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INTRODUCTION
THEORY OF SETS

§ 1. Fundamental definitions. The fundamental concept of
the theory of sets is the concept of aggregate or set. If A is any
set of objects, then the objects belonging to the set A are called
its elements; the symbol aed is read: “a is an element of the set
A” or “a belongs to 4. The set consisting of only one element
a is denoted by {a}.

It is convenient to introduce the notion of an emply set, 7. e.
one containing no element. Such a set is denoted by 0.

If A and B are sets, and every element of the set 4 belongs
to B, then we say that A is a subset of the set B, or that 4t is con-
tained in B, and we write ACB or BDA. If ACB and at the same
time BCA, then the sets A and B are identical, 7. e. they congist
of the same elements; we then write 4=B.

The sequence of sets {A,} is called increasing if 4,C4,,, for
every n, and decreasing it A,,,CA, for every n. Increasing and
decreasing sequences of sets are referred to as monotonic sequences.

A set whose elements are likewise sets is frequently called
a family or system of sets (we also use the term family to denote
certain special sets; we frequéntly say e. g. a family of fune-
tions).

If A is a family of sets, then the set of all those elements which
belong to at least one of the sets of the family 9 is called the sum of
the sets of the family 9; the set of all those elements which belong
simultaneously to all the sets of the family 9 is ealled the product of
the sets of this family. The sum and the product of the sets of the
family 9 are denoted by XU and ITY, respectively. '

I a family of sets is a finite sequence of sets A;,4,,...,4m,,
then the sum of these sets is also denoted by A;+A4,+...+ Ay, or

m m
by YAy, and the product by 4, 4,-... 4y, or by [1A%. The sum
Fel F=1

of an infinite sequence of sets A;,A4,,...,dz,:.. i8 _denoted gimil-
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2 INTRODUCTION. Theory of sets.

arly by A,+4,+.. —{—Ak—[— ., or by ZA,“ and the product by
A4, Ay, or by HAk To denote the sum and the product

of a finite or infinite sequence of sets {A,,,} we likewise uge the
symbols Y4, and [JA;, when the range of values of & is known
k k

from the context.

Sets whiech have no elements in common, ¢. e. whose product
is empty, are called disjoini.

If 4 and B are sets, then B—A denotés the difference of these
two sets, 4. e. the set of elements which belong to B, but do not
belong to A. If, in particular, ACB, then the difference B—A4 is called
the complement of the set 4 with respect to B, and we denote it by
CpA. Usually in redsonings a certain fixed set H (‘“space”) usually
appears which includes all the other sets considered. Then the com-
plement of the set A with respect to the set H is called briefly the
complement of the set A, and instead of Czd we write CA.

The following formulae, known as de Morgan’s formulae :
(1.1) 0 A4,=[]CA,, C[]4,=}CA,,
n n n n

hold for every sequence of sets {4} included in H.

Indeed, if a i3 an element of the set appearing e g. on the
left side of the first of the formulae 11 then this means that a
does not belong to any one of the sets An, 4. e. that it belongs to
each of the sets CA,, which again means that it belongs to the set
appearing on the right side of this formula. The second of the
formulae (1.1) is proved similarly.

EXERCISES. 1. Verify the following identities:
4-YB,=)A-B,, A+][B,=]I(4+B,),

in which 4,B,,B,,...,B,,... denote arbitrary sets. The first of these iden-
tities expresses the distributivity of the multiplication of sets with respect to
addition, the second — the distributivity of the addition of sets with respect.
to multiplication.

Deduce the second identity from the first by means of de Morgan’s
formula.

2. Verify de Morgan’s formula for arbitrary families of sets: if 2 is an
arbitrary family of sets, and 2 denotes the family of complements of sets
belonging to 2, then CIZY =ITB.
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§ 2. Denumerable sets. If to each element of the set 4 a cer-
tain element of the set B has been assigned in such a way that
each element of the set B is correlated to one and only one element
of the set A, then we say a one-to-one correspondence is estab-
lished between 4 and B. Two sets between which such a correspon-
dence can be established are called sets of the same power. Every

set of the same power as the set of all the natural numbers

1,2,...,m,... is called a denumerable set. A set which is not finite
or denumerable is called non-denumerable, while finite sets as well
as denumerable sets are included under the name of at most denu-
merable sets. A set is therefore at most denumerable if and only
if its elements can be arranged in a finite or an infinite sequence.

The sum of a sequence, finite or infinite, {AP);_; o  of at most
denumerable sets is also an at most denumerable sef. In fact, arrang-
ing the elements of each set A® in a finite or infinite sequence
a®, a,...,a,..., we can arrange all the elements of the set
DA™ in the sequence

a'(ll)a “<21)a a‘(lz)r a'(31)’ ag)’ a‘(13)7
consisting - of a succession of finite groups of terms P so that
the sum of the indices ¢ and % of each term in the n-th group is n+1.

In particular, for example, the set of all integers is denumerable;
indeed, we can arrange it in the sequence 0,1,—1,2,—2,...,%,—n,...

If AD A® AW i3 a finile or infinite sequence of ai
most denumerable sets, then the set A of all finite sequences of the form
a®, a®,..., a®), where k is an arbitrary natural number, and
a®, a‘2) a‘k) are arbitrary elements of the sets AW, AP, ., A®
'respectwely, is also at most demumerable. The proof proceeds in
2 manner similar to the preceding reasonjng We arrange the
elements of each set 4® in a sequence a{’,a$,...,a{?,... Then
all the elements of the set A4, 4. e. all finite sequences of the form
(a?, P, ..., af?), can be arranged in a sequence, Writing them
successively in finite groups of terms with sums of lower indices
j14jg-+...-jr equal to 1, 2, 3, ete.

From this theorem it follows, for example, that the set of all
finite sequences (7, Mg, . ..,n;) of integers is denumerable; furthermore,
that the set of all rational numbers is also denumerable, since
each rational mumber is determined by a pair of integers. Next,
we obtain the denumerability of the set of all finite sequences of

. 1*
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4 INTRODUCTION. Theory of sets.

rational numbers (ri,7s,...,7,), and in particular — the denumer-
ability of the set of rational complex numbers, 4. e. of conqplex
numbers of the form a-+bi, where a and b are arbitrary real rational
numbers.

‘EXERCISES. 1. Prove that the power of an infinite set remaing un-
changed if an arbitrary finite or denumerable set is added to it (appeal to the
fact that every infinite set always contains a denumerable subset).

9. Prove that a line, an interval, and an open interval, are sets of the
same power (by line we mean the set of all real numbers, by interval [a,b]
(where a<Cb) the set of all numbers © such that a<<x<b, by open interval (a,b)
the set of all numbers z such that a< z< b; the numbers o and b are called the
end-points of the interval).

3. Show that the set of all intervals with rational end-points is denu-
merable (the explanation of terms is given in exercise 2).

§ 3. Abstract topological space. Although the object of our
considerations in the sequel will be almost exclusively sets contained
in the plane and functions defined on these sets, nevertheless in
certain topies of the theory of functions (e. g. in the definition of
Riemann surface, cf. Chapter VI) it is convenient to take as the
point of departure general abstract spaces defined by postulates.
Obviously a system of such postulates can be selected in various
ways. Let us assume here the system of Hausdorff!), only slightly
modified in order to conform with the future needs of this
exposition.

We shall call an abstract space each set H in which there has
been singled out a certain family § of subsets, called neighbowr-
hoods, satisfying the following postulates:

I If @ and b are two different elements of the space H, then
there exist fwo disjoint meighbourhoods U and V, such that ae U and
beV.

II. For each point a of the space H there exists a decrcasimg se-
quence of neighbourhoods {U,} containing the point a, such that if U
is an arbitrary neighbourhood containing the point a, then begimning
from a certain value of the index m, oll the neighbourhoods U, are con-
tained in U.

If a is an arbitrary point of the space, and {Un} a fequence
of neighbourhoods satisfying the condition of postulate II for this
point, then for every pair of neighbourhoods V and W containing

!) F. Hausdortf, Grundzige der Mengenlehre, Loipzig 1914, pp. 213, 263.
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the Apoint a we shall have, beginning from a certain value of the
index n, simultaneously U,CV and U,CW. Thus we obtain the
following theorem:

(3.1) If a point a of the space H belongs simultaneously to two
neighbourhoods V. and W, then there exists a neighbourhood which
contains the point & and is contained in each of the neighbourhoods
V and W. '

A sequence {Un} of neighbourhoods belonging to the family $
is called a denumerable base of this family if for every point a of
the space H and for every neighbourhood U containing this point
there exists a neighbourhood U, in the sequence {U,}, such that
aeU,CU. The space H is called separable if the family of neigh-
bourhoods corresponding to it has a denumerable base. The special
spaces which will be considered subsequently (plane, Riemann
surfaces) will all prove to be separable.

