and r<|d.

On the other hand, since #z=>b-+1/u, the function P(2) is a
polynomial in 1/u. The desired function ¢(2), however, has to
be a polynomial in u=1/(z—b). In order to prove the lemma in
the case under consideration, it is sufficient to show, therefore,
that for every n>0 and every integer n>>0 there exists a poly-
nomial R(u) such that

‘ |ln—R(u)< for uekK(c;n).
u
Now, for ueK(c;r) we have |u—c|/|c]<r/|c|]<1; the expansion
1 1 13, [e—u\" (E4+n—1)!
v ( o— u) ZGT*ZA"( o )’ where = T
) i=0 v
e

is therefore uniformly convergent in K(o;r), and for R(w) it is suf-
- ficient to take a partial sum of this series with a sufficiently large
index.

We can now prove the following approximation theorem:

(1.8) If W(2) is a function holomorphic in an open set G, then for
every closed set FCG and every number ¢>0 there ewists a rational
function H(z) holomorphic in G (i. e. with poles in the complement
of the set @) and satisfying the condition

(1.6) [W()—H(z)|<e for zel.

Moreover, if an arbitrary set B is given, which is contained in
the complement of the set G and whose closure has points in common
with all the componenis of this complement, then the function H (z)
can be so defined that all its poles belong to the set E.

Proof. We may assume that the point oo does not belong
to the set G; in fact, in the contrary cage, applying an inversion
with centre at an arbitrary point not belonging to the set &, we
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could transform this set into an open set which no longer contains
the point oco.

Let @ denote the set of all pomts z for which
(1.7) 2(:06) >0z, F)  or  20(z C&)>e(F, CR).

The set @ is closed (cf. Introduction, § 11), contains F, and
is contained in . By lemma 10.1 (II), Chapter III, and lemma
1.1, there exists, therefore, a rational function Q(z) all of whose
poles lie in G—® and which satisfies the condition

1

(1.8) »|W(z)—Q(z)]<;s for zed.

This function can be represented in the form Q(2)=@,(2)+...+Qn(2),
where each of the functions @(z) is rational and has only one
pole. (Such a decomposition exists for every rational function Q(z),
in virtue of theorem 7.5, Chapter IIT; in the case under considera-
tion, however, it also follows directly from the method of contruct-
ing the function Q(z), on the basis of lemma 10.1, Chapter III, and
of lemma 1.1).

Let us consider any one of the functions @;(2), e. g. the funetion
@Q,(2). Let a be its pole and let b be a point of the set comple-
mentary to &, such that p(a,b)=p(a,CqG) (cf. Introduction, theo-
rem 8.3). Since the point o belongs to G—®, none of the con-
ditions (1.7) is satisfied for 2=a; hence,

20(a,b)=2¢(a, CG)<¢(a, F),
20(a,b)=2¢(a,C6)<o(F,C&)<e(F,b).

Now, let § denote that component of the set CG which con-
tains the point b. By hypothesis, every component of the comple-

ment of -the set @ has points in common with the closure of the
set H. Let ceS8-E. Hence there exists a point deE such that

(1.9)

1
(1.10) g(c,d)<—2-g(F, Ca).

On the other hand, since b and ¢ belong to the same compo-
nent 8, it follows (see Introduction, theorem 9.1) that a sequence of
points b=p;,p,,...,Pn=c¢ of this component can be determined in
such a way that

' 1
(1.11) 9(pk;pk+1)<§ o(F,0G) for k=1,2,...,n—L
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Taking, for symmetry, po=a and p,,=d, we shall show,
first of all, that for k=0,1,...,n,

(112) 20Dk, Prsr)<e@i, ) and  20(PisPri1) <0(Pr41, F).

‘Indeed, o(py,F)=>e(CG,F) for k>1, since all the points
PyyPayeersPup1 belong to CG; the relations (1.12) for k=1,2,...,n
follow immediately from (1.11) and from (1.10). For k=0 the ine-
qualities (1.12) are a consequence of the inequalities (1.9).

Applying now lemma 1.2 on the translation of poles, succes-
sively to every pair of points pr,Pp.1, We determine a finite se-
quence of rational functions Py(2),Py(2),...,Pn(2),Pr41(2) satisfying
the following conditions: o

(1.13) Py(2)=01(2),

|Pyi1()—Pr(=) | <

(1.14) Swinm

for zeF and k=0,1,...,n, ‘
(1.15) the only pole of the fumction Py(z) is the point pg.

Hence, taking Ql(z)=PZ, +1(#), we verify immediately, in Yiew
of (1.13) and (1.14), that [@:(2)—@Q:(2)|<e/2m on the set E, Q+(?)
being a rational function whose only pole d=p, ., belongs to E.
In the same way we associate with all the remaining functions
Q;(2),...,Qn(2) the rational functions 0:(2),...,Qm(2), with poles
exclusively in the set E, so that
(1.16) [Q;(z)in(z)[<E%® for zeF and i=1,2,...,m.

Therefore, taking H(2)=0,(2)+Qs(2)+...--Qn(2), We obtain a
rational function H(2) which does not have poles outside E and
which, as follows from (1.16), satisfies the condition |H(2) —@Q(2)]<<e/2
for ze¥, and hence, in view of (1.8), the required condition (1.6).

§ 2. Runge’s theorem. Cauchy’é theorem for a simply con-
nected region. From theorem 1.5 follows immediately

(2.1) RuneE’S THEOREM. Every function W (z), holomorphic in an
open set G, can be represented im this set as the limit of an almost uni-
formly convergent sequence of rational functions {Hn(z)] , whose poles
belong to the complement of the set G. :

Moreover, if an arbitrary set E is given, which is contained in
the complement of the set G and whose closure has points in common
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with all the components of this complement, then the fumctions H,(z)
can be so defined that all their poles belong fo the set E.

Proof. Let &, denote the set of points z of the set @, such
that ¢(2,C6)>1/n, and let H,(2) be a rational function all of
whose poles are in the set F and which satisfies the inequal-
ity |H,(2)—W(2)|<1/n on th_e set @,. Such a function exists in
virtue of theorem 1.5, since G,CG.

The set &, forms an increasing sequence of open sets whose
sum is the given set @&; and since the sequence {Hn(z)} is convergent
to W(z) uniformly in each of the sets @,, it is almost uniformly
convergent in the entire set G (cf. Chapter I, §2).

If the open set G does not separate the plane (see Introduction,
§ 9), then in the formulation of theorem 2.1 we may take as the
set F an arbitrary point of the complement of the set G- In addi-
tion, if the set G does not contain the point oo, then it can be
assumed that the set E simply reduces to the point co. Since a
rational function with the point oo as the only pole is a poly-
nomial, we obtain the following particularly important case of
Runge’s theorem:

(2.2) If am open set G does not separate the plane and does not contain
the point oo, then every fumction holomorphic in the set G is in this
set the limit of an almost wuniformly convergeni sequemce of poly-
nomials.

In general, we can obtain a set F satisfying the conditions
of Runge’s theorem by choosing arbitrarily one point in each of -
the components of the complement of the set G. The set E de-
fined in this manner, however, is non-denumerable when the set C&
contains non-denumerably many components. In the latter case,
however, we may also take for F a denumerable set every-
where dense in CG (Introduction, theorem 4.5).

From theorem 2.2 we deduce the following theorem, which we
shall call Cauchy’s theorem for a simply connected region, and which
may be considered as a generalization of Cauchy’s theorem for a
rectangle (Chapter II, theorem 4.1):

(2.3) If an open set G does not separate the plane (in particular, if

_ 4t is a simply connected region) and does mot contain the point oo,

\thvn\@\e curvilinear integral of every fumction W (2) holomorphic in G
vamishes along every r_closed curve lying in G.

) - B 12
\\—:‘«\

8, Saks and A. Zygmund, Analytic Functio;
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Consequently, every holomorphic fumction in am open set mot
separating the plane and not containing the point oo, has a primitive
function in this set. )

Proof. Let H,(z) be a sequence of polynomials convergent
almost uniformly to W(z) in G. Since every polynomial has a prim-
itive function, it follows, by theorem 2.2, Chapter II, that its
integral vanishes along every regular closed curve C lyingin G, and

[W () de=1im [H,(e)de=0.
o) n

We shall return, in the closing sections of this chapter, to
the applications and generalizations of Cauchy’s theorem formu-
lated in (2.3).

EXERCISES. 1. If a>b>0 and n>0, then there exists a polynomial
. P,(z) such that in the circle K(0;n):

1
]Pn(z)[<ﬁ, when 92<0 or 9z>a,

|P, (=) =mn, when 9z=b.

2. Ezample of a sequence of holomorphic functions which is comvergent
to zero im the entire open plane, but is not almost uniformly convergent. Using
the result of the previous .exercise, construct a sequence of polynomials
which 1° is convergent to zero in the entire open plane, 2° is uniformly
convergent in the neighbourhood of every point not lying on the real axis,
but 3° is not uniformly convergent in the neighbourhood of any point of
the real axis (see Chapter II, § 7, exercise 2).

3. Example of a sequence of holomorphic functions convergent in the entire
" open plane, whose limit, however, is not a holomorphic function. Construct a se-
quence {P,(z)} of polynomials such that lim P,(2)=0 on the real axis, while
lim P, (2)=1 for 2z not on this axis. "

4. Iet 0<r<R, e>0 and let @(2) be a function holomorphic in the ecir-
cle K(0;R). Construct a polynomial P(2) satisfying the following conditions:
1° |P(2)| <& for |¢|<r, 2° on each segment [re’, Re”] there exist two points
21=2,(0), 22=2,(0), such that |[P(2,)4Q(2,)|<e and |P(2;)4Q(2:)] >1/s.

