42 INTRODUCTION. Theory of sets.

valent to the set of m relations a,”)——]jma“) a”)—hma@) .

o™ =1lima{™, in the spaces AN, AD,. A(m) respectively ;

n
(b) if AD, 4O,
M)y 4O

spaces AD, AP, . A‘m’ then the set A=AMx A®x.
a closed set in the space A;

(c) if BD,B®, ... ,B™ are compact sets in the corresponding
spaces AD, A(Z’ A""’ then the set B=BMx B®x ... x B"™ g3
a compact set in the space A.

Proof. Part (a) of the theorem is obvious, and part (b) follows
immediately from part (a). To prove part (c) let us assume for
simplicity that m=2 and let {b,=(b3", b)) be an arbitrary se-
quence of points of the set B. From the sequence {b}},_, ., which
consists of points of the set B, we can extract a subsequence
{b‘ Nj1s,.. convergent in the space A, Next, from the sequence
{08 )}k 12.., Whose points belong to the set B, we can extract

a subsequence {5{)}; ., . convergent in the space AP, The
A

LA™ are closed sets in the corresponding
X A™ g

sequence {(65), b)), 15, ., extracted from the given sequence

{05, b)}nzrs,.., is consequently (by (a)) convergent in the
space A. The set BCA is therefore compact.

‘We can regard the Cartesian m-th power E™ of the plane E as an
example of a Cartesian product of spaces. The system of neighbour-
hoods for the space E™ is formed by Cartesian. products of the type

K(#5r) X K(2D57) X ..o X K(e™s7,,),

where 7,,7s,...,7, are arbitrary positive real numbers and 2%,
#P,...,2"™ are points of the plane. In the case m=2 we shall also
call the neighbourhood X(ey;r:) X K(2y;7s) a bicircular meighbour-
hood with centre (21,2,) or a bicircular neighbourhood of the point
(21,2y).

By the distance o(21,2,) of two points y=(20,27, .., ™)
and z,=(2",2(",...,2{™) in the space E™ we shall mean the lar-
gest of the numbers p(2{),2{") for %k=1,2,...,m. From theorem
13.1 (a) it follows immediately that the relation lime,=2 in the

k

space E™ is equivalent to the relation o(2;,2)—>0.
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CHAPTER I
FUNCTIONS OF A COMPLEX VARIABLE

§ 1. Continuous functions. In this section we shall establish
fundamental definitions and notations concerning functions of one
and of several variables. The independent variables as well as the
functions will assume complex values; the value co will also be
admissible provided, of course, that the context does not necessﬂaate
its execlugion.

A function F(#,%,,...,2,) of n complex variables, ranging
respectively over m sets Z;,Z,,...,Z, in the plane E, can be
congidered as a function of the ‘point 2=/(2y,2,,...,2,), defined on
the Cartesian product (cf. Introduction, § 13) Z=2,X Z, X ... X Z,.
Instead of F(e,2s,...,2,), Where 2,67, 2,6Z,,..., 2,¢Z,, we can also
write F'(2), where z€Z; X ZyX ... X Z,. The function F is said to be:

1° bounded on the set Z, if-there exists a finite number M such
that |F(2)|<<M for each point zeZ;

2° uniformly continuouws on Z, if for each number s>0 there
exists a number 5>>0 such that the inequality o(2,,2,)<<7 implies

|F(2,)—F(2,)[< & for every pair of points z,,2, of the set Z (this

definition presupposes. that F is finite-valued).
We denote by o(#,2,;) the distance between the poinfs 2z, and
2, in agreement with the definitions in the Introduction, §§ 8, 13.

(1.1) If the sets Z,,Z,,...,Z, are closed, then every finite and con-
tinuous function B on the set Z=Z;XZyX ... X Z, s bounded and
uniformly continuous on this set. Moreover, if the function F is real,
then at a certain point of the set Z it attains the upper bound of its
values on this set.

Proof. Let us assume that the function # is not bounded
on Z. Then there exists a sequence of points {2™},_;, -in the set Z
such that F(z*)—>oco. Let {2(*)} be a convergent subsequence ex-
tracted from the sequence {z*}. Such a subsequence exists in
virtue of the compactness of the space E™ (Introduction, theorems
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8.2 and 13.1(c)). Denoting its limit by 2, we have z,6Z in virtue

of the fact that the sets Z;,Z,,...,Z, are closed. Consequently,

F(2y)=lim F(e(*))=oc0, which is contrary to the hypothesis that
i

the function F(z) is finite on Z.

Next, let us assume that the function F is not uniformly con-
tinnous on Z. Then we can determine a positive number ¢ and two
sequences of points {p®} and {¢™} in the set Z such that

(1.2) ~ limp(p®,¢™)=0
]
and
(1.3) |F(p%)—P(¢®)>e for k=1,2,.

Let {p(":)} be a convergent subsequence extracted from {p‘k)}
and let p,=1limp®*). By (1.2) we easily verify that also po——hmq k).

Hence, substltutmg k=Fk; in (1.3) and passing to the limit as j—>o00,
we obtain, in virtue of the continuity and finiteness of the function
F(z) at the point p,, the inequality 03>, obviously false.

Finally, if we assume that the function F is real and that M
is the upper bound of its values.on Z, then there exists a sequence
of points {zk} of the set Z such that #(z,)—M when k—co. Denoting
by {zk‘] an arbitrary convergent subsequence of this sequence, and
by 2° the limit of this subsequence, we shall have z°¢Z and
P*)= hmF(zk) =M.

In parmcular, from theorem 1.1 it follows that every fmzte and
continuous function on the entire plane is uniformly continuous on
4t (this theorem is obviously not tiue for the open plane Ey).

We shall now prove two theorems ‘‘on the continuity’ and “on
the differentiability of a definite integral with respect to a parame-
ter”. In these theorems the processes of integration and differentia-
tion are understood to be with respect to a real variable, o that in fact
we do not go beyond the real domain, although the function itself may
assume complex values. For, if F(¢) is a complex function of the real
variable ¢, then representing it in the form .F(t) = U (t)+iV (¢), where
U(t), V(t) are real functions, we can define the derivative and the
integral of F(t) by the formulae

b b b
FO=T'(W)+iV'(),  [Ft)at=[T@)dt-+i[ V()ds;
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these definitions are obviously equivalent to the direct definitions:
of the integral as a limit of approximating sums, and of the deriv-
ative F'(t) as the finite limit of the quotient [Ft+h)—F@)]/h
a8 h tends to O through real values. New facts appear only when
we differentiate with respect to a complex variable (cf. § 6 further
on, and Chapter IT, § 1; theorem 1.5, which we give below, will be
generalized in Cha,pter IT, § 3, to differentiation with respect to
a complex parameter).

(1.4) If T=[a,b] is a finite interval, Z,,%,,...,%, are closed sets,
and F(t,21,2,,...,2,) a finite and continuous function on the set
TXZyXZyX ... X Zy, then the integral

b
Q(zl,zz,...,zn)=fl7’(t,zl,zg,...,zn)dt
a

8 @ continuous function on the set Z=2, X ZyX ... X Zy,.

Proof. By theorem 1.1 to each number £> 0 there corresponds
& number n>>0 such that with teT, 21€Z,, 2{eZ,, »,€Z,, 2¢Z,,...,
2,€Z,, #,¢Z,, the set of inequalities p(27,27)<<%, 0(25,23)<7,...,
0(%n,%y) <n implies the inequality

(F(E,25 325 ey ) — F (1,2 125y ey 20) |< s

and therefore
(b—a)e
—a

]®(517z9: 3 20) — D(R1, 22 .4 2) [

::.“8,

which gives the continuity of the function & on Z.

(1.5) Let T=[a,b] and U=[c,d] be linear intervals; Z,,Zy,...;Z,
closed sets in the plane; and F(t,1,2,,2s,...,2,) @ finile and continuous
function on the set TX UXZyXZyX ... X Z,. Then, if the function F
has a derivative Fy(t,u,21,25,...,2,) With respect to u, continuous on
the set T X UXZy X Zy X ... X Zy, the function
‘ b
@(u,zl,za,...,zn);fF(t,u,zl,zg,...‘,zn)dt
a .

also has a derivative with respect to u, continuous on the set
UXZyX ZyX oo X 2y,

and given by the formula
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b
(1-6) dj’l;(u’zhzz:' ot 7zn)=fFu(t7uazl7z2ﬂ . '7z'n)dt-
a

Proof. By congidering the real and the imaginary part of the
function F separately, we may assume that the function is real. Let

(4,241,225 ..,2,) be an arbitrary point of the set U X Z; X Zy X... X Zy,

and ¢ an arbitrary positive number. In virtue of the uniform conti-
nuity of the derivative ¥ on the set TX U X Zy X Zy X ... X Zy, (cf.
theorem 1.1), there exists a number #>0 such that for each el
and veU the inequality |v—u|<n implies the inequality

&
IF':L(tavyzlyzzy-"7zn>"F':z(t7u'azl’zZ7"'7zn)]<b__$'

Let Au be an arbitrary increment of the variable u, such that
u+AueU and |Au|<#. By the mean-value theorem we have
F(t,ut A,21,%0, ..y 2,) —F (0, %,21,25, ., 2)
=Au-Fo (b, u+04u,21,25, .. ,2n), ‘
where 0<<6<<1. Whence, because,|04u|<|du| <z, we obtain

'F(t:u'}‘du:zl)zz,“vzn) —F(t,uy21y%2, . .y %n)

— B (%2152 5 - -« 4 20)
Au

4
b—a

b)

<

and therefore ,

. b
D(Ut Auy2y gy y2n) — P, 21,23, 2n) wa;(i,u,zl,zz,...,zn)dt i
Aw a
. :
lf[F(t7u+Au:zlyzzy--'5zn)“F(t’uszl7zza--';zn)
- Au

a

—-—F;(t,u,zl,zz,...,zn)]dt'<s,

from which follows simultaneously the existence of the derivative @,
and formula (1.6). And from this formula, in virtue of theorem
1.4, follows immediately the continuity of the derivative &; on the
seb UXZ, X ZyX...XZ,.

§ 2. Uniformly and almost uniformly convergent sequences.
In the remainder of this chapter we shall be concerned primarily
with complex functions of one complex variable; however, the
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majority of the definitions and theorems generalize immediately
to functions of several variables.

Every function F of a complex variable can obviously be con-
sidered as a function of two real variables; denoting the real and
imaginary parts of the complex number 2 by = and y, respectively,
we shall frequently write F(z,y) instead of F(z).

We say that a sequence {F,(2)} of finite functions on a certain
set Z is wniformly convergent on this set to a certain function F(z),
if to each number >0 there corresponds a number N such that
|[Fn(2)— F(2)|<¢ for every n>N and for every point z¢Z. Clearly,
the limit function #' (2) will then also be finite. Similarly, a sequence
{lf’n(z)} of functions (finite or not) on the set Z will be said to be
uniformly divergent to oo on Z, if to each number M there corresponds
& number N such that |F,(2)|> M for every n>>N and for every
point zeZ. :

In many future considerations the following generalization of
the above definitions will prove to be convenient. We shall eall
a sequence {Fn(z)} of functions on an open set G almost uniformly
convergent (almost uniformly divergent to oo) on this set, if it is uni-
formly convergent (uniformly divergent to oo) on every closed
set- contained in @. If #(z) is the limit of an almost uniformly con-
vergent sequence {F,(2)}, then we write F,(2)2F(z). Similarly,
F,(2)3cc will denote the fact that the sequence {F,,(z)] is almost
uniformly divergent to oc.

. These definitions. extend immediately to series of funetions.
A series of functions is therefore wuniformly comvergent, wniformily
divergent to oo, ete., if the sequence of its partial sums is uniformly

convergent, is uniformly divergent to oo, ete. If the series ) |F,(2)]
n=0
is convergent (uniformly convergent, almost uniformly convergent),
then we say that the series Y F,(2) is absolutely convergent (absolu-
n=>0

tely uniformly convergent, absolutely almost uniformly comvergent).
Obviously, absolute convergence of a series implies ordinary con-
vergence; the same applies to absolute uniform convergence and
absolute almost uniform convergence.

(2.1) If a sequence {Fﬂ(z)} of finite and continuous functions on the

set Z s uniformly comvergent on this set to the fumction F(2), then the
function F(z) is also finite and continuous on Z.
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In the case when Z is an open set, instead of assuming that the
sequence {If’n(z)} s uniformly convergent, it s suf]‘wwnt to assume
that it is almost uniformly convergent.

. Proof. Let 2eZ and ¢>0. Let N be a positive integer such
that |[Fy(2)—F(2)|<e/3 for each point zeZ. Finally, let n be a po-
gitive number such that for each pomt 2¢Z the condition

(2.2) 0(20,2)<7n

implies that |F(2)—Fy(2,)|<¢/3. Condition (2.2) 1mphes then that
for each point z€Z,

|F(2)—F(20) | <|F(2) —F(2) |+ [ Fy(2) = Fi(20) | 4 [Fwv(20) —

which gives the continuity 'of the function ' on the set Z at the
point z,. The second part of the theorem is an obvious consequence
of the first.

We shall introduce the following two additional deflmmons,
similar to the definitions given at the beginning of this section.
A family of functions will be said to be bounded on a set Z (and
the functions belonging to this family — uniformly bounded on Z),
if there exists a finite number M such that [F(z)|<<M far every
. function F of the family considered and every point zeZ. If a family
of functions is bounded on every closed set contained in an open
set G, then this family is said to be almost bounded on G, and
the functions belonging to it — almost uniformly bounded on G. By
a gseries bounded on the set Z (almost bounded on the open set &)
we shall mean a series whose partial sums form a sequence uniformly
bounded on Z (almost uniformly bounded on G).

(2.3) If o family § of functions is bounded in the neighbowhood
of every point of a certain open set G (i. e. if every point of this set
has a meighbourhood in which the family § is bounded), then this
family is almost bounded on the entire set G.

In fact, let P be an arbitrary closed set contained in @.- With
each point zeP we can associate an open circle which contains it
and on which the family & is bounded. By the theorem of Borel-
Lebesgue (Introduction, § 6) the set P can be covered by a finite
number of such circles. The family § is therefore bounded on the set P.

Similarly we prove that every sequence of functions uniformly con-
vergent (divergent to oo) in the neighbourhood of each point of an open
set G is almost uniformly convergent (divergent to oo) on this entire set.

F(z)|<e,

icm
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EXERCISES. 1. Prove that for [2|<1 we have

i Zw' O E

n=1 k=1

where 7(k) denotes the number of divisors of the number %, and both series
in the equation (*) are almost uniformly convergent in the circle K(0;1).
o0 zza
2. Prove that the series 2 1 is almost uniformly convergent on
n=0
the set obtained by removing the circumference C(0;1) from the open plane.
It converges to z/(1—=z), when |z|<1, and to 1/(1—2), when |z|>1.

