CHAPTER II

HOLOMORPHIC FUNCTIONS

§ 1. The derivative in the complex domain. In the preceding
chapter (§ 6 and § 15) the derivative of a funection of a complex
variable was considered solely at points treated, so to speak,
individually. However, the significance of differentiability
in the complex domain becomes clear only, when the diffe-
rentiability of the function is-assumed at all points of a certain
region. Then it appears, as was already mentioned in § 6, Chap-
ter I, that in the complex domain differentiability implies
consequences markedly stronger than in the real domain.

With the view of making these general remarks more precise,
we shall give first of all the following definitions.

A function will be said to be holomorphic (or regular) at a point
#7oo, if it has a derivative at every point in a certain neighbour-
hood of the point 2,. Generalizing this definition to the point
oo, we shall say that the function W(e) is holomorphic at the poink
oo, if it is defined in the neighbourhood of this point and if the
function W,(2)=W(1/2) is holomorphic at the point 0. A function
holomorphic at every point of a set will be said to be holo-
morphic on (or in) this set. A function holomorphic on a set A is
therefore defined and holomorphic in an open set GDA.

(L1) If a function W(z) is holomorphic in an open set &, and if
the values it assumes in this set belong to a set A, on which

a certain function F(2) is holomorphic, then the composite function

F[W(2)] is also holomorphic in G.

. .This theorem follows immediately from the rule on differen-
tiating a compound function (Chapter I, theorem 6.1); in the case
when @ eogtains the point oo, we apply the transformation {=1/z
to this point.

From the same rule for différentiating a composite function
we deduce the theorem:
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(1.2) If the function W (z) is holomorphic at the point oo, then every
function of the form W(c4-2), where ¢ is a constant, is also holomor-
phic at oo.

Proof. Taking W,(2)=W(1/2) and W,(z)=W(c+1/2), we have
Wy(2)=W](ce+1)/z]=W[2/(cz-+1)], and the differentiability of the
function W,(2) at the point 2=0 is a consequence of the differen-
tiability of the fumctions W, (z) and z/(ce+1) at this point.

Finally, from theorems 5.5 and 6.4, Chapter I, it follows that

(1.3) If the real and imaginary parts of the function W(2) have af
each point of the open set G, not containing the point oo, partial de-
rivatives with respect to x and y, continuous and satisfying the Cau-
chy-Riemann equations, then the function W (z) is holomorphic in @.

The converse theorem is also true (cf. § 5 further on), although
by no means obvious. It requires, namely, the proof that every
holomorphic functions in an open set has a continunous deriva-
tive in this set. _

Theorem 1.3 was proved by Cauchy, and its converse by Gour-
sat. It is worth noting that this theorem, without the assumption of the
continuity of the partial derivatives (under the assumption only of the con-
tinuity of the function W(2)), is much deeper, and many attempts to prove
it in this form were based on false arguments. It was proved by Looman
(whose proof also was not free of certain gaps) and by Menshov. The proof
i based on more subtle methods of the theory of real functions and cannot
be given in this book.

In the preceding chapter (§ 7 and § 8) we have already consi-
dered holomorphic functions in the entire open plane: the expo-
nential function, as well as the trigonometrie functions sine and co-
gine. Furthermore, we have proved (Chapter I, theorem 11.3) that
every branch of logz in an open get is a holomorphiec function
in this set. In addition, certain regions were determined in which
a branch of logz exists. As a corollary of theorem 11.1, Chapter I,
we shall mention here the following theorem:

In every circle nmot containing either the point 0 or oo there
exists a holomorphic branch of logz.

In fact, if K(a;7) is such a circle, we perceive at once that
this circle lies in a region which we obtain by removing the half-
line #=—at (where $>>0) from the open plane, and in which
a branch of log z exists in virtue of the above mentioned theorem
11.1 of Chapter I. We deduce from this the following general-
ization of theorem 11.3, Chapter I1:
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(1.4) If for a function W{(z) holomorphic in an open set G there
exists in G a branch of  log W(z), then this bramch is holomorphic in
G and its derivative is equal to W'(2)/W(z) at each point zsco of
the set G.

Proof. Let T(z) be a branch of log W(z) in G. Let 2y be an
arhitrary point of the set &, and let K be a circle with centre W (z,)
and radius |W(z,)| (we have |W(2,)|>0, since by hypothesis log W (z,)
exists). This circle, obviously, does not contain either the point 0
or co. Let us denote by H a neighbourhood of the point 2, with
radius sufficiently small so that W(z)eK for every zeH.

Now, denoting by L(z2) an arbitrary branch of logz in the
circle K, we verify immediately that the composite function L[ W (2)],
holomorphic in the circle H (cf. theorem 1.1), is & branch of
logW(2) in this circle. By theorem 11.2, Chapter I, the function
T(z) differs, therefore, in the circle H by at most a constant from
the function L{W(z)], and consequently is also holomorphic in
this circle, and in particular at the point z,. Moreover, by theo-
rem 11.3, Chapter I, T'(z)=L'[W(2)]W'(20)= W'(2)/W(z,), pIro-
vided that #,7%occ. Thus theorem 1.4 is proved, since z, is an
arbitrary point of the set G.

If W(zs) has a derivative at a point 2, then the expression
W'(2)/W(z,) is called the logarithmic derivative of the fune-
tion W at the point z,. This name is obviously associated with
theorem 1.4. '

EXERCISE, If a branch of the function arctanz or aresinz exists in

an open set, then this branch is a holomorphic function. The respective
derivatives are the function 1/(1--2%) and one of the branches of the func-

‘tion 1/)/1—2* (cf. Chapter I, § 10, exercises 1, 2).

