CHAPTER III
MEROMORPHIC FUNCTIONS

§ 1. Power series in the circle of convergence. The series

[>°]

2, tn(2—20)",

n=0
where 2z denotes a complex variable, is called a power series, or a
Taylor’s series, with centre 2,7=00 and coefficients a,, where n==0,1,2,.,..
By a series with the same coefficients, but with centre z,=oc0, we
mean the series
o0 an

n=0—z—ﬁ-

If a power series with centre 2, is convergent everywhere
in a circle K(z;r), then among all the circles K(z;7) in
which this series is everywhere convergent, there is a largest one.
It is called the circle of convergence of the series considered; the
radius of the circle of convergence, which can obviously be infinite,
is called the radius of comvergemce of the series. If a power series

with centre z, has points of divergence in every circle K(2;r).

of positive radius, then we say that the radius of convergence of
this series is equal to zero.

By means of the transformation 3=¢—z,, if 2,500, or by means.
of the transformation 3=1/2, if z,=co0, we can transform every
series with centre z, into a series with centre 0, and having the
same coefficients as the given geries. Under this transformation,
the radius of convergence obviously does not undergo any change.
Becauge of this observation, it is sufficient in the majority of cases
to consider power series with centre 0. '

(1.1) TEHEOREM OF CAUCHY-HADAMARD. The radius of convergence
of & power series with coefficients a, (where n=0,1,...) s equal. to

R, -—hm inf ——r

la l""
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(1.2) A power series (with a positive radius of convergence) is abso-
lutely and almost uniformly convergent in its circle of comvergence,
and its sum is & function holomorphic in this circle; in the exterior of
its circle of convergence a power series is everywhere divergent.

We shall prove both theorems 1.1 and 1.2 simultaneously,
assuming that the series considered has its centre at the point 0.
The proof will be divided into two parts.

a) The power series > a,2" is divergent at every point z in the

n
exterior of the circle K(0;R,), where

Ro_hmmf a llm
Indeed, if [2;|>R,, then there exist arbitrarily large values
of n for which |2,|>1/|a,|*", and hence |a,2}|>1. The general term
a,2" of the series considered does not, therefore, tend to zero at the
point #==z;, and the series is certainly divergent at this point.

b) The series Zanz 48 absolutely and almost umfo'rwdy conver-
gent in the circle K(O Ry).

We may assume that R,>0. Let r be an arbitrary positive
number smaller than Ro, and let 7, be an arbitrary number such
that

r<?‘o<R0—hmmfl 11’"

Then, beginning from a certain value N of the index =, we
have |ry|<1/|ay'", 4. e. |a,r5|<1l. Consequently, for n>=N, we
have |[@,7™=]a,75|: |r/ro/*<|r/r,|*. The terms a,2" of the series

“considered are therefore smaller in absolute value, for [¢|<r and

n>N, than the corresponding terms of the geometric series Dr/ra),
n

which is convergent, because r<r,. The power series is therefore
absolutely and uniformly convergent in every circle K(0;r) for
r<R,, and hence absolutely and almost uniformly convergent in
the circle K(0;R,), and by theorem 6.1, Chapter II, its sum is
a funetion holomorphic in this eircle.

Theorem 1.2 settles the question of the convergence of a se-
ries in the interior and exterior of the circle of convergence. If
says nothing about the convergence of the series on the cir-
cumference of the circle. In fact, a power series can behave there in
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0 o
various ways. For example, of the two series 32" and >'2"/n?% hav-

n=0 Nys==
ing the common radius of convergence 1, the first is everywhere
divergent and the second everywhere convergent on the circum-
ference of the circle of convergence. It is also possible that a power
series be convergent at certain points of the ecircumference of the
circle of convergence, and divergent at certain other points; e. g.

o0
the series Y'#"/n is divergent for z=1, and convergent for z=—1;
n=1

the bebhaviour of this series on the circumference of the circle of
convergence will be examined more closely in § 3.

A function which is, in the circle K(z,;7), the sum of a power
series with centre 2,, is said to be ewpansible in this series in the
circle K(2,;7), or it is said that this series represents it, or is ity
expansion in the circle K(zy;r).

By theorem 6.1, Chapter II, the derivative of a funciion repre-
sented by a power series is obtained by differentiating the series term

“by term. In other words, if F(z 2% (#—2y)", then in the ecircle
n=>0

of convergence we have:

F’(z)-——;‘gn a(2—20)" F'(z Z’ w(n—1) @, (2 —20)" 7 ...,
(1.3) B -
FO (g Z k)' (2 —20)" %, ...
N= k

‘We obviously have analogous formulae for series with centre
oo (excluding, of course, the point z=o00).

From the Cauchy-Hadamard theorem 1.1 it follows 1mmec11-
ately that the circle of convergence of the differentiated series coincides
with the circle of convergence of the given series.

Finally, if the centre of a power series 2, is finite, then, sub-
stituting 2=z, in the terms of (1.3), we obtain the: followmg for-
mulae for the coefficients of the series:

I (2,) F(k)(zo)

11 geeey = 7ol gne

(1.4) a,=F(2,), A=

EXERCISES. 1. If hm[a/ l“[_-R (finite of infinite) exists for the

power series J'a 2", then R is the radius of convergence of the series.
~ .

-1

§1 Power series in the ecircle of convergence. 12

2. Find the radii of convergence of the power series:

| s
@ Jww o NEle %a

n

(d) Z *2" (where a0, and b is an integer greater than 1),
n
a(a+1)...(a+n)B(B+1)...(f+n)
) n
() 2 12 mpy+]).. (p+n) ©

n

(the hypergeometric series; a, f, y — arbitrary complex numbers, with
y£0, —1, —2, —3,...).
3. If a function F(2), continuous on the closed cirele K(0;R), is expan-
sible in this circle in the series 2 a,2¥, then for every integer » we have:
k=0

n—1

1
(%) 5’ F(R exp2hmijn) = 2 a, R

k=0

(the numbers exp 2kni/n, where k=0,1,...,n—1, form the complete set of the
n-th roots of 1, and the left side of the equation (#) is the arithmetic mean
of the values of the function F at the points of division of the circumference
C(0;R) into n equal ares).

[Hint. Cf. Chapter I, § 10, exercise 5.]

4. If the power series }'a,2" and J'b,2" are convergent in the circle

K(0;R) to the functions ¥(z) and G(2), respectively, then for 0<r< R,
1 e _

(0 5o [ PleGe®) + F - 6(re®ab = 3] (0,5, +a,0)7°
T b n

in particular,

an
#) El,-?f | F(re®)*d0 = )] |a,[*r™ (Parsevals identity).
0 n

If the functions F(z) and G(2) are defined and continuous on the closed
circle K(0;R), then the formulae (x) and (*+) are true also for r=R, independ-

- ently of the convergence of the given series on the circumference of this circle.

5. If F(z)=Ya,z2" in the circle K(0;R) and if |F(z)|<M for [2]|<RE,
then
Yla, PR M2,
oo
6. If F(z)= ) a,2" in the circle K(0;R) and if
n=l

(o]
la,| > X nla,| B,
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then the function F is uniquely invertible in the circle K(0;E), 4. e. it assumes
distinet values at every two distinet points of this ecircle (Liandau).

[Hint. Assuming that F(z,)=F(2,), where |2;| <R, |2; 1< B, and 2z,7%2,,
consider the equality 3 a,(2;—2})=0.]

7. Show that the power series
PR+ & 27 3" 28"

.
Tty T ety Tt

has radius of convergence 1, and that the points of convergence and those
of divergence of this series form sets everywhere dense on C(0;1) (Vijayara-

ghavan). )
[Hint, Take the points of the form z=exp (nik/3N), and consider the case

of k¥ odd and & even.]

§ 2. Abel’s theorem. Ininvestigations concerning the behaviour
of power series on the circumference of the circle of convergence,
a fundamental role is played by the following theorem of Abel:

(2.1) If a series D a,2" is convergent at the poind z=Re", then
n

(2.2) Lm D a, "= ) a,R"¢"";

r—>R— n n
more generally, if the series on the right side of formula (2.2) is uni-
formly conmvergent on a certain set of values of 0, then the passage
to the limit as r—>R, indicated on the left side of this formula, s
also uniform on this set.

It should be noted that if the power series considered is convergent for
2=Re%, then in view of theorem 1.2 its radius is atleast equal to R, and hence for
r< E the series appearing in (2.2) under the limit sign is certainly convergent.
Obviously, the theorem discussed is interesting only in the case when B is the
radius of convergence of the series. For if Re® lies in the interior of the circle
of convergence, then the relation (2.2) is an obvious consequence of the conti-
nuity of the function represented by the power series in the interior of its
circle of convergence.

Let us note that the limit on the left side of formula (2.2) can exist even
though the series on the right side is not convergent. For example, the series
%" is divergent at the point —1 even though its sum 1/(1—z) tends to 1/2 as

z—>—~1 with, fz]<1.

The proof of theorem 2.1 is based on the following tranmsfor-
mation of Abel (sometimes called summation by parts):

(2.3) If {uy} and {v,} are two sequences of numbers and

Sp=Uy+Us ... Uy
for k=1,2,..., then for every n,
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n n—1
(2.4) kz;uk”k=3n”n+ D 81V —pp1).
- K=1

Proof. Taking s,—0, we see that the left side of formula (2.4)
is equal to

> 05— 3
Sk —8p_1) V=) 80— 3 8, 1
k=1 ! kg;. Kk kg;. k1T

Zn' n—1 n—1
= ), $iVp— 8iY, =8, 81 (Vy—0 .
A kél B 1 =Sy n+k=1 (V8 —Vpe1)

Abel’s transformation enables one to prove certain basic cri-
teria of convergence for series of functions of the form

(2.5) ﬁ Un(2) Vn(Y),

n=1

where %,(») and v,(y) are complex functions on two arbitrary sets
X and ¥, respectively. Namely:

(2.6) The series (2.5) is uniformly convergent on Xx Y (i.e. for xeX
and yeY) in each of the following three cases :

(a) if the series

<]
(2.7) ' Dy ()
. n=1
18 uniformly convergent on X and {fvn(y)} 8 a monotonic sequence of
real functions, bounded on the set Y ;

(b) ¢f the partial sums of the series (2.7) are wmifofmly bounded
on X and {v,(y)} is a monotonic sequence of real functions uniformly
convergent to zero on the set Y ;

(e) if the series (2.7) is w'm’formly convergent on X and the series
00 i .
(2.8) [v1(y) [+ Zl [0 (Y) —Vnia () |
N=
is bounded on Y.

Proof. For every m let us denote by e, the upper bound of
a

the sums | }/ uk(m)l for ¢>m and xzeX. Applying Abel’s transfor-
k=m--1 .
mation (2.3) we then have A

n

n—1
> wala)vely)| em(1mn@) |+ 3 0u9)—05.120)])-
k=m+1 k=m+1

S. Saks and A. Zygmund, Analytic Functions. 9

(2.9)
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Now, if the functions v;(y) are real and form a monotonic sequence,
then the expression in parentheses may be. written in the form

(2.10) oY) |+ 108 (Y) —Vmsa(¥) |-

When the hypotheses of condition (a) are satisfied, this expression
is bounded on Y while &,—~0 as m—»oco. On the other hand,
when condition (b) is satisfied, the expression (2.10) tends to
zero uniformly as m,n—oco, while the numbers e, form a
bounded sequence. Consequently, in both cases the right side of the
inequality (2.9) tends to zero uniformly as m-—»oo, and hence the
series (2.5) is uniformly convergent on X X Y.

Now, let M denote the upper bound of the sum (2.8) on Y.
Then, for every value of the index n,

-

I+ 2 102 (y)
E=1

The expression on the left side of inequality (2.9) does not, there-
fore, exceed 2Me,; hence in the case when condition (e) is satis-
fied, ¢. e. when M is a finite number and e,—>0, this expression
tends uniformly to zero as m—>oco. The se11es (2.5) is therefore
again uniformly convergent, g. e. d.

Abel’s. theorem 2.1, formulated at the beginning of this
section can now be proved in the following form, which is even
somewhat more general:

[n(®) | < 102(9) |+ [a(y) —02(y) [ < [02(Y) —vp(y) <M.