[Hint. Note that every positive integer can be represented in one and
only one way in the form 2*%(2k—1)=1Fk-2*—2"1, where % and h are positive
integers. ]

3. Let S be the family of all continuous functions on an open set @
in the (closed) plane. We can consider the family S as a metric space (cf.
Introduetion, § 3, exercise 3), and define a metric for it in the following way:

We represent ¢ as a sum of an increasing sequence of closed sets {F,}
by defining the set ¥, as the set of all those points of the plane whose distance
from the complement of the set & is >1/n (cf. Introduetion, § 11). Denoting,
for every pair of continuous funetions U(2), ¥ (z) on @, by M, (U,V) the upper
bound of |U(2)—V(2)| for zeF,, we define the *distance” between these
functions by the formula.

MU,
(U, V)= 22" 1+M AN

- Show that 1° the distance so defined satisfies the conditions of exer-
cise 3, Introduction, § 3; 2° the space S is complete (see Introduction, § 4,
exercise 7) and the relation lim o(W,,W,)=0 is equivalent to the almost

=00

n,

(*)

uniform convergence of the sequence {W,,(z)} in the set @&; 3° the space S is
not compact (cf. Introduction, § 6) in any neighbourhood of the point 0, i. e.
for each number >0 there exists a sequence of functions {W,(2)} such that:
() o(W,,0)<<e for n=1,2,...,
(b) no subsequence of the sequence- {W,} is convergent in the space S.

§ 3. Normal families of functions. Elementary considerations
of analysis frequently give ome an  opportunity of applying a
method based on the theorem of Bolzano-Weierstrass and de-
pending on the extraction of convergent subsequences from
arbitrary sequences of points. Although the theorem of Bolzano-

- Weierstrass does not generalize directly to arbitrary sequences of
- functions, nevertheless, the method of “extracting convergent sub-

sequences’” can be applied with success in many proofs concerning
special sequences of functions.

§. Saks and A. Zygmund, Analytic Functions. ; 4
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‘We find its applications in various branches of analysis. As an example,
we point to the proof of the existence of a solution of the differential equation
y’=wu(x,y) when the only assumption we make concerning the function w(z,y)
is that it is continuous; one could also give many other examples from the
caleulus of variations, the theory of integral equations, ete. (see, e. . E. Kamke,
Differentialgleichungen reeller Funkiionen, Leipzig 1930, pp. 60-66, 126-130;
C. Carathéodory, Variationsrechnung wund partielle Differentialgleschungen
erster Ordnung, Minchen 1935, pp. 1-8).

These numerous applications are associated with the names of Ascoli,
Arzela, Hilbert, Carathéodory and others. However, it was Montel
who, distinguishing the class of the so-called normal families of functions,
first worked out systematically the method we are considering now,
pointing out its particular significance in the theory of functions of a complex
variable (see, e. g. P. Montel, Legons sur les familles normales de fonctions
analytiques et leurs applications, Parig 1927).

A family of functions (real or complex) defined on an open
set ¢ is said to be mormal in G if every sequence of functions
belonging to this family contains either a subsequence almost uni-
formly eonvergent in &, or a subsequence almost uniformly diver-
gent in @ to co. The theory of normal families rests on the following
simple lemmas:

(3.1) Let {By} be a sequence of sets, and § a family of functions de-
fined on the sum of these sets. If for each set Ej, there can be extracted
from each sequence of fumctions belonging to § either a subsequence
uniformly convergent on the set By, or a subsequence uniformly divergent
on this set to oo, then from each sequence of functions of the family §
there cam be extracted a subsequence which on each of the sets B, is
either uniformly comvergemt or uniformly divergent to co.

Proof. Let €={F,(2)},_15.. be an arbitrary sequence of
functions of the family §. We shall define by induction for each
k=0,1,2,..., a certain subsequence €*={FF(2)},_, = of the
sequence €, taking CV=G, i.e. FV(2)=F,(e) for n=1,2,...
Assuming that the sequences G, €,...,6% D are defined, we
shall take as the sequence €¥={F{(z)},_;, = an arbitrary sub-
sequence extracted from €%, which is either uniformly conver-
gent on the set By, or uniformly divergent to co; we can assume,
in addition, that the first k—1 terms of the sequence E™ are
identical with the corresponding terms of the sequence G—1), i, ¢,
that

FP(e)=F{(z), F2(2)=F50 z).
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Because of this assumption the sequence {F{(2)};_1,,. is a sub-
sequence of all the sequences €V, €®,...,€9,..., and hence it is uni-
formly convergent, or uniformly divergent to co, on each of the sets E;.

Let us assume that the sets E), considered in lemma 3.1 reduce
to single points. By the theorem of Bolzano-Weierstrass every
family of functions satisfies the hypotheses of the lemma with re-
spect to so specialized a sequence of sets {Ek} As a particular
case of lemma 3.1 we therefore obtain the following theorem:

(3.2) If B is a finile or denumerable set, then every sequence {F,(z))
of functions defined on E contains a subsequence which at each point
of the set B is either convergent or divergent to oco.

Appealing once more to lemma 3.1, we shall prove the following
general theorem concerning normal families:

(3.3) If a family § of functions is mormal in the meighbourhood of
each point of a certain region G, i. e. if each point of this region has
a neighbourhood in which the family considered is normal, then the
family & is mormal in the entire region G.

Proof. To each point 2, of the region @ we can assign
a neighbourhood K in which the family § is normal. Let us denote
by H an arbitrary circle having a rational centre and radius, such
that 2, HC HCK. From each sequence of the family § we can there-
fore extract a subsequence which is either uniformly convergent,
or uniformly divergent to oo in H. Since the set of all circles with
rational centres and radii is denumerable, by associating in this
manner & circle H with each point z,6@ we obtain a sequence
of circles {H,—} jointly covering G, where for each j every sequence
of functions of the family § contains a subsequence which in the
circle H; is either unj:fbrmly convergent, or uniformly divergent to co.

Let {F,(2)} be an arbitrary sequence of functions of the family

‘under consideration. In view of lemma 3.1 this sequence contains

a subsequence {Fnk(z)} which in each circle H; is uniformly conver-
gent or uniformly divergent to co. We shall show that the sequence
{F,,(2)} is either divergent, or convergent, on all the circles simul-
taneously. In fact, denoting in the contrary case by @, the sum of
those circles on which the sequence considered is convergent, and
by @, the sum of those circles on which it is divergent, we should
obtain a decomposition of the region ¢ into two non-empty, open
and disjoint sefs, which is obviously impossible.

4%
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Let us assume that the sequence {Fnk(z)} is everywhere
convergent; we shall show that it is almost uniformly convergent
in @. In fact, les PCG be an arbitrary closed set. By the theorem of
Borel (Introduction, theorem 6.2) there exists then a finite number
of circles H,,H,,...,H, covering P jointly. Since the sequence
{F, (?)} is uniformly convergent in each of them, it is uniformly
convergent on P.

Similarly, assuming that the sequence [F, (2)} is every-

where divergent, we prove that it is almost uniformly diver-
gent to oo in G.
(3.4) Every seqﬁence of functions which 18 normal and convergent
everywhere to a finite limit in an open set @, is almost uniformly conver-
gent in G ; every sequence of fumctions which is normal in the open
set @ and divergent to co at one point of this set at least, is almost uwi-
formly divergent to oo in G.

Proof. Letus assume that the sequence {Fn(z)}, whieh is normal
and convergent in G to a certain finite function F(z), is not almost
uniformly convergent in @, and therefore not uniformly convergent
on a certain closed set PC@. Then there exists a certain number
e>0, an increasing sequence of indices [nk}, and a sequence of
points {2} of the set P, such that |F, (2) — F(eg) | > ¢ for k=1,2,...
In view of the convergence and normahty of the sequence {Fn(z)
we can extract from the sequence {F, (¢)} a subsequence {Fnk‘(z)

almost uniformly convergent in ¢ — and hence uniformly conver-
gent on the set P — to F(2). On the other hand, however, we have
]Fnk‘(zh‘)—F(zk‘H}a for ¢=1,2,..., which constitutes an obvious

contradiction.
The proof of the second part of the theorem proceeds in a si-
milar manner.

(8.5) If a sequence of fumctions {F,(2)} finite in the open set @ is
normal in the set G and bounded at a certain point of the set G, then
this sequence is almost bounded in the entire set Q.

Proof. Let us assume that the sequence {Fn(z)} is not almost
bounded in &, and hence not bounded on a certain closed set PCGE.
Then there exists a sequence of points [zk} of the set P and an in-
creasing sequence of indices n, such that

(3.6) ‘ | Fn ()| >k for k=1,2,...
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Next, the sequence {Fnk(z)} contains a subsequence {F"ki(z)}’

which is either almost uniformly convergent in the open set @, or

almost uniformly divergent to oco. In view of (3.6), however,

the first alternative drops out and the sequence {F, (2)} is almost
7

uniformly divergent to co. This however contradicts the assumption
that the sequence {Fn(z)} is bounded at a certain point of the set G.

EXERCISES. 1. Examples of normal families of functions: (a) A se-
quence of functions {F,(x,y)} defined in the open plane by means of the equa-
tions: F,(%,y)=0 for £<C0 and F,(z,y)=n for >0, is normal in the region
>0 as well as in the region # < 0; however, it is not normal in the sum of these
regions (this example shows that in theorem 3.3 the condition that the set G is a
region is essential and cannot be replaced by the condition that the set @ is
only open). (b) The family of all functions F(z)=az, where ¢ is an arbitrary
coefficient, is normal in the open plane with the point 0 removed, but
it is not normal in any neighbourhood of the point 0. (¢) The family of fune-
tions F(2)=az+b, where a and b are arbitrary coefficients, is not normal in

- the neighbourhood of any point.

2. If {F,(2)} is a normal and almost bounded sequence of functions on
a region @, and if there exists a function F(z) such that every almost uni-
formly convergent subsequence of this sequence is convergent to F(z), then
F,(2)3F() in G.

§ 4. Equi-continuous functions, We say that the funections
belonging to & family § of finite functions are equi-continuous
on a set A, if to every positive number ¢ there corresponds a num-
ber #> 0 such that for every function F(z) of the family ¥ and for
every pair of points 2,2, of the set A the inequality p(2;,2,) <75
implies |F(#,)—F(¢)] <e. From this definition it follows immedi-
ately that the functions belonging to & family of equi-continuous
functions on some set are all uniformly continuous on this set (cf.
§ 1, p. 43).

(4.1) AscoLrs THEOREM. Bvery bounded sequence {F,(2)} of functions
equi-continuous in an open and bounded set G contains a subsequence
uniformly convergent in G. :

Proof. Let {'w,-} be a sequence of all rational points (cf. Intro-
duction, § 8) of the set G&. By theorem 3.2, a subsequence {an(z)},

convergent at all points of the sequence {w;}, can be extracted from
the sequence {F,(¢)}. Writing for brevity H,(2)=F, (2) We shall
prove that the sequence {Hp(z)} is uniformly convergent on the

. entire s_et G.


Yakuza


54 CHAPTER I. Functions of a complex wvariable.

With this in view, let ¢ be an arbitrary positive number and
let » be a corresponding positive number such that

(4.2) 260, 6@, |g,—&|<n implies |H,(2,)—H,(2) <e/3

for p=1,2,...

The denumerable sequence of circles K;=K(w;;n) covers the
closed set @, and hence by the theorem of Borel (Introduction,
theorem 6.2) there exists a finite system K, K,,...,K, of these
circles jointly covering the set @, and hence the given open gset @.
Let p, be a natural number such that

(4.3) | H y(w;) —Hy(w;) | < &/3

Let us consider an arbitrary point ze@. This point belongs to
at least one of the circles K, K,,...,K,,. For a certain value of the
index j,<<m we therefore have [e—w; | <7 and, by (4.2) and (4.3)
for p>p, and ¢> p,,

By (2) —Hp(w;,) | <8/3,  |Hp(w;,)—Hy(wy,)|<z/3,
[Hg(w;,) —Hy(2)] <e/3;
by adding these three inequalities we obtain [H,(2) —H,(2)| <& for

every point ze@ when p>p, and ¢>p,. The sequence {H,(2)} is
. therefore uniformly convergent in @, q. e. d.

. From theorem 4.1 we deduce the following criterion for the
normality of a family of functions:

for p>py, ¢>p,, §=1,2,...,m.

Y

(4.4) If § is a family of functions equi-continuous in the neighbowr-
hood of every point of a certain region G (i. e. if every point of the region
has a neighbourhood in which the functions of the family § are equi-
continuous), then ¥ is ‘a normal family in G.

Proof. In virtue of theorem 3.3 it is sufficient to prove that
the family § is normal in the neighbourhood of every point of the
region. Hence, let us consider an arbitrary point zy¢@, and let
K, CG be a neighbourhood of the point #, in which the functions
of the family § are equi-continuous. We can assume that this neigh-
bourhood is so small that |F(z) —F(z,)|<1 for every function F of
the family § and for every point zeX,.

Let us consider an arbitrary sequence {Fn(z)} of functions
of the family § and let @, (2)=TF,(2)—F,(2,). The functions D, (2)
are equi-continuous and at the same time uniformly bounded in the
circle K,. Therefore, by Ascoli’s theorem (4.1), the sequence {(I)n(z)}
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contains a subsequence {@%(z)} uniformly convergent in K,. On
the other hand, the sequence of numbers {F’nk(zo)} contains a sub-
sequence {F, (z,)} which is convergent to a finite Limit or to oo,

%

In the first éa.se, the sequence {F’% (z)=d5,n’c (z)-}—Ii’n,c (zo)} is uni-
) 7 7
formly convergent in K,; in the second case, it is uniformly divergent

to co. The family § is therefore normal in the neighbourhood of
every point 2, of the region @, q. e. d. :

In Chapter II, § 7, we shall give an application of theorem 4.4
in the domain of holomorphic functions.

EXERCISES. 1. Show that theorem 4.1 remains true for every bounded
set G (not necessarily open); the assumption of boundedness of the set
is essential.

2. If § is a normal and almost bounded family of continuous functions
in an open set @, then these functions are equi-continuous on every closed set
PC@G (converse of theorem 4.4).

§5. The total differential. We say that the expression
MAx+NAy, linear in the real variables Az and Ay, with
coefficients M and N (in general, complex), is the total differen-
tial of the function (in general, complex) W(2)=W(z,y) at the
Point zy=(xqy,) if
W@+ Aw,yo+ Ay) — W (25, y,)— M Ax—N Ay

(4’ Ay?)
when Ax—0, Ay—0, i.e. if

W(ao+ Az, yo+ Ay)=W (@0, yo) -+ M Az+ N Ay +e( Az, Ay) (Az*+ Ay?)'?,
(5.2) where &(Az,Ay)—0 as Az—0, dy—0.