5. Example of a function W(z) holomorphic in the circle K(0;1), such that
for mo wvalue of 6 does »]igl W(re®) ewist, finite or infinite. Let {r,} be an in-

crei‘msing sequence of positive numbers tending to 1. In view of exercise 4,
define by induction a sequence of polynomials {P,(2)} such that: (a) |P,(2)| <1/2"

for |2|<7,, (b) on every segment [r,6%,7, 1671 there exist two points at

Whlfh the a..bolute value of the sum P,(2)+P,(z)4-...-+P,(2) is <1/2" and
>2" respectively. The geries J'P, (2) is then almost uniformly convergent in
n ° o

_ the cirele K(0;1) to a holomorphic~ 'function having the desired property.
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6. Let H be the metric space whose elements are functions holomorphic
in the circle K(0;1) (see Chapter II, §7, exercise 3; Chapter I, § 2, exer-
cise 3). -

Let 0<r<1, £>0. Let us denote by . the family of all the functions
W(z) holomorphic in K(0;1), such that on every segment [re®, ¢?] there
exist points at which [ (2)|<e and |W(z)]>1/s, respectively. Prove that
the holomorphic functions in K(0;1) which do not belong to the family
form a closed nowhere dense set in the space H.

Deduce from this (not appealing to the result of exercise 5) that there
exist funetions T (z) holomorphic in the eircle K(0;1), such that lim W (26°), finite

r—>1-—

or infinite, does not exist for any 9, and that this property is possessed by all
the functions holomorphic in the eircle K(0;1) with the exception of fune-
tions forming a set of the first category in the .space H (Kierst-Szpilrajn).

7. Let H denote (as in exercise 6) the space Whose:elements are functions
holomorphic in the circle K(0;1). Let K,,K,,...,K, be an arbitrary finite set
of circles, and let D denote the family of all functions W.(2) holomorphic
in the circle K (0;1), such that on every radius of the circle K(0Q;1) there exist
points at which W (2) assumes values belonging to the circles K, K,,....K,,
respectively. Prove that the functions which do not belong to the family DT
form a closed nowhere dense set in the space H.

In view of this, prove that there exist holomorphic functions W (z) in
the circle K(0;1) which transform every radins of this circle into a set
everywhere dense in the plane (i. e. such that for every 6 the curve w="TW (re®),
where 0<Cr< 1, is an everywhere dense set in the pl;me)m, and that, farther-
more, this property is possessed by all functions holomorphic in the circle
K(0;1), with the exception of functions forming a set of the first category
in the space H (Kierst-Szpilrajn).

8. Prove that there exist functions holomerphic in the circle K(0;1)
which in every sector of this circle assume all finite complex values, and
that this property is possessed by all functions holomorphic in K(0;1),
with the exception of functions forming a set of the first category in the
space H (exercizes 6, 7) (Kierst-Szpilrajn).

9. Movera’s theorem (see Chapter I, §8) for a circle. In order that a
function W{z), continuous in an open set @, be holomorphie in @, it is nec-
essary and sufficient , that f W(z)de=0 for every closed circle KC @ (Car-

(X
leman). :

[Hint. Make use of the theorems: Chapter I, § 18, exercise 1, and
Chapter II, § 6, exercise 8.]

§ 3. Branch of the logarithm. We shall apply the considera-
tions given at the end of § 2 to the branches of the logarithms of
holomorphic functions. As in the preceding chapters (Chapter 1,

3 Chap 1, § 1) we shall use the term “pranch” in the sense
of “single-valued -
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In view of theorem 2.3 we may now complete theorem 11.1,
Chapter I, in the following way:

(8.1) If G is an open set mot separating the plane (in particular, a simply
connected region), then for every function F(z), holomorphic and van-
ishing nowhere in the set G, there ewisis a holomorphic branch of
log F(z) in this sét (and thus also a holomorphic branch of [F(z)]®
for every value of a)?).

Proof. The theorem is obvious when the set @ is the entire
plane, because then, in virtue of Liouville’s theorem (Chapter II,
theorem 5.11), the function F(2) reduces to a constant. We may
therefore assume that CG+£0. We may further assume that the set G
does not contain the point oo, since in the contrary case, applying
the inversion with centre at an arbitrary point of the complement
of the set (,-we should transform this set into an open set, also
not separating the plane, and no longer containing the point oo,

Since, by hypothesis, the function F(2) vanishes nowhere in
the set @, the function F'(z)/F(2) is holomorphic in G and in
virtue of theorem 2.3 has a primitive function; the existence of
a holomorphic branch of log F(z) in @ follows from this by theorem
2.6, Chapter IL

A particular case of theorem 3.1 is the following theorem,
which constitutes a direct generalization of theorem 11.1, Chapter I:

(3.2) In every open set mot dividing the plane.and containing neither
the point 0 nor oo, there ewists a branch of logz.

EXERCISE. If O is the circumference of the circle of convergence of
a power series, and Z the set of all roots (zeros) of the partial sums of
this series, then every point of the circumference ¢ is a point of accumu-
lation of the set Z (Jentzsch).

[Hint. Let K be the circle of convergence of the series. Agsuming that
there exists a point @ on O not belonging to Z, let us denote by K, a neigh-

bourhood of the point ¢ in which none of the partial sums s, (2) vanishes .

) This theorem can be generalized to arbitrary continuous functions
in the following way: every continuous function, vanighing nowhere and de-
fined on an open set not separating the plane, has a single-valued branch of
the logarithm.

See, C. Kuratowski, Théorémes sur Vhomotopie des fonctions continues
de variable complexe et leurs rapports & la Théorie des fonctions analytiques,
Fundamenta Mathematicae 33 (1945), P- 334, or Topologie II, Warszawa-
Wroctaw 1950, p. 394. See also, §. Eilenberg, Transformotions. -continites

en circonférence et la topologie du plan, Fundamenta Mathematicae 26 (1936),
p. 91 o
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anywhere, and by &,(2) a holomorphiec branch of [s,(2)]'" in K,. The se-
quence {®,(2)} iz bounded (Chapter III, § 2, exercise 3(b)) and — if we
choose suitable branches of &, — is convergent to 1 in K, (Chapter II, § 2,
exercise 2; I, §3, exercise 2; III, §8, exercise 3). We should therefore
have aeK,CK (Chapter III, §2, exercise 3(a)).]

§ 4. Jensen’s formula. As an application, in the simplest case,
of the theorem on the existence of a branch of the logarithm of
a holomorphic function we derive the so-called Jensen formula,
which, because it enables one to estimate the number of roots
of a holomorphic function in a cirele, plays an important role in
many considerations of the theory of functions.

(4.1) If F(2) is & holomorphic function on a closed circle K=X(0;R),
and if F(0)£0, then ,

- 2n
1 )
(4.2) Log |F(0)|+‘L0g l =5;0fL0g |F(Re™) a6,

|aiay...ay
where ay,8s,...,08, denote the roots of the function F(z) in the circl-e
K, and every root is writien as many times as its multiplicity indi-
cates. .
The second term on the left side of formula (4.2) can be wrilten
R

n(r)

dr, where n(r) denotes the
’

in the form of a definite integral f
0

number of roots of the function F(z) in the closed circle K(0;7).
Proof. Let us note, first of all, that because the funetion F(z)
is holomorphic on the closed ecircle K=K(0;R), there exists an
open circle K,=K(0;R,), with radius E,>R, in which the function
F(z) is also holomorphic and does not have roots other than the
above-mentioned points a;. The funetion
F(2)-a,a,...0,
(0)- (a;—#) (@2 —2).. .(G,—2)
is therefore also holomorphie in K, and, moreover, does .not vanish
anywhere in this circle. Hence by theorem 3.1 there exists a holo-
morphic branch of log @(2) in the circle K,. Let L(z) be /such %
branch, where in view of the fact that @(0)=1 we may take
L(0)=0. The function L(2)/z is therefore also holomorphic in K,
and, by Cauchy’s theorem 2.3, we have

21
1
(4.3) _A f L) do= f L(Re™)ab.
(&) H

D(z)= 7

2nt 2z
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Since RI(z)=Log|®(2)|, equating the real part of the expression
on the right side of formula (4.3) to zero, we obtain

2
1
é??(]f Log ‘F(O) @

On the other hand, by formula (3.3), Chapter III, we have
for j=1,2,...,m, :

F(REYY-aya,...a,
—Re?)(ay—Re™)...(a,—Re™)

df=0.

a; .
_ e-w

2r 21t
1 , 1
. o — 'Lo e S —
QnOfLog[a, Re ]de_zﬂafLogk 1 ‘dG—{-LogR:LogR,
and by writing the integrand in (4.4) in expanded form we obtain
the desired formula (4.2).

In order to show that the second term on the left gide of this

R
formula is equal to the definite integral f n(r) , let us note that

it may be assumed that |a,|<|a,|<.. <|an| Taking, for symmetry,
tp =R, we then have

f'n’(7' Zn ijj—ll n laje1] d
r ar 2
0 =1 g =1 |

n
n
=Zg) Log[am{ —Log|ay|) nLogR-—-ZLog]a,l—-LogJi—-—;
£ = 0,05,
q.e d.
Theorem 4.1 can easily be generalized to meromorphic functions:

(4.5) If a function F(z), meromorphic on the closed circle K(0;R), has

neither a oot nor a pole at the point 0, then den.
oting b
the roots, and by by,b,,.. g 0Y O1,0,..

circle, we have

;a‘n
+»bm the poles, of the function F(z) in this

byby...b,,

(46)  Tog|P(0)|+Log k™.

Wy Og... Gy

2m
1 )
== Of Log|F'(Ré™) |d5,

or, denoting by n(r) and m(r), respectively, the number of roots and
the number of poles of F(2) in the closed circle K(0;7),

B 2r
(47 Log|p(o) [MD=mr) . 1
17(0)]+ Uf = Of Log | F(Ré"™)| do.
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(Bvery root and pole of the function F(z) is here counted and
written in the sequences {a;} and (b} as many times as its multiplic-
sty indicates).

Proof. Taking WY(2)=(2—b,)(2—bs)...(2—Db,,), We see imme-
diately that both functions F(2)¥(2) and ¥(2) are holomorphic
in the closed circle K(0;R), do not vanish at the point 0, and have
roots at the points a,,a.,...,a, and b,,b,,...,b,, respectively. Ap-

" plying the formula of theorem 4.1 to these functions and subtract-

ing the equations thus obtained, we get the desired formulae (4.6)
and (4.7).
" Formula (4.2) is known as Jensen’s formula.
EXERCISES. 1. If a,,04,...,4,,... i8 a sequence of roots #0 of a

function W (z), holomorphie, bounded and, not vanishing identically, in the
circle K(0;1), then a,a,...q,...50, and hence J(l1—|a])<+ o0 (every

root occurs in the sequence {e,} as many times as its multiplicity indicates)
(Blaschke).
[Hint. See Chapter I, § 7, exercise 1.]