EXERCISES. 1. Let us denote by R a line, and by R,, R., R, R,,
and R;, the following families: 1° of sets each of which consists of exactly one
point of the straight line, 2° of intervals (together with intervals reducing to
a point), 3° of intervals with rational end-points, 4° of open intervals, and
5° of open intervals with rational end-points (cf. § 2, exercise 2). Verify that
each of these families can be considered as a family of neighbourhoods for
the line R (verify postulates I and II). Show that the family fR; is a denu-
merable base of the family R,.

2. Let H be a family of neighbourhoods for the space H (satisfying po-
stulates I and II), H, an arbitrary set in H, and £, the family of sets of the
form H,- U, where Ue$. Show that the set H; can be considered as an ab-
stract space with the family of neighbourhoods 9,.

3. A set A is called a metric space if to. each pair of elements %,y of
this set there corresponds a certain real number p(z,y), called the distance
between these two points, satisfying the following conditions:

(a) eo(z,y)=p(y,x)=>0 for each pair of points zed and ye A4, and o(z,y)=0
if and only if x=y;

(b) o(w,2)<<p(w,y)+ol(y,2) for each set of three points wed,yed,ze A,

By an open sphere, or neighbourhood, with centre z, and radius » (where
is a real positive number and x,eA4) in the space A we mean the set of all points
z of this space, such that p(z,,7)< 7. Show that the family of neighbourhoods
defined in this manner for a metric space satisfies postulates I and II.

4. Let o(%,y) denote the distance between two points in the metric space 4.
Verify that the formula go(x,y)=0¢(x,y)/[1+e(x,y)] defines a new distance in
this space (. e, that g, (,y) satisfies the distance conditions given in exercise 3).
In this new metric the distance between any two points of the space is less
than 1.
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5. Examples of metric spaces: 1° the straight line R: g(=x,y)==
=|z—y|; 2° the space C,; of functions continuous in the interval [0,1]: the dis-
tance p(x,y), when z(f) and y(f) denote two arbitrary functions continuous
in theinterval [0,1], is defined as the upper bound of |y(t)—w(?)| for 0<<I<<1;
3° the space C, of functions continuous on the entire straight line: we define
the distance g(x,y) of two such functions x(f) and y(f) as the sum of the series

o0
> % li’{;[ , where 3, denotes the upper bound of |y ) —a(t)| for —n<<t<<n;
n=1 !
4° the spa.c; M of functions bounded on the interval [0,1]: the definition of
distance is the same as that for the space C;.

Verify that the above definitions of distance satisfy conditions (a) and

(b) of exercise 3.

§ 4. Closed and open sets. In this section and in the foll-
owing two sections (§§ 5 and 6) H will denote amn arbitrarily
fixed abstract space with its corresponding system of neighbour-
hoods &, satisfying postulates I and II, § 3.

A point aeH is called a point of accumulation of a set ACH
if every neighbourhood containing the point ¢ contains points of
the set A other than a. The set consisting of the points of the set 4
and its points of accumulation is called the closure of the set 4
and is denoted by 4. A set A is closed if A=A, 4. e. if the set 4
contains all its points of accumulation.

More generally, if ACBCH, then the set 4-B is called the

closure of the set A in the set B, while the set A is said to be closed
in the set B if A=A-B, 4. e. if the set A containg all those of its
points of accumulation which belong to B. The closure of a set
in a closed set, and therefore — in particular — in the space H,
is obviously the ordinary closure.

A point a of a set 4, which is not one of its points of accumul-
ation, is called an isolated point of the set, and a set all of whose
points are isolated, is called an isolated sef. A non-empty set which
has no isolated points is called a set dense in diself, and a set gimul-
taneously closed and dense in itself is called a perfect set.

A point ¢ of the space H is called the limit of the infinite se-
quence {a,} of points, if every neighbourhood containing the point a
containg at the same time all the terms a, of the sequence, beginn-
ing from a certain value of the index n. From postulate I, § 3,
it follows that a sequence can have at most only one limit. A
sequence {a,} which has a limit is said to be convergent and its limit
is denoted by lim a,.

n
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(4.1) In order that the point a belong to the closure A of the set A it
is necessary amd sufficient that it be the limit of a sequemce {a,} of
points of this set. .

Proof. Let us assume that aed. Let {U,] be a decreasing
sequence of neighbourhoods containing a and satisfying the con-
dition of postulate II, § 3. Since ae 4, with every neighbourhood U,
Wwe can associate a certain point a,eA-U,. On the other hand, if
U is an arbitrary neighbourhood of the point a, then, beginning
from a certain value of the index #, all the neighbourhoods U,, and
therefore all the points a,, are contained in U. We therefore have
a==lim a,,.

n

Conversely, let us assume that ¢ is the limit of a certain se-
quence of points {a,,} of the set A. We shall consider two cases:
either all the elements of the sequence {a,} are, beginning from
a certain place, the same, and then, beginning from a certain value
of n, we have a=a,eACA; or the sequence Ja,} contains infinitely
many different elements, and then, as we see immediately, the
point @ is a point of accumulation of the set 4, and therefore aeA.

(4.2) The closure of am arbitrary set is a closed set, i.e. the relation
A=A holds for every set A of the space. ‘

Proof. If aed, then every neighbourhood containing a con-
tains points of the set A and therefore points of the set 4;
congsequently aeA and hence ECZ, which in view of the obvious
relation ACA gives A=A.

A point & of the set A is an 4nterior point of this set if there
exists a neighbourhood U such that aeUTUCA. The set of all the
interior points of the set A is called its interior and we denote it
by A°. The set A—A° is called the boundary of the set A. A set
which is identical with its interior is said to be open.

If a point does not belong to the closure of the set A, i. e. does
not lie either in the interior or on the boundary of this set, we say
that this point lies in the exterior of the set 4. To say, then, that
a certain condition is satisfied in the exterior of some set means
that it is satisfied in the complement of the closure of this set.

From the definition of closed and open sets it follows imme-
diately that
(4.3) The complement of every closed set is an open set; the comple-
ment of every open set is a closed set.
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If A and B are two arbitrary sets in the space H, then, as is
easily verified in view of theorem 3.1,

(A-B)=A°-B° and ;
By induction we immediately ‘generalize these formulae for

an arbitrary finite number of sets. On the other hand, if A is an

arbitrary finite or infinite family of sets, then, as we verify directly,
the interior of the sum of the sets of this family contains the sum
of the interiors of the sets of the family, while the closure of the
product of the sets of the family U is contained in the product
of the closures of these sets. Therefore we have the following theorem:

(4.4) The sum of a finite number — as well as the product of an ar-
bitrary family — of closed sets is a closed set. The.product of a finite
number — as well as the sum of an arbitrary family — of open sets
s an open set.

We say that a subset 4 of a certain set B is everywhere dense

in B it BCA. If B is the entire space H, then the last condition
can be written in the form of an equality H=A.

A gset whose closure has no interior points, %. ¢. does not
contain any neighbourhood, is said to be nowhere dense.

(4.8) If the space H is’ separable, then in this space:

1° every set B conmtains an af most denumerable subset every-
where dense in E; '

2° every isolated set Z is at most denumerable;

3° from every family of open sets, jointly covering a certain set,
a sequence of sets can be extracted which also covers this set;

4° every family G, of open disjoint sets is at most denumerable.

Proof. ad 1°: Let {U,} be a denumerable base (§ 3, p. 5)
of the family of neighbourhoods of the space H. With each neigh-
bourhood U, which contains points of the given set E we associate
a certain point a,¢U,-E. The set of points agsociated in this manner
with the neighbourhoods U, is denoted by A. This set is obviously
contained in ¥ and is at most denumerable. We shall show that
it is everywhere dense in ¥, 4. e. that ECA.