(5.1)

_— y

Substituting in (5.1) Ady=0 or Az=0, we obtain M=W(z,,y,)
and N=W,(,,¥,). Consequently:" .

(5.3) A function W(x,y), having a total differential at the PoInt (@g,%,),
has partial derivatives at this point with respect to each of the variables
x, Yy, and these derivatives are respectively equal to the coefficients of
the differential. -

Substituting W(a,y)="U(x,y)+iV (z,y), M=A4+Bi, N=C+Di,
where U(x,y), V(x,y) are real functions, and 4, B, 0, D rea1 num-
bers, we verify immediately that relation (5.1) is equivalent to.the
two relations : : . : :
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U (mo+ A,y o-F 4y) — U2, Yo) —AAz—Cdy 50
(Am2+Ay2)1/2

V(mo‘l‘Am;?/o'l"A?/)_‘V(mo:?/o)"“BAm—‘DA?/ 0
(Awil_l_AyZ)llz
when Az—+0, Ay—>0. Whence: ‘
(5.4) In order that W(z)=W(z,y)="U(z,y)+iV(s,y) ha’u‘_e K total
differential at the point zy=(Tq,Yo), 9t 8 necessary and sufficient zh_at
both its real and imaginary parts, U(z,y) and V(z,y), have total dif-
ferentials.

The converse of theorem 5.3 would obviously be false: a partially
differentiable function need not have a total differential. However:
(5.5) If a function W(z,y) has partial derivatives Wy (2,y) and
W, (z,y) everywhere in a neighbowrhood of the point (%y,Y,) and
if these derivatives are conlinuous at the point (w,,Y,), then the func-
tion has o total differential at this point.

’

b

Proof. In virtue of theorem 5.4 we can assume that the
function W(z,y) is real. Applying the theorem of the mean, we
have first of all :

(5.6) W(@o+Aw,yo+ Ay)—W(@y;70) ,

=[W (2y+ A2,y o+ AYy) — W (20,Y 0+ AY) 1+ [W (B0, 40+ 4y) — W (20, 40)]
=Wa(@,+ 8142, yo+Ay) - An+Wy(@,Yo+ P 4Y) - Ay,

whete 0<C <1, 0P <1 ‘

Hence, t&lﬁng M=W,(2,Yo)y N=W,(mo,%,), We can write the
last member of relation (5.6) in the form (M- &)dw-+ (N4 s)Ady,
where &,,¢, tend to zero together with Az, Ay. Consequently,

W(wo‘l’Am,yo“I'A?/)_‘W(mm?/n)_fMAm_NA?/ _ ey dw+e, Ay 0
(A2 Ay?) (da24-Ayn)™ 7

" when dz—0, 4y—0, ‘and the expression MAx-+N Ay is the total
differential of the function W(z,y) at the point (@,,¥,). '

" The total differentiability of a function at a point (x,y) is therefore
something-intermediate between the mere existence of the partial derivatives at
this point, and the condition that they be also continuous at this point.
In many proofs, however, in which the continuity of the partial derivatives is
usually assumed, total differentiability i sufficient. It is important to note
that while the assumption of the continuity of the partial derivatives at the
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point (w,,y,) already implies the existence of these derivatives in a certain
entire neighbourhood of this point, the assumption of total differentiability
does not require this condition at all. On this, in fact, depends the significance
of the total differential, which — introduced by Stolz — plays now an impor-
tant role in the theory of real functions of several variables, as well as in certain
more recent investigationssof the foundations of the theory of the functions
of a complex variable (see D. Menchoff, Les conditions de monogénéité, Pa-
ris 1936).

§ 6. The derivative in the complex domain. Cauchy-Riemann
equations. A function of a complex variable W(z), defined and finite
in the neighbourhood of a point z,7c0, is said to be differentiable
at this point, if the limit of the expression [W(z,-+42)— W (%)]/4z,
as Az tends to zero through arbitrary complex wvalues exists and
is finite; this limit is then called the derivative of the funetion W(z)
at the point 2, and we denote it by W'(z,) or (dW/dz),_, ; in the
case when the function W depends on other variables also, we use
the usual symbols for the partial derivative: W, or W /a2, to denote
its derivative with respect to z.

This definition is formally identical with the definition adopted
in real analysis. Therefore it is immediately evident that the formal
rules of differentiation (of a sum, product, quotient of two func-
tions, etc.) extend immediately from the real domain to the com-
plex domain. However, the fact that the increment Az of the
independent variable in the above definition ranges over complex
values, and not only over real ones, implies more essential conse-
quences than would be expected abt first glance. As we shall have
the opportunity to emphasize many times, the condition of differ-
entiability in the complex domain is something much stronger than
in the real domain. It can be said that the entire theory of
analytic functions is the investigation of the consequences of this
condition.

Among the formal rules of differentiation that extend imme-
diately from the real domain to the complex domain, we mention
the following rule for differentiation of a composite
funetion:

(6.1) If a function W(z) is differentiable at the point 255400, and
assumes there the value wy#oo and if the function F(w) is defined in the
neighbourhood of the point w, and is differentiable at this point, then
the composite function ®(2)=F[W (2)] is also differentiable at z,, and
D' (20) =F"(wy) W'(2o).
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Proof. In fact, the composite function (2, h) is defined
for sufficiently small values of h. Supposing at first that h assumes
- values for which W(g,+h)#W (2,), we have for h—0,

Pe +1)— D) |
h
__F[W(ZO—‘—}L)—F[W(QO)] . W(zﬂ_l_h)—W(zO) ——a»F’[W(zo)]W'(zo).
T W(ze+h)—W(z) h

If there exist values of h£0 arbitrarily close to zero, such

that W(z,+h)=W/(z,), then obviously W'(z)=0; however, for
those values of h for which W(z,+h)=W(2), We also have
&(2,+ h)—D(2,)=0. Therefore, when & tends to zero in any manner
whatsoever, we always have

D(zg+ 1) —B(2)
h
.As follows directly from the definition of the derivative, in
order that the number @ be the derivative of the function W(z)
at the point z,=(x,,¥,), it is necessary and sufficient that

W(zy+42) —W(z,) — Q42 —a'
| 2|

~when Az—>0; in other words, taking Az=d4dw-idy and remembering
that |Adz|=71 Aa?+Ady?, we can say: in order that Q@=W'(z) it
is necessary and sufficient that- the expression QAdez=@QAx-+iQ Ay
be the total differential of the function W(z) at the point z,.
If this condition iy satisfied, then by theorem 5.3 we have
Wa(a,90)=Q and Wi (,y,)=1¢, and hence

(6.2) W20, Y0) = — W (24, Yo)-

> B (w00) W' (2,)-

0

Conversely, if the function W(z) has a total differential at
2o=2,-+1%, and satisfies equation (6.2), then, denoting the common
value of the sides of this equation by @, we obtain the expression.
QAz+iQAy=Q Az as the total differential of the function Wi(z) at
the point 2,, and therefore Q@ =W'(z,). Taking W(z)=U(x,y)+iV (x,y),
where U(z,y) and V(x,y) are respectively the real and ima-
ginary parts of the function W(z), we can write the relation (6.2) in
the form of two real equations:
(6.3) Uz(xo,0) =V (%0, %), Uy (@0, 40)=—Val#y,4,),

-
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and by theorem 5.4 we obtain the following theorem, which reduces
differentiation in the complex domain to the differentiation of
real funections:

(6.4) In order that the function W(z)=U (z,y)-+iV(2,y) have a de-
rivative at the point zy=(%,,Y,), it is necessary and sufficient that both
its real amd imaginary parts, U(x,y) and V(z,y), have a total diffe-
rential at (x,,Y,) and satisfy equations (6.3), or — equivalently — that
the fumction W(2) have a total differential and salisfy equation (6.2).

“If this condition is satisfied, then

W' (20) =W (%o, Yo) = —1 Wy(Zo,¥0)s

and W'(z,) (du+1dy) is the fotal differential of the function'W(z)
at the point 2,.

Relations (6.3), which — when 2, and y, are considered as
variables — are partial differential equations, are usually called the
Cauchy-Riemann equations. Relation (6.2) is obviously only another
form of these equations, and we shall call it the Cauchy-Riemann
condition in complex form.

In the next few sections we shall give examples of several fun-
damental complex functions which are differentiable in the entire
open. plane.

EXERCISES. 1. Determine the points at Whichl the following func-
tions have derivatives: (a) W(2)=z, (b) W{z)=|2|, (c) W(2)=1z[2, (d) W(2)="R=.

2. If the function W(z) has the total differential (4 +-Bi)dx+ (O+Di) Ay
at the point z,, then in order that the function W (z), the conjugate of W(z),
have a derivative at the point #z,, it is necessary and sufficient that A=-—D
and B=C, 1. e. that W;(z,,)ziW;(zo).

Deduce from this that if the function W(z) has a derivative at the point
%, then the conjugate W (z) of this function has a derivative at this point if
and only if, when W'(z,)=0.

3. If for the function W(z), having a total differential at the point z,,
there exists a finite limit of the real part of the expression [W(2) — W (2,)]/(2—2,)
when 2-—+z,, then the function has a derivative at the point z,.

4. If for the function W(z), having a total differential at the point 2,
there exists a finite limit, when z->z,, of the absolute value of the expres-
sion [W(2)— W (%)]/(z—=,), then either the function W (z) or the conjugate
funetion W(z) has a derivative at the point z. )

5. Verify that the function F(z)=y @ (¢=2%-1y) has partial deriva-
tives with respect to = and y equal to zero at the point 2= 0; hence, it satisfies
the Cauchy-Riemann equations; however, it has no ordinary derivative at
this point (hence it has no total differential either).
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[Hint. Substituting z=x(1-1ia), where o is an arbitrary real number, no-
tice that the quotient [F(z)—TF(0)]jz=F(2)/# has a finite limit for each fixed
value of ¢ when x~-0, but this limit varles with a.]

6. The Cauchy-Riemann conditions are satisfied at the point 0 for the
continuous function G(2), defined by the formulae G(O) =0 and G(?) =2/ (x*+y?)
for =%ty 50, and the limit of the ratio [G(2)—6(0)]/z=G(2)/» exists when z
tends to zero along an arbitrary straight llne passing through the point 0;
besides, this limit has the same value, 0, for every such straight line. Never-
theless, the function G(z) does not have a derivative at the point 0.

[Hint. The limit of the ratio G(z)/z when 2 tends t6 zero along the para-
bola y=u* is 4.]

7. If W(¢) is a polynomial of the n-th degree and #2,2,,...,s, denote
the roots of this polynomial (if multiple roots exist, the number of the
occurrences of each root in the sequence 2;,%5,...,2, is equal to its multipli-
city), then ’

W'(z) 1

(*) W(z) "2 2—2,
at each point 2z for which W(z)s40.

8. If W(z) is a polynomial of degree >1, t]mn all the roots of the equa-
tion W’(2)= 0liein the convex get determined (cf. Introduction, § 8, exercise 2}
by the roots of the equation W(2)=0 (Gauss).

[Hint. Make use of the formula (%) of the preceding exercizse; note that
1/(z—2,)=(2—2,)/|#—2,|*; use exercise 2, Introduction, § 8.]

9. The equation 1--z4-a2"=0, where n is an integer >2 and a an arbi-
trary complex number, always has a root whose absolute value iz <2

(Landau).
[Hint. Substitute 2=1/5 and use the theorem of Gauss (exercise 8).]

§ 7. The exponential function. In real analysis we usually define
power and the number ¢ directly; then we prove, as a theorem,
the well-known expansion of the exponential function ¢® in a power
series of the variable & for real values of this variable. In the com-
plex domain this method necessarily fails (since the usual defini-
tion of power cannot be directly extended to complex values of
the exponent). Hence in the present exposition we shall define the
exponential function ¢ — which we shall also denote by expz —
directly by the equation

00 n
2
(7.1) expe=¢ ~,§ 0
understanding 0! to be (as usual) the number 1.

It is seen at once (applying e. g. the ratio test) that
the series appearing in this equation is convergent in the entire
open plane and, moreover, convergent absolutely and uniformly
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in every circle K (0;7), since in such a circle we obviously have
|#"/n!|<#"/n!. Therefore:

(7.2) The exponential function is defined and contimuous in the entire
open plane.

From definition (7.1) we shall derive fundamentfal formulae
concerning the exponential function (without referring to results
known from real analysis). In particular:

(7.3) . exp0=e0=1,
(7.4) exp(a-+b)=expa-expb for every pair of values a,b.
Formula (7.3) is obtained directly by substituting 2=10 in '(7 d).

In order to obtain formula (7.4)let us note that, by Cauchy’s theorem
on the multlphcamon of series, we have

expa: epr—zn' Zn' Z

n=0

o apmt 1 ! b)™
0“=2’_a_—t P . 1 kbn_k:(a+t ) ’
= El(n—Ek)! wl& El(n— k) n!

=exp(a-}b).

(7.5) The exponential function does mol vanish ot any point of the
plane.

Proof. Indeed, were expa=0, then by (7.3) and (7.4) we
should have 1=exp0O=expa-exp(—a)=0. '

From definition (7.1) it follows immediately that for real values
of 2> 0 the funetion exps is a constantly increasing function, varying
from 1 to -}-co when z varies from 0 to -+ oco. Making use of the equa-
tion exp(—x)=1/expx, which is a consequence of (7.3) and (7.4),
we establish more generally that '

(a+ )"
n!

(7.6) The function expx in the real domain is a positive and increasing
function, and

expa—>-+oco for x—>-}o00,
expao—0 for &L—>-—00.
Finally, we have from (7.4) and (7.1) for A0
exp(e+ h)—expz exsph—1- )
(1.7) 3 =expr — = ‘ xpz;; pral
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whence, passing to the limit as A—0, we obtain (making use of the
fact that the series appearing in the equation (7.7) represents a con-
tinuous function of the variable h) the equation

lim exp(z+h)—expz _
750 h
~ Consequently:
(7.8) The exponential function is differentiable and equal to its deriva-
tive in the entire open plane.

EXERCISE. 1. For every real z we have e’»1-+4z; if 0e<{1, then
I—2e™ <1 — 2/2.

§ 8. Trigonometric functions. Asin the case of the exponential
function, we define the trigonometric functions cosz and sinz in
the complex domain as the sums of series. Namely:

©0 0 n,2n-+1
(—1)"™ ) (—1)%
. =) — Singes Y et
B1)  coss ,g; @n) g (@n+1)!