2. If a wuniformly bounded sequence {W,(2)} of functions holomorphic
in the circle K K (0;1) is convergent at the points of a sequence {a,} such
that a,a,.. ..=0, where a,5£0 for n=1,2,..., and ¢,;#a; for i7j, then
the sequence {W (=) } is almost uniformly convergent in the entire cirele K.

3. Let W(2) be a function holomorphic and not vanishing identically in
the circle K (0;1), such that

4
(W ()< exp ——or:>
ATy
where 4 and o are positive constants. Then, if {a,} denotes the sequence of
roots of the function W in the circle K(0;1), the series X '(1—|a,|)"**%®

is convergent for every number £>0 (Montel).
[Hint. Note that for every m the number of roots a, such that
la,) << 1—2"", does not exceed the number B-2™°t), where B is a constant.]

§ 5. Increments of the logarithm and argument along a curve.
If F(z) is a function continuous on a set H, and if the values of
this function on JE belong to a circle K containing neither
the point 0 nor oo, then a branch of logF(z) exists on this set.
In fact, denoting by L(2) an arbitrary branch of logz in K we
perceive at once that the function L[F(2)] is a branch of 1ogF(z)
on E.

In view of this observation, we shall show that, if F(t) is a fin-
ite comtinuous fumection mowhere vamishing on the interval I=[a,b],
then a branch of logF(t) ewists on this interval. To that end, let m
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be the lower bound of the values of |F(#)] on I. Since m>0, the
interval [a,b] can be divided into a finite number of subintervals
[@o, 1], [@ys 5]+ 5 [On_1,0,], Where ay=a, a,=b, such that the oscil-
lation of the function ¥ in none of them exceeds the number m/2.
Then the values which the function assumes on the interval [a;,a,,]
belong to the circle K(F(ax);m), not containing the point 0, and
hence we can define a branch Lg(f) of the logarithm of #(f) on
every interval [a,a;y:] Adding, if necessary, to the functions

L,(t) suitable integral multiples of 2wi, we may assume that .

at every point a;, for k=1,2,...,m—1, we have Ly_,(ay)=L;(ay).
Therefore the functions Ly(f) jointly define on the entire inter-
val [a,b] a certain function L(?) as a branch of log F(f).

‘We shall call the difference L(b)—L(a) the increment of logF(t)
on the interval I. Since two distinet branches of logF(t) in [a,b}
differ at most by a constant (Chapter I, theorem 11.2), this
increment does not depend on the choice of the branch of
log P(t) and is uniquely defined.

The existence of a branch of the logarithm of a function is
equivalent (see Chapter I, § 11) to the existence of a branch of the
argument; hence we can define the increment of arg F(t) on the in-
terval I analogously. We shall denote these increments by A;logF(t)
and 4 Iargli'(t), respectively. It is evident that

Ararg F(t) =9 A;log F(t).

If the function F(f), finite, continuous, and nowhere vanishing
in the interval I, has a continuous derivative in it — or more
generally, if the interval I can be divided into a finite number
of subintervals such that in each of them the function F(f) has a
continuous derivative — then F'(t)/F(t) is the derivative of a
branch of log F(t), and

R
)at

(5.1) Alog F(t) = 70

If W(2) is a finite function, contmuous and nowhere vanishing
on the curve O':

6.2) £=2(1), where a<t<b,

then by the increments of logW(z) and argW(z) along the curve C

we shall mean the corresponding increments of logW[z(t)] and
argW[z(#)], on the interval I=[a,b] of the variable t; we shall
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denote these increments by AglogW(z) and AdgargW(z). If C is a
regular curve, and W(z) a function holomorphic on C (i.e. a
function defined and holomorphie in an open set conta,lmng the
curve (), then it follows from formula (5.1) that

Aglog W () = Alog W [#(t)]= f@WLi%— dt
(3.3)
_ W, W@
) W “ ) W ©

If the curve C, given by equation (5.2),is closed, i. e. if 2(b)=2(a),
then every branch of log W[z(¢)] assumes values at the ends
of the interval I=[a,b] which are values of the logarithm
of W(z) at the same point z==z(a)=2(b), and hence differ at
most by an integral multiple of 2ni. Hence, taking formula (5.3)
also into account, we obtain the following theorem:

(5.4) For every function W(z), finite, continuous, and nowhere van-
ishing on a closed curve C, we have

Aglog W (2)=iAgarg W (2)=2kwi.

Moreover, if the curve C is regular and the function W(z) ho-
lomorphic on C, then

dz=2kmni

W'(z)
Aglog W(2)= Cf o

In both formulae &k denotes an integer.

In the particular case when C is the perimeter of a rectangle,
1 (W)
th tegral —

o integr 2mi g W(z)
OI, §9; the Value of this integral had an explicit interpretation
then. Later on (§ 7) we shall extend this interpretation to certain
more general cases.

dz has a,]rea.dy been considered in Ghapter

EXERCISES. 1. If &(2) and ¥(z) are functions continmons on a clo-
sed curve O and |B(z)|<|¥P(2)] on C, then A4, arg¥(z)= =4y a1g[P(2)+P(2)]-

2. If W(2) is a continuous function, vanishing nowhere in an open set
@, then in order that a branch of logW(2) exist in G it is necessary and
sufficient that A4 arg W(z)=0 for every closed curve lying in G. (This con-
dition is more geneml than the condition of theorem 2.6, Chapter II, since
it applies to all continuous functions W, not necessarily holomorphic.)
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§ 6. Index of a point with respect to a curve. If U is an
arbitrary closed curve (not containing the point oo), then by the
index of a point z,7oco mnot lying on O, with respect to this
curve, we shall mean the number

1

Al z—lA arg(z—=z,)
s dcloglz— o) =5_doarg(z—%),

which is an integer in view of theorem 5.4. The index of the point
oo with respect to an arbitrary closed curve will be understood
to be the number 0. We shall denote the index of the point gz,
with respect to the curve C by indg#,.

The index is an invariant of the linear transformations of the
plane. In other words, if in a linear transformation the point z,
and the point f,, the curve € and the curve I', correspond to each
other, then indg#=indpf,. In fact, if § is the angle of rotation
of the transformation, # an arbitrary point of the curve C, and ¢
the point of the curve I' corresponding to #, then (cf. Chapter I,
§ 14, p. 80) : '

arg({—{y) =0+ arg(z—=2,).

The increment of arg({—¢,) along the curve I' is therefore
equal to the increment of arg(z—z,) along the curve C.

From theorem 5.4 it follows that

1 dz
(6.1) iIldng:“""f for every regular closed curve C and every

') B—
2mc, 2—a

point & not on C.

It is easy to see that if ¢ is an arbitrary closed curve, then
for every point o with a sufficiently large absolute value we have
indya=0. In fact, if K denotes a circle containing 0, then for every
point a outside this circle there exists a branch of arg(¢#—a) in K,
and hence 2n-indga=Adgarg(z—a)=0.

For every closed curve € the index of the point a with re-
spect to C, regarded as a function of the point @, is therefore a con-
tinuous function at the point co. More precisely:

(6.2) If C s an arbitrary closed curve, them indga has a constant
value in each of the components of the complement of the curve C.

Proof. In view of theorem 11.1 of the Introduction, it is
sufficient to show that indga is a continuous function of the point a
not on the curve C. If the curve C is regular, this continuity follows

icm

§6 Index of a point with respect to a curve. 187

directly from theorem 6.1. In order to generalize this property to
arbitrary closed curves let us consider an arbitrary point a not on
the curve € and let us divide ¢ into a finite number of curves
€.,0s,...,0,, such that each one of them is contained in a
circle having the point a in its exterior. Let K,,K,,...,K, be ecir-
cles associated in this way with the curves Cy,C,,...,C,, and le§ K
be a neighbourhood of the point a, having no points in common
with any one of these circles. Hence, for every point 36K there exists
a branch of arg(¢—3) in each of the circles K, K,,...,K,. There-
fore, if 2,_y,%; denote the initial and terminal points of the
curve Cj, respectively, then for 3¢K the increment of arg(z—j3)
along C coincides with the increment along the segment [#;_1,2;];
consequently, denoting by C, the closed polygon [2,2:,...,2,=2],
we have

. 1 1 i 1 dz
lﬂd05=Q—;Aaarg@—ﬁ):%ﬁcﬁlg(z—s)=é“n—i0 z—:ﬁ’
for every point 3e¢K. The index indgj is therefore a continuous
function of 3 in the neighbourhood of every point ¢ not on the
curve C, q. e. d. N ‘

On the other hand, the index of a point with respect to a curve
also depends in a continuous manner on the curve itself. More pre-
cisely:

(6.3) Let {On} be a sequence of closed curves given, respectively, by the
equations z=2,(t) on the interval [a,b], and let C denote a closed
curve z==z(t) on the same interval, such that if the sequence {zn(t)}
tends uniformly to z(t). Then, for every point w, not lying on C we

have, beginming from a certain value of m, ‘

ind gwe=mnd gw, .

Proof. Let us divide the interval [a,b] into % equal parts.
Let a=a,<a,<...<a=Db be the points of division and let 0O
denote the arc of the curve ¢ on the interval [a;_;,a;], where
j=1,2,...,k. We may assume that the number % is sufficiently large
s0 that every arc O¥) is contained in a certain circle K contain-
ing neither the point w, nor the point oo. ' )

For every m=1,2,... and j=1,2,...,k let us denote by o
the arc of the curve C, on the interval [a; ,,a;], and by I'D the
closed curve C9-+[2(a;),2,(2)]—0+[2a(0_1),%(05_1)]. In view of
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the uniform convergence of the sequence {7a(t)} to 2(t) in the inter-
val [a, b], there exists a number N such that for n>N and
j=1,2,...,k, the arc O, and hence also the entire eurve Il is
contained in the circle K. In every circle K¥) (since it does not
contain the point w,) there exists a branch of arg(2—w,), and there-
fore the increment of arg(z—w,) along every curve I') for >N
is zero. On the other hand, denoting by AP the increment of
arg(z—w,) along the curve Iy, we have

k
0= Y AD = Agarg(z—w,)— A, arg (2—wp) =ind g1, —ind,w,,
=1

and hence indyw,=indgw, for n>N, q. e. d.