0
(2.11) If a power series D a,2" is umiformly comvergent om a set
n=0

Z,, then 1t is also wuniformly convergent (and therefore represents
a uniformly continuous function) on the set Z formed from the seg-
ments joining the point 0 with the points of the set Z,.

Proof. Every point z€Z can be represented in the form z=r¢{,
WheI:e (eZ, and 0<{r<{1. The uniform convergence of the series
considered on Z is therefore obtained immediately by applying

-criterion (a) of theorem 2.6 to the series Z’ancnrn; indeed, the se-
N=

ries Zoancn is uniformly convergent for ZeZ,, and {r }nﬂ01 is a mon-
2 1,

otonic and bounded sequence of real numbers.
Theorem 2.11 justifies the uniform passage to the limit in for-
mula (2.2) of theorem 2.1, and hence includes this theorem.

icm
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From theorem 2.11 it follows that if a power series is uniformly
convergent: 1° on the entire circumference of its circle of conver-
gence, 2° on a certain arc L of this circumference, 3° at a certain
point 2, of the circumference, then it is uniformly convergent (and
therefore represents a continuous funetion): 1° on the entire closed
circle of convergence, 2° on the closed circular sector subtended-
by the arc L, 3° on the radius joining the centre of the circle with
the point 2,, respectively.

Case 3° suggests, moreover, certain additional remarks. If the
series F(2)= D a,2" is convergent at the point z,, then theorem 2.11

n

(and theorem 2.1) justifies the passage to the limit F(z)—F(2)
as 2—>2, only when z tends to z, along the radius of the circle. In
fact, this relation is in general false when 2z tends to 2, in an ar-
bitrary manner from within the circle of convergence, but it remains
true if we stipulate that 2 ranges only over points of the region
cut out from the circle of convergence by two arbitrary chords
with origin at the point 2.

Agsuming for simplicity that z,=1, we may formulate this theo-
rem in the following way:

(2.12) If the series F(z)=) a,2" is convergent for z=1, then
n

F(2)—TF(1), when the point 2z tends to 1 from within the circle
K(0;1) in such a way that the ewpression |L—2|/(1—|2]) remains
bounded.

Proof. Let N be an arbitrary finite positive number and let Z
denote the set of those points 2z of the closed circle K(0;1) for
which |[1—2|<N(1—2|). This set contains, in particular, the
point 1. We have for 2eZ,

o0

1+ X |

n=0

?|

T =1+|1—2| 2]2"1—1»{—1] P l<l\7-|—1.

On the other hand, the series Zaﬂ is convergent by hypothesis.

Therefore, by criterion (e) of theorem 2.6, the series Z'anz is uni-

formly convergent on the set Z and represents a functlon continuous
on Z. We therefore have F(z)—F(1), when # tends to 1, ranging

over points of the set Z.
g%
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Tt is easy to give a geometrical interpretation of the condi-
tion that the expression |1—z|/(1— [2]) is bounded. Namely, taking
1—z=rexpip, we have

[2]2= |1 —r exp ip [*=(1—7 cos p)? |- r2sin® p=1—27 CO8 @+ 72;

congequently,

_ r(14Rl)  1+|1—respig|
T2 T 2cosger
where for z=1, i.e. for r=0, this expression assumes the form
1/cos . The boundedness of the expression [1—=z[/(1—[2|) a8 z—1
is therefore equivalent to the boundedness of the expression 1/cos ¢,
where g=arg(1—¢); and this, in turn, means that # has to remain

{1—2
1-]

£}

in a region cut out from the circle of convergence by a pair of

chords with origin at the point 1.

Returning to Abel’'s theorem in the form (2.1) and taking E=1 and
=0, we obtain the following theorem from the theory of generalized methods

o0
of summability of series: If the series }'a, is convergent and A is its sum,
then n=0
x [=]
(2.13) lim JSa,r"=A.
r—>1— n=0

. The converse theorem is obviously false in general: e. g. for dn=(——-1)"
the expression on the left side of the equation (2.13) is defined and equal
to 1/2, while the series }'a, is divergent. Nevertheless, for certain classes of

m .

series the converse of Abel’s theorem is true. One of these classes is distin-
guished by the following

(2.14) THEOREM OF TAUBER. If na,—0 and
o0
(2.15) lm Ja, =4
r~>1— na=(

exists, then the series }'a. is convergent. ;

n

Proof. Let s,(r) denote the k-th partial sum of the series Ya,r"
Taking r,=1—1/k, we shall prove first of all that "

(2.16) lim s,(r,) =4,
. k
or, what is equivalent in view of (2.15), that’
- (=]
(2.17) v Em }' a,73=0.
k n=ktl

To that end, let us denote by 7, the upper bound of the numbers Ina,|
for n>k. We shall have ) "
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00 o0 ,rn 7 ,’.k+1
r T N :
a,,T’,: g")k "'<?' 1 <771‘s
ne=ktl amzn™ T

whence, since 7,—0, equality (2.17) follows.
We shall now make an estimate of the difference s,(1)—s,(r,). Since

1—r=(1—r) (L+7+ ...+r;-1)<%,

it follows that

k 1 x
(1) =s(r) | < Xla, | A1-) < 7 Dinla].
N0

n=0
In virtue of the fact that na,— 0, the right side of this inequality tends to zero
as k->+ oo, and therefore, in view of (2.16), im 5,(1)=A. Since g,(1) is the
k
k-th partial sum of the series Y'a,, this series converges to the sum A4,
q. e. d. "

EXERCISES. 1. Let {s,},.,,. denote the sequence of partial sums
of the series Ya, and let o,=(s,+8+...+8,)/(n+1) for n=0,1,...

Then, if the sequence {o,},.o,,. i¢ bounded, the series Yo, Y'5,7,
and Y'(n+1)0,¢" ate convergent for jz|<1, and
n
Ya ' =(1—2)Fs,2"=(1—22) (n+1)0,2"

(The sequence {o,} is obviously always bounded when the geries Y'a, is bound-

ed, i. e, when the sequence of the partial sums s, is bounded.)
[Hint. Apply Abel’s transformation (2.3) o the left side of the equa-
tion twice.] .
2. Retaining the notation of the previous exercise, prove that if the
sequence {o,} is convergent and lim g,—=4, then
im Ya,r=A.
r~>l— n
3. Let {,(2)}sm0y,. denote the sequence of the partial sums of the power
geries Y'a 2". Then: (a) in order that the point 2z, lie within or on the cir-
n

cumference of the circle of convergence of this series, it is Decessary and
sufficient that lim sup |s,(2)|"*<1; (b) in order that the given series have
n
a radius of convergence different from zero it is necessary and sufficient that
the sequence {|s,(2)[*"},1s,.. De almost bounded in the entire open plane.
4. If there exists a finite number 3 such that
and  |Ye, <M for O<r<l,

|na,|<M  for n=L2,...

then the series Ya, is bounded (i. e. the sequence of the partial sums of the se-

ries is bounded).
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[Hint, The proof is similar to the proof of Tauber’s theorem 2.14.]
5. If Ynla,2<-+oc and

lim }a,r"

r>l—- n

exists, then the series J'a, is convergent (Fejér).

[Hint. The proof is analogous to the proof of Tauber’s theorem 2.14;
make use of the estimates :

( j'lanw)zz( mnllelanln'rT;;)z<( fnlanP)( j'r;;),

n=k+l n=ktl n=k+l n=k+1
] 2 % .k 3
nla,| | < ) Vol 2
“n == n!a’n] < s nla’nl »
n=p+1 n=p+l n=p+1 ns=sptl

which are obtained by applying Schwarz’s inequality.]
6. Prove that the condition na,—0 in theorem 2.14 can be replaced by
the more general condition:
ay+2a,-- ... +na,
n-+1
7. Show that Fejér’s condition in exercise 5 implies the condition in

exercise 6; Fejér’s theorem (exercise 5) follows in this way from the gen-
eralized theorem of Tauber (exercise 6).

-0, as. n—>-oco (Tauber).

§ 3. Expansion of Log(1—z). As follows from theorems 11.1
and 11.3, Chapter I (cf. also Chapter II, § 1), the funetion Log z
is holomorphic in the circle K(1;1). The functions Log (1-+2) and
Log (1—=) are therefore holomorphic in the circle K(0;1). Moreover,
the derivative of the function Log (1—=#) in this circle is equal to

1 o
— i T n
1—z 27"

=0

Since Log 1=0, we obtain in virtue of theorem 2.3, Chapter II,
by integration

L
(3.1) Log (1—2)= — E p for |e]<1.
n=1 .

The power series on the right side of this formula obviously
has a radius of convergence equal to 1. By the results of §2 we

can easily examine this series on the circumference of the circle of
convergence.
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To that end, let us note that the geometric series >'#" is

n=1
bounded on every arc of the circumference C(0;1) not containing
the point 1. In fact, denoting by s,(2) the n-th partial sum of this

geries, we obtain the estimate
Tl |
GO g—it)2

1_6ni6 1
1—e? = sing)2] ]

from which it follows that the sums s,(6¥) are uniformly bounded
in every interval [e,2x—e¢] with £>0.

Hence, substituting z=¢® in the series on the right side of
the formula (3.1), we verify immediately, using criterion (b)
of theorem 2.6, that this series is uniformly convergent on every
are of the circumference C(0;1) not containing the point 1, and
therefore, by theorem 2.11, it is also uniformly convergent to a
continuous function on every sector of the closed circle K(0;1)
which does not contain the point 1. On the other hand, since the
function Liog (1—2) is continuous (cf. theorem 11.1, Chapter I) on
the entire circle K(0;1) with the exception of the point 1, the a,bgve
reasoning may be summarized in the following theorem:

[ale™)|= | o

(3.2) Equation (3.1) is satisfied on the entire closed circle X(0;1) with
the exception of the point 1, and the series on the right side of this
equation is uniformly convergent on every sector of this circle not con-
taining the point 1.

As an application of theorem 3.2, we shall prove that
2m
(3.3) [Log[1—ae®|a8=0, whenever |a|<1.
0

Proof. Substi%uting o= la[e"f’ and f=¢—a, we see that the
integral on the left side of formula (8.3) is equal to

2r 2nta . 2r .
[Log|1—|a|e"***|db= | Log|1—|a|¢|dp=[ Log|1 —|a|e"|dp.
0 a . 0
We may therefore assume that a in formula (3.3) is a real
positive number. In virtue of theorem 3.2,

o n nif

. a’e
Log[l—ae"ﬂ:—%z

n=1

for 0<6<2m,

n
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where the series appearing on the right side of this equation is
uniformly eonvergent in every interval [¢27—e] of the variable 6
for £>01). By integrating over the interval [e,2n—c] we obtain
therefore :

2n—s X n ni(2rn—e) __ nie o0 —nic nie
) ar ¢ —é e
[ Togi1—atiar——o 3. I op Sy
LI n=1 n nm n=1 n
Since .
—NiE nie
|a” " < —2—
J o S

the series obtained is uniformly convergent with respect to the
parameter £ in the entire interval [0,2=] and, passing to the limit
as &0, we obtain equation (3.3).

We shall make use of this equation in Chapter IV, § 3, in de-
riving the so-called Jensen formula. ‘

EXERCISES. 1. For 0<f<2x,

>3 cosnd ] o sinnd 0
= —Log (2sin —) and E =7,
~ n 2 e 2

the series in the left members of the above equations being uniformly con-
vergent in every interval [g,2w—¢], where £>0.
b

2. [Log|l—aé® |d6=2rLogla| for |a|>1.
[\

8. For every complex value a the function (1+2)* has a holomorphic
* branch in the circlé K(0;1), assuming the value 1 at the point z= 0. Show
that this branch is expansible in the circle K(0;1) in the power series

a afa—1) .
1+Iz+"‘—13"-—z .

Examine this series on the circumference C(0;1).