The- series appearing in thesé formulae are convergent in the
entire open plane, and therefore the functions cosz and sinz are
defined in the entire open plane, and it is apparent at once from
formulae (8.1) that the first of these functions is even and the

second odd. v

For real values of z the equations (8.1) coincide with the well-known
expansions of the functions cosz and sinz in power series. In the real domain
the present definition, therefore, coincides with the traditional one based on
geometric methods. However, we shall not make use of the results of the geo-
metric theory here; the fundamental properties of the trigonometric func-
tions will be deduced directly from formulae (8.1). In this way we shall obtain
not only an extension of these properties to the complex domain, but at
the same time an arithmetization of the theory of trigonometric functions in
the real domain, The results so obtained indicate simultaneously the direct
and natural way to the arithmetization of the concept of angle.

expe.

We shall begin with the establishment of relations between the
trigonometric funetions. In virtue of (7.1) we have
nan 2 @ 2k ok
3
e (2k)! & (2k+1)

fd (_1)k32k+1
&~ @k

n=0 * k==

00 (_1)7%210 .

= (]
“= (2k)! +

and hence, by (8.1),
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(8.2) expiz=cosz-isinz.
Substituting —z for z we obtain the equation
expy(—iz) = c082—1i8inz;

adding it to (8.2), and subtracting it from (8.2), we find:

—

(8.3) cosz= [expiz--exp(—iz)],

[ SR

. 1, ,
Sing=-— 5 t[expiz—exp(—iz)].

' These are the so-called Euler formulae. By formal manipula-
tions, in which we make use only of the properties (7.3) and (7.4)
of the exponential function, we obtain the following fundamental
relations betwen the trigonometric functions:

€082z sin%z=1, cos(a+b)=cosacosbTF sinasinb,

(8.4) .
sin(a—+ b)=sinacosb4- cosasind, ete.
Since the exponential function is by theorems 7.2 and 7.8 con-
tinuous and differentiable in the entire open plane, it also follows
from formulae (8.3) that

(8.5) The trigonometric functions cosz and sinz are eonﬁnuous and
differentiable in the entire open plane.
Differentiating formulae (8.3) we obtain, in virtue of theorem 7 .8,
(8.6) (cosz)'=—sing, (sinz)’ = cosz.
From the equality cos0=1 and from the easy estimate
92 & (—1)ro2n

cos2=1—1 X +,§ ——(2%)!

2

ol 2211. 24 o 9 2% 50

< 1+2(2n)! <—14+ 2, (g) =—1+2<0,

it follows immediately that the function cosz has at least one positive
real root. The smallest of these roots (i.e. their lower bound) will
be denoted by =/2. In the interval [0,7/2] the function cosz is there-
fore always positive, with the exception of the right end-point,
at which it vanishes. In virtue of the second of the formulae (8.6) -
the function sinz therefore inereases in this entire interval, and hence
is always positive in this interval, except at the left end-point, at
which it vanishes. Therefore, in view again of the first of the formulae
(8.6), the function cosz is decreasing in the interval [0,7/2]. Since
in virtue of (8.4) we have 1=cos?x/2+ 8in®m/2 =sin%x/2 and, as we
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have geen, the funetion sinz is non-negative in the interval [0,m/2],
it follows that sinm/2=1. Making use, then, of the second and third
formula in (8.4), we obtain in succession: ‘

ging==0;

§in 2m==0;

cosm=—1,

cosw/2=0, sinm/2=1;
- Co8 on=1,

¢os(3w/2)=0, §in(3w/2)=—1;
and more generally, for an arbitrary complex number 2,

sin(2+4m/2) = cosz;
§in (2+2mn)==sinz.

co8(¢+m/2)=—sinz,
c08(#+2m) == Cc08%,

From the second pair of formulae (8.7) it follows that

(8.7)

(8.8) The functions cosz and sinz are periodic, with period 2w, in
the entire -open plane.

On the other hand, the first pair of formulae (8.7) enables one
to deduce the behaviour of the functions considered in the intervals
(‘“‘quadrants”) [x/2,7], [=,3%/2], ete., in view of the investigation,
already made, of their behaviour in the interval [0, /2], Further-
more, since the function cosz is decreasing, and the function sinz
increasing, in the interval [0,7/2], while both functions are contin-
wous and non-negative in this interval, we obtain by (8.7) and by
‘the first of the formulae (8.4) the following theorem:

(8.9) If & and b are real mumbers satisfying the condition a*-+b2=1,
then there ewists exactly ome value of 0 such that:
cosf=a, §inf==">, —n< L .
The trigonometric functions tanz and cotz are defined. by the
formulae:

COo8%

(8.10) y cotg=——
sin.

sing
tanz=
co82

From this definition and from the propérties of the functions
cosz and sinz already deduced, it follows directly that:

(8.11) The functions tanz and cotz are continuous functions in the
entire open plane, finite and differentiable everywhere, with the excep-
tion of the points at which the function cosz, or the function sing,
vanishes and at which the functions tane and cotz, respectively, assume
the value oo. The derivatives of these functions are given by the formulae:

1 1
8.12 tanz)'=——- = ——
(8.12) (tanz) coia’ (coti2) sintz’
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which ‘we obtain by differentiatin ; ; i
] g the equations (8.10 ,
of formulae (8.6). ! (510) with the aid

Finally, the Euler formulae (8.3) give for the functions tanz
and cotz:

(8.13) tanz——; exp '%’z——exp(—z:z) , iy exp iz exp( —iz) :
expiz+-exp(—iz) expiz— exp( —1iz)
From the .beha,viour of the functions cosz and sinz in the -in-
?serval ]20,7:/2] it follows that the function tane is steadily increasing
in the interval [0,m/4] and assumes the values from .0 to 1. There-

cotz

o '3
fore, making the substitution t=atanw in the integral f i
a? 4t
(Whe.re a i_s an arbitrary positive number), we obtain by0 simple
manipulations, in virtue of the first of the relations (8.4), the equation

a1 1 e
(8.14) f ,2=_f 'dtanudu=£ P
« a2+ a y 1--tan?u  du a 4a
: 0

which expresses the number = in terms of a definite integral o%
a rational function.

Similarly,

(8.15) dt R o : Sy

0 ' . R : ¥

. ‘ . N . a
By an analogous substitution {=asinu in the integral f Vﬂ_
' I ' : . - JVa—t
'we obtain the formula ’ '

(8.16)

f dt om
0]/a2—t2 2

N giERCI.SES' ; Hyperbolic functions. The hyperbolic functions, the
yperbolic cosine and the hyperbolic sine,“are defined by formulae anal
to the Euler formulae: S y vrm © suslogous

l . 1 T v =
coghz= 3 [expz—|—exp(-—z_);|; _ sinhz= —2-[expz—-,-exp‘(‘~—z)].

.Verify the following relations betw_een«the 'hyperb_olicv and jsrigononietlié
functions: coshz=cosiz, sinhz= —isiniz. From this derive formulae analo-
gous to the formulae (8.4): o o

8. Saks and A. Zygmund, Analytic Functions. 5
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cosh?z—sinh?z=1, cosh(a-b)=cosha" coshb Lsinha-sinhb,
etc., as well as formulae analogous to formulae (8.6) on derivatives:
‘ (coshz)’==sinhz, (sinh2)’=coshz.

Verify the following expansions of the hyperbolic functions in power

series:
o0 . - el ol
coshz= E — sin z;—_-z_.« ..... —,
! 20+ 1)
n=0 (2,"/)' ne=0 ( : )

from which it follows, in particular, that |cosz|< cogh|z| and |sinz|<Csinhle].
2. Prove the following identities, in which m denotes an arbitrary posi-
tive integer:

m e m 4
cosmz:cos’”z—( 2) cos™ 22 gin®z 4 (4)005’” ‘rmintz—...

(the last term of the right side is (—1)"*sin™z or (— 1) Y% cos e sin™ 2,
depending on whether m is an even or odd number);

. 1 m
gin mz=m cos™ 'z 8inz — (3

(the last term of the right side is (—1)(™Pm cosz sin™ 'z or (—1)™ "V sin™z,
depending on whether m is an even or odd number);

)cos”'“azsinsz+

a

2m~loog™ 2= cosmz+ ((':) cos (m—2)z+ (7;") cos (m—4)z24 ...

' . S W ) m .
(the last term of the right side 1s§(m /2) or ( (m—1)/ 2) cosz, depending on whe
ther m is an even or odd number);

the analogous formula for sin™z: for even m,

miom _ 'm _ m _ _ __ym/2 m
(2i)"sin™z=2 cosmz 2(1)005 (m 2)z+2(2)cos (m—4)z—...+(=1) (m/2)'
and for odd m,

R . mw
(24)™ 1sm"‘z=smmz—-—(

l)sin(m—Z)z

m m
. i — —1)(m=1)i2 inz
+(2)sm(m 4)z+ ...+ (—1) (( 1)/2) ging.
[Hint. Take, first, 2 real in the identities ‘

cosmzi sinme== (cosz-+i sinz)™, 2™ oo™z = (¢ 47",

which follow directly from formulae (8.2) and (8.3), expand the right sides by
Newton’s binomial theorem and equate the real and imaginary parts of both
pides. The generalization to complex values of z follows from the theorem
stating that a power series which vanishes for real values of the wvariable,
vanishes identically.]
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3. Show that the trigonometric expression

2"gin™§- (1;) 2"15in*"19 cos (6+ g)

M\ ps e mea kol b
+(2)2" sin’ 60052(6+§)+...+cosn(6+§)

is equal to (—1)"cosn® or (—1)(*1sinnf, depending on whether n is an
even or odd number.

[Hint. Cousider the expression {2sinf-expé(6+m/2)}".]

4, Substituting w= sinz show that: ]

(a) cosme=F,(w), sinmzfcosz=G(w), for every even positive integral
value of m, .

-(b) cosmz/ecosz=Fy(w), sinmez=Gy(w), for every odd positive integral
value of m,
where F,(w) and G,(w) are polynomials in w of degree m, and G (w) and F,(w)
are of degree m—1.

[Hint. Cf. exercise 2.]

5. Show that the roots of the polynomials Fy(w), Gy(w), Fs(w), and G,(w),
exercise 4, are respectively:

I . 3n L (m=1)=x
+sin—-> 4sin—, .., Lsin——;
2m 2m 2m
. T . 2n m—2 r
0, 4+ sin-—>s osgin—, R ilsm——»—2 —_—
. T . 3=n . (m—2)=n
+s8n—:>> 4+en-—, ..., Fsin—m—;
2m 2m 2m
. T . 2m . m—1 =
0, +sn—s +sgn—, s T sin —_—
m m 2 m
Derive from this the following formulae:
(a) for even m:
gin?z sin*z sin?z
cosmz=[1— —_ —1. l———
., ® ., om . (m—1)m
sin? — gin? — sin? —
2m 2m 2m
sinmz . gin3z sin®z sin?z
=msginz-| 1— 1— [ I
cORZ .. T .. 2n Lo.m—2r
gin% — sin? — gin? —
m m 2 m
(B) for odd m:
cos Mz sin?z gin?z 1 gin®z
= — — “en . —————— | 3
co8 2 .. T .. 3m o (m—2)=n
gin? — sin? — gin? ~———
2m 2m

5%
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sin®z gin?z ’ " ginte
inmz=msinz | 1— - 1=
sinmz=msinz - ~—om min
gin?— gin? — #in? e ——
m 'm m

6. Subsmtutmrr z/m for # in formulae (a) of exercise 5 and passing to the
limit as m—4- oo, derive the following expansions of the cosme and the sine

in infinite products: . . .
SR
2y \" @wj2p/ " (Bm2p)

( 2\ (.. 22)
ing=2{1——){1l———] {1——])...
sin ‘1 ﬁ")( } 41':9) ( . 9 o . S

The preceding products are uniformly convergent in every circle of finito
radius, 4. e. almost uniformly in the entire plane (by the convergence bf the
infinite product 4, 4,...- 4,-... we here mean the convergence of the sequence
of partial products P Al, P =A Ay o, Py=Ac Ay 4y, 4 more
detailed discussion of the notion of lumt of an infinite prod\mt will be given. in
Chapter VII). : C

7. Let f(f) be a real function, bounded and contmuous, or ;m,vmg at most
a finite number of discontinuities in the entire interval (— oo, 4-co), Then af
each point 7 at which the function is continuous we have

+o0

d .
J e t) e,

ag y tends to 0. through posmve real values

§ 9. Argument.. Let z=x- @y—+‘0 Where »="Re, y=Tz. By
theorem 8.9, there exists a real numper 0 sa.tlsfymg the equations:

cosz=(1—

(9.1) ) GOSB?;—'T'EW:E7 - Rif =#=—
- Vaerryr R Yty ;|z| ,
Therefore, taking r=|z| and makmg use of formula (8. 2),
have:

(9.2) a=r

. \ ’ v ; . y
(cbsﬁ—}-isin@) reé , where 7=0 and 0 zs a real number.

Every real number 0 samsfymg conditions (,9 1) is called an
argument or on amplitude . of the complex number z; in virtue of
(8.8) and (8 9), it is defined uniquely to ‘within an additive constant
of the form 2kn, where k' is an arbitrary- integer. Therefore every
complex number 2540 has an infinite number of arguments cll.ﬁfermg
from one another by a multiple of 2z, or — using the terminology
of anthmetlc and the theory of numbers — congruent mod 2.
(We say that two numbers o ‘and b are congruent modulo ¢, and we
write a=b (modc) if b—a iy.em mtegral multl,ple of ¢.)
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It will cause no misunderstanding if occasionally we use the
expression ‘‘the argument of 2, when we mean an arbitrary
argument of z. A similar convention will apply later to the
logarithm, power and angle.

We denote the argument of 2 (4. e. any of the arguments of z) by
argz. Among the arguments 6 of the same number z, exactly one
satisfies the inequality —rx<6<m; we shall call it the principal
argument of this number and denote it by Argz. If # is a real number,
then Argz is equal to 0 or =, depending on whether z is a positive
or negative number.

-The function Argz, defined in this manner in the entire open
plane with the exception of the point 0, is obviously bounded in
this entire region. Moreover:

(9.3) The function Arge is continuous at each point z=z, of the open
plane which does not lie on the negative real half-axis.

Proof. Let 0,=Argz,. Since the point 2z, does not lie on the
negative real half-axis, therefore certainly 6,3 =, and hence

(9.4) ' —n< <. o

Let us assume that the function Argz is not continﬁous at the
point z,. Then we can determine a. sequence of points {z,,} tending
to 2, in such a way that the sequence of their principal arguments
tends to a certain number 6,, different from 8,. Since for every n we
have —n<<Argz, <,

(9.5) '-—7:<50<7:.

Writing for brevity 6,=Argz,, for n=1,2,..., we shall have
cost,=Rz,/|2,| and sinb, =39z, /[2,| for n=1,2,..., whenece it fol-
lows that cos 50=‘7€zu/]zo}= cos0,and sint’;o:gzo/ [2o] = sin by, a8 z,—2,
and Gn—+5o. From this, however, in virtue of (9.4) and (9.5)
(cf. theorem 8.9), we obtain (5°=60 and we come to a contradiction.