From theorem 6.2 it follows that indy3, considered as a function
of the point 3, has a constant value on every connected set E
disjoint from the curve C (for every such set must be contained
in one of the components of the complement of the curve O). This
value is called the index of the set E with respect to the curve C,
and we denote it by indgE.

We shall complete the above discussion with a few examples.

For every rectangle I, in view of formulae (4.7), Chapter II,
we have indpz=0 for 2¢CI and indge=1 for zel®.

If C denotes the circumference z=a+re“’, where az£c0, 002,
then for every point z lying “outside” the circumference we have
indgz=0 since such a point belongs to that component of the
complement of the circumference which contains the point oo.
For points z lying “inside” the circumference, 4.e. belonging to
that component of the complement of O which contains the centre
a of thes circumference, we have indge=1, since

, 1 de 1 Firéds
1ndga,= - - f — =
2m0 z2—a 2m § r€"

In general, every closed curve without multiple points divides the plane
into two regions; one of them contains the point co and is called the emferior
of the curve O, and the other the imferior. All the points of the exterior re-
gion, since it contains the point co, have an index equal to zero, whereas all
the points in the interior region have an index equal to 1 or —1 (by orient-
ing the curve C suitably, one can take the index of the points of the inte-
rior region to be equal to 1). The proof of these theorems, though they are very
intuitive, requires rather subtle considerations, which we here omit. Let us
note, however, that in the concrete cases with which we shall meet in prob-
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lems of the theory of functions (cf. e.g. §§ 8, 9, further on), the indices of
points are easily computed by means of methods applied ad hoc. For
example, one can make use of the scheme shown :

in the Fig. 9.

About the given point a, lying in the
interior region of the curve O, we draw a
square I, also contained entirely in this re- .
gion. Prolonging the sides of this square in
both directions to the intersections with the
curve U, we obtain a division of the interior
region into nine regions, which — leaving
out the square I — are denoted in the
drawing by the numbers 1,2,...,8. The
curves bounding these regions, after a sui-
table orientation (as in the drawing), are
denoted by 0,,0s,...,0s. Then, with a sui-
table orientation of the curve O,

) 1 dz 1 dz 1 dz
(©-4) indoo= 55 )ica +$2m- f ala T 25 f —a'
@ ) Cr (Cr)

.Now, each of the curves U, can be enclosed in a simply connected region
not containing the point a (in the drawing this is indieated for the curve
C,) and therefore, since in such a region a branch of arg(z—a) exists, we have
2n indoka=Ac,ka,rg(z—a)= 0 for k=1,2,...,8. From (6.4) it follows, there-
fore, that ind o=1. ' ’

§ 7. Theorem on residues. We shall now complete the consid-
erations on residues of Chapter IIIL, §7.

(1.1) If W(z) is a regular function (with the exception at most of an
isolated set of singularities) in an open set G, not separating the plane
and not containing the point oo, then for every reqular closed curve T,
lying in G and not passing through singular points of the function
W(z), we have the formula -

1 ad .
mJW(z)dz=’§res%W-md,on,

(7.2) 5

where {c,) denotes the sequence of singular points of the function

W(z) in G

Among these points a finite number at most have an index with
respect to the curve I' different from zero, and therefore the series ap-
pearing on the right side of equaiion (7.2) reduces to a finite sum.

Proof. For brevity, let o=po(I,CG) and g,=0(¢,,CG); let d,
denote a point of the set complementary to ¢, such that o,=¢(¢n,ds)
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(cf. Introduction, theorem 8.3). Since the sequence {0} does not

have points of accumulation in @, therefore (provided that this

sequence is infinite) lim g,=0 and, beginning from a certain value
; :

n=N, we have g,<p; therefore
(7.3) 0(Cnydn)<o(T,dy) for n>=N.

We now distinguish two cases. If d, oo, then we shall denote
by L, the segment [¢,,d,], which — as is apparent immediately
in view of (7.3) — does not have points in common with I" for
n>=N. However, if we have d,=co for a certain n>=N, then from
(7.8) it follows that 1/|e,|<<1/lz| for every .point ze¢l, and therefore
the curve I' lies emtirely inside the circle K(0;|c,|); in this case
" we shall denote by L, an arbitrary half-line with origin in the point
¢, and lying outside the circle K(0;lc,|). It is easy to see that,
because g,—>0, the connected set

0
Ean+GG is closed; moreover, it
N=1 !

has no points in common with the
curve I' (see Fig. 10), and since
it contains the point co, the index
of this set with respect to I' is
equal to zero (§ 6, p. 186, 188) and
in gparticular indpc,=0 for n=N.
Formula (7.2) therefore proves to
be equivalent to the formula

Fig. 10.
1 ‘Ng,l
(7.4) %JW(z)dzzﬁresan-mdpcn.

Now, let @,=G—> L,. We have OG:;Z*LL—FOG; the set G
n=N n=N

is consequently open and does not separate the plane. The function

W(z) has in @, at most a finite number of singular points, nam-
. N-—1

ely, €1,65,...,6y_1. The function W(z)— > H,(z), where H,(2)
N=1 -« 5

denotes the principal part of the function Wi(z) at the point ¢,,
is therefore (Chapter III, theorem 7.2) holomorphic in &,. Hence,
by Cauchy’s theorem in the form (2.3), we have

N—1

f [W(z) -3 Hn(z)] de=0,
; =
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whence, by theorem 7.7, Chapter III, we obtain immediately for-
mula (7.4), equivalent, as we have seen, to formula (7.2).

In virtue of theorem 9.1, Chapter III, it follows immediately
from the preceding theorem on residues thatb

(7.5) If W(2) is a function meromorphic in an open set G not se-
parating the plane and not containing the point oo, and F(z) is a ho-
lomorphic function in @, then for every reqular curve 0, closed, lying
in G, and passing through neither roots mor poles of the function
W, we have

1 W'(z) : . )
(16) 5 cf F(z) Vel dz:ZF(aj)-mdaaj—;ﬁ’(b,-)-mdab,-,

where {a;} denotes the sequence of roots, and {b;} the sequence of pol-

es, of the function W (z) in @, each of these roots and poles being re-

peated in these sequences as many times as its multiplicity indicates.
In particular (taking F(2)=1),

1 W(2)
(7.7) omei p W(z)

dz———;indoay—;indabj. |

Amonyg the points a; and b; at most a finite number have an in-
dex with respect to the curve C different from zero, and hence the se-
ries appearing on the right sides of equations (1.6) and (7.7) reduce
to finite sums.

Theorem 7.5 may be considered as a generalization of theorem
9.2, Chapter III.

We also set down the following variant of Cauchy’s formula,
which we can obtain by substituting W(z)=2—a in equation (7.6):

(7.8) If F(2) is a function holomorphic in an open set G, not separat-
ing the plane and not containing the point oo, then, for every closed
curve C lying in G and for every point ae@ not lying on C, we have

3 (EE),

F(a)indya=
(@)indg 21:’50 z2—a

Theorem 7.5, and in particular formula (7.7), can be used to
calculate how many times a holomorphic function assumes a certain
value. Confining ourselves to a function holomorphic in the circle,
we shall prove the following theorem:
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(7.9) Let W be a function continuous on & closed circle K=i(a,;r)
and holomorphic in its interior, I' the curve into which the function
W transforms the circumference C of the circle K, and finally, let w,
be an arbitrary value mot assumed by the function W on the circum-
ference C, i. e. mot lying on the curve I. .

Then, denoting by h the number of times the funciion asswmes
the value w, in the interior of the circle K, we have

1
(7.10) hzmdpwu=§;dc.arg[W(z)-wo].

Proof. Let {rn} be an arbitrary increasing sequence of num-
bers tending to 7, and let h, denote the number of times the func-
tion assumes the value w, in the circle K(a;r,). Let O, denote the
circumference of the circle K(a;7,), and I', the curve into which
W(z) transforms this circumference. Under the supposition that
the value w, is not assumed on the circumference C,, we shall
have, in virtue of theorems 7.5 and 5.4, :

___ 1 [W (2)—w,]’
" omiy W(2)—w,

Moreover, for sufficiently large values of » we certainly
have h,=h; hence, making use of theorem 6.3, we have
equation (7.10).

Of course, we could have replaced in theorem 7.9 the closed
circle by an arbitrary closed region bounded by & closed curve.
However, the proof — identical with the proof of theorem 7.9,
as far as the analytical confent is concerned — would require
congiderably more subtle topological considerations, connected with
the approximation of the boundary of the region by regular
curves lying in the interior of the region. -

EXERCISES. 1. Calculate the curvilinear integral of the funection
1/(1—22)(2—2) along the ellipse #*+my-+y*—do—2+4—a=0 for a=1 and
a=4.

1 1 .
dz= py Aanarg [W (2)—w,] :%Apn arg(w —w,).

2. If 2,,2,,...,2, i8 a system of m distinct points in the open plane and
NN aseees My — @& System of m numbers, then there always exists one and only
one polynomial of degree <(m—1 assuming the values 7; at the points z.
Verify that this polynomial is . -
Zm‘ My (?)

k. ,

o' () #2—=z,

k=1

where o(2)=(¢—2,)(@—2,)...(2—2,). The polynomials defined in this way are
called Lagrange’s interpolation polynomials.
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e
~1

Let W(z) be a function holomorphic on a closed cirele K =K(0;R),
and 2;,%,...,%, a system of m distinet points in the interior of this circle.
Show that Lagrange’s interpolation polynomial, assuming the values W(z,) at
the points z;, is given by the formula

d3.

I r —w(z) W
P(z):ﬁjw(a) o) W)
27t w(3) F—2
(E)

3. If W(=) is a function holomorphic on the closed ecircle K(0;1) and
P,(2)- denotes the interpolation polynomial of degree <{m—1, assuming the
same values as W(z) at the points exp(2knijm) for k=0,1,...,m—1, then
{P,(2)} tends uniformly to W(z) on the circle K(0;1) as m—oo.

4. Prove that, for O<pu<l,

i S‘j exp2ukni  exp(2u—1)axi
T = a—k sinaw ’

where « is an arbitrary non-integral number (Kronecker).