§ 2. Primitive function. If a complex function W(z) is the

derivative of a certain function 7'(2) at every point of an open

set @, then T(z) is said to be a primitive function of the func-
tion W(z). : 8

We shall give a necessary and sufficient condition, based on
the definition of the curvilinear integral, in order that a function
continuous in an open set have a primitive function in this set.
To that end, we shall first prove the following theorem:

(2.1) If in the open set G the function T'(2) 48 a primitive function
of the continuous function W (z), then for every pair of points z,,2,6 G
and every regular curve C: : \
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z=2(t), where  a<i<b, 2,=2(a), #==¢(b),

joining these paints in @, the following equality holds:
[ W (2)de=T (29)—T(2y).
g

Proof. Let F(i)=T[2(t)] for a<<t<b. The interval [a,b] can
be divided into a finite number of subintervals [ay,a4], [ai,a5],...,
[@n_1,a,] (Where a=a,, b=a,), such that in each one of them the
function 2(#) has a continuous derivative. Hence in each one of
these subintervals the derivative

B (t)=T"[2(t) ]2 (1) =W [2(t) ]2"(¢)

exists and i3 continuous (at the end-points of the intervals [y @ q1]
we congider, of course, only the one-sided derivatives from the
corresponding sides). Consequently,

(73]

f W lz(t)]2' (t)dt=F(ay,,)—F(a;), where k=0,1,...,n—1,
9
whence (cf. Chapter I, theorem 17.6)

b n—1
W) de= [ Wz)]e’ () dt=  [F(ty1)—F ()]
C a k=0
=P (b)—F(a)=T(2) —T(2).

From theorem 2.1 just proved it follows, in particular, that
when a continuous function has a primitive function in an open
set @, then its integral vanishes along every regular closed curve
in G. We shall prove, conversely, that if a curvilinear integral of
a continuous function in an open set G vanishes along every regu-
lar closed curve (or even only along every closed polygonal line),
then this function has a primitive function in G. Moreover, we may
assume at once that G is a region, since in the contrary case we
could define a primitive function in every component of the set
G separately.

Therefore, let o be an arbitrary point of the region G. For every
point ze@ let us denote by T'(2) the value of the curvilinear integral
of the function W(z) along an arbitrary polygonal line joining in
@ the point z with the point a. This function is uniquely defined,
i. e. the integral considered does not depend on the choice of this
polygonal line. In fact, if ¢, and C, are two polygonal lines in @
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joining the same pair of points, then C;+(—0C,) i8 a closed poly-
gonal line (cf. Introduction, § 12) and, in view of the hypothesis,

[W(@)dz— [ W (&) de= [ W(2)d2+ [ W(e)de= [ W(e)de=o0.

é, G, 6, (=c) Oy (—0)

Now, let 3, be an arbitrary point of the region G and let, for
every r>0, &(r) denote the upper bound of the absolute values
|W(2)—W(3,) |, when zeG and [2—3,|<r

" Let € be an arbitrary polygonal line joining the points a and
3 in @, and let 3 be an arbitrary point of a circle K(3o57) with
radius r sufficiently small so that K(3,;r)CG. Then

TG30)=[W@de, T)= [ W(eds,
c C+L08]
whence

T(3)—TGo)= [ W(e)de= [[W()—W(3)1de+ [ W(30)de

(30,81 [30,31 [30,3]
=W () (3—30)+ [ [W(2)—W(30)1de.
) (30,31
Consequently (cf. Chapter I, (17.10)),

] [ [W(z)—W(ao)szy
00 W () | = <e(r),
3—30 13 —30!
and since, in view of the continuity of the function W (2), s(r) tends
to zero together with 7, the function T'(2) has at the point 2,
2 derivative equal to W(z).
Hence we obtain the following theorem:

T(3)—T(30)

(2.2) In order that a continuous function in an open set G have a prim-
itive function in G, it is necessary amd sufficient that its integral
vanish along every closed reqular curve in G.

From theorem 2.1 it further follows that:

(2.3) In order that a function T(2) be constant in the region @, it is
necessary and sufficient that it have a derivative identically equal to
zero in this region (hence if two holomorphic functions in the region
G have equal derivatives in this regiom, then they differ by at most
a constamt).

More generally, in order that a function in the region G be a pol-
ynomial of degree less than n, it is mecessary and sufficient that it
have an n-th dertvative equal to zero in this region.
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Proof. The necessity of the condition in the first part of the
theorem is obvious. With the view of proving the sufficiency of
this condition let us assume that for the holomorphie function T'(z)
we have T'(2)=0 identically in the region &. The function 7'(2)
is therefore & primitive function of zero, and since every two
points 2, and 2, in the region @ can be joined in this region by a
regular curve (even by a polygonal line, ¢f. Introduction, theorem
9.5), we have, by theorem 2.1, T'(z,)=T(z,) for every pair of points
2;,2, of the region. Therefore the function 7'(2) is constant in G

The second part of the theorem follows immediately from
the first by induction.

Since every monomial 2%, where = is a positive integer, has a primitive fune-
tion, we have [2*dz=0 along every regular closed curve (. Furthermore, since
every series of functions, uniformly convergent on a curve, can be integrated
term by term on this curve, we also have [F(z)dz=0 for every function

(o]

which is the sum of a power series almost uniformly convergent in the
entire plane. Such functions (cf. Chapter I, §§ 7, 8) are e. g. the exponential
function expz, the trigonometric functions cosz, sinz, ete. In Chapter IV
(§ 3) we shall prove, generally, that if a function is holomorphic in a simply
connected region, then its integral vanishes along every closed regular curve
lying in this region.

The consideration of curvilinear integrals leads to the determination
of the values of certain real integrals. The calculation of real integrals by
this method was one of the first applications of the theory of functions of
a complex variable. As an example we give here the evaluation of the so-

+00 +o0
called Fresnel integrals, [ cos(i*)dt and [ sin(#)di, by considering a curvi-
0 0

linear integral of the function exp (—z%).
Denoting by Op, the arc of the circumfe-
rence z=R exp i, where 0<C8<n/4, let us
consider the closed curve (see Fig. 7),
consisting of this arc and two segments,
[0,R] + Cr+[R exp (wif4),0]. Since the funec-
tion exp(—2?) is the sum of the series / \

(—1)y > A ¥
2 > almost wuniformly convergent
n. .

Re:xcp(%i

n

in the entire open plane, its integral vanishes 0 R
along this curve. Consequently, we have “Fig. 7.

(2.4) [ exp(—et)de= [ exp(—#)det [oxp(—#)de.
(0,RexD (i/4)] [0,R] O

Substituting z=texp (ri/4) in the integral on the left side of this equa-
tion we can write this integral in the form
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R
R . o
| exp [ oxp (i/2)]exp (ri/4) di =exp (mi/4) J exp (—it?) dt.
0
Furthermore, the first integral on the right side of formula (2.4) may be

R 3 s .
written as f exp (—1)dt. Finally, substituting z=Rexpit in the last integral

of this formula, we find .
ki1?
(2.5) f exp (—#2)dz=1iR f exp [— R? exp 2it] exp it dt.