Returning to the representation (9.2) of complex numbers,
we notice that the number z=0 also has a representation of
this form: it is sufficient to take r=0, and for 6 an arbitrary real

number. For symmetry, we shall understand the argument of the
number 0 to mean an arbitrary real number. We can therefore say that:

(9.6) Every complex number ¢ has a representation of the form (9.2).
In such a representation, r and 0 are, respectively, the absolute value
and the argument of the mumber z. )
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The second part of this theorem still requires a Dbrief justifi-
cation. From (9.2), in virtue of (8.4), it follows first of all that
le| =|r|-|cosf+isinf[=r, and then that cos0=Re/|2| and
sinf=9z/ |2|; this means that » and 6 are the absolute value and
the argument of the number 2, regpectively.

If z,=rexpil;, 2,=r,expil,, then YRy ="T176XP (04 0y),
2,]2y=(1,/rs) expi(0,—0,). From theorem 9.6 it therefore follows
that
(9.7) When complex numbers (different from zero ) are multiplied and
divided, their arguments are correspondingly added and subtracted;
in particular, when we multiply by a real positive number, the argu-
ment (more precisely, the set of arguments ) of a complex number does
not undergo a change.

For every complex number z we have

expe=exp Rz-expiJz =expNe- (cos Iz i8inJ2),
and consequently, since (cf. (7.6)) expRe>0, we have by theorem 9.6:

{9.8) lexp 2| = exp“Ne, arg expz=9¢2-+ 2k,

where % is an arbitrary integer.

In the second of the above formulae the equality sign joins two sym-
bols which do not denote one number, but a certain set of numbers (in this
case 8 set of numbers congruent mod 2rw). The equality sign in such instances
will indicate that each of the values of one of the sides is a certain value
of ‘the other side and conversely. However, one must be on guard against
aseribing to the sign “="', used in this sense, properties which it has when
used in the ordinary sense. For example, in the equality considered, one
cannot, obviously, transpose the term 2kn from the right side to the left.

~ From (9.8) it follows immediately, as a supplement to formula
7.3, that :
(9.9) expz=1 if and only if z is of the form 2kmi, where k is am
arbitrary integer.

Since the relation expe,=expz, is equivalent to the relation
exp(¢; —2;)=1, therefore: '

(9.10) expz,=expz, if and only if 2,,2, differ by a multiple of 2ni;
consequently, the exponential function is periodic with period 2.

In the preceding section the roots of the real functions cosz
and sinz were investigated. We shall prove that in the complex
domain the trigonometric functions have no roots other than these,
and hence that
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(9.11) The only roots of the functions cosz and sinz are real points
of the form w/2+kn for cose, and of the form En for sing, where k is
an arbitrary inleger. . '

Proof. By the Euler formulae (8.3), the relation sinz==0 is
equivalent to the relation expiz—exp(—iz)=0, and hence to the
relation exp2is=0, which in view of theorem 9.9 is satisfied if
and only if 2¢z has the form 2kri, and hence when 2 is of
the form %m. From the equation cosz=sin(z-+=/2) (formula (8.7))
a corresponding property follows for cosz.

Theorem 9.11 can be supplemented by the following theorem
which will find application in many further considerations:

(9.12) Let ¢ be an arbitrary positive number and let B, denote the
complement of the swm of the circles K (nrw;e), where n=0,+1,4-2,...,
with respect to the open plane. Then there exists a positive constant
O, depending only on & and such that

for every zeH,.

(9.18) lsinz|>=C, and |tanz| =0, A

Proof. Let K=XK(0;¢) and let H denote the strip defined
by the inequality —rn/2<Re<n/2. In view of the relations
gin(¢-+w)=—sing, tan(e-n)=tdne, it is sufficient to show that
there exists a constant O, such that the inequalities (9.13) are
satisfied for all zeH —K.

Let us denote by H; the set of points e H—K for which [J2[<1.
Since this set is bounded, closed, and neither the function sinz nor
tanz vanishes anywhere on it, there exists a number C>0 such
that |sinz|>0 and |tanz|>C for zeH,.

On the other hand, by .the Euler formulae (8.3) and (3.13) we
have, taking z=x- iy,

(018) sl = 2l e L e = 5 =2,
and similarly
(9.15) ftane| > I —e1

AoV

We easily see that for |y|>>1 the expressions on the right
in (9.14) and (9.15) are respectively not less than (e—e™)/2 and
(e—e™")/(e+¢7*). Hence, denoting by C, the least among the last two
numbers and C, we verify immediately that the relations (9.13)
are satisfied for every zeH—K, and hence also for every zckE,.
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§ 10. Logarithm. Every number z satisfyilllg . the equa:ﬁion
expz=¢ is called a logarithm of ¢ and we denote it b_y log{. From
theorem 9.10 it follows that if a certain number 2, is log{, then
every number 2,-+2kni, where % is an arbitrary integer, is also
log?, and conversely: every number which is log{ has the form
2+ 2kni. Among these logarithms, therefore, exgctlypne hag an
imaginary part y such that —m<y<(m; this logarithm is called the
principal logarithm of the number { and we denote it by Log.

From theorem 7.6 it follows that every real positive number
hag exactly one real logarithm; this logarithm is at the same time
its principal logarithm. In view of theorem 7.5 the number 0 does
not have a logarithm. Now, if {70, then the relation expz={
is, in virtue of (9.8), equivalent to a system of two real relations

|{|=exp‘Rz, arg =92+ 2,

where % is an arbitrary integer. ‘ 4
The first of these relations defines “¥z=Log|{| uniquely, and

from the second it follows that T2z is one of the values of arg(.

Summarizing: ,

(10.1) Every complex number [#0 has an infinite number of

logarithms. The general form of logl s gwen by the formula
log¢{="Log|¢|+sargl. In particular:

Log¢=TLog|¢|+iArgt.
By means of the logarithm we define the power of an arbitrary

base a0 with an arbitrary exponent y. Namely, we take as the
definition of the power a’ of the base a0 the equation

(10.2) o= "1,

Since loga has infinitely many values, a” also has, in general,
an infinite number of values (that one which corresponds to the
principal value of loge will be called the principal value of the power).
In fact, denoting by 0 anyone of the values of arga, we can, in
virtue of theorem 10.1, write formula (10.2) in the form

a’=exply (Log|a |-+ 0i+ 2kni)]
=exp [y (Log|a|+-64)]-exp 2kyni,
where k is an arbitrary integer. However, only the second factor
on the right side of the equation (10.3) can be multi-valued, and

we notice at once that even this factor is single-valued and equal
to 1if y is a real integer; in this ease, the definition of a” by formula

(10.3)
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(10.2) coincides with the usual arithmetical definition of a power.
In general, in view of theorem 9.10, if ¥ is a real number, to the two
values k,,k, of the variable integer % there corresponds the same
value of a” in equation (10.3) if and only if the number y(k,—%,)
is an integer. Hence, if y is an irrational number, then to different
values of k there always correspond different values of the power a?,
which therefore has infinitely many values. On -the other hand,
if y is a rational number, then, taking y=p/q, where p and ¢ are
relatively prime integers, we notice at once that y(ki—ky) is an |
integer if and only if %,—%, is a multiple of the number ¢; there-
fore a” has exactly g different values, which we obtain e. g. for
k=0,1,...,q—1. '

From equation (10.3) we have |a*|=exp(yLog|a})=]a]* for
every real value of y, understanding |a|* in the sense adopted in
real analysis; the expression a” (for real values of y) therefore has,
in spite of its multi-valuedness, a uniquely defined absolute value.

EXERCISES. 1. The equation cosz=a has an infinite number of roots
for each finite value of a. For what values of a do every two roots of this equa-
tion differ by a multiple of 2% by a multiple of =% Write (in terms of the
logarithm) the formula for the solution of the equation coszs<a. An analogous

" problem for the equation sinz=a.

The values of 2 satisfying respectively the equations cosz=a and
sinz=a are generally denoted by arccosa and arcsina.

2. The equations tanz=g and cotz=a have infinitely many roots for
each value of as41, finite or infinite. For a=-i these equations have no
solutions.

Write (in terms of the logarithm) the formula for the solution of these
equations (take into consideration, in particular, the case’ a=00).

The values of 2 satisfying respectively the equations tanz=a an

‘cot z=a are generally denoted by arctana and arccota. :

. 3. Show that the roots of the equation

efer-=o

(in which the last term is nz*™! or z”, according as the number n is even
or odd) are given by the formula:z=+itan (kx/n), where k=0,1,..., (n—2)/2
for even n, and %=0,1,..., (n—1)/2 for odd n.

[Hint. Write the given equation in the form (14)"=(1—m)*] '
4. Determine all the roots of the equations:

() . (;”)zw(”;)ww(’;) 25— ... =0,

(b) 1—(’;)952-;-(:)954—...:0,
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For equations () and (b) distinguish the oages of n even and odd.

5. If 2,,¢y,...,%,_, is the set of n-th roots of the number ) 1, then for
every integer k the sum 2f+ef--...+2_, is equal ton when k is a multiple
of n, and equal to 0 in the contrary case. )

6. Find all the values of the powers 1% i, i'® (notice that the first two
have only real values, and the third — only imaginary values).

7. Show that in order that the power a*™ (where w and v are real num-
hers and a%0) have only real values, it is necessary and sufficient that 2u be
an integer and the number vLog|a|-+uArga be a multiple of m.

8. Investigate the distribution of the points 2540 at which the power 2
assumes real values only (these points lie on a denumerable set of lines parallel
to the y-axis and on each of these lines there are infinitely many points having
this property). '

9. Show that in order that all values of the power o’ have the same abgo-
lute value it is necessary and sufficient that 9¢=0. If 90540, then the power o’
has infinitely many distinet absolute values whose lower bound is 0 and upper
bound - oo,

In order that all the values of the power o’ lie on one half-line with origin
at the point 0, it is necessary and sufficient that % ¢ be an integer; and in order
that they lie on a finite number of such half-lines, it is necessary and sufficient
that ®c¢ be a rational number.

10. Prove that the points 2 at which all the terms of the series 3 (1 —

n

vanish, beginning from a certain place, form a denumerable set, everywhere
dense on the circumference C(0;1). For points other than these the series is
divergent. .

11. If a and b are two incommensurable numbers, then for each number
&>0 there exists a linear combination ma-+mb with integral coefficients m,n,
not vanishing simultaneously, such that |ma-+nb|<<s [Proof. To each
integer ¥ we can assign a number x(k) such that 0<<w(k)<<|b] and
z(k)=ka (modb). There certainly exist two distinet integers &y, k,, such that
[w(ks) —% (k1) | <<e. We have z(k)=ka-+p,d and x(k,)=Fksa-+psb, where p,
and p, are integers. Then [(ky—k;)a+ (p,—p;)b|<<e.]

In view of the preceding result show that: (a) If ¢ is an arbitrary real

irrational number, then the values of the power a’ (where a540) form an every-

where dense set on.the circumference with centre 0 and radius equal to the
absolute value |a|; (b) If a continuous function F(z)of a real variablex has
two incommensurable periods, then it reduces to a constant.

Many interesting examples in connection with the topics of §§ 7-10 can
be found in the books: G. H. Hardy, Pure Mathematics and E. W. Hobson,
Plane Trigonometry.

§ 11. Branches of the logarithm, argument, and power. If
F(z) is a function defined on @ set X, then by a single-valued branch
of the logarithm of this function on F we shall mean any funection
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L(z), finite and continuous on the set E, which satisfies the equation
exp L(2)=F(2) on this set; the last condition states that the values
of the function L(z) at the points ze¢X are values of log F'(z) at
these points.

We define the branches of the argument, of the power, and of
other functions defined by multi-valued expressions, in a manner ana-
logous to that used in defining a branch of the logarithm. There-
fore, if F(2) is defined and vanishes nowhere on the set E, then by
a single-valued branch of the argument of the function F(z) on F we
shall mean any continuous function on F whose values at the
points zeE are values of argF(¢) at these points. Similarly,
by a single-valued branch of the power [F(2)]” we shall mean any
continuous function whose values at the points z of the set E are
values of [F(z)]".

In the subsequent chapters (Chapter VI) we shall also consider
multi-valued branches of functions; in this chapter and in the
next four, however, we shall limit ourselves to single-valued
branches, so that without any fear of misunderstanding we shall
be able to say-simply “branch” instead of ‘“‘single-valued branch”.

In virtue of theorem 10.1 it is apparent that if L(z)is a branch

of log F'(2) on the set F, then the function A (2)=9L(z)is a branch

of argF(z) on E; econversely, if A (2) is & branch of the argument of
the funection F(#) eontinuous on the set £ and vanishing nowhere
on this set, then the function L(z)=Log|F(2)|+t4(2) is & branch
of the logarithm of the function F(z).

The existence of a branch of the argument of a function continuous
and non-vanishing on o set, is therefore equivalent to the existence
of a branch of the logarithm of this function. Consequently, it follows
from theorem 9.3 that the functions Argz and Logz are respectively
branches of argz and logz in the region obtained by removing the
negative real half-axis from the open plane. More generally:

(11.1) If @, denotes the region which is obtained by removing from the
open plane the points having the argument a, then the functions

Arglzexp(r—a)i]—(n—a), Log[zexp (r—a)i]— (r—a)i

are respectively branches of argz and logz in the region G,.

Proof. Let us note that when z ranges over the region &,
then the point {==zexp(r—a)i ranges over the open plane with

the exception of the points on the negative real half-axis. By theorem
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9.3 the function Arg[zexp (r—a)i]—(r—a) is therefore continuous
on G,. On the other hand, from theorem 9.7 it follows immediately
that Arg[zexp (r—a)i]—(n—a) is equal to one of the values of argz
for every 2. Therefore the function considered is a branch of argz on
the set @, The proof for the logarithm proceeds similaxly.

In Chapter IV we shall prove the existence of branches ‘

of logz and arge in every simply connected-region not containing
the points 0 and co. For the present we shall limit ourselves to se-
veral more elementary results. Let us observe, first of all, that
if L,(2), L,(2) are branches of the logarithm of the same function
F(z) on the set B, then the function [L,(2)—L,(2)]/2ni assumes
only integral values on E and therefore (cf. Introduction, theorem
11.1) it simply reduces to a constant when E is & connected set.
Consequently: ‘

(11.2) Two bramches of the logarithm of the same function on a con-

nected set can differ at most by a constant, namely, by an integral mul- -

tiple of 2ri. Simalarly, two branches of the argument of the same func-
tion on a connected set can differ at most by an integral multiple of 2n

We prove further that each branch of logz on an open set has
a derivative everywhere in this set. Precisely:

(11.3) If the function L(z) is a bromoh of logz on an open set @,
then at each point ze@ we have L'(z)=1/z.