4. The branch of arctanz in the circle K(0;1), which assumes the value

0 at the point 0 (cf. Chapter I, § 10, exercise 2), is expansible in this
circle in the power series

) 1) In the case when a<1 this series is, obviously, uniformly convergent
in the entire interval [0,2n] and the reasoning becomes simpler. The intro-
duction of the parameter ¢ is essential only when a=1; the integral on the

left side of the formula (8.3) is then improper, for the integrand becomes
infinite at the ends of the interval [0,2r].
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§ Z

5. Show that arcsinz has a holomorphic branch in the circle K(0;1);
the branch which assumes the value 0 for z=0 is expansible in the circle
K (0;1) in the power series

Examine the convergence of this series on the circumference C(0;1).
[Hint. Show that the function which is the primitive function of the

branch 1/]/ 1—22 in the circle K(0;1) and assumes the value 0 at the point 0
is the required branch of the function arcsinz; cf. Chapter I, § 10, exer-
cise 1, and Chapter II, § 1, exercise 1; write the expansion of the branch .
using the results of exercizse 3.]

§ 4. Laurent’s series. Annulus of convergence. By a Laurent
series with coefficients a, and centre zy5~co, Where n=..., —2,
—1,0,1,2,..., we shall mean the series

+ o0

> a(2—2)"

N=—00

The series ) 0,(z—2)" and D' a_,/(z—2)" are called, respect-
n=o ‘ nz:l ‘ . . LR}
ively, the regular part and the principal part of the initial
series at the point 2.
By a Laurent series with coefficients a, and centre oo we mean

the series S’ a,/2"; by its regular and principal parts at the point co

N=~—00
(=] o0
we mean the series > a,/2" and D a_,2", respectively. .
n=0 n=1

It is obvious that a Laurent series with centre co may be con-
sidered as a series with centre 0.

By the comvergence (ordinary, uniform, almost uniform, abso-
Tute, etc.) of a Laurent series, we mean the (analogous) eonvergence
of both its parts simultaneously. In the case of convergence, by
the sum of @ Laurent series we mean the sum of the sums of
both its parts. )

Tet us consider the two Laurent series with centre zy7co and
with centre oo:

+e0 n
(4.1) 2 Ga(2—%)"
Ne=—o>00
i +o0
(4.2) 2
Fo=—-00
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By substitating 3=2—#, in the series (4:1), and 3=1/z in the series
(4.2), both of these series are transformed into a Laurent series

400

with centre 0, namely, into > a,3"

Nz
latter series is a power series with centre 0, and the principal part
— a power series with centre co. Let us denote by » and ¢ the radii
of convergence of these two parts.

The number r is obviously the radius of convergence of the
regular parts of the series (4.1) and (4.2) (which are power series
with centres at the points 2z, and oo, respectively). On the other
hand, it is immediately evident from theorem 1.2 that the princi-
pal part of the series (4.1) is almost uniformly convergent outside
the circle X(z;1/e), and divergent at every interior point of
this circle; similarly, the principal part of the series (4.2) (which
is a power series with centre 0) is almost uniformly convergent
outside, and divergent everywhere inside the circle K(oo;1/g).

The number g is called the radius of convergence of the principal
part of the series (4.1) and (4.2), and the annuli P(2;1/p,7) and
P(oo;1/o,7) are called the annuli of convergence of the respective
series.

We therefore have the following theorem:

The regular part of the

(4.3) If v, and r, are the respective radii of convergence of the
principal and regular parts of a Laurent series with centre 2, (finite

or infimite), then these parts are absolutely and almost uniformly

convergent, and represent holomorphic functions in the exterior of the
circle K (2y;1/r;) and in the tnterior of the circle X (zy;r,), respectively.

In particular, if ry=oc0, . €. if the annulus of convergemce of
the series is an amnular neighbourhood of the point, the principal part
of Laurent’s series represents a holomorphic fumclion in the entire
(closed) plane with the exception, at most, of the point z,.

Passing to the Laurent series as a ‘whole, we obtain

(4.4) A Laurent series is absolutely and almost uniformly comvergent
in 4is annwlus of comvergence and represemts a holomorphic function
there.

If a Laurent series with centre 2, (finite or infinite) is conver-
gent to a function W(z) in an annulus P(zy;7,,7,) (where 7,<r,),
then it is said to be a Laurent expansion of this function.
The annulus P(z;7;,7,) is then contained in the annulus of con-

icm

- (4.5) C W(e)=

§ 4 Laurent’s series. Annulus of convergence. 139

vergence of the series considered and the funetion Wi(z) is holo-
morphic in it.

We shall show that o ]‘unctwn can have at most one Laurent
expansion in a given amnulus, i. e. that the coefficients of the ex-
pansion are uniquely determined by the function expanded; in partic-
ular, this will obviously apply to expansions in a power series.

In faet, let

00

Z an(z_zo)n

N=—00
in the annulus P(z,;7y,7,), Where r;<<r, and (for simplicity) =,z4o0.
Let  be an arbitrary number such that r,<<r<r,. On the cir-
cumference C,=C(z,;7), lying inside the annulus P(zy;7,73), the
series (4.5) is uniformly convergent. Hence, dividing both sides
of the equation (4.5) by (¢—z,)**!, where k is an arbitrary inte-
ger, and integrating along the circumference C,, we obtain in

virtue of formula (18.2), Chapter I,

W(zIZ 1 d Za,n f (z—2 )""“‘ldz—ak 9.

(z —2) e

Consequently:
(4.6) The coefficients a; of the expanmsion of the function W(z) in
the annulus
P=P(2571,73);

where zy7£00, ¥, <y, are given by the inegrals
1 r W)
A= —— |
(47) = Cf g

where C,=C(2y;7) 18 an arbitrary circumference lying in the annulus P.

A similar formula is oblained for expansions in an annulus
with centre oo.

An important estimate of the coefficients of Laurent expan-
sions follows from formula (4.7). Retaining the previous notations,
let us, in addition, denote by M(r) the maximum of the absolute
value of the function W(z) on the circumference C.. From (4.7)

we then obtain (cf. estimate (17.10) in Chapter I)
‘ M(r)
(4.8) || << g
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We shall return to these estimates in § 13 below. In the mean-
time, let us note that if the function W (z) is expansible in a Lau-
rent series in an annular neighbourhood (Introduction, p. 20) of the
point #,7#oco, then r in formula (4.8) may assume arbitrarily
small values. Therefore, if we assume, in addition, that the expres-
sion M(r) is bounded as r—0, then for every value of k<<C0 the
right side of the inequality (4.8) tends to zero as r—0. Hence all
the terms of the principal part of the expansion vanish. Conse-
quently: ‘

(4.9) If a function W(z) is expansible in a Laurent series im an
annular neighbourhood of the point 2o, and remains bounded as
2->2,, then this series reduces to a power series with centre 2y, and
therefore the function W(2) (after defining its value at 2, “suitably )
is a holomorphic function in an ordinary meighbourhood of the
point 2.

This theorem remains true when z,=oo, since this case reduc-
es to the case 2,=0 under the substitution 3=1/z.

EXERCISES. 1. Determine the annulus of convergence 'of the series
+o0
X p°z* (where 0<f<l.)

A= 00
9. It a function F(z) is holomorphic in the neighbourhood of a
ar

1
point 27 o0, then |F(zo)}<2— f |F(2.+76%)|d6 for every sufficiently small
TC
0

value of r>0.

In view of this, prove that if the absolute value of the function
F(2), holomorphie in the neighbourhood of the point 2z, attains a local max-
imum at this point (even though improper), then the function F(z) is constant
in the neighbourhood of the point 2, (see another proof of this theorem fur-
ther on in § 12).

3. In view of the theorem in exercise 6, § 1, show that if a func-
tion F(z) is expansible in a power series with centre az:co, and in addition
F’(a)#0, then this function is uniquely invertible (see Introduction, § 7) -in
a neighbourhood of this point (for more precise results, see §12).

§ 5. Laurent expansion in an annular neighbourhood. We
shall now prove a theorem -which is & partial converse of theo-
rem 4.4. We shall show, namely, that if a function W(z) is holo-
morphic in an annular neighbourhood of the point z,, then
in a certain annular neighbourhood of this point it is expansible
in a Laurent series. :
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In view of theorem 4.6 there can exist only one such series;
we shall call it the Laurent expansion of the function W(z) at the
point &,.

A more precise theorem will be proved in Chapter IV; we shall show,

namely, that a function which is holomorphic in a given annulus is expan-
sible in this entire annulus in a Laurent series.

Let W(z) be a function holomorphic in an apnular neigh-
bourhood of the point 2z,, where we may assume that z,=0.
‘We reduce the general case to this case by the substitution 3=z—2,
if 2y7200, and by the substitution 3=1/z if z,=o0.

Let I,=[—a,a; —a, a] be a square in which, with the excep-
tion perhaps of the point 0, the function W(z) is everywhere holo-
morphic. Let 3, be an arbitrary point such that 0<|3,|<<a, and let
r=|30//2 and L=[—r,r;—r,r].

The function W(z) is holomorphic on the set I,—I;, and by
Cauchy’s formula (Chapter II, theorem 5.3) we have

1 W 1 rW(=
(5.1) W= [ Ogo L [T,
2nz(1a)z—~30 2m(Ir) 2—3g-

For the points # on the perimeter of the square I, we have
130]/12|<<130]/@ < 1. The series

1 1 o0 n
5.2) 1 3

‘_ - — — —— ’-’m
z2—30 & 1—3/2 opur 4

~ is therefore uniformly convergent with respect to z on (I,)- On the

other hand, for the points z lying on the perimeter of the square
I, we have |z]/|30]<<27/|3,/=1, and hence the series
1 11 = 2"
(5.3) ) ’ R T——— R
2—30 % 1—2[3 ,Z_oaz‘“

is also uniformly convergent with respect to z on (I,).
Therefore, multiplying series (5.2) and (5.3) by Wi{z) and in-

tegrating along the -perimeters I, and I, respectively, we have
from (5.1):

64 Wha—s Y% [WEetdat oo St [Weras

n=0 (L) n=0 (I7)
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For brevity, let us set

1

(5.5) ap=—: | W(@e ™ de for n=0,41,42,...
27':’6(1‘) ‘

Since the funetion W(2)z" is holomorphic on the set I,—I;

for each integral value of n, we have, in view of Cauchy’s theorem

(Chapter II, theorem 4.5),

1 1

Rl f W(2)e" de= — f W (o) de—a_, 1,

2mi 27
Ir) (La) .

and equation (5.4) may be written in the form

o] 00 +o00
(5.6) W(30)= 2 3o+ 2 a’——n—lﬁo—m’*l: Z 4n30 s

n=0 n=0 N=—=00
which implies (since by (5.5) the coefficients a, are independent
of 7, and hence also of 3,) that the function W(z) is ex-
pansible in & Laurent series in the annular neighbourhood P(0;0,a)
of the point 0.

In particular, if the function W{(z) is holomorphic not only
in an annular neighbourhood of the point 2,, but also in an or-
dinary (eircular) neighbourhood, then from theorem 4.9 it follows
that its Laurent expansion is a power series. This is also apparent
directly from formula (5.5), since if the function W(z) is holomor-
phic on the square I,, then the functions W(z)2™™ ! are, for n<0,

also holomorphic on this square, and hence, in view of Cauchy’s

_ theorem (Chapter II, theorem 4.1), a,=0 for n<0.

Summarizing the results of this section we obtain the fol-
lowing theorem: .

(5.7) In order that a function W(2) be holomorphic im an an-
nular (circular) neighbourhood of the point zy, it is necessary and suf-
ficient that it be ewpansible in an anmular (circular) neighbour-
hood of this point in & Laurent series (power series).

In particular, if the function W(2) is holomorphic in a square
with cenre z, and side 2a, then it is expanmsible in a power series
m a circle with centre 2, and radius a.

From the second part of this theorem it follows immediately
that
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(5.8) In order that a function W(2) be holomorphic in the entire
open plane, it is necessary and sufficient that it be the sum of a pow-
er sertes convergent in the entire plane.

Finally, from formulae 1.4, in view of Weierstrass’s theorem
(Chapter II, theorem 6.1), we obtain immediately the following
complement of this theorem:

(5.9) If a sequence {Wk(z)} of functions holomorphic in an open

set @ is almost uniformly convergent in @ to a function W(z), and

if {05} heo,r,.. 0@ {@y}n0,. denote, respectively, the sequemces of

coefficients of the expamsions of the functions Wi(2) and W(z) in

power series at a point 2,6G, then a,=1limal® for n=0,1,...
Tsoo

EXERCISE. Write the expansions of the function z/(z—a)(z—b), where
0<|a|<|bl, in Laurent series at the points a, b, and co. Determine the annuli
of convergence of these expansions.