To that end, let a be an arbitrary point of the set E, and U
an arbitrary neighbourhood containing this point. In the base {U,}
there certainly exists a neighbourhood U, such that aelU,CU.
Consequently U, -E+#0, and the neighbourhood U, — and hence the
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" given mneighbourhood U — contains a point of the set A4 (the

point a,). Therefore aed, whence ECA.

ad 2° In virtue of 1° there exists an at most denumerable set
ZyCZ which is everywhere dense in Z. However, since the set Z
is isolated by hypothesis, it is easy to see that it is identical with
its everywhere dense subset. Consequently Z=Z,, . e. the set Z
is at most denumerable.

ad 3% Let @ be an arbitrary family of open sets and G the
sum of thesets of this family. Next, (as in the proof of 1°) let {Un}
be a denumerable base of the family of neighbourhoods of the
space H. With each point ae@ we can associate a neighbourhood U,
which containg the point ¢ and is contained in one of the open sets
of the family &. Therefore, if we denote by {'Unk} the sequence

of _ all those neighbourhoods U, which were associated with the
points of the set &, then we shall have GCZUnk. On the other hand,
k

each neighbourhood U”;, of the sequence obtained is contained in
a certain open set G, of the family G. The sequence of sets
{G"k} therefore covers the set G, and ‘hence covers every set cont-
ained in the sum of the sets of the family ®.

ad 4° In virtue of 3° we can take from the family G, a finite
or denumerable sequence of sets whose sum is identical with the
sum of the sets of the family &,. However, since by hypothesis
the family ®, consists of disjoint sets, this sequence must contain
all the sets of the family ®,, which is consequently at most denu-
merable. :

Part 3° of theorem 4.5 is known as ZLindelof’'s theorem and
belongs to the class of so-called ‘“‘covering theorems’. Other theo-
rems of this type (the theorems of Borel and of Borel-Lebesgue)
will be given in section 6.

EXERCISES. 1. Examples of sets -on a straight line considered
as a metric space R with the distance given by the formula p(z,y)=|y—x|
(cf. § 2, exercise 2, as well as § 3, exercizses 3 and 5). 1° Every interval [a,b] is
a closed set, every open interval (a,b) is an open set; 2° the set of points
1,2,...,m,... is an isolated set; 8° the set of points 0, 1,1/2,1/3, ..., 1/n, ...
is a closed set with only one point of accumulation 0; 4° the set of rational
points is a denumerable et everywhere dense in R.

2. Cantor’s nowhere dense set. Let us denote the interval [0,1]
by I; we divide I into three equal intervals and we denote by J, the interior
of the middle interval, ¢. 6. the open interval (1/3, 2/3). We divide each of the
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maining tw ;
::e denotge the middle open intervals by J, and J;. We proceefl in the same
manner with each of the four intervals complementary to t‘he intervals J 1 J3
and J, in I, and we denote by Ju, sy Js, and Jy (see' Fig. 1), the m1df11e
open intervals obtained by the division of these.ff)ur mtervzm'ls. Proceeding
further in this way, we obtain a sequence of disjoint open mltervallg (7.}
Prove that the set B=I— Y J, is a perfect nowhere dense set (this set is Can-

J; A J; J; A J; T,

[—

Fig, 1.

tor’s set). Show that this set can also be defined as the set of all num})grs of ‘the
interval [0,1] which have triadic expansions not containing the digit ‘1 (4. e.
they can be expanded in a series (finite or infinite) of the form a,/3-+a./3%4-...
...+a[3"+ ... with the coefficients a, equal to 0 or 2).

3. In order that a metric space (cf. § 3, exercise 3) be separable, it is
necessary and sufficient that there exist a finite or denumerable set every-
where dense in this space.

4. Show that the convergence of a sequence of elements {mn} in the spa-
ces C; and M (§ 3, exercise 5) is equivalent to the uniform. convergence of
the sequence of functions {w,(#)} on the interval [0,1], and in the space C, —
to the uniform convergence of the sequence of functions {,(f)} on every
(finite) interval of the straight line.

5. a) Determining denumerable everywhere dense sets in the spaces
C, and C, (§ 3, exercise 5), prove that these spaces are geparable. b) Show
that in the space M (§ 3, exercise 5) the functions each of which is equal to 1
at a certain point of the interval [0,1] and zero elsewhere form an isolated
set; making use of the non-denumerability of the set of real numbers in the
interval [0,1] (see theorem 8.6, p. 24), infer from this that the space M is
not geparable.

6. If {a,) is a convergent sequence in a metric space, then
lim ¢(a,,a,)=0.
7m0 )

7. A metric space in which for each sequence of points {an} the condi-

tion lim g(a,,a,) =0 implies the convergence of this sequence, is called com-
yM—>00

lete.
? Verify that the following spaces are complete: 1° the straight line R
(with the usual definition of distance by the formula g(z,y)=|y—=|); 2° the
Euclidean plane E,, 4. e. the set of all pairs of real numbers (z,y) with the
usual definition of distance by the formula g(Qy,@.)= [ (%s— )2+ (Y2 —y1)2 ],
where Q= (24,7:) and Q,= (%.,¥,); 3° the spaces C,,C, and M (§ 3, exercise 5).

8. The continuous functions in the space M (§ 3, exercise 5) form
a closed nowhere dense set.

-9, In the space C,, the continuous functions x(f) such that |2(f)|<1

for each ¢, form a closed nowhere dense set.

o intervals [0,1/3] and [2/3,1] into three equal intervals and
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§ 5. Connected sets. A non-empty set 4 in the space H is con-
nected if it i3 not a sum of two disjoint, non-empty sets, closed in
4, 4. e. such that neither of them contains the points of accumulation
of the other. The set consisting of only one element is obviously
connected. A closed and connected set containing more than one
element is called a continuum. Therefore:

In order that a closed set be a continuum it is necessary and suf-
ficient that it contain at least two points and mot be representable as
a sum of two disjoint closed and non-empty sets (Jordaw's condition).

An open and connected set is called & region. In order that o
non-empty open set be a region it is mecessary amd sufficient that it be
not a sum of two disjoint open and mom-empty sets. In fact, if an
open set G is a sum of two open and disjoint sets, then these sets
are at the same time closed in &; conversely, if @ is a sum of two
disjoint and closed sets in @, then these sets are at the same time
open sets.

A get which is the closure of a region will be called a closed
region. Such a set is connected, because of the following theorem:

(5.1) If A is a connected set, then its closure is also @ commected set ;
more generally, every set B such that ACBCA is connected.

Proof. In fact, let us assume that the set B is the sum of two
non-empty sets B; and B,, closed in B and disjoint. Then
A=A-B,+A-B,, where the sets A-B; and 4-B, are disjoint and
neither of them contains points of accumulation of the other.
Hence one of them at least, e. g. A-Bj, is empty. Consequently
B,CB—ACA—A, whence it follows that each point of the set B;
is a point of accumulation of the set 4. Since 4-B;=0, and hence
ACB—B;=B,, each point of the set B; is a point of accumulation
of the set By;. In this way we are led to a contradiction.

(5.2) If S 14s a family of comnected sets having a common point a,
then the sum S of the seis of this family is also a connected set.

Proof. Let us assume that S is the sum of two disjoint sets
8; and 8,, neither of which contains points of accumulation
of the other. Let aeS;. Then each set A of the family & is contained
in the set §;, for in the confrary case it would be the sum of two
non-empty disjoint sets 4-8; and A-S,, neither of which contains
points of accumulation of the other. Consequently S,=0, whence
it follows that the set § is connected..
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If S is a connected subset of a certain set 4, and if every con-
nected set contained in A and containing § coincides with S, then
the set S is called a component of the set A. Components of a set
are therefore connected subsets which cannot be enlarged any
more in the given set while preserving their connectedness.

Let @ be an arbitrary point of the set 4 and let S be the sum
of all the connected sets contained in A and containing the point a.

By theorem 5.2 the set S is also a connected subset of the set A and -

is obviously one of its components. Consequently:
(5.3) Bvery point of a set belongs to a component of the set.

Let us observe further that if § is component of a certain
set 4 and §; is an arbitrary connected subset of the set A, having

points in common with S, then by theorem 5.2 the set S+8;CA4

is also connected and hence S=8-+8;28;. Therefore:

(5.4) Bach component of a set contains all the connected subsets of the
set which have points in common with the component; hence every two
components of a set are either identical or disjoint.

Finally, from theorem 5.1 it’ follows immediately that

(5.8) Buery component of a closed set is also a closed sei, and hence
is either a continuum or reduces to a point.

If a is an isolated point of the set A, then it is also an isolated
point of every set B contained in 4 and containing a, and every
such set can be broken up into two sets |a} and B—{a}, neither

of which, obviously, containg points of accumulation of the other. .

The only connected subset, then, containing the point a is the
set {a}. Consequently:

(5.6) The isolated points of a sef are at the same time components
of the set, and therefore every connected set is either demse in itself or
reduces to one point; in particular, every continuum is a perfect set.

We note further certain direct consequences of theorem: 5.2:

(8.7) If a family S of conmected sets contains a set A, with which
every set A of this family has points in common, then the sum S of the
sets of the family © is a connected set.

Proof. First of all, according to theorem 5.2 every set of the
form 4,44, where 4¢SS, is connected; since all the sets of this
form have a common point (e. g.. an arbitrary point aed,), their
sum is connected. This sum obviously coincides with the set S.
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(5.8) If every two points of a set A belong to a connected subset of this
set, then the set A dtself is also commected.