‘We have

lexp [— R?exp 2if] exp it|=|exp [ — R* (cos 2 +igin 2)]| =exp (—R*cos 21).

Now, sin2i>>t in the interval [0,m/4] of the variable t, and hence, in
virtue of (2.5),

. /4
l fexp(—z’)dz‘gRTj' exp (—R® cos 2t) dt
or D

T[4

; T !
=R0f exp(——R’sm2t)dt<R0f e .dt<:R,

whence it follows that the integral (2.5) tends to zero when R ->-- oco. Co_n-
sidering, therefore, that according to a known formula from real analysis,

400
[ exp(—t)dt=
g

400
exp (wi/4) [ exp (—it*)dt =
0

%Vw—r,.we obtain, passing to the limit as B->-oco in (2.4),

11/— ice

5 Ty e € ’

+oo 1 ~ .

[ feos(*)—isin (t2)]dt= 5 VYmexp (—mif4) =
]

Equating the real and imaginary parts of both sides, we have

Vr/8(1—1).

+oo
[ cos(@)ay=
0

We sha,il complete theorem 1.4 here in the following way:

+00 -
| sin (#) dt= y//8.
]

(2.6) If W(2) is a finite function in an open set @, not containing
the point oo, then in order that a holomorphic branch of log W(z)
exist in this set, it is necessary and sufficient that the function W (z)
be holomorphic and everywhere different from zero in the set G and
that its logarithimic derivative W'(2)/W(2) have a primitive function
in G (or, equivalently, — assuming that W'(2) is continuous*) — that

1) In view of later results (see the remark following theorem (5.5), below) .
the assumption that W’(#) is continupus can be omitted here.

i
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the curvilinear integral W'(z)/W(z)

vanish along every closed regular
curve lying in G).

Proof. We may assume that the set @ is a region. In the contr-
ary case we should consider the function W(z) in each of the com-
ponents of the set G separately.

If the holomorphic function L(z) is a branch of log W(z) in
G, then we have W(z)=expL(z). The function W(2) is therefore
holomorphie, does not vanish anywhere in @, and by theorem 1.4
we have L'(z)=W'(2)/W(z).

Next, let us assume, conversely, that the function W(z) is
holomorphic and vanishes nowhere in @, and that a certain holo-

‘.morphie function F(z) exists in @, such that

(2.7 F(z =-@
W(z)
Let &(z)=W(z)/exp F(z). Differentiating, we obtain in virtue
£ (2.7), ,
W (2)—W(=)F'(z
o= T A=FEOFE]_
exp F(z)
whence it follows by theorem 2.3 that, in the region G;
Wi(z)
B =0

where C is a constant different from zero. Hence, taking
Fy(2)=F(2)+LogC, we shall have expF,(z)=Cexp F(z)=W(z),
which means that the holomorphic function F,(z) is a branch of
log W(z2) in the region G.

EXERCISES. 1. If the real part of a holomorphic funection in ﬂle regibn
@ is a constant, then the function is also a constant.

2. If the absolute value of a function W(z) holomorphic in the region
@ i a constant, then the function is also a constant in Q.

[Hint. Calculate the derivative of the function |W(2)[%.]

3. If O is an arbitrary regular curve not passing through O, then

dz
f —”—ELogb—Loga (mod 2wi), where ¢ and b denote, 'respectively, the

initial and terminal points of the curve ¢ (hence if the curve (' is closed, then
1 [d ’

— id is an integer).

27:1,0 z
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More generally, if Wi(z) is & holomorphic function and vanishes no-

where on O, then fW (%) dz==TLog W (b)— Log W (a) (mod.2mi).
p, .

W(z)

4. Determine the value of the parameter ¢ for which the integral of the

function -F(z)=(i+%) ¢ vanishes along every closed regular curve not pas-
2 2

sing through the point 0. Determine for this value of a the primitive function
of the function F(z) (as the sum of a power senes)

5. Prove that the value of the integral f e~ (% dx, where a is a real
number, does not depend on a.

+00 -
Making use of the formula f e Pdt=)n, deduce from this the for-
mula, —o0
+oo
fe""cosZtydt:V;e”"“
—0O
-t

[Hint. Consider the integral of the function ¢ along the perimeter of
the rectangle [—R,R;0,a] and pass to the limit as R—---oo; note that
the integrals of the function e~ along the sides parallel to the y-axis
tend wo 0.]

6. Evaluate the integral f ilil—t dt.

+R
1 exp it —
[Hint. This integral can be written in the form lim — P
R0 2'1, 11

—-—-dt

the flmetmn [expiz—1]/# is the sum of a power series almost uniformly
convergent in the entire open plane, and hence its integral vanishes along
every closed curve; we mtegrate this function along a closed curve congisting
of the semi-circumference z=Re?, where 0<{6<w, and the diameter of this
semi-circumference; then we pass. to the limit as B—+o00.]

7. Evaluate the integrals:

+ oo
A, cosa,t+ A4, cosayt+ ...+ 4 cosa,t
2 o,
0

400

A, sing,t +Aysinagt+ ... 44, 8ina,t
[ - @,
5 ,
where a,,d,,...,a, are real positive numbers and 4,+4dy+...+4,=0 in
the case of the first integral, and a,4,+azd,+...+a,4,=0 in the case of the
second integral.

[Hint. Cf. Chapter I, § 18, exercise 4.]
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8. Show that
+oo
sinag,t sinayt sina, i in at
f 7 . — e T : cosbyt-cosbyt-...-cosbh, t. ——t-i di=3n-a,a,..

0

where @, as,...,0,, b1,bs,...,b,, a are real numbers, and

a> |y |+ ||+ ..o @, |+ 1By |+ by [+ ...+ 1b,]

(Stormer; Whittaker and Watson).
[Hint. The given integral may be written in the form

+00
1 sina,t  sinaf &
(*) % f T * cosb,t...cosb, i 5 dt,

—0

-+00 '
where the improper integral f means  lim [ f + f ] note that the in-
—_— &0, R—»00

tegrand of the infegral (*) can be represented as ]F‘(t)-}-m1 Gy ... &, ft, Where
F(t) is the sum of a power series almost uniformly convergent in the entire
open plane.]

§ 3. Differentiation of an integral with respect to a com-
plex parameter. We shall apply theorem 1.3 to extend the theo-
rem on the differentiation of an integral with respect to a pa-
rameter to the complex plane (ef. Chapter I, §1).