§ 6. Isolated singular points. In virtue of the unigueness (ef.
§ 4) of the expansion of a function in a Laurent series, the points
in whose annular neighbourhood the function is holomorphic can
be classified according to the type of its Laurent expansion at
these points; or more precisely, according to the type of the
principal part of this expansion.

Let us take under consideration a function W(z), holomorphic
in an annular neighbourhood of the point 2, (finite or infinite). -
Three cages are possible:

(I) The principal part of the expansion of the fune-
tion at the point 2, vanishes, 4. e. the expansion considered
is a power series with centre at the point 2,. The function W(z)
is then either 1° already defined and holomorphic at the point
2, Or 2° it becomes holomorphic at the point 2, after defining if,

“or after suitably meodifying its definition, at this point. In

case 2° we say that W(z) has only a removable singularity at 2.
In the sequel we shall always assume that the removable
singularities are eliminated by a suitable definition of
the values of the function at the corresponding points.

(II) The principal part is finite, 4. e. it has the form
G(3), where G(3) is a polynomial of degree k>0 with respect to 3,
where 3=1/(z—2) if 2,700, and 3=2 if 2,=co. In this case z, is
called a k-tuple pole of the function W(z). When k=1, we shall
say that 2=z, is a simple pole of W(z). If z—=z,, then 3—>oco and
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hence also G(3)—>oco. On the other hand, the regular part of the
expansion of the function W(z) at the point 2, is & power series
with the centre z, and tends to a finite limit when #—#,. Conse-
quently:

If 2, s a pole of the function W(z), then W(z)—oco as z->z,.

In the sequel we shall always take oo as the value
of a function at its pole.

(IIT) The principal part of the expansion of the fune-
tion is infinite (. e. it contains infinitely many terms). The
point 2z, is then called an essential singularity, and in approaching
it the function W(z) does not tend to any limit; and moreover
we have the following

(6.1) THEOREM OF CASORATI-WEIERSTRASS. Fvery complex value can
be approached with arbitrary ezactness in every annular netghbourhood
of the point 2, — am essential singularity of the function W(z) — by val-
ues of the function taken on in this neighbourhood; i. e. for every
complex value w and every pair of positive mumbers ¢ and r there
ewists o point zeP(2y;0,7) such that |W(z) —w|<e.

Proof. Let us assume that there exists a pair of numbers >0,

~ ¢>0 such that |W(z)—w|>¢ for every point 2€P(2,;0,7). The fune-
Fion 1/[W(2)—w] is then holomorphic and bounded in P(2,;0,7) and
in view of theorems 5.7 and 4.9, is expangible in a power series
in a certain neighbourhood of this point. Taking, for simplicity,
2,=0 we therefore have in a certain neighbourhood of the point 6,

1 o °°
W(z)—w ig; b”znzg bad",

where by, (with k>0) is the firgt nbn—vanishing coefficient. Whence

(6.2) W(z)_w:.lﬁ. _ v
: z bk+bk+1z-|—...

But since b0, the series Z:)bk+nz" appearing in the denominator
= .

vaI.lishes 'nowhe_re ‘in a sufficiently small neighbourhood of the
point 0; its reciprocal is consequently a holomorphic function in

the neig]:}bourhood of zero and is expansible in a certain sufficiently
small neighbourhood in a power series: ‘
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1 ©
T Se
2 brpnd” =t
n=0

Substituting this expansion in (6.2), we obtain

1 oo
W(z)—w:—,;chz";
& n=0
therefore the principal part of the Laurent expansion of the

function W(¢) in the neighbourhood of 0 has the finite form
k-1

Y e,/#"", which is obviously contrary to the assumption that the

n=0
point 2,=0 i3 an essential singularity of the function W (z).

The above considerations permit the classification of the points
%y, in whose annular neighbourhood the function is holomorphie,
directly the behaviour of the function as z2—>z,, without expand-
ing it in a Laurent series:

(I) if the function tends to a finite limit (or even if 4t is only

- bounded) as ¢—~2,, then it is either holomorphic at z, or it has at

most a removable singularity there;
(IT) if the function tends to oo as z—>2,, then it has a pole ait 2, 3

(III) 4f the function does not tend to amy limit (either finite or
nfinite) as z—>z,, then it has an essential simgularity -at 2,.
EXERCISES. 1. Show that in theorems 8.1 (of Morera) and 8.8

(Schwarz’s principle), Chapter II, the assumption that the set G considered
there does not contain the point oo iz unnecessary.

2. If a function W(2) has at most an n-tuple p(;le at the point b3 oo,
el .
then the coefficients of its expansion ) a,(2—b)* at this point are given by

ke —n

the formula a,  =W®(b)/k!, where W,()=W (2)}(e—b)" and k=0,1,...

i3

§ 7. Regular, meromorphic, and rational functions. A fune-
tion W (z), which is holomorphic in an annular neighbourhood of
every point of a given open set G, will be called regular with the
exception, at most, of an isolated set of singularities in G. For brev-
ity, instead of regular fumction with the emception, at most, of am
isolated set of singularities, we shall often simply say regular fumc-
tion1). The function W(z) is said to be regular on the (arbitrary) set A,

1) The reader wﬂl observe that while in English textbooks generally
the term ‘regular function” is synonimous with “h(_)lomotphie funetion™,
in this book the former term has a somewhat different meaning.

8. Saks and A. Zygmund, Analytic Functions. 10
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if it is regular in an open set GDA. It is immediately evi-
dent that

(7.1) The set of singular points of a function regular in an open set
@ is closed in @ and isolated, amd therefore at most denumerable.

According to the convention adopted in § 6 (see (I), p. 143),
we may assume that there are no removable singularities among
the singular points of a regular function. Consequently, there remain
only poles and essential singularities; in agreement with the
convention adopted in § 6 (p. 144) we assign the value oo to the
funetion at its poles.

If W(2) is a function holomorphic in an annular neigh-
bourhood of the point, 2, and if H(z) denotes the function defined
by the principal part of the expansion of the function W(z) at the
point 2,, then the funection W(z)—H (2) is the sum of a power series
(regular part of the expansion) in this neighbourhood and there-
fore, after perhaps defining it suitably at the point z,, it is ho-
lomorphic at this point; on the other hand, by theorem 4.3 the
funetion H(2) is holomorphic in the entire closed plane with the
exception, at most, of the point z,. From this it follows immedi-
ately that

(7.2) If & function W(2), regular in an open set G, has at most
a finite number of singular points ¢y,Cy,...,c, tn this set, and if
H,(2), Hy(2),..., Hy(2) denote the corresponding principal paris of
the expansion of the function W (2) at these points, then the function
n
F(z)=W(z)— > H;(2) is holomorphic in G-
j=1

7
A regular function in an open set @, which does not possess

essential singularities in @ (4. e. does not possess singular points

other than poles at most) is said to be meromorphic in G. More gen-
erally, a function is said to be meromorphic on the (arbitrary) set A
if it is meromorphic in an open set GDA. In particular, a function
is meromorphic at a point 2, if it is holomorphic at z,, or has
a pole there.

The simplest example of meromorphic functions are rational
functions, 4. e. functions of the form R(2)=P(z)/Q(z), where P(z)
and ¢(2) are polynomials having no common roots. Such functions
are meromorphic in the entire closed plane and possess finite poles
at precisely those points which are the roots of the denominator;
in addition to this, they possess a pole at infinity if and only
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if the degree of the numerator exceeds the degi‘ee of the denomi-
nator. Conversely,

(7.3) Bvery function meromorphic in the entire closed plane is a ra-
tional function.

Proof. Let W(2) be a function meromorphic in the entire
closed plane. The function W(z) therefore has at most & finite num-
ber of poles, for in the contrary case these poles would possess a point
of accumulation. Denoting the poles by b,,bs,...,b,, and by H,(2),
H,(2),...,H,(2) the corresponding principal parts of the function
W (=) at these poles, we have by theorem 7.2,

(7.4) ZH A+ F(2),

where F(z) is a function holomorphic in the entire closed plane,
and hence, by Liouville’s theorem (Chapter II, theorem 5.11), re-
duces to a constant. Since the functions H;(2), as the principal parts
of the Laurent expansions at the poles, are rational functions, the
funetion W(z) is also rational.

Returning to equation (7.4) and incorporating the constant
(=F(z) into anyone of the terms H,(z), we obtain at the same
time the following theorem:

(7.5) The general form of a rational function with poles by,bs,...,by,
is the expression ZH (2), where H;(2) is an arbitrary polynomial

in 2 if bj==o0, omd in 1/(z—1b;) if bj=c0. In particular, if the rational
function has the point b as the only pole, then it is a polynomial in 2
when b=co, and in 1/(z—Db) when bz~co.

This is the so-called theorem on the decomposition of a rational
function into partial fractions, which — as is well known — plays
g certain role in the evaluation of the integrals of rational functions.
Text-books on the integral caleulus contain a direct and elementary
proof of this theorem, which we have obtained here by means
of more general considerations.

If a function W(z) is expansible in a Laurent series in an
annular neighbourhood of & point bztoco, then the principal
part of the expansion at this point is a series of the form

o B

'n.=1

10%
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The coefficient a_, of this expansion plays a particularly impor-
tant role in many considerations. It is called the residue of the
funetion at the point b, and we denote it by res, W.

The definiton of the residue at the point co is somewhat
different. If the function W is expansible in a Laurent series at

this point and > a,/2" is the regular part of t]ﬁs expansion, then
n=0

by the residue of the function W at the point co we shall mean
the number —ay, i. 6. the coefficient of 1/z with a minus sign.

Taking bzoco, we notice first of all that the series (7.6) is
almost uniformly convergent in the entire plane with the point b
removed (cf. theorem 4.3). This series can therefore be inte-
grated term by term along every closed regular curve ¢ not passing
through the point 5. Each of the functions 1/(z—b)" has, for n 1,
a primitive function, which is the function —1/(n—1)(z—0)""", and
therefore (cf. Chapter II, theorem 2.2) the integral along the curve
C is equal to zero. Consequently, the integral of the series (7.6)

along C reduces to the term a lf___dzb. In other words:
z..__
¢

(7.7) If a function W(2) is expansible in an annular neighbourhood
of a point bz£oco in o Laurent series, and if H(2) denotes the prin-
cipal part of the expansion at this point, then for every regular closed
curve C not passing through the point b, we have

Cf H(z)de=res, W - Of %.

From this we deduce the following theorem, which we shall
call the theorem on residues for a rectamgle :

(7.8) I?‘ a function W (2) 4s reqular on a rectangle I and does not
have singular points on the perimeter of this rectangle, then

1 n
o | Wie)de= Y 'res, W,

(I) k=1

.

where bl,_ baye..,by denote the singular points (poles or essentially sin-
gular points) of the fumction W in the rectangle I.

Pr-oof. Denoting by Hy(z) the principal part of - the
expa,nsmn’ of the function W in an annular neighbourhood
of the point b, and taking F(z)=W(2)~ 3 H,(#), we verify first

) : k
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of all, in view of theorem 7.2, that the function F(z) is holo-
morphic on I. Therefore, by Cauchy’s theorem for a rectangle
(Chapter II, theorem 4.1), we have [F(z)de=0. On the other hand,

(93]
f iz - =2ni for k=1, 2,..., (Chapter IT, (4.7)). Consequently,
(ifl) virtue of theorem 7.7, .
[W(e)de= fp(z)dz+z [Hy(2)d2
(I) (I) k (I)
e q. e. d.

=2reska-f 5 =2ni21‘eska,
C T E

1
EXERCISES. 1. The residue of the function exp (z—}-;) at the point

[+e]

1
£ nl(n+1)! '

2. If W(2)=F(2)G(z), where Fis a holomorphic funetion, and & is mero-
morphic with a simple pole at the point 27 oo, then res,nW=F(zn)reszoG.