Proof. Let a be an arbitrary point of the set A and 8 the
sum of all the connected subsets of the set A which contain the
point a. We then have A=48, because every point of the set A

belongs to one of such subsets. On the other hand, by theorem 5.2
the set § is connected. :

§ 6. Compact sets. A set 4 in the space H is compact if from
every sequence {a,} of points of this set we can extract a convergent

- subsequence {a,nk]l). Every subset of a compact set is obviously also

compact. In particular, therefore, if the space H is compact, every
set in this space is also compact.

(6.1) CANTOR’S THEOREM. If ‘An} 8 o decreasing sequence of closed,
compact and non-empty sets, then the product of these sets is also non-
empty. ‘ ‘
Proof. With each set 4, let us associate a certain point a,64,,.
The sequence {a,} is contained in the compact set 4, and therefore
a convergent subsequence {“’%} can be extracted from it. Let a be
the limit of this subsequence. Each set A, containg all the terms
of the sequence {“"k}’ beginning from a certain place (namely for
#i=n). Since all the sets A4, are by hypothesis closed, the peint a
belongs to all these sets and therefore also to their produect.

(6.2) BOREL’S THEOREM. If {Gn} 18 a sequence of open sels jointly
covering a closed and compact set A, then a finite number of sets
can be extracted from this sequence which also joinily cover the set A,
i. €. there ‘exists a number N such that

. N
(6.3) ACY @G,.
n=1

’

" .
Proof. Let R,= D'@;. The sets R, form an increasing sequence
. k=1

of open sets, their complements CR, therefore form a decreasing
sequence of closed sets (cf. theorem 4.3), and the sets A-CR,
a decreasing sequence of closed and compact sets. Let us assume

') Note that, according to our definition, a compact set need not™ be
closed. Some writers, however, reserve the designation “compact’’ for a
more restricted class of sets. :
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that 4-CR,5£0 for every value of n. Therefore, according to'theo-
rem 6.1, applying the formulae of de Morgan. (§ 1), we obtain

4-0( 3 R,)=4-[] ORy=]] 4+ O,
M=l n=1 n=1
which is contrary to the hypothesis that

AC Y G,=DR,.
n=1 n=1

"Hence for a certain value N we have A-ORN=Q; consequently
ACRy, which is equivalent to the relation (6.3).- .

If the space H is separable, then by Lindelsf’s t]:%eorem
(theorem 4.5 (3°)) we can replace the sequence of open sets in 1311}3
theorem of Borel by an arbitrary family of open sets. In this
manner we obtain the following

(6.4) THEOREM OF BOREL-LEBESGUE. If a family of open sets in
a separable space covers a closed and compact seb A,‘ then we can
extract from this family o finite number of sets which also cover
the set A.

EXERCISES. 1. In a metric space (see § 3, exercise 3) every compact
set A has a finite or denumerable subset everywhere dense in A (for this reason
every compact metric space is separable; see § 4, exercisé 3).

2. Show that the theorem of Borel-Lebesgue in the form (6.4) is true in
every metric space (not necessarily separable).

3. If in an abstract separable space (or in an arbitrary metric space.)
% is a family of closed and compact sets such that the product of every fi-
nite number of sets of this family is non-empty, then the product of all the
sets of this family is also non-empty (F. Riesz, W. Sierpinski).

4. If {4,} is a decreasing sequence of non-empty closed sets whose
‘diameters tend to zero, in an arbitrary complete metric space (see § 4, exer-

cise 7), then the product of these sets is also non-empty (by the diameter of -

a set we mean the upper bound of the distances of any two points of tohe
set). Notice that the assumption that the sets 4, are closed and the assumption
that the diameters of these sets tend to zero are indispensable.

§ 7. Continuous transformations., Let E be an arbitrary set,
and F a function which is defined on the set B and associates with
each element zeH uniquely a certain element F(z). Denoting by E*
the set of all the elements 2*=F(x) for z¢E, we then say that the
function F is a transformation or mapping of the set B onto the set K.
We denote the set B* by F(E) and call it the image of the set B
under the transformation F. If for each element #*¢ F (E) there exists
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only one element xeF such that #*=F(x), then we shall call the
function F a uniquely invertible function on the set E, or a uniquely
1nmvertible — or one-to-one — transformation (mapping) of the set E onto
the set E*=F(E); the function defined on the set E* and associating
with each element z* of this set the element satisfying the equa-
tion &"=F(x), is then denoted by F-%; this function is called the
inverse fumction (or the 4mverse tramsformation — or the inverde
mapping) with respect to the function F.

The transformation F of the set B such that F(z)=x for each
weE is called the identity transformation.

If F is a transformation of a certain set E onto a certain set B,
and G the transformation of the set E* onto a certain set E**, then
the transformation H of the set B onto E**, defined by the formula
H(2)=G[F(2)] for zeE, is called the product of the transformations
and @ and is denoted by GF.

Let ® be a family of uniquely invertible transformations of
the set ' onto itself. Such a family is called a group of trans-
formations of the set F, if the product of every two transformations
belonging to the family ®, as well as the inverse transformation
with respect to every transformation belonging to this family, also
belong to the family . '

Let H and H* be two abstract topological spaces (see § 3),
and F a function defined on a certain set ECH and mapping this
set onto a certain set E*CH?™.

We shall say that the function F is continuous on the set E
at the point xeF if, for every sequence {mn} of points in the set &
converging to x (in the space H) the sequence {F(wn)} converges
(in the space H*) to the point F(z).

The preceding definition can be considered as a generalization of the
definition of econtinuity given by Heine for functions of a real variable. It could
also be stated in a form generalizing Cauchy’s definition and based di-
rectly on the concept of neighbourhood: the function F is continuous on the

set B at the point » e B if to each neighbourhood T* containing the point #*=F(z)
there corresponds a neighbourhood U of the point z such that F(E-U)cT*.

If the function F' is continuous on a set B at each point of
this set, then it is called a continuous function on the set E, or a con-
tinuous tramsformation, or a continuous mapping, of this set. If B
and E* are two sets (in the same or different abstract spaces) and
there exists a continuous transformation of the set B onto B*, then
we say that the set E* is a continuous image of the set E.
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If the function F is uniquely invertible and continuous on. the
set B, and its inverse function F-* is continuous on the set E*=F(E),
then the function F is called an. invertibly continuous function on B,
or a homeomorphic tramsformation, or a homeomorphic mapping, of
the set E onto the set E*. A set which is the image of the set E
under some homeomorphic transformation of this set, is a homeo-
morphic image of the set B, or simply a set homeomorphic with E.

The following theorem gives the simplest invariant properties
of sets under continuous transformations:

(7.1) If F is a continuous mapping of the set B onto the set E*, then:
a) for every set A*CE*, closed in E*, the set A of all those poinis
zeB for which F(x)eA* is closed in B ;
(b) for every commected set BCE, the set F(B) is also connected ;
(c) for every closed and compact set CCE, the set F(C) is also
closed and compact.

Proof. ad (a): Let {a,n} be a sequence of points of the set A
converging to a certain point ae#. Then F(a)= hmF(an)eE* and

because F(a,)eA* for n=1,2,..., and the set A* is closed in B,
it follows that F(a)eA* and therefore aed. The set A i therefore
closed in E. ’

ad (b): We can assume that B=2F, and therefore, that

F(B)=F(E)=E".

If the set E* is not connected, then it is the sum of two sets, dis-
joint, non-empty and closed in E*; therefore, by (a), the set H is also
the sum of two sets, disjoint, non-empty and closed in E, and hence
is also not connected.

ad (c): Let {cy} be an arbitrary sequence of points of the set
F(C) and let ¢, denote for every # a point of the set C, such that
F(c,)=c,. Since the set ¢ is closed and. compact, the sequence
{an} contains a subsequence {cﬂk} converging to a certain point
ce(. Therefore in virtue of the continuity of the function F, we have

limd} _hmF(o,, )=F(o)eF(0),
k

Whence it follows that the set F(O) is closed and compact.
EXERCISE, If @ is a continuous mapping of the space H onto the space

H* and A is the product of a decreasing sequence of closed and compact sets

{4,} in the space H, then ®(4)=]J]®(4,).
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§ 8. The plane. We shall call the set of all complex .numbers
the open plane and denote it by E,. Adjoining to E, still another ele-
ment, which we denote by oo, we obtain a set which we shall call
the Gaussian plane, the closed plane or simply the plane, and which
we shall denote by E. We call the elements of the plane points: the
point co — the point at dinfinity, the remaining points — finite
numbers or finite points. The point z=x-44y, where z and y are
finite real numbers, will also be denoted by (x,y); the numbers z
and y are called the real part and the imaginary part of the point 2
and we shall denote them by Rz and Iz, respectively. The set of
all real numbers is called the real axis, and the set of all imaginary
numbers of the form iy, where y is an arbitrary real number — the
imaginary axis of the plane. The real axis will be denoted by R,
and the imaginary axis — by 1. The set of all non-negative real
numbers and the set of all non-positive real numbers will be called
the positive and the negative real half-axes, respectively. We define
similarly the positive and negative imaginary half-axes. .