[Hint. Consider the integral of exp[(2u—1)2ri]/(2—a)sin=z along the
circumference of radius n+1/2 and centre 0, and pass to the limit a§ n—oo
(Chapter I, § 18, exercise 5).]

5. A variant of Rouché’s theorem (cf. Chapter III, theorem 10.2). Let &(2)

. and ¥(z) denote functions meromorphic in a simply connected region @ not

containing the point oo, and let {a,}, {b;}, and {a;}, {b;}, denote, respecti-
vely, the roots and poles of the functions ¥(z) and ¥(e)+®(z) in the region '
G. Let C be an arbitrary closed curve lying in G and passing neither through
these roots nor through these poles.

Then, if |®(2)| < |¥P(z)| on the curve C, we have

Zindca,~21ndcbi=2'indoa;——Z’indcb"
i i i i

(where every root and pole appears in the sequen¢es of roots and poles as
many times as its multiplicity indicates).
[Hint. Cf..§ 5, exercise 1.] -
6. If F(z) is a regular function (with ‘the exception of an isolated set of
singularities)in a simply connected region &, thenin order that exp f F(z)dz=1 for
C

every closed regular curve O lying in & and not passing through si;:tgul&r points
of the function F(z), it is necessary and sufficient that all the residues of
this function at its singular points be real and integral.

If the function F satisfies this condition and @ is an arbitrarily fixed
point of the region @ in which the function F is holomorphic, then the ex-

pression H(z)=exp f F(2)dz, where C(z) denotes any regular curve joining

c .
the point a with th(g) point 7, and not passing through singularities of F, is
a regular function in G with' the exception of an isolated set of singularities.
Prove that in order that the function H be meromorphic in G, it is necessry
and sufficient that all the singular points (not removable) of the function F(z)
be simple poles.

S. Saks and A. Zygmund, Analytic Funotions. 13
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Determine the values of the parameter b for which these conditions are
satisfied by the function F(2)=1/(b-cos 2).
[Hint. See Chapter II, § 2, exercise 3.]

§ 8. The method of residues in the evaluation of definite inte-
grals. We make frequent use of the theorem on residues in calculating
the values of real integrals. In order to illustrate the method, we

shall evaluate the integral f x*Q(x)dr, where a is a real non-in-

teger, and @(x) is a raﬁmonal function having no poles at the real
non-negative points. We assume that this integral has a finite
value, or — equivalently — that

(8.1) 2*1Q(z)—~0 when z->0

For it is possible to determine two integers p and ¢ in such a way
that 2°Q(z) and 2°Q(z) tend to finite hmlts different from zero ‘when ¢ tends

and when z-+oco.

to 0 and to oo, respectlvely The condition that the integral J' 2°Q(x)dr is

finite is therefore equivalent to the condition that 2 "0 Wheu -0 and
that 2°7'—0 when z— oo, which, in turn, is equivalent to condition (8.1).

 Let G be the open plane with the exclusion of the non-negat-
ive real axis #>0. In the region & we can define (cf. e. ¢. Chap-
ter I, theorem 11.1) a holomorphic branch L(z) of the logarithm
of z in such a way that it tends to zero when z—1 through values
on the upper half-plane. By 2° we shall mean (cf. Chapter I, § 11)
the function exp[aL(z)]. Taking z= 241y, we have

(8.2) ylilgiz“Q( )=2°Q (x), Eon_z“Q(Z)ﬂ““mw“Q(m)

Now, let e<m be an arbitrary
positive number and let C,(»') and
C.(r") denote, respectively, the arcs
of the circumferences C(r')= (0 '),
C(r'")=C(0;r"), given by the equations:

for x>0.

Corny ™ ~Comm

Ca=1"¢", 2=1"¢", where e<<O 2 —e.
~ Let us consider the closed curve

consisting of these two ares and two
segments (see Fig. 11):

o Fig. 11 ' v
(8.3) - C,=0.(r, ”)— () I emE e — O (v ) - [, €],

assiming that the radius " is sufficiently large, and the radius »’
and ¢ sufficiently small, so that none of the poles of Q(z) lie on

iom
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this curve. Denoting now by 0b4,b,,...,b, the finite poles of the

-function 2°Q(z), or — equivalently — of the function @(z), we have

by theorem 7.1 ‘“‘on residues”

1 no
(84:) o f z“Q(z)dz:ZRj mdgsb,-,
Py C’S(T’,T") i=1

where R; denotes the residue of the funetion 2°Q(2) a,t‘the point b;.
On the other hand, by (8.2) and (8.3),
lim f 2°Q(z)de= fz“@(z Vdz— fz"Q(z

&0 (g, ooy oy iy

g . f #Q(e) &,

“and passing to the limit as #'—0 and r''—>oc0, we obtain

lim [ Q)=
rori—yo0 Ol ™)

(1—e*) [ o°Q(o)dw
0
(8.5) -
= 24" gin ar f z2°Q () da.
, d

Finally, when the pole b; is in the annulus P(0;7',7"), then

1 dz 1 az 1 - dz
lim 5 f 2—b, omi fz—b- o ) 2D =1
0 H P TV SRy T Tl '

Therefore, when 7' is sufficiently large, and & and r* sufficiently
small, all the indices indgb; in formula (8.4) are equal to 1, which,
by the way, could also be verified directly by employing the method
of § 6, observing that all the poles b; will be found in the “inte-
rior” region of the curve C,(r’,r’). Consequently, making use of
(8.5), we obtain S

00 ﬁﬁ_mi
of aa“(,)(ac)dm=——sma7r ;‘Rj

EXERCISES. 1. Evaluate the integrals:

+e cost di . 2 cont di i
P ey Y , b>0, a#b), b —_— (a>0),
® | reem @00 ® ) Gy
+0Q . 2 __ g2 t
sinnt di t g sin
— >0, n>0). (d) ~ c——dt - {6>0).
© ,,f i+ a) @ ) of Frae b

13*
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+00 it
. . e“dt
[Hint. ad (a): The integral can be written in the foun_i Er‘;——m?) i
let us consider ‘the integral of the expression "/ (22 a?) (21 b?) along a curve
composed of the upper half-circumference of the circle K(0;R) and the
diameter of this circle; we pass to the limit as R—+oco. The remaining
integrals are evaluated analogously.]

P (Logt)*
2. Let In= {ost) dt (k=0,1,2,...). Evaluate the integrals I, as well
5 114

as I,, and find the recurrence relation among Iy (k==2) and I,,I,,...,I, .
[Hint. We integrate (Logz)/(142*) along a closed curve consisting of
the upper half-circumferences of the circles K (0;7) and K(0;R) (where O0<r<R)
and two segments of the real axis; passing to the limit as 70 and E-—co,
we obtain I, and I,.]
3. Evaluate the integrals:

40
(E!.-) éf mdﬁ, where —1 <p<3,

+00 _pdt'
(b) ——————, where —Il<p<l, —n<f<m
: 14-2tcos 6422
+00 p1

4. Calculate the principal value of the integral f
[

T where 0<p<1.

(If the function F(t) is infinite at the point ¢ in the interior of the interval
[a,b], then the lmit

e—8 b
]im[fF(i)dt—i— fF(t)dt]
>0+ La ¢te
: b
is called the principal value of the integral [F(f)dt.)

- §9. Cauchy’s theorem and formula for an annulus., In
Chapter III, § 4, we proved the expansibility of a function in
a power series in the neighbourhood of every point at which the
function is holomorphic. It was not proved, however, that a funec-
tion holomorphic in a given circle is expansible in a power series
in this entire circle. The proof of this theorem in a somewhat more
general form, namely for Laurent expansions, is based on the fol-
lowing variants of Cauchy’s theorem and formula, which we shall
call, respectively, Cauchy’'s theorem and formula for an annwulus.

(9.1) If W(2) is a function continuous in a closed annulus P(2y;71,7s),
where 0 <1, <ry<oo, and holomorphic in the interior of this annulus, then
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(9.2) [W(@)dz=[W(z)dz

¢ <,
and

(9.3) WE)= ——tdg——— | ———dz  for 3eP(%;71,rs)s

z2—3 27”’0, 27

1 J W(z) 1 (W)

2n1 A

where C;=C{zy;71,) and Cy=C(zy;7,)-

Proof. We may obviously assume that z,=0. Let @ denote
the set of those points of the annulus P(0;7,,r,) which do not
lie on the positive real axis. Let us denote by C,(r}) and C,(r3)
the arcs of the circumferences given, respectively, by the equations:

z=7e? - and z=ry¢", where <0< 2n—¢;

we assume that r,<rj<ry<r, and 0<e<w. Let us consider the
closed . curve (see Fig. 12) :

(9.4) O, (17 72) =C,(r3) +-[ra ™, rie™ ] — O, (r]) +-[rie”, e,

composed of two ares and two seg-
ments. This curve lies in the simply
connected region G and by Cauchy’s
theorem in form (2.3} we have

' [ W(z)dz=0.
C(rirs)

Decomposing the left side of this equa-
lity into four integrals corresponding
to (9.4), and passing to the limis,
first a8 &—>0 (which makes the sum
of the integrals along the segments tend to zero), and then as
ri—7, and 73—>7,, we obtain the formula (9.2).

Now, let 3 be an arbitrary point of the annulus P(z;r;,7)-
Then the function [W(2)—W(3)]/(#x—3) is continuous with respect
to 2z in the entire closed annulus P(2y;7y,7,) and holomorphic in
its interior. We can therefore substitute this function for W(z) in
formula (9.2). We obtain

(9.5) W —WE) [ W&-W@),,
z2—3 &, z—3

Fig. 12.
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! de dz
moreover, since (§ 6, p. 188) f ;:%=0 and f ;——(;):27:@', we de-
01 cﬂ

duce from (9.5) the formula

fzr_(z; dz—fll_(?dZ=W(3)[fzd;—fz—cz_—_%]:znimg),
C,

C, C, C,
equivalent to formula (9.3).
(9.6) A function W(z), holomorphic in an annulus P(zy;7,,7,), is
expansible in this annulus in an almost uniformly convergent Lawrent
series.

Proof. Making use of theorem 9.1, we employ essentially the
same method as that in the proof of the somewhat weaker theorem
5.7, Chapter III. We may obviously assume that z,= 0.