3. Calculate the residues of the functions 1/sin w2, 1/coswz, tanwe, cotnz
at their poles. ,

4. The sum of the residues of a rational function (together with the
residue at the point oo) is equal to zero. Every function F(z), which is holo-
morphic in the entire (closed) plane with the exception, at most, of a finite
number of points, has the same property.

5. If P(2) and @(2) are polynomials, where the polynomial Q(z) is of
greater degree than P(2) and does not vanish at any real integral point,

0 is equal to the sum of the series 2

then lim 2 g% is equal to the sum of the residues of the function

m0 T,

—mncotnzP(2)/Q(z) at the points which are the roots of the polynomial @(z).

- . . *2“ 2 PO
Under these same assumptions, the sum of the seneskﬂ\_w(—l) W

. . . T P(2) + th
is equal to the sum of the residues of the function — el 22—(-2—) a ose

points which are the roots of the polynomial @ (2).
[Hint. See Chapter I, § 18, exercise 2.}

6. Prove the formulae:
1 vl 1 1 .
1° weotne=— -+ 2 (——— + —) , wherex is an arbitrary complex number
A s—k k

#0,41,42,..., and the summation Y’ extends over all integral values k0;
k
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+00
9 T‘—x 1 72 g0 oy 1 2
il (n+4a)p  siniwa’ Limd 67
o0 n=1

1 1 ki g})w/g/g—i—exp(—rc]/ﬁ) .

oc
£ Y = . o bt
& a+bn? 2a  2y/ab exprya/b—exp(—ny alb)
oo
M
e

(=1 1 = 1
&oatbn* 2 b expry/afb—esp(—n)/a/b)

[Hints. ad 1°: First prove the formula wcotmz= lim 2 J«;
m—yoo L=l x—k

ad 3°: deduce formula 3° from formula 2°, subtracting 1/a® from both
sides of formula 2° and passing to the limit as a—0.]

§ 8. Roots of a meromorphie function. If a function W(z),
holomorphie at the point z,, vanishes at this point, but does not
vanigsh identically in any neighbourhood of it, then, deleting
the first terms of the ‘expansion of W(z) at the point 2, whose
coefficients are zero, we may write this expansion either in
the form

Wi(z) =n§can(é~zo)’L= (2—2p)*[og +ap (2 —2)+...], Where a;70,

if 2,5£00, or — if z;=00 — in the form
W(z)= i,’:zz“"(ak-{—%ﬁ—i—... , where a;,50.
P L2

The number % is then called the multiplicity of the point z,
as a root of the funetion W(z). In order that the point #5500 be
a k-tuple root of the fumction W(e), holomorphic at this point, it is
necessary  and sufficient that W (z)=W'(z)=... =WHD(g)=0
and WH(z)#0 (ef. formulae (1.4)). :

Considering, for simplicity, function W(z) hoiomorphic at
the point 0; we see immediately that in order that this point be
a k-tuple root of the function it is necessary and sufficient that
W (2)=2"W,(2), where W,(2) is a function holomorphic at the point 0
not vanishing at this point, and therefore also not vanishing at an;i
point of a sufficiently small neighbourhood of the point 0. It fol-
lows from this, firgt of all, that

81) If a pc.;ifnt 20, at which the function is holomorphic, is a point
(?f accymulgtwn of the roots of this function, then the fumction van-
ishes identically in the neighbourhood of this point.
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On the other hand (cf. § 6, p. 143), in order that a function
W(2) have a k-tuple pole at the point z=0 it is necessary and
sufficient that W(g)=+""W,(2), where W(#) is a holomorphic func-
tion not vanishing at the point 0. From the general forms thus
obtained for a function having either a k-tuple root or a k-tuple
pole at the point 0, it follows that

(8.2) If a meromorphic fumdtion W(2) has a k-tuple pole at the point
%y, then the function 1/W(2) has a k-tuple root at this point, and con-
versely.

Simalarly, if the function W(2) has a k-tuple root (pole) at the
point 0, then the function W(1/2) has a’ k-tuple root (pole) at oo, and
conversely.

We say that a function W(z), meromorphic at the point z,
assumes the value w,=W (2, k-fuply at this point if either w,=oo
and the point ¢z, is a k-tuple pole of the function W(z), or w,7oo
and the function W(z)—w, has a k-tuple root at 2.

If the function W(z) assumes the value w,=W(2) (finite or
infinite) k-tuply at a point #Zy7#oo, then it is immediately
evident that the function W(z--a) (where a is an arbitrary finite
number) assumes the value w, k-tuply at the point z=#z,—a, and
the function W(z)-+a assumes the value w,+a k-tuply ab the point
2,. More generally: '

(8.3) If a function F(2), meromorphic ot a point 2, assumes the
value 3, p-tuply at this point, and @ function W (3), meromorphic
at the point 3., assumes the value w, k-tuply at this point, then the
function, W[F(2)] assumes the value w, kp-tuply ot the point 2,.

Proof. In virtue of theorem 8.2, we may assume that w,z=co
and 3,700, and next, in view of the previous considerations, that
we=0 and 2z,=0. Then in the neighbourhood of the point 0 we
have W(3)=3"W,(3) and F(2)=2"F(2), where W,(3) and F,(2)
are functions holomorphic at the point 0, while W,(0)540 and
F,(0)=£0. Consequently,

WIF(2)]=2" W, [F ()1 [Fa()]

where W, [F(0)] [F,(0)*=W,(0) [F,(0)F0. The point z=0 18
therefore a kp-tuple root of the function W[F(2)].

The linear function az-+b obviously assumes each of its values
once (among others also the value oo, which it assumes ab
the point oo, where it has a pole). Similarly the function 1/2,


Yakuza


152 CHAPTER III. Meromorphic functions.

whose derivative does not vanish at any point different from 0
and oo, and which has a simple pole and a simple root at these
points, respectively, assumes each of its values once. The general
homographic function (az--b)/(¢cz-d) (cf. Chapter I, theorem 14.8)
therefore also assumes, by theorem 8.3, each of its values once,
which can easily be verified directly. Therefore, referring once more
to theorem 8.3, we establish that

(8.4) The multiplicity of the roots of a meromorphic function W(z)
(and of the values assumed by this function) does not wundergo
a change under the homographic substitution z=(a3-+b)/(c3+d).

Returning again to theorem 8.1, we shall give it the following
somewhat stronger form, analogous to theorem 7.1:

(8.5) If W(2) is a function meromorphic in a region G, not vanishing
tdentically in this region, then the set of roots of the function W (z)
18 closed in G as well as isolated, and hence at most denumerable.

Proof. Let E be the set of roots of the function W(z) in G.
. It is evident at once that this set is closed in @. Let us assume
that it is not isolated and hence that it has a point of accu-
mulation @ in @ Let us denote by @, the set of those points of
the region in whose neighbourhood the function W(z) vanishes
identically, and let ¢,=@—@,. The set G, is obviously open. The
set G, is, however, also open: indeed, if a certain point 2, of the
set G, were not an interior point of this set, then it would be
& point of accumulation of the set @, .and, in virtue of theorem
8.1, the function W(2) would vanish in a certain neighbourhood
of it; the point 2, would therefore belong to @, and not to G,.

Hence one of the sets @,,G, is empty. The set @, contains,
by theorem 8.1, the point a; consequently, G¢,=0, and therefore
G=@,, and the function W(z) vanishes identically in @.

Theorem 8.5 may also be given the folldwing form:

(?.6) If two functions meromorphic in a giwen region “assume iden-
tical values at the points of a set having a point of accumulation in
the region, then these functions are idemtical in the entire region.

) EXERCISES. 1. If a function W (), meromorphic in a region symmet-
nc‘mth r.espefzt to the real axis, assumes real values at those points of the
region which lie on the real axis, then W(2)=W(z) for every point z of the
Tegion.
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2. In view of the results of exercise 7, §8, Chapter I, prove the
following theorem: if f(#) is a finite and continuous function on the finite

b
interval [a,b], and if ff(t)t"dt:O for n=1,2,..., then f(f)=0 identically in

[a,b] (Liexch).

3. If {F,(2)} is an almost bounded sequence of functions holomorphic
in a region @, convergent at every point of a set B having a point
of accumulation in @, then this sequence is almost uniformly convergent
in the entire region & (Vitali-Osgood).

[Hint. Cf. Chapter I, § 3, exercise 2.]

4. If a function W(z) is holomorphic and bounded in the region (half-
strip) ¥>0, a<wx<b, and if for a certain value x, in the open interval (a,b)
we have lim W (x,+1iy)=g, where g is a finite number, then Lm W(z)=g

¥—>+00 00
uniformly in every (half-strip) y>0, a-+e<w<b—e, where e>0 (Montel)..

[Hint. Note that the sequence { W (¢+ni)},_,, . is normal in the region
y>0, a<w<<b.] \

5. Let F(2)=P(z)/Q(z), where P and @ are functions holomorphic at
the point z,, and P(z)5%0. Show that: 1° if the function @ has a simple
Toob at 2, then res; F=P(2)/Q (); 2° if the function @ has a double root
[6P"(2,) Q" (20) — 2P (2,) Q" ()] .

3[Q" (=)

§ 9. The logarithmic derivative. The logarithmic derivative
(Chapter IT, § 1, p. 100) plays a rather essentialrole in the fundamental
invegtigations of the distribution of roots and poles of a meromorphic
function. We shall show that the logarithmic derivative of a mero-
morphic funetion is also meromorphie, and we shall investigate
its principal part at the singular points. In the theorem that fol-
lows we confine our attention to points in the open plane.

(9.1) The logarithmic derivative W'(2)/W(z) of a function W(z),
meromorphic and not vanishing identically in an open set G, is also
meromorphic in G and has poles exvactly at those points which are ei-
ther roots or poles of the function W(z). If #, is a k-tuple root or
pole of this function, then the principal part of the ewpansion of the
function W'(2)/W(2) at this point is the expression sk/(z—=zy), where
e is +1 or —1, depending on whether the point i8 a root or a pole of
the function W (z). More generally, if F(z) is an arbitrary function holo-
morphie at %y, then ekF(z,)/(2—#,) s the principal part of the ex-
pansion of the function F(2)W'(2)/W(z).

Proof. It is evident at once that, except at the roots and
poles of the funetion W(2), the function W'(z)/W(2) is everywhere
holomorphic in G. Therefore let 2,6@ be a k-tuple root or pole of

at z,, then res, F=
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the function W(z). We have W(z)=(2—20)"Wy(2), where W,(e)
is a function holomorphic and not vanishing at the point 2,. On the
other hand, if F(¢) is an arbitrary function holomorphic at 2,, then
F(2)=F(2,)-+(2—2,) Fy(2), where Fy(2) is also a function holomor-
phic at 2,. Consequently,

W'(z) ‘ (2—20)" 2 [eh W4 (2) + (2 —2o) W1(2)]
(Z) W(Z) =[F(20)+(Z~ZO)F1(Z)] (z_zo)skwl(z)
ek F (%) Wi(z)
— +ebFy(2)+F(2) Wia)

, Since the lagt two terms are certainly holomorphie at the point
%y, the principal part of the function F(2)W'(2)/W(2) at this point
reduces to ek (2)/(z—=), 9. e. d.

Now, let W(z) be a function meromorphic on the rectangle I,
having neither roots nor poles -on the perimeter of this rectangle.
Let ay, ag, ..., @, be the (distinet) roots of the function W(z) in
I, with the corresponding multiplicities k,%,,...,k,. Similarly, let
byyby,...,b, be the poles of this funetion in I, with multiplicities
hyyhayershpy. -Then, by theorems 7.2 and 9.1, we have for every
function F(z) holomorphic on I,

W) " P(w) ST
W(z) -—cﬁ(z)—{-g e—a; A oa—b;

F(z)

where &(2) is also a function holomorphic on I. Integrating both
sides of the above equation along (I), and making use of Cauchy’s
theorem as well ag Cauchy’s formula for a rectangle (Chapter II,
theorems 4.1 and 5. 3) we. obtain

1
271:'& f 2 ki a,,
(I
In other words:

(9.2) If W(z) is a fmwtion. meromorphic on the rectangle I, having
neither roots mor poles on the perimeter of this rectangle, then for
every fumction F(z) holomorphic on I,

1 W' (2) o 4
- | F(=) = Y F(a;)— ) F(by),
2m(J W (2) g; ! g d

where ay,a,,...,a, arethe roots, and bl,bg,...,‘bﬁ are the poles of W (z)
wn I, written as many times as their multiplicities indicate.