Writing the complex numbers in the form z---yi, uw-tvi ete.,
we shall always understand @, y, w, v, without further comment,
to be real numbers — unless a different meaning is obviously to
be attached to them from the context. If #=x-+y¢ is a complex
number, then Z will denote the number x—yi, which we call the
conjugate of the number 2. Conjugate numbers are therefore points
situated symmetrically with respect to the real axis.

If A is an arbitrary set in the plane, then CA will denote its
complement with respect to the plane, 7. e. the set E—A (cf. § 1,

2). A set Z in the plane is said to be bounded if it does not con-
tain the point oo and if the set of absolute values of the points zeZ
is bounded, ¢. ¢. if there exists a real finite number m such that
|#z|]<<m for zeZ.

Introducing the point oo we extend to it the operations on
complex numbers?) by assuming the following conventions: |oo|=o0,
00-00=00, Gf-0c0=00, @joo=0, oo/a=oco, for every finite complex
number a; arco=o0, if as%£0. We include the number oo among
the real rational numbers and we shall consider it to be greater
than all finite real numbers.

1) We assume here a knowledge of the arithmetic of complex numbers -
(the four arithmetical operations, properties of absolute value). The so-called

“trigonometric representation” of complgz—rumbers will be discussed in Chap-
ter I. =

8. Saks and A. Zygmund, Analytic Functions.
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If 2,,2, are two finite points, then by the segment [2,,2,] we
'shall mean the set of points of the form

(81) o= (1—t)y+12s,

where ¢ is a real number and 0<{¢<{1. The points 2y, 2, are called
the end-points of the segment [2,,2,]. If in this segment one of the
two end-points, e. g. #;, is labelled as the initial point, and the other,
2y, a8 the terminal point of the segment, then the segment will be said

ey

to be oriented and we shall denote it by [#,2,]; however, if there
is no possibility of misunderstanding, the arrow in the above symbol
will be omitted and instead of “oriented segment’’ we shall simply
say “segment”’. The set of points of the form (8.1), when ¢ asstmes
all finite real values and 2,2, are arbitrarily fixed finite and
distinet points, is called a straight line.

A segment whose end-points (and therefore all its points)
are real will be called an interval. In addition, the following will
be termed infinite intervals: 1° the real axis, 2° the set of real points
@>a, where a is an arbitrary finite number, 3° the set of real points
#<ca. These intervals will be denoted by [—oo,-oo], [@,-4oe],
and [—oo,a], respectively. The points of the interval which are
‘Dot ity end-points are termed the imterior points of an interval.

It ay,a4,...,a, is an arbitrary finite sequence of points, dif-
ferent from the point oo, then the sequence of oriented segments

[al,azj,_ [a?v,aa],...,[aw_l,an], will be called the polygonal Uine
[a1,0,...,4,], the points a,,as,,...,a, the vertices of this polygonal

. >
line, and the segments [ay,a;.,,], Where k=1,2,...,n—1, ity sides.

A vertex of a polygonal line which is a common end-point of more
than two of its sides is termed a multiple vertex. If a polygonal line
has no multiple vertices and, in addition, no two of its sides have
common points, except at most the common end-points of these
sides, we say that the polygonal line has no multiple points. If the
vertices a; and a, in the polygonal line [a1,a9,...,a,] coincide,
the polygonal line is called closed. A cloged polygonal line with-
out multiple points will be called a simple closed polygonal Tine.
A polygonal line which is not closed and hag no maultiple points
is an ordinary polygonal line.

fl‘h.e pqugonal line (defined as a sequence of segments) should
be distinguished from the set of points of this polygonal line. How-

icm

§8 The plane. 19

ever, in cases not giving rise to doubts, instead of “the set of

points of the polygonal line” we shall simply say “the polygonal
line™.

It ay,by,a4,bs, are finite real numbers, and if a;<by, ag<<bs,

~ then the set of points (z,y), such that e <e<<hy and a,<<y<hy

will be called the rectangle [a1,b15a9,b5], the points 2;=a,+ ayi,
Zg=b1+aql, 23=01+Dbsi, 2,=ay+byi the vertices, and the segments

[#1,22); [22,25], [23,24], [24,21], the sides of the rectangle [a;,by; as,bs];
. —_—  —
the same segments oriented: [2y,2,], [¢2,25], ete. will be called oriented

stdes of the rectangle or oriented in agreememt with the rectangle
[ay,b15 ag,by]; finally, the closed polygonal line [21,29,23,24,21] (28
we perceive immediately — without multiple points) will be cal-
led the perimeter of the rectangle considered. The perimeter of
the rectangle I will be usually denoted by (I).

The distance o(a,b) between two points a and b of the plane E is
defined — if both points are finite — by the formula g(a,b)= b—al,
and if one or both lie at infinity, by the formula g(a,00)=p(co,a)=
=1/|a|. It is evident that the distance defined in this manner
satisfies the following conditions:

1° ¢(a,b)=0 if and only if a=b; .

2° g(a,b)=p(b,a) for every pair of points a,b;

3° o(a,b)+o(b,c)>0(a,c), whenever a,b, and ¢ are finite points.

The last inequality ceases to be true in general if one of the points
a,b, and ¢, is the point co. For this reason one could doubt the appropriateness
of the above given generalization of distance between two points in the case
when one of the points is at infinity. This generalization, however, simplifies
the formulation of theorems in the theory of power series when dealing with
series whose centre is the point co. It is also convenient in the formulation
of certain other theorems in the theory of functions. Below, in exercise 1 of
this section, we give a homeomorphic mapping of the Gaussian plane onto

the surface of the sphere, in which the distance, understood in the usual
sense, satisfies condition 3° without any restrictions. :

It is worth noting that according to the definition given above
the distance between two points in the plane is infinite if and only if
one of these poin‘ts is 0 and the other oo.

By the distance p¢(a,P) of the point & from the set P in the
plane E we mean the lower bound of the numbers o(a,p), when
peP; and by the distance o(P,Q) between two sets P and @ the lower
bound of the numbers g(p,q), when peP and ge@. Finally, by the

9%
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diameter of a set we mean the upper bound of the distances between
any two points of this set.

If a is an arbitrary point of the plane and » an arbitrary non-
negative real number (finite or infinite), then we shall denote by
K(a;r) — when a#oco — the set of all points z different from oo and
satisfying the inequality e(e,2)<<r, and in the case a=oco — the
set of all points 2 (together with the point oo) satisfying this
inequality. Generalizing the definition of a circle from elementary
geometry, the sets K(a;7) characterized above, as well ag the entire
plane, will be called open circles or simply circles. The point a and
the number » will be called, respectively, the centre and radius of
the circle K(a;7). The circle with centre at the point ¢ and radius
r> 0 will also be called a circular netghbourhood — or simply a neigh-
bourhood — of the point a.

_ The circle K(a;r) with centre as: oo is therefore the met of all points
27 o0, such that |z2—a|<r; and hence in particular it is an empty set if r=0,
and the open plane E, if r=o00. The circle K(oo;r) with centre oo is the set
of all points 2 such that |2{>1/r; it is therefore an empty set when r= 0, and
the entire plane E with the exception of the point 0 when r=oc0

In the sequel, when we speak of open circles, we shall always
tacitly assume that they are circles of positive radii and hence non-
empty sets. On the other hand, where circles of radius 0 can appear,
this will be explicitly stated.

If @ is 'a point of the plane and r,,r, real numbers (finite or
infinite) such that 0<r,<7,, then we shall denote by P(a;r,,r,)
the set of all points 2s4co such that r,<<p(a,2)<<7,. The set P(a; 71y73)
will be called an open annulus — or simply an annuwlus — with
centre at a, smaller radius r, and larger radius r,. Let us note that
P(o00;7y,7)=P(0;1/ry,1/r,); therefore every annulug with centre oo
is at the same time an annulus with centre 0 and conversely.

By an annular neighbourhood of the point & we shall mean every
annulus with centre at this point and of smaller radius 0, and. con-
sequently, every annulus of the form P(a;0,7), where r>0. It is
evident immediately that the annular neighbourhood  P(a;0,7)
differs from the circular neighbourhood K{a;r) of the point a only
by the point a, which belongs to K(a; r) but does not belong to
P(a;0,7).

If a is an arbitrary point of the plane and >0 a finite Ieal
number, then we define the circumference with centre a and radius r
to be the set of all the points 25200 such that o(a,2)y=r. We shall
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denote t];u's circumference by C(a;r). We obviously always have
C(oo;r)=0(0;1/r).