(8.1) If W(z,t) is a continuous function of two variables: the com-
plex variable z ranging over the open set @, and the real variable ¢
ranging over the imterval [a,b] (i. e. if the fumction W(z,1) is contin-
uous on the set @ x[a,b]), then the function

b
Fla)=[ W(zt)di

is continuous in the set G.

If, in addition, for each te[a,b] the function W(2,t) has, at every
poit ze@, a partial derivative W(z,t) continuous with respect to both
variables z and t, then the function F(2) is holomorphic in G and

b
F'z)= [ Wilzt)ds.

Proof. The first part of the theorem follows immediately
from theorem 1.4, Chapter I. With the view of proving the second
part we verify, taking as usual z=x-iy, that from the existence and
continuity of the derivative W,(z,t) follow the existence and con-
tinuity of the partial derivatives Wp(z,t) and W,(z,1), satisfying

-
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the Cauchy-Riemann equations; writing these equations in the
complex form, we have

(3.2) Wa(2t)=—1Wy(2,1)=We(,1).

By theorem 1.5, Chapter I, on the differentiability of an inte-
gral with respect to a real parameter, the function #(z) has conti-
nuous partial derivatives in @ with respect to x and y, where

b b
&)= [ Wile,t)dt=—i [ W, (2,1) @b =—i Ty (2).

These derivatives therefore satisfy the Cauchy-Riemann equa-
- tions. The function F(2) is consequently holomorphic in the set @,
and by (3.2),.

' (2)=F(2 fW’ztdtme (2,1)d

Theorem 3.1 carries over to curvilinear integrals:

(8.3) If W(z,3) 1s a continuous function of the wvariables z and 3,
when z ranges over cm open set @, and 3 over a regular curve C,
then the function H(z f W(2,3)d3 is continuous in G. If, in addi-

tion, the function W(z,g) has a partial derivative W,(z,3) continuous
with respect to both wvariables (ze@, 3¢C), then the function H(z) is
holomorphic in G and its derivative is defined by the formula

‘ H'(2)= [ Wi(2y3)de. :
(o]

Proof. Writing the equation of the curve € in the form 3=3(t)
(where a<Ct<b), we shall have (cf. Chapter I, theorem 17.6)

b
= [Wlz31)15' (),

where the interval [a,b] can be divided into a finite number of
subintervals in such a way that in each of them the derivative
3'(t) is continuous. Theorem 3.3 reduces, therefore, directly to
theorem 3.1.

We point out, besides, with a view to future application,
the following particular case of theorem 3.3:

(8.4) If p(2) is a continuous function on o regular curve C, and k
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an  arbitrary integef, then -the fumction P(2)= f (p (5))k d3y s
¢ B7

holomorphic in the entire open plane outside the curve C, and

kf )k—{-l

§ 4. Cauchy’s theorem for a rectangle. The creator of the
theory of holomorphic functions, Augustin Cauchy, based it on
the following theorem, known as Cauchy’s curvilinear integral

~ theorem: if a function Wi(z) is continuous on a closed region

H, bounded by a regular closed curve ¢, and is holomor-
phic in the interior, then its integral of W(z) along the curve C
is equal to zero. From this theorem Cauchy derived the formula
W= [ L@
2mi J ¥ 3

satistied for every interior point of the region H, under the
same assumptions concerning the function W(z), the region
H, and the curve O. It is on the basis of this formula, known
as Cauchy’s formula, that the theory of holomorphic functions
builds ifs fundamental results, and, in particular, the theorem on
the repeated differentiability of a holomorphic function. The basic
idea on which the theory is built has remained almost untouched
from the days of Canchy. However, a cerfain important detail in
the proof of Cauchy’s theorem was supplied by Goursat. Namely,
in the proof of his theorem, Cauchy, resolving the function W(z)
a8 well as its integral along the curve C into its real and imagi-
nary parts, assumed the continuity of the derivative W'(z). Gour-
sat replaced Cauchy’s proof by a different argument which did
not require the separation of the real and imaginary parts of the
function W (z), and, what is more important, permitted the removal
of the assumption of the continuity of the derivative of this funec-
tion. In this way this assumption was removed not only from Cau-
chy’s theorem, but also from the definition of a holomorphic func-
tion: the continuity of the derivative of a complex function was
found to be a consequence of the mere existence of this derivative.

It should be noted that the proof of Cauchy’s theorem in its entire gen-

erality requires more subtle considerations ‘from the field of topology and the
theory of real functions. These questions were passed over by Cauchy as well
i
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as by Goursat; also in the great majority of present-day text-books on the
theory of functions, even if Cauchy’s theorera ig formulated generally, the
topological elements of the proof are not properly taken into consideration.
For, in practice, Cauchy’s theorem ig usually applied only in those cases
where there are essentially no topological difficulties. In particular, in this
chapter we shall be able to limit ourselves to the consideration of curvilinear
integrals along the perimeters of rectangles and to formulate theorems in a
correspondingly narrow form. Other variants of Cauchy’s theorem and for-
mula will be given in Chapter IV.

The general formulations of Cauchy’s theorem is undoubtedly interesting
in itself; however, it exceeds the scope of this book. An exhaustive and ele-
mentary discussion of this topic in the case of regular curves will be found
by the reader in the book: W. F. Osgood, Lehrbuch der Funlktionentheorie,
B-th edition, v. I, Leipzig 1928; the completely general case (arbitrary recti-
fiable curves) is considered in works which take advantage of the deeper re-
sults of the theory of funections (real and complex).

(4.1) If W(2) i8 a holomorphic function on the rectangle

I=[ay,a,;b1,b,],
then
[W(z)de=0.
()
Proof. Let, for brevity, 7c=\ f W(=)dz I Let us divide the rect-

(I .
angle I into four equal rectangles similar to I. The integral

of the function W(z) along the perimeter of the rectangle I is equal
to the sum of the integrals along the perimeters of these four rect-
angles. Hence for one of these at least — we denote it by I, — we

shall have l f W(z)dz’}k/é. The rectangle I, is again divided into
(I
four equal rectangles, and again for one of these — which we de-

note by I, — we shall have ‘ f W(z)dz}}rz- Proceeding in this
C )

manner, we shall obtain a decreasing sequence of rectangles I,
with sides equal to (@,—a,)/2" and (b,—b,)/2", respectively, and

(4.2) ‘ fW(z)dz 2% for n=1,2,...