— Db ()
i=1

P
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In particular (taking F(z)=1 identically)
1 W
e [V g,

27'5’5( ()

where o is the number of roots and f the number of poles of the func-
tion W(z) in I.

§ 10. Rouché’s theorem. First of all, we shall prove the follow-
ing lemmsa which is a variant of Cauchy’s theorem and formula
from Chapter II, as well as of theorem 9.2 from the preceding sec-
tion.

(10.1) Let G be an arbitrary open set, not containing the point oo,
and F' o closed set contained in G. Then there ewists in G—F a finite
system of (oriented) segments L,,L,,...,L,, such that:

(I) for every function W(2) holomorphic in @,

D) JWe)de=0

7 Ly

(IT) for every fumction W.(z) holomorphic in G, and for every

point aell,
Wia >“—Z f e

(IIT) for every function W (z), holomorphic in G and having no
roots in this set outside the set F,

1 Z fW’(z)

27 L, Wi(z)
where a denotes the number of roots of the function W(2) in G, count-
ing every root as many times as its multiplicity indicates.

dz=q,

Proof. Let us consider the net of squares Q) in the plane,
of order N sufficiently large (cf. Introduetion, § 10), such that every
square of this net which has points in common with F is con-
tained entirely in G; for this purpose it is sufficient to take

1
3= <e(F,06)

since then the diameters of the squares of the net Q™ are
smaller than o(F,Cq). Let @,,Qs,...,Q; be the system of those

-~
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squares of the net which have points in common with F, and let
L., Ls,...,L, be the boundary segments of this gystem. We shall
show that this system satisfies the three required conditions. .

ad (I) and (IT). Let W(z) be an arbitrary function holomorphic

in @. Then [W(z)dz=0 for r=1,2,...,s, and hence also
(@Qr)

8
Y [W()de=0.
‘ r=1(Qr)
‘Since on the left side of this equation the integrals along the
sides belonging to two adjacent squares @; cancel each other,
there remain only the integrals along the boundary segments
IL,,L,,...,L,, and the equation considered assumes the desired
form

D [weyae=o.
7=11Lj
Now, let @ be an arbitra,r‘y point of the set F, and let @, be

a square among the squares @, which contains the point a.
Let us assume at first that o is an interior point of the square @, .
The function W(z)/(z—a) is therefore holomorphic on every one
of the squares @, for r+#7,, and by Cauchy’s theorem and formula
for the rectangle (Chapter II, theorems 4.1 and 5.3),

_:_l__ W(z) dz——f 0 for 7T,
21:'&(0’) 2—a \W(a) for r=r,.
. - . w
Consequently, 2mW(a)=2 f :(2 dz, and, as in the pre-
r=1 (Qr)

ceding argument, the integrals along those sides of the net which
belong to two adjacent squares @, cancel each other and the equa-

n
tion assumes the form 2riW(a)= y f ﬂz_) dz.
. ‘7'-:];; R—a

By 2 simple passage to the limit we generalize this formula.
to the points aeF lying on the boundary of the square @, .

ad (III). Let W(=) be a function holomorphic in @, having no
roots outside the set F. Let its roots in @ be a,,4,,...,a,, with the
corresponding multiplicities %,,%,,...,k,. Reasoning ag in the proof
of theorem 9.2, we have in virtue of theorems 7.2 and 9.1,
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W(z) “ir—ay,

b

where @(z) is a function holomorphic in @; therefore, by (I)
and (IT),

| Z"w fvvf;’((:)) dz'—‘zn f @(Z)dz+2m:kp-j f ziza =zni2m’k,,=2wia,
=1 L; j=1 Lj =1 el A » &~

where o denotes the number of roots of W(2) in &, counted as many
times as the multiplicity indicates.

(10.2) RoUCHE'S THEOREM. If O(2) and ¥(z) are functions contin-
wous on o closed set F and holomorphic in its imterior @, and if
|B(2)| < |¥(2)| on the boundary of the set F, then the functions P(2)
and P(z)+D(2) have the same number of roots in G, counting each
root as many times as its multiplicity indicates. "

Proof. We may assume, first of all, that the interior @ of
the set F does not contain the point co. In fact, in the contrary
case, denoting by a an arbitrary point not in G, we apply the
transformation 3=1/(¢—a), . e. #=a-1/3, by means of which the
set F is transformed into a closed set no longer containing the
point co in its interior, and under which —in view of theorem 8.4
_ the number and the multiplicity of the roots of the function
remain unchanged.

Now, let F, denote the set of those points zeF at which

| (=) =] P(2)].
This set is obviously closed and is contained in G. Furthermore,
let W,(2)=W(2)+AD(2), where i is a real parameter varying in
the interval [0,1]. For these values of 1 the funetion W,(z) does
not have roots in G outside the set F,; indeed, for zeG—F; We
have ‘
(10.3)  0<|P(2)|—|9()|<|P()|—140() |<|¥(2)+1D() |-

By theorem 10.1, there exists in G—F, a finite system of seg-
ments Ly,Ls,-..,Ln, such that, denoting by a, the number of roots
of the function W,(2) in @, counted as many times as their multi-
plicities indicate, we have:

1 (Wi 1\ (PR
a‘zz—m';l L{ W ”znig I! P (2) - A0(z) de.
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In virtue of (10.3), the expression on the right side of the
preceding relation is a continuous function of the parameter A in
the interval [0,1], and because it assumes only integral values,
namely a,, it must maintain a constant value. Hence, in partic-
ular, a,=a,, . ¢. the functions Wy(2)="(z) and W,(2)=¥(2)+D(e)
have the same number of roots in G.

There exist many variants of the proof of Rouché’s theorem. The
idea of introducing the parameter 1 is found in the papers: A. Cohn, Mathe-
matische Zeitschrift 14 (1922), pp. 110-149, 8. Mazurkiewicz, Sprawo-
zdania Towarzystwa Naukowego Warszawskiego 28 (1935), pp. 1-2, as well
a8 in the book: L. Bieberbach, Lekrbuch der Funkiionentheorie, v. I
(3rd ed.), Berlin 1930, p. 190.

_ EXERCIBES. 1. If a function F(z) is continuous on the closed ecircle
K(0;1), is holomorphic in its interior and satisfies the condition [F(z)|<1
for |#]=1, then the.equation F(2)—z=0 has exactly one root in the circle
K(0;1). :

2. For every value R>0 there exists a number N such that for n=N
all the roots of the polynomial 1-+2/1!422/2!4...42"/n! lie outside the circle
K(0;R).

3. The equation (¢—1)’¢°=a, where p is a positive integer and
ja|<1, has exactly p distinet roots in the half-plane Re>0; if la|<<1/27,
all these roots lie in the circle K(1;3) (Biernacki).

4. Let »W(z) =J'az" in the circle K=K (0;1), and let FCK be a closed
set containing the point 0. If x4 denotes the lower bound of the function
IW(z).I on the boundary of the set F, and m — the number of roots of the
function W(2) in this set, then u<lay|+ la]+...+a,| (Saxer).

§ 11. Hurwitz’s theorem. As an application of Rouché’s theo-
rem we give the following result:

(11.1) If o sequence {Wn(z)} of fumctions, continuous on a closed

set B and holomorphic in the interior of F, s wniformly convergent

on this set, and if the function W(z)=lim W,(z) vanishes nowhere
n

on the boundary of the set F, them, beginning from a certain value
of n, all the functions W,(2) have in the interior of F the same number
of roots as the function W (z) (counting every root as many times as its
multiplicity indicates).

Proof. Let m be the lower bound of the values of [W(z)|
on the boundary of the set F. Since m>0, therefore, beginning from
& certain value n, of the index w, we have on the boundary of
the set under consideration [Wa(z)—W(2) |<m<|W(2)|, and by the
theorem of Weierstrass (Chapter IT, theorem 6.1) the function
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W (#) is holomorphic in the interior of . Hence, applying theorem
10.2 to the pair of functions @, (2)=W,(z)—W(z), P(2)=W(z), we
find that for n>>n, the functions W(z)="Y(z) and W,(2)=¥(2)1P,(2)
have the same number of roots.

Remark. The proof of theorem 11.1 gives a little more than

‘ actually stated, namely: Let W(z) be any function continuous on

a closed set F, regular in the interior G of F, and not vanishing
on the boundary B of F. Then any function V(2), continuous on
F and holomorphic in @, has the same number of rools im F as
W(z), provided that the mazimum of |W(z)—V(2)| on B is suffi-
ciently small, namely, less than the minimwm of [W(z)| on B.

Theorem 11.1 is often formulated in a somewhat different
form known as Hurwite's theorem :

(11.2) If {Wn(z)} is a sequence of functions holomorphic in a region

@, almost uniformly comvergent in this regiom, and if the function

W(2)=lim W,(2) does mot vanish identically and has ot least p dis-
n

tinct roots in @, then, beginming from a certain value of m, all the
functions W,(2) also have at least p distinct roots in G.

Proof. Let 2,,2,,...,2, be distinet roots of the function W{(z).
By theorem 8.5, for a sufficiently small value of r, the closed
circles K;=X(z;r) form a system of p closed circles, disjoint, con-
tained in @, and containing no other roots of the function W(z)
except the points z;. Hence, in view of theorem 11.1, beginning
from a certain value of n, each of the functions W,(2) has at least
one root in each of the circles K;, and therefore at least p dis-
tinet roots in the region @.

From theorem 11.2 wé obtain as an immediate corollary the
following theorem which plays an essential role in the theory of
conformal mappings (see Chapter V):

(11.3) If a sequence {Wn(z)} of functions holomorphic and u‘m'quelgy

invertible in a region G 4s almost uniformly convergent this

region, then the function W(z)=lm W,(z) either reduces to a constant,
n

or is also uniquely invertible in G.

Proof. If the function W(z) did not reduce to a constant and
assumed the same value w, at two distinet points of the region
@, then, applying theorem 11.2 to the sequence {Wn(z)—wo}, we
should obtain immediately that for sufficiently large values of n
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each of the functions W,(2)—w, vanishes for at least two distinct
points of the region, which contradicts the unique invertibility of
the functions W,(z). -

As one more application of Hurwitz’s theorem, we shall give
the following complement of the Stieltjes-Osgood theorem (Chapter
11, § 7) on normal families:

(11.4) Functions holomorphic in a region @, not assuming in this
region values belonging to o fized circle K(a;r), form a mnormal
family in Q.

Proof. Let {Wn(z)} be a sequence of functions holomorphic
in @, not assuming any value belonging to the circle K(a;r). We
have to prove that this sequence contains either a subsequence
almost uniformly convergent in @, or a subsequence almost uni-
formly divergent to oo in @G. "We may assume that az£oo, for
in the contrary case the sequence {Wn(z)} would be bounded in &
(by the number 1/r) and it would be sufficient to appeal directly
to the theorem of Stieltjes-Osgood. Furthermore, replacing, if necessa-
ry the sequence {W,(2)} by the sequence {W,(z)—a}, we may assume
that a= 0. The sequence |{T',(2)=1/W,(2)} is then uniformly bounded,
and, by the theorem  of Stieltjes-Osgood, eontains a subsequence
{Ts,(2)}, almost uniformly convergent in G Taking T'(z) =]j,1c:n Tn,(?),

we distinguish two cases:

1° The function 7'(z) vanishes identically in G. Consequently,
T, (2)30, and hence Wy, (2)=1/Tn(2)3cc in the region G.

2° The function 7'(z) does not vanish identically in G. Hence
by Hurwitz’s theorem 11.2, since none of the funections

1
T (2)= Wuld)

vanishes at any point of the region &, the function 7'(2) also
cannot have roots in this region. Let FFCG be an arbitrary closed
set’ and let m>0 denote the lower bound of |T(2)| on F. Then,
for sufficiently large values of & we have |T'»(2)|>m/2, and hence
[ W (2)—1/T(2)|<2| T(2) —Tn,(2)|/m?, and the sequence {Wﬂk(z)}
is uniformly convergent on F to 1/T(z). Consequently, again
Whn,(2)21/T(2) in the region G- ' .