Let 7y <ri<rs<<r, and let 3eP(0;r;,7;). Then, writing generally -

C(r)=0C(0;r), we have by theorem 9.1,

(9.7) W(a):‘)—l—i ?(z)d L T”V(z)
Y iy T3 “ ey P73

dz.

2 — ——

~ For points 2 on the circumference C(r}) we have |2/3]="7}/|31<1,
and for z on the cireumference C(r;), analogously, [3/z|=|3]/r<<l.
Consequently,

IE@ z:C‘r{;Wé(.z—)]%%/zz f[Wz(z)Z” (2)"]dz=§3“ fZ»E;zl—)dz,

and similarly,

Wiz) W(z) de o 1
d - 4 e T e n Z
f P 2 f P g nZ:; 3n+1o(rf’)z W (2)dz.

-0 o(ry)

Substituting this expansion in (9.7), we obtain, in the annulus
P(0;7r,75), an expansion of the function W(3) in the Laurent series
+00

(9-8) W)= 3 3",

N=—00
with coefficients @, given by the integrals appearing in the two
preceding formulae. In view of the uniqueness of the expansion
in a Laurent series (cf. Chapter ILT, § 4), these coefficients are the
same for the expansions of the function W(3) in all annuli

icm
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P(0;7],75), where r;<rj<r;<r,. The equation (9.8) is therefore
satisfied in the entire given annulus P(0;7,,7,), and the almost
uniform convergence of the series appearing in this equation is
a consequence of theorem 4.3, Chapter III. _

From theorem 9.6 it follows, in particular, that a function
holomorphic in an annular neighbourhood of the point 2z is
expansible in this entire neighbourhood in a Laurent series. If
we assume, in addition, that the function is also holomorphic ab
the point z,, then the principal part of its expansion vanishes and
the expansion becomes a power series. Consequently,

(9.9) A function holomorphic in a circle is expansible in this entire
circle in a power series.

Similarly, we can complete the theorems of Chapter ILI, § 13,
coneerning functions of two variables. Namely:

(9.10) In order that a function F(2,w) be holomorphic in the Car-
tesian product K(zq,7,) X K(wy;rs) of two circles, it is necessary and
sufficient that it be expamsible in 4 in an almost uniformly con-

=< . oo

vergent series of the form ) an(2)(w—w,)"; if weFo00, or D a,(2){w™,
n=0 n=0

if wy=o00, where a,(z) are functions holomorphic in K(z;71)-

Proof. The sufficiency of the condition is obvious. With the
view of proving its necessity, let us assume that the fune-
tion F(z,w) is holomorphic in the bicircular neighbourhood K(zy;11) X
X K (w0y;7,), Where we may obviously take w,=z2=0. By theorem
9.9, we have in this neighbourhood an expansion N

(9.11) Fiz,w) —égan(z) w",

with coefficients a,(2) given by the integrals (cf. Chapter III, theo-
rem 4.6): .

1 F(z,m)
(9.12) Un(8) = — f &%) i,

o i1
™ (e

where p, is an arbitrary positive number smaller than 7., and
C(0,)=C(0;p,). From (9.12) it follows, first of all, by theorem 5.7,
Chapter II (as in the discussion of Chapter IIL, §13), that the
functions ay,(2) are holomorphic in the circle K(0;r,). On the other
hand, denoting by o, an arbitrary positive number smaller than 7y,
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and by M(py,0,) the upper bound of |F(z,w) for |z|<o, and
lw|< 05, We have from (9.12) thatb |0, (2)| < M (1,00) /0% for |2|<o;. The
series appearing in formula (9.11) is therefore almost uniformly
convergent in every bicircular neighbourhood XK(0;0,) XK (0;0,),
when 0<p;<7; and 0<py<r,, and therefore in the entire biecir-
cular neighbourhood K(0;7) XK (0;75)..

Theorem 9.10 can also be given the following form:

(9.13) In order that a function F(2,w) be holomorphic in a bicir-
cular neighbourhood XK (zy37,) X K(wo 372)y Where 2700, wyF#0oo, it s
necessary and sufficient that it be expansible in this region in an al-
most uniformly (and absolutely) convergent double series of the form

2 A (z ___zo)m(,w __,wo)n.
mn=0
The coefficients of. this series are given by the formula
1 Fzw) '
= dw|d
B 4752J[J(a——zo)m“(m—wo)"“ 3

where C,,C, are arbitrary circumferences contained in the circles
K(2;7y), K(wy;ry), respectively, and concentric with the circumfer-
ences of these circles.

Proof. The sufficiency of the condition is obvious. With
the view of proving its necessity, we take 2z,=w,=0. The
funetion F(g,w), holomorphic in the bicircular neighbourhood
K(0;7,)xK(0;r,), is expansible in this neighbourhood in the
series (9:11), with coefficients a,(2) holomorphic in the circle
K(0;7,) and given by formula (9.12). In this circle we

. o ' 1 ra(3)d;
therefore have @,(2)= ) @y, 2", Where U= 5— f ~=mrr s C1 de-
i m=0 “'“77’01 3
noting an arbitrary circumference C(0;p,) with radius o,<<r;.
Substituting the expression a,(3) from (9.12) in this integral,
we obtain '

) 1 F(3,m) ’
(9.14) =15 f [ cf Wrdm] &,

1

where (, denotes an arbitrary circumference C(0;0,) v@*ith radius
0:<ry. Denoting by M(p,,0,) the upper bound of the values of
!F(zawﬂ for lzl<91’ lw|<927 we therefore have !a‘m,n <ﬂf(91792)/9’1n@g'

icm
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In the bicircular neighbourhood X(0;0,)xX(0;0,) the double

(o5

series > dn,2"w" is thus absolutely and almost uniformly con-
m,n=0 . .
vergent, and
o0 00, 00 . o0 ‘
~ m,.n

(9.15) D) Oy "W =2( 2am’nzm)’w"=2a,n(z)w"-——F(z,w).

mm=0 n=0"m=0 n=0

Since the only thing we assume about g; and p, is that 0<p,<r;
and 0<Cp,<7,, the double series considered is almost uniformly
convergent in the entire bicircular neighbourhood K (0;#,) X K(0;r,),
and equation (9.15) holds in this entire neighbourhood.

If a funection W(z) is holomorphic in the neighbo{u'hood of a point
2 7 oo, and if W’(z,) % 0, then. (cf. Chapter III, theorem 12.4) it is uniquely
invertible in a certain neighbdurhood of the point z,. Its inverse funetion,
which we shall denote by F(w), is holomorphic in a neighbourhood
of the point we=7W(z), and is therefore expansible in a mneighbour-
hood of this point in a power series with centre w,. Taking for simplicity
wy=2,=0, we shall find expressions for the coefficients of this expansion,
which in some cases prove to be particularly convenient in calculations.
Therefore, let

o0
(9.16) : Flw)= ) a,w",
. n=1
and let K(0;R) be a.closed circle in which the‘ function W is holomorphie,
uniquely invertible and non-vanishing except for the point 0. Let us denote by M
the lower bound of the values of [W(z)| on the ecircumference C=C(0;R).
Let us, on the other hand, consider the circle K(0;r) with radius r<<M

" sufficiently small, so that the function W assumes in the circle X(0;E) every

value weK(0;7).
We shall therefore have for we K{0;r), in view of theorem 7.5 applied to
the ecircle (cf. analogous reasoning in the proof of theorem 14.1, Chapter III),

Plw)= — f LA
c

- 2ni W(z):l;

whence

1 w’ 1 d 1
Fw)= ——fz @ gL (2 (—————) d.
2mi [W(z)—w] 2ni dz \W(z)—w
¢ c
Integrating by parts along the circumference C (i.e. integrating by
parts with respect to the variable 0 in the interval [0,2x], after substituting
z=Rexpif), we have :

P 1 f dz
‘ (w)'Z:?;C W) —w
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and since 'lw|<9‘§M, we obtain the expansion of the function F'(w) in a
power series in the circle K(0;7):
dz *

1 1 a1 f dz
7 _—— e — w B — s
Flwoy=g5 cf W@ 1—[w/ W) gf: 2} TW(2)]
Comparing this expansion with (9.16), we see that

_ 1J’ dz )
(9.17) | ““"‘E;io (7]

Now, since the function T(z) vanishes nowhere in the circle K(0;R)
except for the point 0, the integral on the right gide of formula (9.17) is equal,
by theorem 7.1, to the residue of the function 1/[W(2)]" at this point. In
order to calculate this residue, let us take G(2)=2/W(2). The function G(z)
is holomorphic on the closed circle K(0;R), and we verify that for n=>1 the
coefficient of 1/z in the expansion of the function 1/[W(2)]"=[G(2)]"/z" in a
Laurent series with centre 0 is the coefficient of 2! in the expansion of

" the function [G(z)]* in a power series. This coefficient is equal to (cf. Chap-
ter III, §1)

L e
(n— 1_)—!_ l a7t [6(=)] Jz=o’

dn—l ” ;;1 1 l‘ du—l[ 2 ]nl
[G(=)] foco

= 1 2t Jomo ml L@ LW (2)

w_hence, by (9.17),

Substituting these expressions in (9.16) for a,, we obtain a series which
is known as Lagrange’s series.

EXERCISES. 1. The function exp [3(z—1/2)u], where u is an arbitrary

+00
number, has the expansion Y I (u)?z* at the point 2=0, convergent in
n=—00

the entire plane with the exception of the points 0 and oco. Show that
2
1 ..
I, (u)=— f cos (nf —usin 0)d6.
27 b
The functions I,(u) are called Bessel functions.

2. In the Laurent expansion of the function sin [(¢+1/2)u] at the point 0,

the coefficients of 2* and 2" are equal and are expressed by the integral
27

1.
-—f sin (2u cos 0) cos nfdb.
2% : ’

3. If a function, meromorphic on the closed circle X (0;1) and holomor-
phic in its interior, is expansible in the interior of this cirele in the power
series Y'@,2", and has exactly one pole #, on the circumference C(0;1), then

lim a,/a,,; =%-
n—00
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P

[Hint. The given function ean be represented in the form of the sum
of a power series J'b,2" convergent in a circle of radius o>1, and a pol-
n

ynomial in 1/(z—2).]