(Ln)
Let 2, be a point common to these rectangles and let
| W(2) —W (20)

g—2,

e(2)= —W'(2).
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§ 4 ; Chauchy’s theorem for a rectangle. 111

. We shall have .
(4.3) W(2)=W (20) + W' (20) (2—2,)+ (2—20) £(2),
and &(z2)—0 as 2—2,. Let us denote by s, the upper bound of
le(z)| for zel,. Then (cf. Chapter I, (17.10))

2e,
[e—enete)@e| < =@ —ap+Ba—b0T,
Tn) ,
since [z —z, | doesnot exceed the length of the diagonal of the rectangle
I, for ze(I,), and hence-also the number

(@3 —ay)+(by—0)
2n
On the other hand, the expression Wi(zo)+W'(2o)(2—2,), a8
a linear function of the variable 2z, has a primitive function, and

by theorem 2.2 its integral along the perimeter of the rectangle I,
is equal to zero. Therefore from (4.2), (4¢.3), and (4.4), we obtain

w<| [W@|=| [e—aee @] < Pria—mu) 007,
(In) (Zn)

(4.4)

and Hence k< 2,(a;—a,+by—b,)®. Now, &0 as n—s>oo, and con-
sequently k=0, q. e. d. _

We shall formulate theorem 4.1 in a somewhat more general
form, which we shall call Cauchy’s theorem for a sysiem of rectangles.

(4.8) If I,,I5,...,I,, is a system of disjoint rectangles contained
inside a rectangle I, and W(2) is a holomorphic function on the
closed set I—(I7+15+...+13), then

(4.6) f W(z)dz=2 [Wiz)de.

%3] ERed)

Proof. Prolonging the sides of
the rectangles I;, say, parallel to the l | ! i . * ! l
y-axis (see Fig. 8), we can divide

the figwe I—3T¢ into a fmite | |} |1
§=1

number of non-overlapping rect-
angles Jy,J,,...,J,. We shall then
have:

Fig. 8.

[Weae =) [W)de+ ) [W()de.

I F=1(Jy) 7=1 (Iy)
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However,. since the function W(z) is holomorphic on each of
the rectangles J;, its integral along the perimetér of each one of
them vanishes and we obtain formula (4.6).

From theorem 4.5 we shall derive a generalization of formula
(18.5), Chapter I. Let 2 be an arbitrary interior point of the recb-
angle I, and QCI° a square with centre z. The function 1/(3
is holomorphic with respect to 3 on I—@°, and by formula (18 5)
Chapter I, as well as by theorem 4.5,

g _ [

LT .

~ If the point 2 lies outside I, then 1/(3—#) is a holomorphic

. funetion of the variable 3 on the entire rectangle I, and by theo-

rem 4.1 its integral along the perimeter of this rectangle vanishes.
As a regult, for every rectangle I

1 (a4 _[1,
(4.7) = =
27’c’b(1) 3—z |0,

=271,

if =zel®,
if zeCIL.

§ 5. Cauchy’s formula for a system of rectangles. Let
I,,1,,...,I, be a system of disjoint rectangles contained inside
the rectangle I, and let W(2) be a holomorphic function. on the
closed set R=I—>'I7. We shall derive a formula which expresses

7
the values of the function W(z) inside the interior of R in terms of
the values of this function on the boundary of this figure.

To that end let z be an arbitrarily fixed interior point of the
figure R, and @, a square with centre z and side of length. r; we
shall assume that the number r is sufficiently small so tha,t the

square @, lies within R.
' W(2)

L WE-WE). |
The function Wia)—Wie) is therefore a holomorphic function

of the variable 3 on the figure R—Q°=I —Z‘I, —Qy, and by

Cauchy’s theorem for a system of reetangles (theorem 4.5)

W3 W3 W(3)—Wi(z
(1 [TRZFE) PR A
B 3T ;(11[ ' (Q{
By formula (4£.7) we have . ,
W( W(z) W(3 d L4
f W) [B— (POl oriwee,
h iy 3 h37F () 3R
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W) -WE) 5= W)

d3 for
(Ip 3% a 37F

and hence equation (5.1) may be written in the form

st) Zst) fWa) W,

tpn 0

On the other hand, the ratio [W(3)—W(2)]/(3—=) tends to
W'(z) as 3—>2, and is consequently bounded in the neighbourhood

WR)—W
of the point 2. The integral fM
@ 377
together with the length of the perimeter of the square @, as r—0.
Hence, passing to the limit in formula (5.2) as r—0, we obtain
the following theorem:

(5.3) If 1,,1,,...,I, is a system of disjoint rectangles contained in-
stde the rectangle I, and W(z) is a holomorphic function on the set
— (I3 +I5+...+1I3), then fo'r every point zeR°,

(5.4) 2mi W(2)= f d 2 f LAE

(I) iy ?

We shall call formula (5.4) Cauchy’s formula for a system of
rectangles. We shall usually apply it in the case of & system con-
sisting of only one or two rectangles. In the first case, the right
gide of the formula reduces to an integral along the perimeter of
the rectangle I. Then by theorem 3.4 we obtain the following theo-
rem, fundamental for the theory of holomorphic functions:

(5.2) 2miW(z

d3 therefore tends to zero

(5.5) If a function W (2) is holomorphic in am open set &, then ai
each point z#oco of this set it has derivatives of all orders, and, if
I is an arbitrary rectangle containing the point 2 in its interior and
contained in @, these derivatives are given by the formula

k!
f’“"’"(%)’.;’fd&

(5.6) W)= 2

where  k=1,2,...

In particular, it follows immediately from theorem 5.5 that
the derivative of a holomorphic function is also holomorphic, and
therefore is continuwous. This corollary enables one to invert theo-

rem 1.3 completely.