It should be noticed that theorem 11.4 states, in fact, a rather weak

result. Montel has proved that a normal family in the region @ is formed by
the holomorphic functions in this region, which do mot assume two arbitrarily
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fized values, e. g. 0 and 1. Theproof of this, obviously far stronger, theorem
is based, however, on deeper methods of the theory of functions (see Chap-
ter VII).

EXERCISES. 1. If {F,(2)} is an almost bounded sequence of functions
holomorphic in a region @, vanishing nowhere in this region, and if
lim F, (%)= 0 at a certain point 2, of the region G, then F (2)20 in the entire
region G.

More generally, if {F,(2)} is an almost bounded sequence of functions
holomorphic in the region, &, no one of which has more than p roots in this
region, and if the lim F,(2) exists and is equal to zero at p-41 distinet points

of the region @, then F (2)30 in the entire region @ (cf. Chapter I, § 3, exer-
cise 2).

2. If {F,(2)} is a sequence of functions holomorphi¢ in a region @
and the sequence {RF,(2)} is normal in @ then the sequemce {F,(z)} is also
normal. :

The converse of this theorem is not true: the sequence {F,(z)=nz} is
normal in the circle K(4;1) and even satisfies the condition of theorem 11.4
(none of the functions F, (2)=nz assumes in the circle XK(i;1) values be-
longing to the half-plane y<0). The sequence {%F”(z)=m:}, however, is not
normal in the circle K(z;1).

3. If {Fn(z)} is a sequence of functions holomorphic in the region G
and the sequence {%F,,(z)} is bounded from above (or below) in this region,
then the sequence {RF,(2)} is normal in G.

§ 12. Mappings defined by ‘meromorphic funetions.. From
the theorems in § 11 we eagily obtain the following important
theorem:

(121) If o function W (2), meromorphic at a point 2,, is not
constant in the neighbourhood of this point and assumes at 2, the value
wo=2F(z)) m-tuply, then to each sufficiently small number e>0 there
corresponds a number 5n>0 such that every walue w£w,, belonging
to the circle K(w,;n), s assumed af exactly m poinis of the circle
K(z;¢) and at each of these points only once.

Proof. We may assume, first of all, that w,s#oco and hence
that the function W(z) is holomorphic at z,, for in the contrary
case we could (making use of theorem 8.2) take under considera-
tion the function 1/W(z) instead of the function W(z). Since the
funetion W{(2)—w, does not vanish identically in the neighbourhood
of the point z,, it follows that, when £>0 is sufficiently small,
the function W(z) is holomorphic on the closed circle K=K(z;e),

. and neither the function W(z)—w, nor its derivative W'(2) van-

ish at any point of the cirele K except, at most, at the point 2.
S. Saks and A. Zygmund, Analytic Functions. . 11


Yakuza


1.62 CHAPTER III. Meromorphic functions.

Hence at the points of the circle X the function W(z) can assume
each value ws%w, at most once. On the other hand, the fune-
tion W(z)—w, has exactly m roots in the circle K(zy;¢), counting
the m-tuple root 2, m times. Moreover, since W (z)—w tends uni-
formly to W(z)—w, as w->w,, we see from the remark following
theorem 11.1 that for every value of w7 w, sufficiently close to
w,, the function W(z)—w has exactly m roots in K(z,;¢). In other
words, as soon a8 n is a sufficiently small pesitive number, every
value . of weK(wy;n)  different from w, is assumed in the circle
K(z;¢) exactly abt m different points and at each of these points
once. T

(12.2) If W(=2) is o function weromorphic in an open set G, not re-
ducing to a constant in the meighbourhood of amy poimt of this set,
then the set W(@) is also open. ‘

If W(2) is a meromorphic function in a region G and does not
reduce to a - constant, then the set W(Q) is also a region.

The first part of this theorem is a direct consequence of theo-
rem 12.1. The second part is a consequence of the first part, theo-
rem 8.5 of this chapter, and theorem 7.1 (b) of the Introduction.

It should be noticed that theorem 12.2 is not true for arbi-
trary continuous functions, as is indicated by the example of the
function w=W (z-+iy)=x, which transforms the open plane into
a straight line. Nevertheless, it is true for arbitrary continuous
uniquely invertible functions; the proof, however, requires more
subtle topological considerations. '

(_12.3) If a function W(z) is meromorphic and uniquely invertible
i an open set @, then its inverse fumction Z=W is. meromorphic
in the open set H=W(@); and if zeG, w,=W(s), 2740, and
Wy #0o, then Z'(w))=1/W'(2;).

Proof. First of all, from theorem 12.1 it follows immediately
that if 2,¢ G and' w,=W (2,), then w—>w, implies that Z (Wy—>2y=2Z (w,).
Hence if we assume, in addition, that w,7oco and 2,s£c0, then

Z(w)-Z('w0)=. Z(w)—2, 1
w—w,  WZ(w)]—W(z) W ()

as w—>wy; here W'(z,)) #£0, since in the contrary case the function
W(z) would assume its value w, at the point z, at least twice and,
by theorem 12.1, it would not be uniquely invertible in the neigh-
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bourhood of this point. Consequently, if z,5200 and w,=W (%) s£0o0,
then the function Z(w) is holomorphic at w,, and Z'(w,)=1/W’(z).
‘We have now to examine at most two points of the set H: the
point co and the point corresponding to the point oo of the set
@. However, as we have already observed, the function Z(w)
has a definite limit z,=2(w,) at the point w, also when z,=oco or
wy=o00; it is therefore meromorphic at every point w,eH (ef. § 6,
p. 145), and hence in the entire region H.

From theorems 12.1 and 12.3 there results immediately the
following theorem on the local inversion of meromorphic funciions :

- (12.4) A function meromorphic in an open set @G is uniquely invertible

in the meighbourhood of every point ai which it assumes its value
once ; it then has, in a sufficiently small neighbourhood of every such
point, an inverse which is also o meromorphic function.

As an application of theorem 12.2 we shall give a proof of
the following theorem, frequently called the mawimum modulus
principle for holomorphic functions :

(12.5) The absolute value of a function W (z), holomorphic in a

region G and not reducing to a constant, does not attain s upper
bound at any point of this region.

Proof. If the function |W(z)| attained its upper bound M ab
a certain point z,e@, then we should have first of all M =|W(z,)|>0,
for in the contrary case the function W(z) would vanish identically.
Next, the function W(z) would not assume in G any value of the
form AW(z) for A>1, which is, however, contrary to the fact that
by theorem 12.2 the set W(§) is open.

Of the numerous applications of the maximum modulus prin-
ciple we shall here indicate the simplest. Let us observe, first of
all, that if a function W is continuous on the closure of & given
region G, then it certainly attains the maximum of its absolute
value on the set G at a point of this set. However, if the
function W is in addition holomorphic in the region @, then, by
theorem 12.5, this maximum cannot be attained at any point of
the region, unless the function reduces to a constant. Consequently,

(12.6) If a function W (z) is holomorphic in a region G and 48 con-
tinuous on its closure, then the upper bound of the values of |W(z)]

for zeG is aftained on the boundary of the region @G.
11+
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 From this there results immediately the following theorem:

(12.7) If a sequence of functions {Wn(z)}, holomorphic im a re-
gion G and continuous on the closure of the region @, 1is uniformly
convergent on the boundary of this regiom, then this sequence 18 uni-
formly convergent on the entire closed region G.

Proof. For every pair of natural numbers p, g, the maximum
of the expression |W,(2)—W,(2)| in the closed region @ is equal,
by theorem 12.6, to the maximum of this expression on the bound-
ary of the region G The uniform convergence of the sequence
{Wa(2)} on the boundary of the region G implies, therefore, the uni-
form convergence of the sequence on the entire closed region G.

EXERCISES. 1. Let F(2) be a function holomorphic in a region G,
not reducing to a constant, and M a non-negative number having the follow-
ing property: for every point 2, on the boundary of G and for every
number £>0 there exists a neighbourhood K of the point z, such that

IF@R)<M+e if zeK-G.

Then |F(z)| <M for every point zeG. (This theorem is more general than
theorem 12.6 in -that it does not require that the function be defined and
continuous on the boundary of the region).

2, If a function F(z) holomorphic in a region G does not vanish
at any point of this region, then its absolute value does not attain its min-
imum at any point of the region, except in the case when the function F(z)
reduces to a constant.

3. The real part of a function holomorphic in a region attains neither
its maximum nor minimum at any point of this region, except in the case when
the given function reduces to a constant.

[Hint. Denoting the given function by F(z), consider the function
exp F(z).]

4. Theorem 12.6 has the following corollary: If a function W ()
is continuous on a closgd set F and is holofnorphic in its interior,
then the maximum of its absolute value is attained on the boundary of the
set. An analogous formulation for theorem 12.7.

[Hint. Every boundary point of a component of a given set is a bound-
ary point of the entire set.]

5. If {W,l(z)} is a sequence of holomorphic functions convergent every-,
where in an open set G, and R is the set of points in no neighbourhood of
which is the sequence {W,(z)} uniformly convergent, then the set B is closed
in G, nowhere dense, and every coinponent of the “closure of the set K has
points in common with C@&.

[Hint. Cf. Introduction, § 9, exercise 2; Chapter II, § 7, exercize 2.]

6. If W(z) is a function holomorphic in a region G containing nei-
ther the point 0 mor co, and a is an arbitrary real number, then, except in
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the case when W(z)%O/z”, where O is a constant, the function |2]®|W(z)|
does not attain its upper bound at any point of the region G.
7. (a) A function F(f), real and finite in an open interval (a,b), is
called convex in this interval, if
7 (m‘lt’l-mgt,) < my F(ty) -+mo F (ty)
== »
My +My | Moy My

whenever a<t,<<t,<<b, m;>0 and m,>0 (this means that for every subinter-
val [;,%,] none of the points of the arc y=F(f), where 1,<i<Ct,, lie above
the chord of this are).

Prove that in order that a function F(f), finite and continuous in the
open interval (a,b), be convex in this interval, it is necessary and sufficient
that it satisfy the following maximum condition: for every a, the upper bound
of the function F(t)+at on every interval [a;,b;] contained in (a,b) is at-
tained at one of the end-points a,,b, of this interval.

(b) In view of this, prove that if W(2) is a function holomorphic and
not vanighing identically in the annulus P(0;p,,0,), and M(r), for p;<r<g,,
denotes the upper bound of the function [W(z)| on the circumference C(0;7),
then LogM(r) is a convex function of Logr in the open interval (e:,es)
(Hadamard: ‘“three circle theorem™).

§ 13. Holomorphic functions of two variables. If G, and G, are
two open sets, then the function F(z,w) of two variables is said
to be holomorphic in the set GyXx@, (cf. Introduction, § 13; Chap-
ter I, § 1), if this function is continuous on the set Gy X@G, and if -
for every value ze@, it is holomorphic with respect to w in @, and
for every value we@, it is holomorphic with respect to z in a,.

The function F(z,w) is said to be holomorphic at the point (2y,%),
if it is holomorphic in some bicireular neighbourhood of this point
(see Introduction, § 13).

Let F(z,w) be a function holomorphic in the Cartesian product
G, x G, of two open sets not containing the point oo, and let 2,6 Gy,
w,€@,. Let QCE, be a square with centre z,. By theorem 5.5, Chap-
ter II, we have - '

131)  F(eyw0) = — f Fama  tor  (su)e@ %0,

i B2
The integrand is a continuous function of three variables:
2,3, and w, which range over the interior of the square @, the bound-
ary of this square, and the set G, respectively; the right side of
formula (13.1) is therefore a continuous function in Q°X@,, and at
the same time, by theorem 5.7, Chapter IT, it is differentiable with
respect to w in @, for every value 2€Q°, and differentiable with
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' respect to 2 in @° for every value we@,. The function F,(#;w) is hence

holomorphic at every point (z,w,)€ 61X G,. An analogous result is’

obviously obtained for the partial derivative Fy(z,w) and, by in-
duction, for partial derivatives of higher orders. Consequently,

(13.2) If a function F(z,w) is holomorphic in the Oartesian product
G, %G, of two open sets mot containing the point oo, then all its de-
Lo FmT B (2,w) . :
rivatives T P are also holomorphic in Gy XG,.