The point oo as well as all the finite points whose real and
imaginary parts are rational numbers will be referred to as retional
points of the plane. The set of these points is denumerable (cf. §1).
Circles with rational centres and radii will be called rational circles.
Since every rational circle is determined by two rational numbers
(centre and radius), the set of these circles is also denumerable.

‘We shall associate with the plane E, as a system of neighbour-
hoods &, the set of all open circles with positive radil. We verify
directly that postulate I, § 3, is satisfied when we take H=E and
$=G; postulate II is also satistied, as we verify, by choosing
e. g. as the sequence of neighbourhoods {U,} for a fixed point a
of the plane, the sequence of circles [K(a;l/'n)}. Moreover, as we
notice immediately, the rational circles form a denumerable base
(cf. §3) of the system of neighbourhoods €. The plane E with
its associated system of neighbourhoods & is therefore a sepa-
rable space. (Similarly, the open plane E, can be considered as
2 separable space, with the family of open circles having positive
radii and finite centres taken as the system of neighbourhoods).

The convergence of a sequence {z,} on the plane E to the
limit 2 (ef. § 4, p. 6) is equivalenf to the relation g(2,,2)—0, and
hence in the case when z=limz,50o0, to the relation [z—z,|—0.

n

Since, for every complex number a,
IRal<lal,  |9al<]al, lal<|Ral+1[9d],

the convergence of the sequence {z,} of points of the plane E to
a finite limit in the sense of the definition given in § 4 for an ab-
stract space is equivalent to the simultaneous convergence of both
sequences {Rz,} and {Jz,} in the sense of the definition given in
Analysis for real sequences, and the relation lime,=zsoco is equi-
valent to the pair of relations ‘Rz,—~>WRz, Jz,+92z On the other
hand, the relation limz,=oo is equivalent to the divergence to
infinity of the real sequence {|z,/}. For greater conformity with
the terminology of Analysis, we shall term divergent those sequences
of points which do not converge to a finite limit. The phrases “di-
vergence to oo’ and “convergence to oo’ are therefore to be under-
stood as equivalent.

We shall give a few of the simplest examples of closed and
open sets in_the plane. Circles and annuli are open sets (hence the
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name ‘“‘open circles”, “‘open annuli”); segments, rectangles, circum-
_ ferences, are cloged sets. A straight line is & closed set in the open
plane E,; however, it is not a closed set in the plane E, gince i, does
not contain its point of accumulation at infinity.

We shall define a closed circle with centre a and radius r>=0,
in the case when >0, to be the closure of the open circle K(a;r);
in the case when =0, and hence when K (a;0)=0, we shall under-
stand a closed circle with centre ¢ and radius r=0 to mean the set
consisting of one point a. A closed circle with centre o and radius
7>0 will be denoted by K(a;r).

Similarly, a closed annulus P(a;ry,ry) with centre a, smaller
radius 7,>>0 and larger radius r,>ry is defined as the closure of
the open annulus P(a; 7,,7,). Closed annuli with smaller radius ;=0
are closed circles. More generally, we always have:

F(a;¢1,¢2)=K(a;1~2) —K(a;71),
P(ajry,rs) =K (a;r) —K(a;r).
(8.2) The plane E is a compact space.
Proof. Let {lznl} be an arbitrary sequenee of points in the
planeE We distinguish two cases:
1° The sequence {|z,|} is unbounded. Then for every natural
number k there exists a term &z, such that lznk[ >k, where these
terms can be chosen 8o that m,,,>ny for k=1,2,... We therefore
have ]i;nznkzoo and the sequence {z,,k} is a convergent subsequence

of the sequence {z,}.

2° The sequence {]znl} is bounded. Hence, taking x,=DNz,,
Yn=02y,, We obtain two real sequences {2,}, {y,} Which also are boun-
ded. Applying the theorem of Bolzano-Weierstrass to the first of these
sequences we can extract from it a convergent subsequence {wnk};
applying the same theorem again, this time to the sequence {y, },
we can extract from this sequence a certain convergent subsequence
{yn;,,}' Both sequences {wmi] and {yn,cj} are convergent, and con-
gequently the sequence {znki=wnk’+éynk’} is convergent.

From theorem 8.2 it follows at the same time that in the open
plane E,, considered as a space, the compact sets coincide with
the bounded sets. In the plane E, however, all sets are compact.

(8.3) If P and Q are sets closed in the plane, then there cavist two points
peP and qe@ such that
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(8.4) - e =0e(P,Q).

The distance between two closed sets is therefore equal to zero if
and only if these sets have a common point.

Proof. The theorem is obvious when P-@70. We can there-
fore assume that the sets P and @ are d1s30mt Hence one of them
at least, e. g. the set P, surely does not contain the point co. Let
{pn} and {g,} be respeetively sequences of points of the sets P
and @ such that o(p,,¢.)—0(P,Q). Because of the compactness
of the plane (cf. theorem 8.2) we can extract from this sequence
{pn} a convergent subsequence {pnk}, and then from the sequence
{4} & convergent subsequence {ani}. Let p and ¢ be the limits of
these two sequences. We shall show that these points satisty the
equation (8.4).

In fact, assuming for brevmy Pre =04y G, =b;,, we have
a,€P, b,eQ, for n=1,2,..., as well as

(8.5) p:hmanel’, q=hm’7nEQ7 limo(ay, b,)=0(P, Q).

We dlstmgmsh two cases:

° gs£co. Then, beginning at leasﬁ from a certain value of the
ind_ex n, we also ha.ve b,7#co and therefore

9(P7Q):H;I'-Q(am ) = hm]b —an]_lp Q! Q(p7Q)7

because the point p as well as the points a,, since they belong to P,
are by hypothesis different from oo.

2° g=oo. Beginning from a certain value n, we then have
b, =oco. For in the contrary case we could extract from the sequence
{bn} a subsequence {b,} such that by, #oo for k=1,2,..., and
hence, because b, —>g=oco, we should have o(ay,b,)=|b, —ay |00,

‘which would be contrary to the lagt of the relations (8.5). Con-

sequently, for sufficiently large values of n we have
1.

b

0(@nyby) = 0(ay, 00)= 4]

and therefore

1 ‘
o(P, Q)=1i1:19(an,bn)=m=g(p,°°)=9(p,q), q. e. d.

In concluding this section we prove the following theorem
which distinguishes an important class of non-denumerable sets
in the plane:
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(8.6) Every perfect set in the plane is non-denwmerable.
Proof: Let us assume that the points of the perfect set 4

can be arranged in a sequence {@n}nars,.. By induction we deter- -

mine a sequence of circles {I{n}n=1,2”_', satistying the following
conditions for n=1,2,...:

(a) K,CK, ; for n>1,
(b) the centre of every circle XK, belongs to the set 4,

(¢) the closed circle K, does not contain the point a,.

With this in view, let us select ag K; an arbitrary circle whose
centre belongs to the set A and which does not contain the point a,
in the interior or on the boundary. Next, let us assume that there
have been defined r circles Ky, K,..., K, in such a way that the
conditions (a), (b), and (c) are satisfied for n<Cr.

Since the circle K, has a centre at a point belonging to the
perfect set 4, it contains an infinite number of points of this set.
Tet b be an arbitrary point of the set 4, contained in K, and dif-
ferent from the point a,,,. We can therefore determine a circle
K,., with centre at the point b, such that conditions (a), (b), land
(¢) will be satistied for.n=7+1. In this way the sequence {I,)
iy defined. :

Now let b, denote the centre of the circle K,. In virtue of the
compactness of the plane (cf. theorem 8.2) we can extract from the
sequence {bn} a convergent subsequence whose limit — by condition
(b) and the fact that the set A is closed — also belongs to this set.
On the other hand, since every circle K, contains all the terms of
the sequence |bn], beginning with a certain index, the limit of the

extracted subsequence belongs to all the closed circles K, and .

therefore to their product. In this way we obtain a contradiction,
since by condition (¢) the product of the closed circles K, cannot
contain any one of the points of the get A.

The set A is therefore non-denumerable.

The first example of a non-denumerable set was given by G. Cantor,
who showed that the get of all real numbers is non-denumerable. Theorem 8.6
is a generalization of this result.

EXERCISES. 1. Let us denote by S the surface of the sphere
#*4-y*+(2—R)*=R? and by N the point (0, 0, 2R) (‘‘the north pole’) of this.
surface. Let us associate with the point co of the plane my the point ¥, and with
each finite point P of this plane the point of intersection, ditferent from N, of
the surface S with the straight line P¥. The one-to-one and continuous mapping
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of the plane J onto the surface of the sphere thus obtained is called a stereo-
graphic projection. Since the surface of the sphere can be regarded as a metric
gpace (with the usual definition of distance by means of the formula
0(Q1,Q2) =[(wa—1)*+ (¥a—¥1)*+ (2a—21)? T2 for Q= (1,91,2), Q2= (%2,Y2,%)),
the stereographic projection considered represents a homeomorphic map-
ping of the plane E onto a compact metric space.