S. Saks and A. Zygmund, Analytic functions. 8
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Formula (5.6) also permits us to remove from theorem 3.3 the
assumption of the continuity of the partial derivative W,(z,3).
For, if the function W(z,3) is holomorphie with respect to z in the
open set @, and is continuous with respect to both variables when z
ranges over G and 3 over the regular curve C, then for every rect-
angle IC@ we have

1 W(L3)
Weley3) = (4:3)

2mi ™ 3 (C—2f

when zeI° and 3eC. The continuity of the derivative W;(2,3) on
the set Gx C appears therefore as a consequence of the continuity
of the function W(z,3). Hence we can now formulate theorem 3.3
as follows:

(8.7) If ‘a function W(z,3), continuous when 3 ranges over the reg-
wlar curve O and 2 over the open set G not containing the point oo,
is holomorphz’c in @G with respect to z for every 3€C, then the function

= J W(2,3)d3 is also holomorphic in G, and ils derivatives are

ag,

expressed by the formula

ak
()= f TWER) 4o tor  1=1,2,...
(o}

oz*

Appealing to theorem 5.5, we prove, in addition, the following
theorem:

(5.8) In order that a function W(2) holomorphic in the entire open
plane be a polynomial of degree <<m it is necessary and sufficient
that

(5.9) W)

7»0, when

Proof. The necessity of the condition is evident. With the
view of proving that it is sufficient, let #5200 be an arbitrary
point of the plane, and @z a square with centre z, and side 2R.
In virtue of theorem 5.5,

&—> 00,

n! f W(z)

Py RS |

27”’(@ )(z—zo)”*'

From the assumption (5.9) it follows that
' W)  W(z)e"

(e—2) [—(zfa)]

(5.10) WM (2) =
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when z->oco. Therefore, denoting by &(R), R>0, the upper bound
of the absolute value of the expression W(z)/(z—z,)" with |z—=z,|>R,
we have &(R)>0 when R->co. Consequently, for =ze(Qz) we
have |W(z)/(z—2,)"""|<e(R)/R, and in virtue of (5.10),

n! e(R) __4nle(R)
2zR =

W (20) | <

The right side of this inequality tends to zero as R-»oco; con-
sequently, W™(z)=0 at every point z, of the open plane, and by
theorem 2.3 the function W(z) reduces to a polynomial of degree
at most n—1, q. e. d.

If the function W (2) is bounded, then condition (5.9) is obviously
satisfied for n=1. As a particular case of theorem 5.8 we, therefore,
have the following ‘

(5.11) TEEOREM OF LIOUVILLE. Every funciion, holomorphic and boun-
ded in the entire open plane (and hence, in particular, every function
holomorphic in the entire closed plane), veduces to a constant. -

One of the most elegant applications of this result is to the proof
of the so-called fundamental theorem of algebra (theorem of Gauss):

(5.12) Buery algebraic equation ay,+a,z2-+...4a,2"=0, whose left side
does mot reduce to & constant, has at least one root.

Proof. Let us denote the left side .of the equation by Q(z).
Assuming that the left side does not reduce to a constant, we may
take a,£0, n>>0; we then have Q(2)=2"(a,+a,_1/2+ ...+ ao/2")—>00
when z—>co. Supposing that @(z) has no roots, we verify that the
function 1/@Q(2) is holomorphic in the entire plane, and moreover
bounded, since 1/Q(z)—0 as z—>oco. Therefore, in virtue of Liou-
ville’s theorem, the function 1/Q(z), and hence also @(z), reduces
to a constant and we are led to a contradiction.

EXERCISE 1. A function W(z) (real or complex), finite and continuous
in an open set G, is said to be harmonic in @ if it has, everywhere in @,
partial derivatives of the second order W and W, which satisfy Laplace’s
equation W, +W"— 0 (the left side of this equation is often denoted by AW).

Show that every function holomorphic in an open set @ is harmonic
in @ (therefore both parts, the real one and the imaginary, of a holomorphic
function are also harmonie funections).

2. If a function W (z) is holomorphic and everywhere different from
zero in an open set &, then the function Log|W(z)| is harmonie in G.

8%
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3. In order that a finite function W(z), continuous and having con.
tinuous ‘partial derivatives W,, W,, W, and W, in an open set &, be
holomorphic in this set, it is necessary and sufficient that this function, as well
as the function #2W(z), be harmonic in G (M. Riesz).

4. It W(@)=TUlx,y)+iV(z,y) is a holomorphic funetion, then

2 K E'W'z 4
CAUACTNA LD ——

e oyt

0T (,y)| T (@,y)P _ ,

AT @y | PW@NE_ o 1)U,y W @ (Hardy).
ow? oy? .

Here p is any real number, unless W(z) or V(z,y), as the case may be,
is zero. In this case we must take p>>2.

5. If W(z) is a holomorphic function, then the normal to the surface
3= | W(z+iy)|? at every point z=wz-+1iy forms with the 3-axis an angle whose
tangent is equal to 2| W(2) W’(2)}. .

[Hint. If y denotes the angle which the normal to the surface z=F (»,y) at
the point (z,y) forms with the 3-axis, then tany=[F,(0,y)I+ [F(®,y)]%.]

6. Generalize Liouville’s theorem 5.11 in the following way: If the real
part of a function W (z), holomorphic in the entire open plane I, is bounded
from above (i. e. if there exists a finite number M such that RW (z)< M),
then the function W is a constant.

[Hint. Apply theorem 5.11 to the function exp W (2).]

§ 6. Almost uniformly convergent sequences of holomorphic
functions. As a further application of Cauchy’s formula we give
the following theorem of Weierstrass on the term-by-term differentia-
tion of sequences of holomorphic functions:

I

(6.1) If a sequence {Wn(z)} of functions holomorphic in an open se
G is almost uniformly convergent in G to a function W(=), then the
function W (2) is also holomorphic in G, and if the set G does not
contain the point oo, then

(6.2) Wi(z) 3W N (2)
in the set G for k=1,2,...

Proof. We may assume that G does not- coincide with the
entire. closed plane, since then, by Liouville’s theorem 5.11, the
functions W,(2) would reduce to constants. In addition, we may
also assume in the first part of the theorem that G does not contain
the point oo. In fact, denoting an arbitrary point of the comple-
ment of the set G by a, we may always consider, instead. of the
functions W,(2) in the set @, the functions W (£)=W,(a-1/¢) in the
open set G*, which we obtain by transforming G by means of the in-
version {=1/(z—a), and which certainly does not contain the point oo.
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Now, let 2, be an arbitrary point of the set &, and QCG&
an arbitrarily fixed square with centre z,. For every point ze@°
1 an(s)

2m’( 3—2

we have, by Cauchy’s formula, W,(2)= d3, and hence,

Q) :
gince the sequence W,(z) tends uniformly to W(z) on @, also

2 =i, K(—?’—)dg. In virtue of theorem 3.4, the function W(z) is
Zm(Q) 32

consequently holomorphic in @°; hence, in particular, it is holomor-

phic at the point z,, and therefore in the entire set G, since 2,
denotes any point of this set.