Proof. Let z,¢@, zeG,'w0=L(z0), w=L(z). Hence we have
2o=exp L(z,)=expw,, and z=exp L(z)=expw. Therefore,
L(#)—L(z)  w—w,
2—2, expw—-expwo
In virtue of the formula for the derivative of the exponential
function (theorem 7.8), we see that when 2>z, (and hence
w—>w,) the right side of the equation (11.4) tends to 1/expw,==1/2,.
Consequently, L'(z))=1/2, at each point z,e¢@.
EXERCISES. 1. If K is a circle not containing the point oo, then for

each point a0 not belonging to the circle K there exists in K a branch of
arg(»—a) and a branch of log(z—a).

2. If W(2) is a continuous function on a set H, and if all the values
which this function assumes on this set belong to a circle K not con-
taining the points 0 and co, then there exists on H a branch of arg W(z) and
a branch of log W (2).

3. If O is a simple arc (see Introduction, § 12), then for every point a
not lying on C there existis on 0 a branch of arg(¢—a) and a branch of log(z—a).

(11.4)
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. In general, for every function W(z), continuous and vanishing nowhere
on C, there exists a branch of arg W(z) and a branch of log W(z) on C.

4. If for a function F(2), vanishing nowhere on a certain connected set E,
there exist on B two branches of the power [F(z)]® (where a is an arbitrary
complex number), then the ratio of these two branches is constant on K.

5. On no circumference with centre gz oo (and hence, of course, in no
annular nelghbourhood of this point) does there exist a branch of log(z—a), of
arg(#—a), or of (v—a)°, where a is a real number not an integer.

6. A branch of J/(:—a)e—b), -where a=£b, exists on the circumference
of every circle which contains both points a and b either inside or outside, but
does not exist on the circumference of any circle which contains ome of the
points a,b inside and the other outside.

" 7. If two branches of the function arctanz exist on a connected set B
not containing the points 41 (see § 10, exercise 2), then these branches differ
at most by a constant multiple of =. ;

8. If two branches of the function arccosz exist on a connected set F
not containing the points 4-1 (see § 10, exercise 1), then either the sum or the
(hﬁerence of these two branches is a constant multiple of 2n on E.

9. No branch of arctanz exists in any “annular neighbourhood of the
point ¢ or —i; similarly, no branch of arccosz exists in any annular neigh-

bourhood of the point. I 6r —1.

v
10. If zp,(z), where |¥|>R, denotes a branch of the power (1—{— )

in the circle K(G R), assuming the value 1 for z=0, "then qv,(z) tends uniformly
in K(0;R) to expe, when »—oo.

§ 12. Angle between half-lines. We shall give an application
of the above considerations to the definition of an angle between
two half-lines.

'.[‘he set of” a,il pomts of the form

(12. 1) : 2=2y+pt,

where ¢ assumes non-negative values, is called a half-line with origin
at 2, and dlrectmn number pz£0.

Ta,klng zo=mo~,—zjy,,, p=m-tin, where TosYo, M, N are real numbers, we
can -write equation (12.1) id the form of a system of -two real equations
x=xy+mt, y=y,+nt," cauing the pair of numbers (m,n) direction nwmbers
of the half-line. However, in the sequel we shall rather take advantage of
the complex form of the equation of the haJ.f line, characterizing its direction
by one complex number “which takes the’ pls,ce of a pair of real numbers, |

“If in equation (19 1) we repla.ce “the ‘direction number p by ip,
where 4 is an arbitrary real positive number, then ‘we obviously
obtain the same half-line, since if ¢ assumes all real non-negative
values, At also assumes all non- negatlve Values Conversely:
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(12.2) If z=2,+pit and 2=2-+Ds% where t. and w asswme non-gagg
tive values, are equations of the same half-line I, then. z.2=zl ;bm];tz ¢
ratio pafpy is @ positive number ; n othe.r words, the origin f’f the abyf-
line is defined uniquely, and the direction number to within an arbi-
trary real positive factor. .
Proof. Substituting 2=y, zz=mg+iy2, p1=m1—.|-m1,
py=my+ing, We can write the two given equations of the half-line L
in the form of two systems of real equations, z=a, +mqt, Y=Y1+nt
and L=, +Math, Y=Ys+ng%. It i8 immediat(?ly apparent that
is a bound (lower or upper depending on the sign of m,) of th(f, s'et
of abscissae of the points of the half-line I, and the only flllth
bound of this set. On the other hand, @, is obviously also & bound
of this set; therefore @,=1,. Similarly we prove that y,==1y;, Wwhence
i =2.
ﬁnaﬂ%eﬁﬁrni:lg to the equations of the half-line L in the 001:1'11)16}{
forms 2=2;-+p;t and 2==2;-}+pyu, let us denote by 2, any point of
this half-line different from the point z;==2,. Lett, and Uo be t]_le
values of the parameters? and u, corresponding to the point 2, in
these equations. We therefore have
Zp—?y

= and =
P1 s 2 % %o

s T ,

whence, since the numbersf, and u, are real and positive, we
tain =ty />0, q.e. d.
° If 12: zi/g) 1a,n oa{rtt))itra,ry direction number of a half-line, then p/|p|
is also a direction number of this half-line and its absolute value
is 1. Ag is evident at once, among the direction numbers of a half-
line there exists only one whose absolute value is 1. We shall call
it the mormalized direction mumber or briefly the direction of the
given half-line. . o
The argument of the direction of a half-line, being in virtue
of theorems 12.2 and 9.7 simultaneously the argument of all its
direction numbers, is called briefly the argument of the given half-
line. Consequently, by theorem 9.6,
(12.4) The argument 6 of a half-line is determined to within an addi-

tive constant of the form 2kr; if p=m-ni is a direction number
of a half-line, then its argument 8 is defined by the formulae
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By the angle X (L,,L,) between two half-lines Ly,L,, we mean
the difference of their arguments, 4.e. denoting by p, and Da
respectively direction numbers of the half-lines I, and L,, we
take <((Ly,L,)=argp,—argp,. The angle between two half-lines
is therefore defined uniquely to within an arbitrary additive con-
stant of the form 2kn.

The positive real half-axis obviously has the argument zero (in
general 2kr). On the other hand, if an arbitrary finite point 2340
is given, the half-line with origin at the point 0 and passing through
the point z has its argument equal to argz. Hence the argument of
an arbitrary point 270 in the plane is equal to the angle which a half-
line with origin at the point 0 and passing through the point z makes
with the positive real half-awis. Furthermore, the absolute value 2| of
an arbitrary point is obviously equal to its distance from the point 0.
In this way we obtain the geometric interpretation of the argument
and of the absolute value of an arbitrary finite complex number.

From theorem 12.4 and formulae (8.4) it follows that

(12.5) The angle a=<x(L,,L,) between two half-lines L,,L,, whose

direction numbers are py=my~+ngi, Py=my+ nyi, is defined by the
equations

COS a— MyMy+ Ny My ,
(m3+n3)" (m+ n3)¥*
gina= Mafta— M s
(my—+n3)'" (- mg)?
whence :
tan g AT MMy
My Mg~ Ny

§ 13. Tangent to a curve. Let
(13.1) z=2(1), where a<\i<b, :
be a curve in the plane (cf. Introduction, § 12). Let t,<<b be a point of
the interval [a,b], in mno right-hand neighbourhood of which is
the function 2(t) constant, and let A¢ be a positive number such
that 2(fy-4t)#2(t;). The half-line with origin at the point 2(%),
and passing through the point z(f,+ 4t), has a direction number
2(ty+ At)—2(1,), and therefore its direction (4. e. the normalized diree
tion number, cf. § 12, p. 78) is equal to '

|2(ty+ At) —2(t,)]
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If the Limit of this direction, )
_ 2(t I—At)——z(to
(13.2) I=lim 7.0

a0+ [g(ty-+ At) —2(to)]

exigts (where we take into consideration only those values of At
for which the numerator and denominator of the ratio considered
do not vanish), then the number 7 is called the Mght-?wmd di?ﬂoct@‘on,
of the curve (13.1) at the point f,, and the half-line with origin z(f)
and direction 7 is called the right-hand half- tangefnt of the curve
at this point.

We define a left-hand direction and a left- homd half-tangent of
_a curve at a given point similarly.

If a curve has a right-hand as well as a left- hand direction
at t,, and if these directions differ only in sign, then both half-tan-
gents form one straight line, which we call the tangent to the curve
at the point ;. Instead of ‘“‘right-hand d;rectnon of the curve”
we ghall then simply say direction.

If the function 2(1) has ‘@ derivative #'(to)#0 at the point ty, then
the curve z=2(t) has: a tangent at this pomt and its direction there is
equal to 2'(1y)] [2'(f)]. In fact, dividing the nurherator and denominator
of the expression fo]lowmg the limit sign in (13.2) by At>0
we obtain I=2'(t,)/|¢'(t,)|; and if At tends to 0 through negative
values, then the same expression tends to —I.

If 2(f)==x(f)+iy(t), then .the -existence of the derivative #'(f) is equi-
valent to the existence of both derivatives «'(t),y’(t), and the condition
2'(t)s=0 — to the condition [&'(t)]*-+[y'(t)]*>0. The charucterization of the
tangent by the normalized direction number

2 o (8)+ay'(l)
T {1 (t)]’+[y’(t) e
is equivalent to defining its direction by the pair of numbers
i “w'(4) : )
er+wer® (W er e

as is usually dome in differential geometry.

§ 14. Homograp]nc transformatlons A one- -to-one tra:nsiormfu-
tion of the (closed) plane of the form
(14.1) t=az+b, a#0,

is called a linear transformation or a-similarity. The numbers |a|
and arga are called the coefficient of similarity and the angle of
rotation of this transformation, respectively.

‘where
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It is immediately evident that under a linear transformation
a straight line, half-line, and segment, go into a straight line, half-
line, and segment, respectively. The distance between two finite
points is multiplied by the coefficient of similarity; therefore a
circumference and a circle (Introduction, § 8) are transformed
into a circumference and circle, respectively.

Under the transformation (14.1) the half-line g=2,+pt with
direction number p goes into the half-line {=(az,+b)+ apt with
the direction number ap. Since argap=argp-arge, we see that
under a linear transformation the argument of a half-line increases
by the angle of rotation of the transformation, whence it follows
that under a linear tramsformation the angle between two half-lines
remains unchanged.

If the coefficient of similarity of the transformation is equal
to 1, the transformation is called a motion. A motion whose angle
of rotation is equal to zero is called a translation. The transformation
(14.1) is therefore a translation if and only if a=1. The general
form of a translation is consequently

(14.2) f=2+b;

the term & is here called the tramslation vector.

A finite point which is invariant under a linear transform-
ation will be called a centre of this transformation. For the ident-
ity transformation every finite point is obviously a centre. A trans-
lation, if it is not an identity transformation, has no centre at all,
while every linear transformation (14.1) which is not a translation
has exactly one centre, namely, 2z,=b/(1—a). Expressing b in
terms of z and a, and substituting %k=|a| and 6=arga in
equation (14.1), we can write every linear transformation which
has a centre and is not an identity in the form

(14.3) E—2y=ke®(z—z2,),

where z,, k, and 6 denote the centre, the coefficient of similarity,
and the angle of rotation of the transformatlon respectively. Since
the identity transformation is also included (for k=1, 6=0) in for-
mula (14.3), this formula represents .the general form of a linear
transformation having a centre.

A motion which has a centre (4. e. is either an identity trans-
formation or is not a translation) is termed a rotation. A linear trans-
formation which has a centre and whose angle of rotation is equal

8. Saks and A. Zygmund, Analytic Functions. : 6
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to zero, is called a dilation. Particularizing formula (14.3) ym obtain
as the general form of a rotation, and of a dilation, with centre

at 2, the respective formulae:
(14.4) where 0 is the angle of rotation,

(14.5)  L—z2o=h(2—2), where % is the coefficient of similarity.
If h(g)=az-+b, where a=r¢’5£0, then taking
hy(2)=2-+D,

£ —2p=6“(2—2),

hy(2)=6"%, hy(2) =72,

we have h=Dhyhsh,. Consequently:

(14.6) BEvery linear tramsformation is the product of a rotation with
centre 0, a dilation with centre 0, and a translation.

Linear transformations — as is evident immediately — form
a group (cf. Introduction, § 7). This group constitutes a subgroup
of a more general class of transformations called homographic trans-
formations.

Every transformation of the plane of the form

(14.7) _az+b

_cz+d’

where a, b, ¢, and d are arbitrary finite complex numbers such that
ad—be#0, is called a homographic tramsformation. In this transfor-
mation we associate the point z=ococ with the point [=a/e.

The expression A=ad—be is called the determinant of the
transformation (14.7). The assumption that A=40 is entirely nat-
ural; for were the determinant A to vanish, we should have
a/e=b/d, and the right side of the equation (14.7) would then reduce to
a constant (except for the point z=—d/e, at which it would assume
the indeterminate form 0/0).

Every homographic transformation is uniquely invertible and

. the inverse transformation of a homographic transformation is
also homographic, This is verified immediately by expressing z in
terms of ¢ from equation (14.7); we obtain z=(—dZ-+b)/(cl—a).

~ In a similar manner we easily verify that the product of two
homographic transformations is a homographic transformation. In
fact, if hy(2)=(a:2+b,)/(c2+dy), and he(2) =(as2-+b,)/(¢s2+ds), Where
a0, —by6,7#0 and a,d,— bye, 540, then we find, for h=hsh,,

_ %a(@#+by) +by(02+-di) - (@301~ by01) 2+ (aghy -+ badhy)
Ca(aa2+by)Fdy(ez+dy)  (Catyt dy0q) 2 (0Dy -+ dody)

4

.

h(z)
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The determinant of this transformation is equal to
(@183 — b161) (@adp— bgCq) # 0.
The homographic transformations therefore form a group of
transformations. .
As in the case of a linear transformation (cf. theorem 14.6),

every homographic transformation can be represented as the pro-
duet of several more special transformations.

The homographic transformation given by the formula

¢ ”
— a=

2—a
will be called an inversion with respect to the circumference C(a;r)
(where az<co and 7z£o0).

Under this transformation the circumference C(a;r) is trans-
formed into itself (the point 2=a-+rexpif is transformed into the
point {=a-+rexp(—if)); the region interior to the circumference,
i. e. the circle K(a;r), and the exterior regiom, 4. e. CK(a;7), are
transformed into each other; in particular, the points a and oo are
transformed into each other. )

‘We shall also call an inversion with respect to the circumference
C(a;r) an tnversion with centre a and radius r, and, in particular,
an inversion with respect to C(0;1) — simply an inversion. The
inversion, expressed by the formula {=1/z, is used frequently when
we are concerned with a transformation of the plane into itself,
such that the point oo is transformed into the point 0 and conversely.
By means of this transformation every point 2 of the circumference
C(0;1) is transformed into its conjugate point %, 4. e. into one
symmetric to it with respect to. the real axis.