Let us now consider the function F(2,w), holomorphic at a giv-
en point (z,,w,), where w,7co. By theorem 5.7, we have

(13.3) F(z,w)-—- ,Z;an(z) (w_wo)n,

M=
when the variable point (2,) ranges over a certain bicircular neigh-
bourhood K(zy;7;) X K(wy;7rs) of the point (2y,w,). Let 0<o,<ry,
0<g,<<o<ryy and let M be the upper bound of |F(zw)| for
2eK (2;0,) and weK(wy;0). By theorem 4.6, the coefficients a,(z)
are given by the formulae

1 F(z,w)

(13.4) () = — | ————— dw
n . 27“09 (m___wo)n+1 ’

where Cé denotes the circumference of the circle X(wy;0), whence
(ef. formula (4.8))

M
(13.8) [a,(2) | < — for

n

zeK(2y;01)-

As follows from formula (13.4), the coefficients a,(2) are, by
theorem 5.7, Chapter II, holomorphic in K(z;0,), and in virtue
of the estimate (13.5), the series (13.3) is absolutely and uniformly
convergent in the bhicircular neighbourhood X(2;e1) X K(wy;0s)-
Conversely, if in a certain bicircular neighbourhood X(z;;0:1) X%
X K(wy;0,) of the point (z,w,) the function F(z,w) is expansible
in a uniformly convergent series of the form (13.3) with coefficients
a,(2) holomorphic in K(z);0,), then, as follows immediately from
Weierstrass’s theorem (Chapter IT, theorem 6.1), the function F(z,w)
is holomorphic in K(z;0,) X K(wp;e.). Consequently,

(13.6) In order that a function F(z2,w) be holomorphic at & poini
(2y,p5200), 4 18 mecessary and sufficient that this function be ex-
pansible, in the Cartesian product K, XK, of netghbourhoods of

icm

.,

§ 14 Weierstrass’s preparation theorem. 167

the pointsl 2, and w,, i @ uniformly convergent series- of the form

(13.3) with coefficients a,(2) holomorphic in K.

" An analogous condition. is obtained by interchanging z and w.
This theorem will-be completed in Chapter IV, § 9. '

§ 14. Weierstrass’s preparation theorem. In many cases the in-

~ vestigation of an arbitrary function holomorphic at a point (zy,w,)

can be reduced to the inyestigatioh of a function which is a poly-
nomial with respect to one of the variables z,w. This reduction
is based on the following preparation theorem (“Vorbereitungs-
satz”) of Weiersirass: o S R
(14.1). If o function F(z,w) is holomorphic and does not vandish iden-
tically in a bicircular neighbourhood K;xK, of the point (2,u,),
where 2,500y Wy£00, and if F(zy;w,)=0, then in a certain bicircu-
lar neighbourhood K (2y;0) XK (wy;0) of the point (2y,w,) this function
has the form '
= (8 —2)P [(0—wo)*-+ A1 (8) (0 —105) " ... +Ax(2)] Fi(2,0),
where p and k are non-%egative‘imegers, ‘Al(z),‘Aﬁ'(z), ooy Ayl2) are
functions holomorphic in K (2450), bamﬁshing for 2=z, and finally,
Fy(z,w) is a holomorphic function vanishing -mowhere in K(#p;0) X
x K (wo; 0)- . ‘

Moreover, if the function F(z,,w) does mot wvamish tdentically
in the neighbourhood of the poini w,, then on the right side 0]‘ the equa-
tion (14.2) we have p=0, and & is the multiplicity of the root w=1w,
of the function F(z,,w). ’

The theorem also remains true for z,—oco or wy=oo with this
difference only that in formula (14.2) it is then mecessary to replace
2—2, and w—w, by 1z and 1jw, respectively.

Proof. We may obviously assume that z;=w,=0 (applying,
if necessary, the substitutions z=1/3 and w=1/w, if 2,==00 OT Wy=00,
or suitable translations, if z,, w, are finite numbers).

We shall first consider the case when the function F(0,w) does
not vanish identically in the neighbourhood of the point w=0 and
has a k-tuple root at this point. Let QCK, be a sufficiently small
square with centre 0, such that the function F(0,w) does not have
any roots in @ other than at the point w=0. The function
F(z,w), as a function of the variable w, tends uniformly on ¢ to
F(0,w) as z—0; hence, by the remark following theorem 11.1, there

(14.2)
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exists a cirele X(0;7)CK, such that for every 2eK(0;7) the function
F(2,w) has exactly k¥ roots in @, and none of them lie on the peri-
meter of the square Q. Let w,(z), wy(2),...,ws(¢) be these roots
(written as many times as their multiplicities indicate). Let us
consider the polynomial in w

P(zyw)=[w—w;(2)][w—wsy(2)]... [w—wg(2)]
=wF L A (&) w4 A (2).
The coefficients A,(2), 4y(2),...,45(2) of this polynomial ob-
viously vanish together with the roots w,(2),w,(2),...,w,(2) for
#=10. We shall show that these coefficients are holomorphic functions

in the circle K(0;7). In fact, by theorem 9.2 we have for zeX(0;7)
and j=1, 2,...,

. . .1 I,
8@ =@+ ea( T+ ..+ )Y = [ T2 gy,
27:@(0) F(z,w)
and since by theorem 13.2 the funetion F(2,w) is holomorphic
in K; xK,DK(0;r)x@, by theorem 5.7, Chapter II, all the funec-
tions - §;(#) are holomorphic in X(0;r). From this, however, it fol-

lows that the coefficients A4,(z),.4,(2),...,4(2) are also holomorphic -

in the circle K(0;r), since by the well known theorem of
algebra on symmetric functions they can be expressed as certain
polynomials?) in the functions §;(2). Therefore the polynomial
P(zw) is also holomorphic with respect to z in K(0;7).

Now, let F,(z,w)=F(z,w)/P(z,w). For every value 2eK(0;7)
the functions F(z,w) and P(z,w) have the same roots in the square
@, with the samé multiplicities. Hence the function F,(2,w) vanishes
nowhere on K(0;7)x@, and is holomorphic in w on @ for every
value - 2¢K(0;7). It remains only to prove that the function
F,(2,w) is continuous on the set K(0;7) x@Q° and is holomorphic in 2z
in the circle K(0;7) for every value we@°. In view of theorems 3.3
and 5.7, Chapter II, this follows immediately from the formula

27”(@) 0w 27‘”’(@)(m _w)P(zym)

where ze¢K(0;7) and weQ°, since P(2,w)#0, when zeK(0;7) and
we(@), and so the function F(z,w)/P(¢,w) is holomorphic with
respect to 2 in K(0;7) for we(Q).

?

') A direct proof of this theorem will be given further on (see p. 1689). -
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Selecting now the number p<<r such that X(0;p)CQ, we obtain
for the point (0,0) the bicircular neighbourhood K(0;0) XK (0;p),
in which the required factorization of the function F(z,w) takes
place.

‘We can now pass to the case when the function F(0,w) van-
ishes identically in w. In a certain bicircular neighbourhood of
the point (0,0) we therefore have, on the basis of theorem 13.6,

Fleyw)= 3 an(e)u”,
n=0

where a,(¢) are functions holomorphic in a neighbourhood of the
point 0, vanishing at this point. Rejecting the case when all a,(2),
and hence "F(z,w) also, vanish identically, let us denote by 2”
the largest power of z which is a common factor of all a,(z), and
let ay(2) be the first coefficient in the expansion (14.3) which does
not vanish at the point 0 more than p times. Now, if the fune-
tion @(z,w)=F(2,w)/2" does not vanish at the point (0,0), then the
tormula F(2,w)=2"®(z,w) is the desired factorization of the function
F(z,w) in a bicircular neighbourhood of this point. However, if
@(0,0)=0, then applying the previously obtained result to the
function @(z,w), Wwe obtain a formula of the form (14.2) for
F(z,w)=2"D(z,w).

In the above proof we made use of a theorem from algebra which enables
one to express the coefficients of a polynomial in a rational and integral man-
ner in terms of the homogeneous sums of powers of the roots of this
polynomial. We shall here give one of the many ways of deriving these ex-
pressions.

" Let wy,ws,...,wa be the roots of the polynomial
Fw)=w"+A4u"  + ...+ 4,
(in the case of multiple roots we assume that each root appears in the sequence
[w;} as many times as its multiplicity indicates) and let
F(w)

'w—w,

(14.3)

(14.4 W BOw B,

By equating coefficients we obtain
'Al‘.:‘B(k')_Bg—)lwi
(where k=1,2,...,2—1; B{)=1), whence, taking, for symmetry, 4,=1,
BO—A, 4 Agw,  BP=A At A, BY =AgtAw A A,
o BO = A At Ayl A

Substituting the above expressions for the coefficients in the identity
(14.4), we find
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, o kid F(’w . . ) .
F (w)f_‘vZ‘ij—)=AnSnw"_l+ (SoAl+S1A0)’w“-g+ (Sods+ 814+ 83 d)w"?
=1 i o
oot (S 8id, gt o8 ady),
where Sj=w’1—[—wé+ - 4wl for j=0,1,2,...

Equating here again the coefficients on both sides, we have
(n—1)4,=8,4,48:4,, (n—2)Ay="8,A4,+8,4,48:4,,
,An_1=.SoA”_1+SlAn_z+ R Y- P
whence, since 4,=1, §,=n, we obtain successively the desired expressions for

A, 4,,...,4, , in terms of §,,8,,...,8,_;. The expression for 4, follows, in
turn, from the obvious equality :

Bt s,y Ay g oot = TF ()= 0.
j=1

(14.8) If F(z,w) is a function holomorphic at a point (2y,w,), and if
the function F(zy,w) has a simple root at the point w, (which in the
case wy#oo means that F(zy,wy) =0 and F,,(2y,w,) 70 ), then for a suf-
ficiently small value of »>0 there exists a function W (z), holomorph'ée
in the neighbourhood K(z,;7) of the point z,, such that for z2eX(z;7)
and weX(w,;r) the relations F(z,w)=0 and w=W(2) are equivalent.

Proof. Taking z,5500 and w,7#oo, and applying the equation
(14.2) with p=0 and k=1 to F(z,w), we verify immediately that
in a sufficiently small bicircular neighbourhood of the point (z,,w,)
the relation F(z,w)=0 is equivalent to the relation w—w,--4,(2)=0;
and hence it is sufficient to take W(z2)=w,—A4,(2). The cage when
Z=00 Or wy=oc is reduced to the case under congideration by
the usual substitutions z=1/3, w=1/w. '

CHAPTER IV

ELEMENTARY GEOMETRICAL METHODS
OF THE THEORY OF FUNCTIONS

§ 1. Translation of poles. The behaviour of a holomorphic fune-
tion in a region is in some measure already decided by the behav-
jour of this function in the neighbourhood of any one point of the
region. However, if instead of a region we consider an arbitrary
open set, then we can obtain a function holomorphie in this entire
set by defining it independently in the individual components of the
set. Tt is therefore an interesting fact that every function holomor-
phic in an arbitrary open set @ can be defined as the limit of a se-
quence of rational functions holomorphic in @, and even — when
the set G does not separate the plane and does not contain the point
oo — ag the limit of a sequence of polynomials. This beautiful theo-
rem was proved by Runge in the second half of the past century. .
_ The proof is in three parts: 1° & holomorphic function W(z),
given in an open set G, is represented on any closed set FCG as the
sum of curvilinear integrals of the form i me

: ~ 2ty 3—%
curves O lying in G—F; 2° these integrals, considered as fune-
tions of the variable z, are approximated uniformly on F - by
rational functions having poles on the curves C; 3° these poles
are “translated” to the complement of the given open get @, so
that the rational functions obtained become holomorphic in G.

The first part is obtained directly from lemma 10.1, Chapter IIL.
The second part is based on the following simple lemma:

(1.1) If f(2) is a function continuous on & regular curve C not having
points in common with a given closed set F, then for every mumber
e>0 there ewists a rational function Q(2) having poles exclusively on
C and such that ‘

fﬂﬁ%—Qm
05-z -

d3, taken along

<e for zeF.
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