Show that in a stereographic projection straight lines and circles in the
plane E are mapped onto circles on the surface § (the straight lines are trans-
formed into circles passing through the pole N of the sphere).

2. A set not containing the point oo is called convexr if *every segment
joining any two points of this set is entirely contained in this set. Show that
if #,,2,,...,2, i8 a finite set of points in the open plane, then the set of points
of the form

tigy -+t 52,
bttt i,

where f,,%,,...,t, are arbitrary non-negative real numbers not vanishing si-

3

-multaneously, is the smallest convex set containing the' points 2z,2s,...,%,

(this set is called the convex set determined by the points 2,2,,...,2,).
3. The set of irrational points of every interval mnot reducing to one
point, is non-denumerable and of the same power as the set of all real numbers.
4. A set which can be represented as the sum of a sequence of nowhere
dense mets is called (according to Baire) a set of the firsi category. : .
Prove that in a complete metric space the complement of every set of

"the first category is an everywhere dense set in the space (Baire’s theorem);

therefore no complete metric space can be represented as the sum of a se-
quence of gets nowhere dense in this space.

Since every closed set in a complete metric space can also be considered
as a complete metric space, deduce from this that every perfect set in a com-
plete metric space is non-denumerable (generalization of theorem 8.6). Notice
the indispensability of the assumption that the space is complete.

5. Prove that in the space C, (see § 3, exercise 5) continuous functions
bounded on the entire straight line form a set of the first category; continuous
unbounded functions therefore form a set everywhere dense in this space.

§ 9. Connected sets in the plane. By the characteristic number
of a finite sequence ay,a,,...,a, of points of the plane we shall mean
the largest of the distances p(az,az,;) between consecutive points of
this sequence. If all points of a finite sequence a=a;,as,...,d,=>
belong to & certain set 4, we say that this sequence joins the-
points @ and b in A. With the aid of these terms we shall for-
mulate the fundamental condition in order that a closed set be
a continuum.

(9.1) In order that a closed set F in the plane, containing more than one
point, be a continwum, it is necessary and sufficient that for each ¢>0
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it be possible for every two points a and b of this set to be joined in it
by a finite sequence of points with characteristic number <<e (condition
of Cantor). ’

Proof. 1° The condition is necessary. Let F be a continuum,
¢ an arbitrary positive number, and a an arbitrary point of the
set F. Let us denote by ¥ the set of those points of the set F which
can be joined with ¢ in F' by a finite sequence of points with cha-
racteristic number less than e, and let Fy=F —F,. It is necessary
to prove that F,=0.

With this in view, we shall show first that the sets F'; and F,
are closed. In fact, if peF,, then there exists a point p.eF, such that
o(p1,p)<e Let a=ay,a,,...,a,=p; be a sequence of points of the
get F with characteristic number less than e; the sequence
0=y, Bgy. .y 0y =Dy, 0p 1= i therefore a sequence of points with
characteristic number less than e, joining in F the point ¢ with
the point p. The point p consequently belongs to F,. Similarly, if
qeF,, then there exists a point g, ¢F, such that o(gy,q)<e. Let us
assume that the point ¢ does not belong to F,, and therefore can
be joined with ¢ in the set F' by a finite sequence of points with
characteristic number < ¢; however, then the point ¢, could also
be joined in F with the point a by a sequence of points with charac-
teristic number <, which is, however, contrary to the fact that
¢,€F,. Consequently geF,, which means that the set F, is closed,
just like the set F,.

Since the set F is a continuum, at least one of the sets £, I,
is empty, and because aeF,, it follows that F,=0.

2° The condition is sufficient. Let us assume that the closed
set F' is not a continuum; it is therefore the sum of two non-empty
closed and disjoint sets P, and P,. By theorem 8.3 we have
o(Py,P;)>0, and denoting by #,, 2, two arbitrary points belonging
to the sets P, and P,, respectively, we see immediately that these
points cannot be joined in P by a sequence of points with charac-
teristic number less than o(P,,P,). The set F does not, therefore,
satisty the condition of the theorem.

Cantor’s condition (theorem 9.1) iy in many cases more con-
venient than the direct definition given in § 5. For example, it is
evident ‘at once that every segment satisfies this condition. There-
fore every segment is a continuum or reduces to a point. Next, by an
easy induction, making use of theorem 5.2, we also prove that every
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polygonal line with an arbitrary number of sides is a continuum or
reduces to a point. We shall show now that every circumference
C(29,7) 18 a continuum. We can obviously assume that 2,7 oo,
because a circumference with centre co is identical with a certain
circumference with centre 0. Taking z,=x,- 4y,, Where x, and y, are
real numbers, we see that the circumference C(z;7) is a set of
points z= w14y, such that (x—ax,)’+(y—1v,)?=7?, and can therefore
be represented as the sum of two semi-circumferences given by
the equations y=y,+[r’—(@—x)’]"? and y=y,—[’— (@—x)* T2,
respectively, where x,—r<{os<<®,+7. Now, each of these semi-
circumferences is a continuous image of the interval (z,—r,2,+7),
and is therefore a continuum by theorem 7.1. Since these semi-
circumferences have common points, namely the points (z,4-7,¥,),
their sum, 4. e. the circumference C(z,;7), is also a continuum
(cf. theorem 5.2).

We can deduce further from this the connectedness of every
annulus P(2q;7,7,), Where we can assume again (cf. § 8, p. 20) that
Zy7#%oco. Let 2, and 2, be arbitrary points of this annulus and, for
brevity, let Rj= |2,—%,|, Ba=|2a—2]. ’

In the sum of the three continua
{9.2) C(2o; By)+[20+ B1y2 -+ Ba]+ C(2; Ro),
of which two are circumferences and one a segment, each successive
term has a point in common with the preceding one; the sum
(9.2) is therefore also a continuum; as we perceive at once, it con-
taing the points z; and #,, and is itself contained in the annulus
P(2y;71,7s). Therefore, by theorem 5.8, every annulus P(2y;71,7s)
is a conmected set anmd hence a region. In particular, all annular
neighbourhoods are regions. Closed amnuli, since they are the closures

of open anmuli (cf. theorem 5.1), are continua.

We prove similarly that open circles are regions, and closed
circles are continua or reduce to a point (the case of a circle with cen-
tre oo reduces here to the case of a circle with centre 0 by a homeo-
morphic transformation of the plane {=1/z). ‘

In section 5 we proved (theorem 5.5), for an abstract space,
that the components of closed sets are closed. Now we can prove
for the plane a similar theorem for open sets. Let & be a point of
an open set G. Hence, there exists a certain neighbourhood U of
this point, contained in @. Since, as we have shown above, the
circle U is a connected set, the component of the set @ which
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contains the point a contains at the same time its neighbourhood U.
It follows from this that

(9.3) Every compoment of an open set is an open set and therefore
a Treqion.

In the proof of theorem 9.3 we took advantage of the connec-
 tedness of the circular neighbourhoods. Making use of the connec-
" fedness of the annular neighbourhoods we shall prove the following
theorem: -

(9.4) If F is an isolated set, closed in the region G, then the set G—F
is also a region; conversely, if F is an isolated set contained in an
open set @, and the set G—F is connected, then G is a region.

Proof. Let FCG be an isolated set, closed in the region Q.
The set G—F is obviously open. Let us assume that this set is not
a region; it is therefore (§5, p.11) the sum of two open sets H,
and H,, disjoint and non-empty. Since the set F is isolated, we can
associate with each point a¢F a certain annular neighbourhood P(a)
of this point, contained in the region ¢ and not containing points
of the set F. Every such neighbourhood is contained entirely in one
of the sets H, or H,; in fact, in the contrary case the open annulus
P(a) would be the sum of two open disjoint and non-empty sets
H,-P{a) and H,-P(a).

Hence, we can divide the set 7 into two disjoint subsets ¥, and
F,, including the point a€eF in the set F, or in the set F,, depending
on whether P(a)eH,; or P(a)eH,. The sets H,+F; and H,+F, are
open, digjoint, and nor-empty, whereas their sum is the region G.
‘We therefore come to a contradiction in view of the connectedness
of the region G.

The second part of the theorem follows immediately from
theorem 5.1, since in the case when the set FCG is an isolated set,
G—FCGCG=G—T.

(9.5) In order that an open set G be a region it is necessary and suffi-
cient that it be possible for every two points of this set, different from
the point oo, to be joined in G by a polygonal line.