(14.8) Bwery homographic transformation is the product of a finite
number of rotations, dilations with centre 0, iramslations, and in-
VErstons. '

Proof. Let h(z)=(az+b)/(cz+d) be a homographic function.
We may assume that ¢#0, since for ¢=0 the function h(z) is linear
and the theorem reduces to theorem 14.6. Hence we can write

a be—ad 1
h —2 R » ——
()=~ TR

¢ c?

therefore, taking
be—ad @

ha(2)= Zt+-

a 1
hl(z)':z‘{‘g’ hz(z)=;’ )

6*
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we have h=hshsh,, Where hy is an inversion, and by and’ h, linear
transformations. Since, by theorem 14.6, every linear transforma-
tion is the product of a rotation, a dllauon with centre 0, and a trans-
lation, theorem 14.8 is proved.

As we have seen, undeér a linear transformation & circumference
is always transformed into a circumference, and a straight line into
a straight line. However, under homographic transformations a cir-
cumference may be transformed into a straight line and conversely.
In order to simplify formulations we ghall call a straight line with the
point co added to it, a closed straight line or an. improper ctreumference.
In this way we can express the fundamental geometrlcal property
of homographic transformations as follows:

(14.9) A homographic tmnsfomnatwn always transforms a circum-
ference into a circumference.

Proof. The equation of a circumference can be written in
Cartesian coordinates in the form

(14.10) A(x249?)+Bx+Cy D=0,

where 4, B, O, and D are real numbers, [4]|-|B|4|C0|>0; and
|B] 4+ 0|+ |D|>0. In view of theorem 14.8, it is sufficient to show
that the circumference (14.10) is transformed into a circumference
under the . inversion (=1/2. Taking z=z-1iy, {=&-Fin, we have
w=§/(E&2+n?), y=—y/(8+n?), and from equation (14.10), after easy
simplifications, we obtain .

A+ BE—Cn+D(£2+72)=

i. e. again an equation of a circumference, proper or improper,
depending on whether D40, or D=0.

Since under every inversion the centre of inversion is trans:
formed into the point oo, and on the other hand a circumference is
improper if and only if it confaing the point oo, it follows in
particular from theorem 14.9 that

(14.11) Under an inversion with an arbitrary centre, a circumference
18 transformed into a proper circumference or into an improper circum-
ference (a closed line) according as to whether the cemire of imversion
does mot lie on the circumference, or lies on it.

EXERCISES. 1. Every transformation by a motion in the plane

can be written in the form of two real equations, é=a--xcosa—ysina,
n=>b+twxsina+ycose, where o« is the angle of rotation of the transformation.
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2. Let R be a set of points one of whose coordinates is rational and the
other irrational, Show that by means of a suitable rotation this set can be
transformed into a set all of whose points have both coordinates irrational
(Sierpinski).

3. A transformation of the plane is given by means of two real equations:
(%) E=a-+tu+vyy, ’ N=b-+uyx+vsy.

Show that in order that-the transformation () preserve the distance hetween
points it is necessary and sufficient that u]4u;=1, v}+vi=1, uw;+usw,=0.
Show that if this condition is satisfied, then the transformation is either a mo-

tion, or the product of a symmetry with respect to the z-axis and of a motion,
4. e. it is a transformation of the form {=g(Z), where {=g¢(z) is a motion.

. 4. Show that every transformation of the plane, which preserves the
distance between points, is either a motion, or the product of a symmetry
with respect to the x-axis and of a motion.

[Hint. Denoting by (&,7), (a,b), (a+m;,b+n,), and (a-F+my,b+n,), the
points into which the points (x,y), (0,0), (1,0) and (0,1) are respectively
transformed, express the fact that the distances of the point (&£,7) from the
points (a,b), (a+my,b+n,), and (@a+ms,b-+n,), are Tespectively equal to the
distances of the point (x,y) from the points (0,0), (1,0), and (0,1); then
make use of exercise 3.]

5. Show that every homographic transformation, not an identity, has al-
ways one, and at most two invariant points (an énvariant point of a transforma-
tion is a point which goes into itself under the transformation).

Homographic transformations which have two distinet invariant points
are called loxodromic, and transformations which have only one invariant
point, parabolic. 'I‘he identity transformation is included in each of these
classes.

Distingnish the loxodromic and parabolic transformations among the
linear transformations. Investigate to which of these two classes of transfor-
mations the inversions belong.

6. Show that the general forms of the loxodromic and para.bohc trans-
formations, not identities, with finite invariant points are given by the re-
spective formulae:
£—2 2—2y 1 1 i
i =k, Rk20EZD, ® ?_%H (0),
where z,,2, (for the loxodromic transformation) and 2, (for the parabolic trans-
formation) denote the invariant points of the transformation. .

Indicate the change in the formulae (a) and (b) in the case of an invariant
point at infinity.

Verify that the loxodromic transformations with common invariant points
21,%s, form an Abelian group; the parabolic transformations with a common in-
variant point also form an Abelian group. (A group of transformations is said
to be Abelian — named after the Norwegian methematician Abel — if the
multiplication of transformations in this group is commutative, . e. if A hy="hyh;
for every pair of transformations h, and h, belonging to this group).

(2)
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7. A homographic transformation is termed real if it transforms every
real point into a real point. The coefficients of areal transformation are real,
or become real after a suitable reduction.

If h(z)==(az+Db)/(ce+d) is a real transformation and the coefficients
a, b, ¢, and d are real, then by the signum of this transformation (signh) we
mean -1 or —1, depending on whether the determinant ad—be i3 positive or
negative. The signum does not change when the coefficients of the trans-
formation are multiplied by the same real factor, positive or negative.

Verify that: 1° if b is a real homographic transformation, then
signh~*=signh; 2° if h, and h, are real homographic transformations, then
signhyh,=signh,-signh,; 3° the real homographie transformations of positive
gignum form a group. ‘

8. Write the loxodromic transformation (a) of exercise 6 in the form
t=(az+pB)/(2+8) and caleulate the coefficients «,B, and 6 in the following
two cases: 1° when 2,2,, and &k are real numbers (2,72, I 0); 2° when
2y =u-+iv and z,=u—iv are conjugate imaginary points, and k= ¢,

Show that in both cases the transformation is real, and in case 2° the
signum of the transformation is always positive, while in case 1° it is positive
or negative depending on the sign of k.

9. The loxodromic transformation (a), exercige 6, (with an obvious mod-
ification of the formula when one of the points 2,,2, is at infinity) is called
hyperbolic if & is a real number, and elliptic if % is of the form ¢®. The identity
trapsformation is ineluded in the hyperbolic as well as in the elliptic trans-
formations.

Show that every real homographic transformation (not an identity) has
either 1° two distinet real invariant points, or 2° two conjugate imaginary
invariant points, or finally 3° one real invariant point — and that depending
on these three cases it is 1° hyperbolic, 2° elliptic, or 3° parabolic.

10. The hyperbolic transformations, with a given pair of invariant
points, form an Abelian group. Similarly for elliptic transformations (cf.
exercise 6). .

11. Let 2, and 2, be two distinct points in the plane, and let .© and €
denote respectively the group of all homographic hyperbolic transformations
and the group of all elliptic transformations, with the same invariant points
2, and 2,.

Show that if w i3 an arbitrary point of the plane, different from 2, and z,,
then the set of all points Z(w), where h denotes an arbitrary transformation
belonging to the group H, is a circumference passing through the poirts 2,
and z,. When the point w varies over the plane we obtain all the eircumferences
passing through the points 2, and #,. These circumferences are called the ira-
jectories of the transformations belonging to the group 9.

Formulate analogous definitions and theorems for the group & of elliptic
transformations.

12. Let h(z) be an arbitrary homographic transformation of the hyper-
bolie, elliptie, or parabolic type. Every point w,, different from the invariant
points of the transformation %, determines a sequence of points infinite in both
direetions
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such that w, ,=h(w,) for n=..., —1,0,+1,... Show that all the points of
this sequence lie on a certain trajectory of the transformation h, and: 1° in
the hyperbolic case the sequence {w,} tends to one or the other of the invariant
points of the transformation h depending on whether n— 400, or n->—oco;
2° in the elliptic case there either exists an integer p such that w,,  =w, for
every m, or the points of the sequence {'w,,} form an everywhere dense set on
the trajectory (cf. § 10, exercise 11); 3° in the parabolic case the sequence {w,}
tends to the invariant point of the transformation when n—-+ oo as well as
when n—+— co.

§ 15. Similarity transformations. Referring to the considera-
tions of § 5 and § 6, we shall now give the fundamental geometric
interpretation of the derivative in the complex domain. We shall
first prove the following theorem:

(15.1) If a function

(15.2) {=W(?)

is continuous and finite in the neighbourhood of a point z,7%occ and
has at this point the total differemtial (A--Bi)Aw+(C+Di)dy with
determinant AD—BC 0 (where A, B, O, D are real numbers), then

to each direction 1° there corresponds a certain direction A* such that
when the curve C

©) 2=2(t), where a<i<h, z(a)=2,
with inittal point 2y, has the direction 1° for t=a, then the curve I'
(I t=t{t)=WI[e(t)], where a<I<bh, {(a)=C,

which has initial point [,=W(z,) and is the image of the curve C-
under the transformation =W (2), has the direction 1° for t=a.

This correspondence between the directions 1° and A° is giwven by
the formula

(15.3) z=ﬂ+vi=h[(4m+an)+¢(Bm+1m)],

where l=m--ni and A=p-+vi are any direction numbers of the di-
rections 1° and 10 respectively, while h is an arbitrary positive factor.

Proof. Let 19=m°+n% be the direction (i. e. the normalized
direction number, cf. § 12) of the curve C for t=a. Taking

2(t)y=a(t)+ iy (t) and:

Az=z(a+ 4t) —2(a), Ax=x(a+ At) —x(a),

Ay =y(a+A4t)—y(a),
Al=((a+At)—L(a),

we have
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0__ 40 ‘ '0 e [N S
(15.4) - U=ml+n’ Aillrfjl+ | 42| a0+

On the other hand,
AL=W [(a+ A1) ]—W [2(a)]=W (2,1 42)— W (2)
=(A-++Bi)Ax+(C+Di) Ay +e(42)| 42|,
where ¢(Az)->0 when Az—0, and hence when A{—0. Consequently,
from (15.4),
yils

(15.5) lim — =(4-+Bi)m'4(0-+Di)no.
a0+ 142

The expression on the right side of (15.5) certainly does not
vanish; in fact, if it were zero, then we ghould have Am?4- (On°=0
and Bm®+Dn®=0, and hence, in virtue of the fact that 4D —B( 50,
both numbers m®, #° would vanish, which is contrary 1145) t:he equa-
lity |I°|=|m®+n%|=1. From the existence of the lnmt. (15.5),
therefore, follows the existence of the limit of the expression

AL _ Ac]| 47
[AL] ™ 142] 42|

o dx o Ay
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which is the direction A° of the curve I' for t=a; in addition, we

obfain from (15.5) ‘
(AmP+ On®) 4 (BmO+-Dnd) 4 .
[(Am® + Onl)+ (Bm® +Dnl)i|

" Therefore, if I=m-ni is an arbitrary direction number of
the direction °, and A=pg--»¢ an arbitrary direction number of
the direction A° (4. e. if 1 and A differ from 1° and A9, respectively,
at most by real positive factors), then in virtue of equation (15.6)
they satisfy the relation (15.3), where % is a positive factor.

A -transformation (=W(z), continuous in the neighbourhood
of a point 2,500, is sald to be a similarity transformation atb
this point if o

1) the function W(e) is finite at the point 2z, and has at this
point a total differential (A--Bi)dzx-+(C-+Di)dy with determi-
nant AD—BC 0,

2) in the correspondence of directions which -this trans-
formations determines in virtue of theorem 15.1, the angle between
directions is preserved; in other words: denoting by A,,4, the pair
of directions corresponding to a pair of directions I,,1,, we have
(in agreement with the definition of angle, § 12)

(15.6) P=
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(15.7) arg A, —arg A, =argl,—argl,.
Condition 2) can be replaced by the following:

2P%) in the correspondence of directions determined by the
transformation {=W(z) at the point z,, the angle between cor-
responding. directions has a constant value (obviously to within
an arbitrary multiple of 2r).

In fact, for the numbers li, 13y 24, A3 considered above, condi-
tion 2P5) means that

arg A, —arg ly,=arg A, —argl,,

and this relation is equivalent to relation (15.7). The constant angle
which the corresponding directions under a similarity transforma-
tion at the point 2, form with each other, will be ealled the
angle of rotation of the transformation at this point.

(15.8) In order that a transformation {=W(2), continuous in the
neighbourhood of a point zy# oo, be a stmilarity transformation af
this point, it is mecessary and sufficieni that the function W(z) be
finite at this point and have a derivative W'(20)540. If this cop-
dition is satisfied, then argW'(z,) is the angle of rotation of the
gwen transformation at the point z,.

Proof. Let us assume at first that the given transformation
is @ similarity transformation at 2,. Then the function W(z) has
at this point a total differential of the form (4 -+Bi) dz+(C+Di)dy
with determinant AD—BC+#£0. Therefore we have:

(15.9) Wa(z)=A+Bi,  Wi(2)=C-+Di.

Let 6 be the angle of rotation of the transformation L=W(2)
at the point 2, and let y=tanf. To the direction whose direction
number is I=m--ni there corresponds, in virtue of theorem 15.1,
the direction whose direction number is :

A=(Am+-Cn)-(Bm+Dn)i;
therefore, by theorem 12.5, we have for every pair of real numbers
m, n, not vanishing simultaneously,
m(Bm—+-Dn)—n(Adm-+Cn) .

(16.10) m(Am—+Cn)+n(Bm--Dn) =tan =y,

and hence ‘
(15.11)  (B—Ay)m*+[(D—4)—(B+0)ylmn—(0+Dy)n2=0
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(in the case when y=tanf=o0, We set the denomi?.mtor of 17?‘1.0 frac-
tion (15.10) equal to zero, which makes the caleulation. even s?mpler).