4. Generalize the theorem of exercise 3 as follows: If a function mero-
morphic on the closed circle K(0;1) is expansible in the interior of this circle
in the power series 3'a,2", and if among the poles of this function on the circumfe-

rence C(0;1) there exists one pole z, of multiplicity greater than that of all those
remaining, then lim (a,/a,.)=2%.
. =00
5. Let.my,My,...,My,... be an increasing sequence of positive integers,
and {Pk(z)} a sequence of polynomials such that for every k the degree
of the polynomial z™P,(2) is <m,,,. Prove that, if the series

*) W (2) =2™ Py (2) +2™Py(2)+ ...+ 2P, (2) - ...

is almost uniformly convergent in the ecircle K (0;1), then the expansion of
the function W(z) in a power series in this circle is obtained by carrying
out the multiplications and removing the parentheses on the right side of
the equation (*).

Construct an example showing that the assumption of almost uniform
convergence of the series (*) is here essential, 4.e. that the theorem ceases
to be true for pointwise convergence, even when we assume that the series (*)
converges to a function holomorphic in the eirele K(0;1).

6. A root z of the so-called Kepler equation z=a-twsinz (as a function
of the parameter w) is given in the neighbourhood of the point w=0 by
the series

dsinta s 1 d?sin’a

. , 1
Z=a-+w sma—i—wa-——&—(;— +w 31 e

7. Expand the roots 2 of the equations:
(a) z—we*=0, (b) z=a+we,
in power series of the parameter w in the neighbourhood of the point w=0.

Caleulate the radii of convergence of these series.

8. Let W{(z) be a function holomorphic in the neighbourhood of the
point z=0, with W(0)=w, and W’(0)0; furthermore, let H(?) be an arbi-
trary funetion holomorphic in‘ the neighbourhood of the point 0. Then, in the
neighbourhood of the point w,,

H{W ™ (w)] = Ya,(w—w)",

-1

1 a
where ap=H(0), @,= — - — |H'(2) [2/(W(2)—wo)"},_, for n=>1 (Lagrange’s
n! d®

series in genmeralized form).

9. If # denotes a root of equation (a), exercise 7, then in the neighbour-

. ) = b,
hood of the point w=0 we have sinz= Y —

w", where
n=1M !
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w— (n—1 2-5
b,=n"""— (n2 l)n"“g—{- ()L4 ) n*—

10. In order that a real function W (z), defined for 0<Cx <1, be extensible
as a holomorphic function to the circle K(0;1), it is necessary and sufficient
that W(x) be the difference of two functions, each of which is the limit of a se-
quence of polynomials with non-negative coefficients, uniformly convergent
in every interval [0,r] for O0<r<Cl.

§ 10. Analytical definition of a simply connected region.
In Cauchy’s theorem 2.3 on the curvilinear integral, as well as in
theorem 3.1 on the branch of the logarithm of a holomorphic fune-
tion, the assumption that the open set considered there does not
separate the plane is essential. In fact, both of these theorems can
be inverted, and we thus obtain an analytical criterion for the
non-separability of the plane by an open set. Namely:

(10.1) In order that an open set G, not containing the point oo, should
not separate the plane, it is necessary and sufficient that the curvilinear
integral of every fumction holomorphic in the set G vanish along every
regular closed curve lying in this set.

(10.2) In order that an open set G should not separate the plane, it
is mecessary and sufficient that for every function W (2), holomorphic
and nowhere vanishing in G, there exist a. branch of logW(z) in @,

The proof of these theorems will be based on the following
lemma, which we shall also use in the proofs of more general
theorems (cf. § 12 further on).

(10.3) If S is & component of the complement of an open set G and does
not contain the point oo, then there exists in G a closed pol ygon O
(without multiple points) such that indoS#0.

Proof. We may assume (removing, if necessary, the point oo
from the set @) that G does not contain the point oco.

By theorem 9.6 of the Introduction, the set CG can then be
represented as the sum of two closed disjoint sets ', and F, in such
a way that the set F, contains the set S and does not contain
the point occ. Therefore, in virtue of theorems 10.3 and 10.2 of the
Introduction, there exists a finite system of non-overlapping
squares Qy,Q,,...,Q, such that

(104) - 7,C (ﬁ;%)%

. 13
(10.5) ’ Fy- YQ;=0,
j=1
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(10.6) the boundary of the set ZQ] is composed of a finite number

of disjoint closed polygons 01 ,09, - Oy without multiple poinis,
and with sides oriented in agreement mth the senses of the squares
Q; adjacent to these sides.

. Let 3 be an arbitrary interior point of one of the squares Q;,
e. g. of the square ¢,. We then have

1 dz 1 for j=
0 for j

and therefore

In the sum on the left side of this equality the integrals along
the sides of the squares ¢; which are not boundary sides, eancel
each other, and in view of (10.6) we have as a result

(10.7) _ 7.
iz 1 _1 z~—~3
The above formula was proved for points 3 situated in the interior
of the squares @;, but, by continuity, is extended immediately to all
n

the points of the set } @; which do not lie on the boundary of
j=1

this set, and in particular, in view of (10.4), to all the points
3eSCF,.

Let now 3 be a point of the set S. From formula (10.7) it fol-
lows that for at least one of the polygons C;, say for C,, the
corresponding integral on the left side of this formula is different
from zero. This means that inds§=inds 370, and since by (10.4)
and (10.5) all the polygons C; lie in @, the polygon C; is the de-
sired polygon C. -

Passing next to the proofs of theorems 10.1 and 10.2, we see
immediately that the necessity of the conditions formulated
in these theorems is already contained in theorems 2.3 and 3.1.

On the other hand, the condition of theorem 10.1 implies by
theorem 2.6, Chapter II, the condition of theorem 10.2. Hence
we mneed to prove only the sufficiency of the condition of
theorem 10.2. .
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Let us therefore assume that the set G separates the plane; we
shall then show that there exists a holomorphic function nowhere
vanishing in @, for which, however, no suitable branch of the log-
arithm exists. In addition, we may assume (employing an inver-
sion, if necessary) that the point co does not belong to G.

Tet @ be an arbitrary point of & component of the comple-
ment of the set &, which does not contain the point oo, and let
C be a regular closed curve lying in G and such that

. dz
2niindga= | ——=#0.
2—a
c

Such a curve exists in virtue of lemma 10.3. Hence, by theorem
2.6, Chapter II, a branch of log(z—a) cannot be defined in the set
@, although the function z2—a is obviously holomorphic and van-
ishes nowhere in this set.

In theorems 10.1 and 10.2 we may substitute, in particular,
“region” for ‘open set”. Theorem 10.1 contains an analytical
definition of simple connectivity of a region. By an analytical

“ definition of a property of a set we here mean, roughly speaking,

any definition from which it is evident immediately that this

property is an invariant of conformal transformations (see Chap-
ter V, § 1, further on). '

*§ 11. Jordan’s theorem for a closed polygon. Jordan’s theo-

rem on the separation of the plane by a closed curve, mentioned

at the end of § 6, will now be proved for polygonal lines in the
following form:

(11.1) The complement of a closed polygonal line

CL=[2y,21;-- -, 2 =2%],

having mo multiple poinis, is the sum of two disjoint regions @,
and Gy. Denoting by G, that one of the regions which contains the
point oo, we have

(11.2) ind,G¢,=0,  |ind;G,|=1.

The po?/ygon Lis, m d(ld_z't'ion, the common bou%dwy of the re-

gions. Gy and G,.

Proof. We shall prove, first of all, that the complement of
the polygon O contains at most two components. The proof is based
on the following elementary geometrical construction. '
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Let [2x_1,%¢) and [2g,2,1] be two consecutive sides of the pol-
ygon L and let 3,72, 1 and 3y52;,; be arbitrary points of the
respective sides. Furthermore, let L, be a segment for which 3,
is the only interior point in common with Zyen
the polygon L, and L, a segment for which
3p is the only point in common with this
polygon (see Fig. 13). Then every point
253, of the segment L,, sufficiently close
to the point 3,, can be joined with the
segment L, (¢.e. with some point of this
segmént) by means of a polygonal line,
disjoint from L and composed of .two
segments parallel to the sides [z;_y,2]
and [#,2p.1], Tespectively.

This construction can be extended immediately by induction
as follows. Let a be an arbitrary fixed interior point of the side
[#,2,] and let [ey,c,] be a segment containing a in its interior and
having no other points, except the point a, in common with the
polygon L; each of the segments [a,¢,] and [a,c,] is, with the ex-
ception of the point a, of course, contained in one of the compo-
nents of the complement of L. We shall denote these components
by G, and G,, respectively.

Next, let 7' be an arbitrary segment which has exactly one
point in common with L. Then every point of this segment can
be joined with some point of the segment [e¢,,¢;] by & polygon which
has no points in common with L.

Now, let 37400 be an arbitrary point not lying on L and let
b be the first point of intersection of the segment [3,4] with the pol-
ygon L. Then the segment [3,b] does not have, except for b, points
in common with L, and therefore, as before, the point 3 can be
joined with some point of either the segment [a,¢,], or the segment
[a,c,], by means of a polygon disjoint from L. Consequently, every
point 3z4co of the plane belongs either to the seb G, or to the
set G,. However, the point co must also belong to one of these two
sets and the polygon L sepa,rates the pla,ne into- at most two
regions.

‘We shall now show that in every neighbourhood of every pomt
ceL there exist points with different indices, more precisely: with
indices differring by 1. On  doing so, it is obviously sufficient
to restrict oneself to the eonsideration.of the points ¢ which are

Fig. 13.
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not vertices of the polygon L. It will then follow that the regions
@, and @, are indeed different and that |[indz;G,—indz @,|=1.
Therefore, if we assume that the region @, contains the point oo,
we shall have ind;@,=0; and hence [indG,|=1.