Passing to formula (6.2), it is obviously sufficient to prove

it for the first derivative, 4. e. for k=I1. Retaining the pure-

vious notation, let us denote by 4r the length of the side of the

square Q. We have, first of all, by theorem 5.5,

1 f WRE)—Wa)
211:73(0) (3—=)?

If » belongs to the neighbourhood K(zy;7) of the point z,, and 3

lies on the perimeter of the square @, then [3—z|>7. Therefore,
denoting by m, the upper bound of [W(3)—W,(3)| for 3€(Q), we

(6.3) W' ()—W,(2)= dz  for zeQ"°

. obtain from (6.3) the estimate |W'(2) —W,(2) | < 8my, [=r for 2€XK (2937).

Since m,—>0, the sequence {W,(2)] tends uniformly to W'(z) in
the neighbourhood K(z,;7) of the point z and therefore (cf. Chap-
ter I, §2, p. 48) it tends almost uniformly to W'(z) in the en-
tire set @.

EXERCISES. 1. Making use of the elementary identity

1
2 ' -
144224 ... 42"+ ... 12
for |z|< 1, prove for |z|<C1 the formulae: .
2

z+2¢2+3278+ ...+nz”+ o= -(].-———‘z—),a
. 142
1224222243227+ ...+n"z"+...=z((1jz)1 ,
k ‘ 1 ‘
1+ (k—ll-l)‘z_*_ (k';z)zﬂ-}- +( :n)z"-i- "'=(1—-;F » where k=0,1,2,..,

2. Show that for |z|<1,

o0 z’l o0
2 a—ay I;G(k)zﬂ

n=1
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where o(k) denotes the sum of the divisors of the number % (ef. Chapter I,
§ 2, exercise 1).
o0
3. The series
the sum of this series %;r £(z), show that the function (2) is holomorphic in the
half-plane Rz>1 and that its derivatives there are given by the formula

lz is convergent in the half-plane “Xz>1. Denoting
o .

oy Loghn
C(k)(z)=(—l)’°2—;§—-—, where k=1,2,...

n=1
(The function ¢(z) will be examined in greater detail in Chapter IX).

4. Prove that the series Y a"sinne, where 0<C|a| <1, is almost uniformly

n
convergent in the region |J2|<Logl/{a|, and represents a holomorphic func-
tion in this region.

+00
5. Prove that if the integral f | p(t)| dt, where p(t) i8 a continuous
o o)
function of a real variable, hag a finite value, then the function I'(z) = [ b dt
—00

is holomorphic in each of the regions 92>0 and 92<0.
+ 00
6. Prove that if the integral f [p(t) | M dt, where p() is a continuous
function of a real variable, has a fmlte value for every M >0 then the funo~

tions F(z)= fp e dt, Gy(e)= fp ) cosztdt, and Gy(2) fp sinetdi, are

—0

holomorphie m the entire open pla,ne

o
7. The set of points 2z at which the integral f e™®dt iy convergent,

0
is open, and the function defined in this set by the integral is holomorphic.
This set is a sum of two disjoint regions; determine these regions.

8. Let W(2) be a function continuous in an open and bounded set G.
Denoting for every 2>0 by &, the set of points ze@ such that o(2,CG)> 2,

h h

let us take ()= f f W (z+&-+in) d& di for 266, (the functions W, are

4h
called the area means of ‘bhe funetion W).

Show that the functions W,(2) are continuous in ¢, and have continuous
partial derivatives with respect to # and y in &,. Next, that W, WR) I W(2) in &
when h—0.

It the funtion W is holomorphic in @, then, for every h>0, the function
W, is holomorphic in @,. Conversely, if there exists a sequence of values {I: }
tenclmu to zero such tlmt for every » the function W,, is holomorphic in @, ,
then the function W is holomorphic in @. v
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§ 7. Theorem of Stieltjes-Osgood. Another direct application
of Cauchy’s formula is the following

(7.1) THEOREM OF STIELTJES-OSGOOD. Every family I of functions
holomorphic in a region G and almost uniformly bounded in G, is nor-
mal in this region; in other words, every almost uniformly bounded
sequence of holomorphic functions in a region contains a subsequence
almost uniformly comvergent in this region.

Proof. As in the proof of theorem 6.1 we can assume that
the region G does not contain the point co. Let 2, be an arbitrary
point of the region @, and QCG a square with centre z,. Let 1s denote
by 4r the length of the side of this square, and by M the upper
bound of the absolute values which the functions of the family 9B
agsume in @. For every pair of points 2'CQ°, 2''CQ° and for every
function W(z) of the family I8 we have, in virtue of Cauchy’s for-
mula,

1 (W 1 (W
W(z")—:W(z')——.f (3)d____f (5)d3

: ’

3
—z" 2 —
2m(Q)3 2 T g 37

—2' W(3)
h ' 1 d
2w o (3—2) (3—=") 3

(72) ,

?

If the points 2’, 2" belong to the neighbourhood K(z,;r) of
the point 2,, then [3—=2'|>r, [3—="|>r for every point 3e(Q),
and from formula (7.2) we obtain

7" 1 SM 11 ’ 17
[W(z )—W(z)|<-;r—[z 2’|, for 2'eK(zo;7) and 2"'eK(zy;r).

The functions W(z) of the family I3 are therefore equi-

- continuous in a neighbourhood of every point z,e. Therefore, in

virtue of theorem 4.4, Chapter I, this family is normal in the
Tegion G.

In the formulation of theorem 7.1 it is sufficient to assume that @ is
merely an open set, not necessarily a region. In fact, an analogous assumption
also suffices in the formulation of theorem 4.4, Chapter I, if we only suppose
that the family of functions & considered there is bounded at every pomt
of @G.

EXERCISES. 1. If a sequence {Wn(z)} of functions, holomorphic in

the open set G, is bounded in @ and convergent at every point of this set, then
it is almost uniformly convergent in this entire set.
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2. If a sequence |W,(#)} of functions, holomorphic in an open set @,
is convergent at every point of this set to a finite limit, then there exists an
open set H, everywhere dense in G, in which the sequence {Wn(z)} is almost
uniformly convergent to a holomorphic function (Osgood).