From (15.11) we obtain B=Ay, O=-—Dy, .DT4=T(.B—|~G?y,
and substituting the values of B and C from the flI’ﬁb two equa-
tions into the third, we have (D—-A)(l—{-yz);: 0, and hence ‘Aml‘);
next, from the first two equations we ge.t B=.—0. (.Jonse(;@ue]’ntly,
in virtue of (15.9), we have W (2)=A4+Bi== —%(0+D@)=~@'Wy(zo),
i. e. the function W(z) satisfies the condition Of.' Cauchy'-Rl‘ema.nn
at the point 2, and therefore, by theorem 6.4, it hag a derivative
at this point. Moreover,

W (20) P = [Wis(tg) 2= A2+ B2= A D —BC #0. :
‘Conversely, if the function W(z) has at the point 2, a derivative
W' (2) =A+Bi#0,

then, by theorem 6.4, it has the total differential W’(z,,)(Am-—lmiAy}.m
=(A+Bi) A+ (—B+Ai) dy with determinant A’"—t—Bz'>0 at  this
point. Therefore, to the direction having the direction guml.)er
I=m--ni there corresponds, in virtue of theorem 15.1, a direction
héving the direction number

h= (A4 Bi)ym-(—B-+Ai)n= (4 +Bi)(m-4ni)=W'(z)l.

By theorem 9.7, the angle between the directions ! and 4 is equal
to argA—argl=arg W'(2,)l—argl="arg W'(z,), and hence ha,:.s 3 con-
stant value. The transformation =W(z) is therefore a similarity
transformation at the point z,, and arg W'(2) is the angle of rotation
of this transformation. '

EXERCISES. 1. If a function’ W(z) has a total differential at the
point z,, then the ratio [W(z)— W (2)]/(—#) has a finit.e limit when z. tends
to 2, along any half-line with origin ‘at the point z,. Assuming that (A.+Bm) Az
+(0+Di) 4y is the total differential of the function W (z) at the point %, cfml—
culate this limit, as well as its absolute value, for the half-line z=2,- (m+ni)t.

2. If a function W(2) has a total differential at the point 2, a,n'd if the
limit of the real part of the ratio [W(2)— W (2)]/(2—=,) exists, is finite, a.nd
the same when 2—2, along three half-lines with origin at the point #,, of which
no two lie on one straight line, then the function W(z) has a derivative at the
point 2. )

This is a generalization of the theorem contained in exercise 3, §‘6. Fo.r-
mulate and prove an analogous generalization of the theorem contained in
exercise 4, § 6.

3. If a function W (z) has a total differential at the point #z,, and if the
limit of the ratio [W(2)— W (2,)]/(2—2,) is the same when z-»z, along two half-
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lines with origin at the point 2, and not lying on one straight line, then the
function W(z) has a derivative at the point «, (Menshov).

[Hint. It can be assumed that one of the given half-lines has the direc-
tion of the positive real axis.]

This theorem can be considered as a generalization of theorem 6.4, since
the Cauchy-Riemann conditions denote the existence of the limit of the ratio
under consideration along two half-lines parallel to the real and the imaginary
axis, respectively. .

4. Tf the function W(z), continuous in the neighbourhood of a point 2,
has a total differential at this point, and if in the correspondence of the direc-
tions determined at the point 2, by the transformation {=W(z) there exist
three pairs of corresponding directions (1,41)s (lsyAs), (Is,43), such that 1° no
two of the directions I,,1,,1, are identical or opposite (i.e. are not the direc-
tions of half-lines with origin at the point 2, and lying on one straight line)
and 2° 9 (1,1)=<(A,4,) for i,k=1,2,3, — then {=W(z) is a similarity trans-
formation at the point 2y, 4. e. the function W(z) has a derivative #0 at this
point (Menshov). '

5. Letz, and 2, be two distinct points, and let £ and G be respectively
the groups of all hyperbolic and of all elliptic transformations having 2, and 2, ag
invariant points. Then the trajectories of the transformations G form a family
of circumferences orthogonal to the trajectories of the transformations .H;
more precisely: through every point of the plane, different from the given
invariant points, there pass two circumferences, orthogonal to each other,
which are respectively trajectories of the transformations § and G.

[Hint. Cf. § 14, exercise 11; first prove the theorem for the case when the
invariant points are the points 0 and oo; proceed to the general case by appeal-
ing to the fact that homographic transformations are similarity trans-

formations and therefore preserve orthogonality (perpendicularity) of
circumferences. ]

§ 16. Regular curves. A curve C given by the equation (cf.
§ 13, and Introduction, § 12)

{16.1) z=z2(f), where a<(t<b,

will be called regular, if the interval [@,b] of its parameter can be
divided info a finite number of subintervals such that in each one
of them the function z(f) has a continuous derivative z'(f) (at the
end-points of these subintervals the function may have only one-sided
derivatives; these end-points may therefore be ‘“‘angular” points of
this curve). It is evident that the regularity of a curve is a prop-
erty which does not depend on the manmner in which the curve
is represented parametrically (cf. Introduction, §12).

If ty,ty,...,, denotes an arbitrary sequence of values of the
parameter, such that a=t,<#,<... <t,=>b, then the upper bound of
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n—1
the sums 2 |#(trya) —2 ()| i3 called the length of the curve
z==2(t), on the interval [a,b] of its parameter. H the‘ function
2(t)=u(t)-+4y(¢) has a continuous derivative in this interval, then,
as is well known from real analysis, the length of the curve
(16.1) is given by the integral

b
=1z
a
Since the length of a sum of several curves is equal to the

sum of the lengths of these curves, the above formula extends im-
mediately to every regular curve in the interval [a,b]

b

(16.2) OF+ly 0P 2= [l () at.

§ 17. Curvilinear integrals. Let ¢(i) and h(t) be two finite
functions on the interval [a,b]. Let us consider sums of the form

n—1
gﬂ 9(t) [Pty 1) —h{t) 1y

where a=t,<t;<...<t,=b and &<t;<tp.1-

If a finite limit of these sums exists as the characteristic
number (cf. Introduction, § 9, p. 25) of the sequence #,ty,...,%, tends
to zero, then we say that the function g¢(f) is integrable in [a,b]
with. respect to h(t); this limit is called the Stieltjes integral of the
function g(t) with respect to h(t) in [e,b] and will be denoted

by fg t) dh(t).

If the functions g¢(¢) and h(t) are continumous on the interval
[a,b] and if, in addition, the funection &(f) has a continuous deriv-
ative on this interval, then the limit considered certainly exists and
is expressed by an ordinary Riemann integral. In this case we
have

17.1)

(17.2) f g(t)dh(t f g(e) B! (t) di.

In order to prove this, it may be assumed that the function
h(t) is real, for in the contrary case we could carry out the proof
separately for its real and imaginary parts. Let M be the upper
bound of |¢(t)| on [a,b], and let ¢ denote the characteristic number
of the sequence %,,%,,...,%,. Let w(l) be the upper bound of the

numbers [h'(f)—h'(a)| When B—al <!, a<<a<f<b. Denoting for
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brevity by § the sum (17.1) and applying the theorém of the
mean, we have

n—1 ’
S=k_3‘,og(t;;)h’(tk)(tk+1—tk), where b <t Chiyr, Bl teyi

Consequently,

Ne1
(17.3) 8= 3 90605 (6) (sa—t0)| <M b —a) ().

In virtue of the continuity of the derivative h'(f), the number
w(l) tends to zero together with I. On the other hand, the sub-
trahend between the absolute value signs in formula (17.3) is an ap-
proximating sum of the Riemann integral appearing on the right
side of equation (17.2), and tends to this integral when —0. There-
fore, the limit of the sum § also exists when 1->0, and the equa-
tion (17.2) is satisfied.

“If the functions g¢(¢f) and k() are contmuous on the interval
[a,b], and if the function g(¢) is integrable with respect to h(f) on .
each of the two intervals [a,c] and [c,b], where a<e<bh, then it
is also integrable on the entire interval [a,b] and its Stieltjes in-
tegral on this interval is equal to the sum of its integrals on the
two subintervals mentioned. This observation enables us to formu-
late the result just obtained in a somewhat more general form:

(17.4) If the functions g(t) and h(t) are continuous on the interval
[a,b], and if this interval can be divided into a finite number of sub-
intervals such that on each of them the function h(t) has a continuwous
derivative, then the function g(t) is integrable with respect to h(t) on
the interval [a,b], and its Stieltjes integral on this interval reduces to
a Riemann integral by means of the equation (17.2).

If C is an arbitrary continuous curve

(17.5) z=z(t), where a<{t<b,

and F(z) is a finite function defined on this curve (more precisely:
on the geometric image of this curve, cf. Introduction, §12), then
by the integrability and the curvilinear integral of the function F(z)
along the curve ¢ we mean, respectively, the integrability and the
Stieltjes integral of the function F[z(f)] with respect to the
function 2z(¢) on the interval [@,0]. We shall denote the curvi-
linear integral of the function F(z) along the curve ¢ by [F(2)de.
¢
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From‘ theorem 17.4 it follows directly that

(17.6) A function F(2), finite and continuous on & regulqr curve O,
always has a curvilinear integral along this curve, where, if the curve
C is given by equation (17.5), then

b
(17.7) [F(2)de= [Fla(t)]e'(t) d.
C a

From this equation it follows, among other things, that the
value of the integral of a continuous function along a regular curve
does not depend on the parametric representation of the eurve
(¢f. Introduction, § 12). In fact, let t=@(z) be a non-gssontml
change of the parameter, by means of which the curve ¢ given by
equation (17.5) is transformed into the curve I' whose equation is

z=z[p(7)], where a{r<p.

The function ¢(r) is increasing and continuous on the int(?rYeLI
[a,f], and is differentiable, with the exception of at most & finite
number of points. Therefore, for every function F(2), continuous
on the curve 0, or — what amounts to the same thing — on the
curve I, we have

: 3 de dt
fF(z)dz*'——fF[z(t)]%;dt:flﬂ[z(t)]a-sﬁ%-dr
C a ., a

B
_—_—fF{z[tp(r)]}gédtsz(z)dz.
a r

From theorem 17.6 there also result immediately the following
relations, in which ¢, ¢, and O, denote regular curves, and F(z)
a continuous function on C:

(17.8) [F@)de=—[F(2)de;
—c c

1

(179)  [P(e)de=[F(z)de+ [F(e)de, if C=0y+0Cy;
. C C, C,

b ‘
(17.10) ] [ F(z)deM (12’ (t)\dt=ML,
(o] a

where M denotes the upper bound of |F(2)| on O, and L the length
of the curve O. ‘
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§ 18. Examples. In this section we shall establish termino-
logy for a few regular curves with which we shall deal more often.
Let us recall first of all that curves which differ from each other
at most non-essentially, as well as their geometric image, are usu-
ally included under the same term. In § 12 of the Introduction
we have already defined a segment and a polygonal line as curves
in the plane; these are obviously regular curves. In particular, the
perimeter of a rectangle (cf. Introduction, § 8, p. 19) may be consi-
dered as a regular closed curve without multiple points. Making
use of formula (16.2), we see that the length of a segment is equal
to the distance between its end-points.

By a circumference with centre z,-co and radiusr=£co we mean
the closed curve without multiple points

(18.1) z=2y+re", where 0<i<2n.

Its length is given by the integral ‘
f P }n #( d1=2

— | dt=r =2mr.

7 l le 0

. 0 0

If K=K(zy;7), then (K) will denote the circumference (18.1).
‘We shall also denote this circumference by C(2o;7), 4. e. in the same
way as its geometric image (which is also called a circumference;
cf. Introduction, § 8, p. 20). Writing for brevity C,=C(2y;7), We
have, in virtue of theorem 17.6, for every integer kst —1:

2n

r ) 2F+1)mi _
J(z—'?fo)kdz:ir"“fe("“)”dt =gkt ? _l:O,
<, 0 k+1
while
2%
,iz_ — ’ifdt=2'rc'i.
A I
Consequently,
(o N e [ 0 for % = —1,
C(g}_r)(z %) de= 12ni  for k=-—1.

As an example, and for future application, we shall calculate
a few curvilinear integrals along polygonal lines.

If F(z) is a finite and continuous function defined on 2 seg-
ment [2;,2,], then writing the equation of this segment in the
form z=2,+(2;—2,)t, where 0<{t<{1, we find
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[ P()e 2g—2;)t 42,1 d;

2y —2 f B
XA

in particular, for a segment [z,2,] parallel to the axis of ab-
scissae,
i 2y=01FW1, R=Ts W,

(183)  [F(a) dz—frerzyl)

XA
and similarly for a segment [#,,2,] parallel to the axis of ordi-
nates,

Yy
[ P@)de=i [Flo+iy)dy, i

[2,,%,] v,

(18.4) =@+ Z=2;+1Y,.
Therefore, for every function F(z) continuous on the perimeter
(I) of the rectangle I=[a,,a,;b.,b,], :
bﬂ
F(o+-iby)] do +i [ [F(ay+iy)—
bl .

[P(2)de= f [If‘a:—{-zb Fay-+iy)]dy.

(I .
In particular, therefore, for the square @=[—a,a; —a,a] we

have, in virtue of formula (18 4),

Substituting here z—=z, for 2, where 2, is an arbitrary complex
number, we obtain the formula
dz

=2,
2—2,

(18.5) where @ is a square with centre z,.

(@)

EXERCISES. 1. Let W(2) be a continuous function in the neighbour-
hood of a point 2, having a total differential at this point. Prove that, in this
case

l1m——— fW (#)de=1i[W, (zo)-l-zW (20)]»

r0 TT*

where O, denotes the c1rcumference C(zp;7).
Hence, in order that W(z) have a derivative at the point zo, it is neces-

sary and sufficient that 11m~—w f W (2)de= 0.

2. Let P(z) and Q(z) be two polynonuals, and let @ (=) be of higher de-
gres than P(z). Denoting by I,,, where m is an arbitrary positive integer, the
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square with vertices at the points (m~+1)(£144), prove that the integrals

1 P P
f — -~——(z) dz and f cotwz (%) dz tend to 0 when m-»oo.
@ )Smﬁz (=) @ Q) .

[Hint. Make use of theorem 9,12; note that 2z [gi?*’gé z)] 0 when
) —2)

2—>o00; when integrating along the perimeter (1), combine the integrals along .
opposite sides.]

3. Calculate the integrals

27

o
[ e=sfsin (n6—sin6)df  and f =% cos (nf—sin0) do,
0 0 .

where n is an integer.

[Hint. Notice that these integrals are the real and imaginary parts
respectwely, of the integral of the function "2 (**') along the circumference
C(0;1).

4 Let D, denote the semi-circumference z=re®, where 0 Lo . Assuming
that a,,a,,...,a, are real positive numbers and that A+ A+ +4,=0,
calculate the limit of the value of the integral

A, expia,z4 4, expia,z+ ...+ 4, expia, z i
zﬂ

D"
when 7—>0 and when r—oo.
expyzrt dz

= s where a is an
ginnz z2—a

5. If —l<w<1, then the integral I=

arbitrary number and C,=C(0;n+3),

tends to O as n tends to -+ oo
ranging over integral values. :

S. Saks and A. Zygmund, Analytic functions. 7
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