Tet ¢ then be an interior point of anyone of the sides of the
polygon L, e. g. of the side [#,2;]- The indices of points with
respect to a curve remain unchanged under a linear transforma-
tion of the plane (cf.§ 6, p. 186). Hence, applying, if necessary, a rota-
tion of the plane, we may assume for simplicity that the side [2,2]

is parallel to one of the coordinate axes.

v Let @ be that one of the two squares

: / \ with side [2,,#2,] Wwhose positive sense is

\Y 2, opposite to the sense of the segment
/ 3 lying neither on the polygon L, nor
on the perimeter of the square @ we have

——y
N dz dz dz

vertices of this square (see Fig. 14). -
Let us denote by I, the polygon
(29, 0y By 1422y -+ 8 =2p). For every point

c:/<—

[%, %], and let By 21, %, o be successive

- - ?
Fig. 14. P/ T A et B

and fherefore
(11.3) indz 3=indz3+ indg,3.

Let us now denote by K an arbitrary neighbourhood of the
point ¢ disjoint from I, (on Fig. 14 the circumference of the
circle K is denoted by C). The index indz3 has the same value 4
for all points 3¢ K, and in view of (11.3) ' ‘

for 3¢K-CQ,
A—1 for 3eK-Q°.

In every neighbourhood of the point ¢.there exist then points
whose indices with respect to L differ by 1, whence, as was seen
above, the equalities (11.2) follow. At the same time we
have proved that every point of the polygon L is a point of
accumulation of both regions @, and @,, and since these regions
cannot obviously have boundary points not on L, this polygon
is their common boundary.

mdL3= indLn?) — in&(Q)?,: {
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Of the two regions into which a closed polygon without mul-
tiple points separates the plane, the one which contains the point
oo is called exterior; the other is called interior. By theo-
rem 11.1, the index of the interior region with respect to a given
polygon is equal to -1 or —I1. If this index is equal to -+1, then
we say that the polygon is orienied positively.

In virtue of Jordan’s theorem for a polygon, we obtain
immediately from theorem 7.9 the following corollary:

(11.4) If a function W, continuous on a closed ecircle K and holo-
morphic in s interior, is uniquely invertible on the circumference
of the circle K and transforms this circumference into a closed poly-
gon L, then this fumction is uniquely invertible on the entire circle K
and transforms the interior of this circle into the interior region of
the polygon L.

In virtue of Jordan’s theorem for arbitrary closed curves, we could
obviously remove from theorem 11.4 the assumption that the function W
transforms a circumference into a polygon. For, from the invertibility of the
function W on the circumference of the circle K it follows in any case that
this funetion transforms this circumference into a certain closed curve L with-
out multiple points, and theorem 11.4, in the more general formulation, would
state that the function W transforms the-interior of the circle K into the
interior region of the curve L in a one-to-one manner.

The closed circle X in theorem 11.4 ean also be replaced by an arbitrary
closed region bounded by a closed curve without multiple points (ef. remark,
p. 192).

EXERCISE. If a function W, continuous on the closed circle K and
meromorphie in its interior, has exactly one pole (simple) in the interior of K, is
uniquely invertible on the circumference of the circle K, and transforms this cir-
cumference into a closed polygon I oriented negatively, then the function W
is uniquely invertible on the entire circle K and transforms the interior of
this circle into the exterior region of the polygon I.

*§ 12. Analytical definition of the degree of connectivity
of a region. As a generalization of the theorems of § 10 we ghall
give an analytical criterion for the n-connectivity of a region. We
first prove the following complement of lemma 10.3:

(12.1) If 84,8s,...,8, are n distinct components of the complement
of the region @, none containing the point oo, then a system of n reg-
ular closed curves Cy,Cs,...,C, can be determined in G such that

0  for k4,
1 for k=j,

S..Saks and A. Zygmund, Analytic Functions. 14

(12.2) indeSj-——“ { where 70,7-:1,2, PN (2
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Proof. As in the proof of lemma 10.3, we may assume that
G does not contain the point co.

Then, denoting by S, that component of the eomplement of
the region ¢ which containg the point oo, we first join it with the
components 8;,8;,...,8, by means of lines disjoint from 8;. To that
end, let ay,dq,...,0,,0, be Dboundary points of the components
82,85,...,8,,8, respectively. With each of the points a; (where
j=2,3,...,m,0) we associate a point b;eG in such a way that the
gegments [Gs,05). ..y [tnybal,[@0,De] are disjoint from 8.

Next, we join the points ba,bs,...,0n respectively with the point
b, by means of the polygons L,,Ls,...,L, lying in G.

Let

G1=G—£ao,b51—k2 [ty e+ L.

The set @, iz open, and, as we easily prove, Sl is a compo-
nent of the complement of this set. By lemma 10.3 there exists
in the set G4,CG a closed polygon C, without multiple points, such
that ind¢ 8, 0; hence, by theorem 11.1, we have precisely indg S, =1
under the assumption that the polygon €, is oriented positively.
Moreover, since S,,8s,...,8, are contained in that component of
the complement of the set @, which contains the set §,, and hence
the point oo, it follows that indyS;=0 for j=2,3,...,n. We define
analogously the remaining curves C; so that conditions (12.2)
ghould be satisfied.

Next, we shall prove a lemma which may be considered as
a generalization of theorem 2.3:

(12.3) If the complement of an open set G mot containing the point
oo has exactly n--1 components, then denoting by S1,8:,...,
components which do not contain the pomt oo, and by C1,Cy,...,0,
a system of curves in G satisfying conditions (12.2), we have

(12.4) [W(z)dz= zn’ indg ;- [W(2)de,
¢ i=1 ¢

for every holomorphic function W(z) and every regular closed curve
C lying in the set G.

Proof. Let a,,as,...,a, be arbitrarily chosen points in the
components S,,8;,...,8,, respectively. By Runge’s theorem 2.1,
the function W(z) can be represented in the set G as the limit of
an almost uniformly convergent sequence of rational functions

S, those.
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{H,(2)}, with poles at most at the points ay,a,,.
by the theorem 7.1 on residues we have

.oy, co. Hence

(12.5) Hp z)dz-—ymdaa ‘resq, Hy = ymdg S; 1esaiH

F= l
for every regular elosed curve C lying in @, and in particular

omi

H, z)dz_Zmdg 8 resq H,=resq, H, for k=1,2,...,n.

Py & =

Substituting the last expressmns in (12.5), we have

fH dz_Z'mdoS [H,(2)de

Cy
and, passing to the limit ag p->oo0, we obtain (12.4).
We can now give the following generalization of theorem 10.2:

(12.6) In order that the complement of a region G have af most
w1 components, it is necessary and sufficient that there exist a system
of n functions Dy(2),...,D,(2), holomorphic, nowhere vanishing in G
and such that for every function W(z), holomorphic and nowhere
vanishing in @, there ewists a branch of log {W(2)/[®y(2)]"...[Pu(2)T"},
where hy,hg,y..., 0y are integers (depending in general on Wi{z))*)

- Proof. By making use of an inversion, if necessary, we may
assume that @ does not contain the point oo.

1° We shall first prove the necessity of the eondition of the
theorem.

Let us assume that the complement of the region G contains
exactly m-+1 components and let us denote by 8;,8,,...,8, those
components which do not contain the point co. We shall denote
by @y,@,,...,a, any points chosen on the components S;,8y,...;8m,
respectively, and by Cy,C,,...,Cp @ system of regular closed curves
lying in ¢ and satisfying the condition

1) The above condition, as a necessary condition, can be strengthened
as follows: if the complement of an open set G consists of n41 components
89,8,,...,8,, and if the point a; belongs to §; (j= 0,1,2,...,n), then for

each function W(z), econtinuous, nowhere vanishing, and defined on @,
there exists a set of integers R,,hs,...,h,, such that the function :
W(z) ai
—_— where  f,(z) =
@1 [ T ! —dy
has a single-valued branch of the logarithm.
Compare the work of Eilenberg and Kuratowski quoted on p. 180.
14*
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0 for kg,
1 for k=j,
Such a system exists in virtue of lemma 12.1.
Let us now assume that m<n, and let W(2) be a holomorphic
function nowhere vanishing in @. By lemma 12.3, for every re-
gular closed curve € lying in &, we have

(12.8) fW dz_—Zmdg;S’ fW I——Zh fz-—a

(12.7) indng,-={ where k,7=1,2,...,m.

dz arve, by theorem 5.4, integers. Assuming

'(Z)
where hj: 5—'“1‘ W
LTC

F(2)=W(e)/(z— al)“'( —ap)...(2—ay)"", we have

) W) &k
o W A

) =

and from equation (12.8) we obtain

w’ (z i dz
dz h
2 I Wz) K f

2—

7=1 1

Hence by theorem 2.6, Ohapter IT, there exists in G a branch
of log F(2), i. e. of log{W(2)/(z—a,)"...(z2—ay,)*}. Since m<n, and
the functions z—a,,...,2—a,, are holomorphic and nowhere vanish-
ing in @, the condition of the theorem is satisfied.

2° Proceeding to the proof of the sufficiency of the con-
dition of the theorem, we assume that 8;, S;,...,8, is a system of m
components of the set C& and that none of these components con-
taing the point co. As in the proof of the necessity of the condition,
- we denote by ay,ds,...,a, points chosen arbitrarily in these
components, and by C,,C,,...,C,, regular closed curves lying in G
and satysfying conditions (12.7).
~ Let us assume now that for the region G there is defined
a system of n functions @, (2),Py(2),...,P,(2), holomorphic, no-
where vanishing in @, such that for every function W(z) there exists
in G a branch of log{W(z)/[D1()T"[Ps(2)]™...[Pu(2) ]}, for a
suitable choice of integers hy,hs,...,h,. In particular, to
every system of m fixed integers «;,a,,...,a, there corresponds
a system of n fixed integers hy,h,,...,h,, such that there exists
in @ a branch of ‘
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("ﬁ':—al)[Xl s (z'— am)am_
[2:(2)] .. [ ()T
i. e. in view of theorem 2.6, Chapter II, that

T)L

dz f-zp' z)
:.ll F—a; 2

i=1

log

for every regular closed curve (' lying in @. Substituting, in succes-
sion, the curves C, for ¢ in this equation, and taking for brevity
1 P; (z)
Bz = Py
2niy Dy(2)

— dz, we. obtain in virtue of (12.7) & system of m

linear equa,mons

" ;
-Zlﬂk’i h,;:ak, where k=1,2,...,m.
L=

This system must be solvable for k; for every choice of fixed
integers o, which is possible, however, only when m<n, and
therefore establishes the sufficiency of the condition under consid-
eration.
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