[Hint. See Introduction, § 11, exercise 2.]

3. Let H denote a space whose elements are functions holomorphic in
a given open set G. We define “distance” for this space in the same manner
as for the space S of functions continuous in @ (see Chapter I, § 2, exercise 3).

Prove that the space H is complete.
In view of this the space H can be considered as a closed set in the

gpace S.

§8. Moi-era’s theorem. In concluding this chapter we give the
following converse of Cauchy’s theorem 4.1:

(8.1) MORERA'S THEOREM. If the curvilinear imtegral of a function
W(z), continuous in the open set G not containing the point oo, van-
ishes along the perimeter of every rectangle IC @, then the function
W(2) is holomorphic in G.

Proof. Let z,=x,}1iy, be any point of the set . Let us de-
note by @ an arbitrary square contained in @, with centre at the
point #z,. Let us take for every point z=wx-|iye@: :

&'=n+iy,, 2 =g+, _
denoting in this way by 2’ and 2" the projections of the point =
on the straight lines #=y, and &=uw,, respectively.

For every z¢Q let
(8.2) Fle)= | W)z

[zﬂ)z” z]

For every point z2¢Q we have, by hypothesis,

W(3)d3=0;
[zﬂ r z’l zl Z". zn]
therefore A _ ‘
®3)  Fa= [ Waa=— [ Woa= [ W
[2,, 2, 2] {7, 2", 2,] [%,,2", 2]

We shall show that the function F(2) defined in this way is

a primitive function of W(z) in @°.
- To that end, let 2=x-iy be an arbitrary point belonging to
the interior of the square @, and % an arbitrary real number suf-
ficiently small so that the points 2--h=(z-+h)-iy as well ag z-ih=
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=2-+1%(y+h) also belong to the interior of Q. Making use of the

formulae (8.3) and (8.2), respectively, we have the following
equalities:

F(e+h)= W (3) s,

[%, 27, 241

Flz+4ih)= W(3) d3;
(%, %, 2+1h]

subtracting from them the equations (8.3) and (8.2), respectivelyv,
we obtain: '

F(z+h)—F(e)= | W(3)d3,

[2,24-h]

Platit)—Re)= [ W),

[2,241h)

whence, dividing by %,

F(z+h)—F
Ea) IO o 2 g,
[s,2+h]
F(2+ih)—F(z)
5 RO w4 [ - W,
{5, 8-+1h]

Let & be an arbitrary positive number. Because of the conti-
nuity of the function W, there exists a number #>0 such that
[3—2|<n implies |W(3)—W(2)|<e. Therefore, if |h|<#, then

11
i | To-wena <o

[2,2+R]

1 .
<5 ‘if[Wm—Wwwa
[z, 8+ih]
Consequently, passing to the limit in (8.4) and (8.5) as & tends
to 0 through real values, we obtain:

Peth)—FE) o 1 hm Ple+ih)—F(2)
3 a T 4 a0 3

Fy(z)=lLm =—1F(2),
ns0
4. 6. the Cauchy-Riemann condition for the partial derivatives F(z)
and F,(z) inside Q. Because of the equality Fy(2)=W(z), these de-
rivatives are continuous; therefore the function F(2)is holomorphic
in @° and hence its derivative W(z)=F,(¢)=F’'(?) is also holo-
morphic (cf. § 5).
The function W(z) is therefore holomorphic in the neighbour-
hood of every point of the set &, and hence in this entire sef.
As an application of Morera’s theorem, we shall give the so-
called Schwarz’s principle of reflection for the straight line.
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We shall formulate this principle in the following way:

(8.6) Let G be an open set, symmetric with respect to the real awis
and not containing the point oo. Let G. and G_ denote the parts of
the set @ situated in the upper and the lower half-plane, respectively,
i. e. the sets of those points zeG for which T220 and T2<0,
respectively.

Then every function W(2) continuous on the set G ., holomorphic
in its interior (i. e. at every point of the set G not lying on the w-axis)
and assuming real values ot the points of the real awis, can be con-
tinued to the entire set G as a holomorphic funmction. In other words,
there exists a function Wy(2) holomorphic in the entire set G and iden-
tical with the function W(2) in G . ; this function is obtained by taking

Wo(2)=W(2) for 2eG., and Wy(s)=W(E) for zeG_.

Proof. Let us note first of all that this definition determines
the function W, uniquely in @; in fact, at the points 2 of the real
axis which belong simultaneously to G, and G_, the function W(2)
is real, and therefore W(z)=W(2)=W (). Since the function W(z)
is continuous on the set @., it follows also that the function
Woy(2) is confinuous in the entire set @. Therefore, in view of
theorem 8.1, to prove that the function W, is holomorphic in @,
it is sufficient to show that

(8.7) [Wy(z)de=0
(I)

for every rectangle ICG.

This equality follows immediately from Cauchy’s theorem
when ICGY; for, in the interior of @, the function W, is identical
with the function W and hence holomorphic. On the other hand,
if the rectangle I, lying in the set @., is not entirely contained
in the interior of ¢., then it has one of its sides on the real axis
and we can write I=[a,b;0,d]. For every positive number e<d
the rectangle I,=[a,bje,d] is contained in the interior of @,

and therefore [ W,(2)de=0. Passing to the limit as &0, we obtain
(I,)

equation (8.7), in view of the continuity of the function Wo(2)
on ICG. '

Now, let ICG_. Then, denoting by I* the rectangle symmetric
to I with respect to the s-axis and substituting 3=32, we verify
easily that ‘
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[ W@ de= [WE)ds=— [W(3)ds,

(n 05 0!

and since I*C@,, the integral of the function W along the peri-
meter of the rectangle I* is zero and hence equation (8.7) follows
from (8.8).

Finally, when I is an arbitrary rectangle contained in @, then
it is either contained in one of the sets G, or G_, or it is the
sum of two such rectangles, contiguous along a common side on
the real axis. Therefore, in view of the cases already considered,
we again have equation (8.7) for the rectangle I.

Thus theorem 8.6 is proved.

(8.8)

In the proof of Morera's theorem, as well as in that of theorem 8.6, we
assumed that the set G does not contain the point co. This restriction, however,
can be removed in view of theorems of the next chapter (§ 6), from which
it follows that a function continuous in an open set and holomorphic every-
where in this set with the exception of at most one point is also holomorphic |
at this point.
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