Proof. By theorem 9.4 we can remove the point co from the
set @ if the set G- contains this point. Therefore we can assume that
-the point oo does not belong to G.

Let a be an arbitrary point of the set G. We shall say for brevity
that a point has the property (W,) if it is possible to join it with &
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by & polygonal line lying in G. To prove the necessity of the
condition of the theorem it is sufficient to show that, in the case
when the set G is a region, all of its points have the property (W,).

With this in view, let us note first of all that, if KC@& is an ar-
bitrary cirele and if a point b of this circle has the property
(W,), then all the points of the circle K have the property (W,).
In fact, if ceK, then the entire segment [¢ ,b] is contained in KC@&
and therefore if the point b can be joined with ¢ by the poly-
gonal line [b,by,b,,...,b,=a] lying in @, then the polygonal line
[¢,b,by,bg,...,b,=0a], joining the point ¢ with the point a also
lies in G. ‘ .

Now let @, be the set of points having the property (W,), and 4,
the set of the remaining points of the region G. Each of these two
sets is open; in fact, if 2¢@ and K is an arbitrary circle containing
the point 2 and contained in the region @, then, in view of the pre-
vious obgervation, this circle is contained entirely in-@, or G de-
pending on whether ze@, or zeGy. Consequently one of the sets, G,
or @,, is certainly empty, and because ac Gy, G,= 0, which means
that all the points of the region G have the property (W,).

The sufficiency of the condition follows immediately from

theorem 5.8, since every polygonal line is a connected .set.
(9.6) If a and b are two poinis of a closed set F belonging to different
components of this set, then the set F can always be represented as the
sum of two sets Fy and F,, closed, disjoint, and such that aeFy and
bel,. ’

This theorem is obvious in the case when the set F' has only
a finite number of components. In fact, we can then take as the
set F, that component which contains the point ¢, and as the set
F, the sum of the remaining components. This method fails, however,
in the general case, because the set F, defined in this manner need
not be closed. The theorem requires then a somewhat more subtle
argument, whose main links will be distinguished in.the form of
two lemmas.

(9.7) If Q, and @, are two disjoint closed sets, then there exist two open
sets Gy and @, such thal

(9-8) QlCGn QzCG‘zy @1- §2=0~

Proof. Let r=p(Q,Q,). By theorem 8.3 we have r>0. Let
us take under consideration the family of all eircles K(z;r/2) with
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centres zeQ),. These circles jointly cover the set @, and do not con-
tain points of the set @, either in the interior or on the boundary.
By the Borel-Lebesgue theorem (theorem 6.4), we can extract from
the family of these circles a finite number of them Klasz“'nyfn
which also jointly cover the set @), Denoting their sum by G, we obtain
an open set G4 such that @,CG, and G Q= (K + ...+ K,) @,=0.
In the same manner, merely replacing the set @, by @, &IL_C[ tlle seb
Q, by @, we obtain an open set @, such that @,CG, and G, G;=0.
The sets G, and @, consequently satisfy conditions (9.8).

(9.9) If {Tnlners,. i @ decreasing sequence of closed sets such ‘th'a‘q
every pair of points of the set T, cam be joined in this set by a finite
sequence of points with characteristic number <1/m, then the product
T of the sets T, is a closed and connected set (i. e. it is a continuum
or reduces to a point).

Proof. Let us assume that the set 7 (closed and non-empty
in virtue of theorems 4.4, 8.2, and 6.1) is the sum of two sets ¢,
and Q,, disjoint, closed, and non-empty. Let &, and @, be open
sets satisfying relations (9.8). Since every point of the set @, can
be joined in T, with every point of the set @, by a finite sequence
of points with characteristic number less than 1/n, it follows that
for 1/n< o(@,,@,) each one of the sets T, contains points not Eelong-
ing to the set G,+ @, and therefore T, -C(Gy-+@,)DT, C(G,+G,) 0.
Therefore, in virtue of Cantor’s theorem (theorem 6.1), we also
have T:C(G4+G,;)740, which however is an obvious contradiction,
becanse T=@Q,;+ Q,CG,+G,.

‘We can now take up the proof of theorem 9.6. Let ¢ and b
be points. belonging to different components of the closed set 7.
‘We shall show first of all that

(9.10) There ewists a number a>0 such that every sequence of points
joining the points a and b in the set F has a characteristic number > a.

Let us assume that this is not so. Henece there exists for every
integer n, a finite sequence of points O, with characteristic number
<1/n, joining the points a and b in F. Let

) . _
(9.11) A,= 30, and  (9.12) A=][]4,.
k=n n=1

Every point 2z of the set 4, can be joined in this set with the
point @ by a chain of points with characteristic number <1/n. In
fact, since zed,, there exists a point ped, such that
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1
9.13 bl
(9.13) o(e,p)<—~

In view of (9.11) we have p €0y for a certain value k>>n; hence the
points p and a can be joined in the set 0,CA4,C4, by a sequence
of points with characteristic number less than 1/E<1/n. Therefore,
in virtue of (9.13), the Point # can also be joined with the point a
in 4, by a sequence of points with characteristic number <<1/n,
and consequently every pair of points of 4, can be joined in the
set 4, by such a sequence.

Therefore, by lemma 9.9, the set 4 defined by formula (9.12)
is a connected subset of the set F'; and since acd, and bed,
for every n, it follows that also aed and bed, and we are led to
a contradiction of the assumption that the points ¢ and b belong
to different components of the set 7. _

Hence, there exists a number a> 0 satisfying condition (9.10).
Let us denote by F; the set of those points of the set ¥ which can
be joined with a in the set F by a sequence of points with a charac-

- teristic number <a, and by F, the set of remaining points. We

obviously have aeF; and beF,. On the other hand, we easily prove
(cf. e. g. the proof of theorem 9.1) that both of these sets are closed.
We have thus obtained the desired decomposition of the set F.
Thus theorem 9.6 is proved. :

An open set is said not fo separate the plame if its complement
(with respect to the closed plane) is connected (or empty). A re-
gion which does not separate the plane is called simply connecled.
More generally, if the complement of a region has exactly n com-
ponents, then the region is said to be n-tuply conmected (the num-
ber n of components may be infinite: the region is.then termed
infinitely connected); the number n, finite or infinite, is called the
degree of conmectivity of the region.

The closed plane, the open plane, the circle; the set of points 2 such
that a<Rz<b, where o and b are real finite numbers, the half-plane 92>0 ete.,
are examples of simply connected regions. Annuli, and in particular — an-
nular neighbourhoods, are doubly connected regions. The open plane, after
removing from it the sequence of points 1,2,...,7,..., becomes an infinitely
connected region. )

(9.14) Ewvery component of an open set G not separating the plame is
o simply connected region.

Proof. By theorem 9.3 every component of an open set is
a region, and in virtue of theorem 4.5 (4°) the set of these components
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is at most denumerable. Let H be any one of these components
and let {Hn} denote the sequence of the remaining components.
We have, as is easily seen,

(9.15) CH=CG+ Y H,=CG+ Y H,.

Here the set CG is a continuum by hypothesis, and the sets H,

are continua by theorem 5.1. Moreover, every set H, has

points common with O, and hence, in virtue of theorem 5.7, the

entire lagt member of the equality (9.15) is a connected set. The
set OH is therefore a continuum, which was to be proved.

EXERCISES. 1. If P and @ are closed sets, then the sum of those éom-

ponents of the set P which have points in common with @ is also a closed set.

9. If 8, disjoint from a certain closed set @, is a component of the closed
sot P, then S is also a component of the set P+@Q.

§ 10. Square nets in the plane. We shall call a square net of
order n — and denote it by Q™ — the denumerable family of
squares Q§M=[h/2", (h-+1)/2"; /2", (k+-1)/2"], where b and &k range
independently through the integers (positive, negative and zero). This
net — which covers the entire open plane — is obtained by drawing
two sets of straight lines parallel to the real and imaginary axes:
y=k/2" and x=k/2", where k=0, +1,4-2,... The sides and vertices
of the squares Q) will be called the sides and vertices of the net Q.
Every two squares of a net are either disjoint or have a common
side — and then they are said to be adjacent along this side — or they
have only one vertex in common — and then they are said to be
diagonally opposite.

It is to be observed that the common
side of two adjacent squares is oppositely

(N oriented in these squares (cf. § 8, p. 19), . e.
== the initial and the terminal points of this
N side are interchanged when we pass from

one of these squares to the other (see Fig. 2).
Let © be an arbitrary finite system of
squares of the net Q™, and S the sum of
Fig. 2. these squares. By a side of the system & we shall

mean every segment which is a side of at least one of the squares
of the system; and, in particular, a segment which is a side of
exactly one square of the system will be called a boundary side.
Such a side, oriented in agreement with that square of the system
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to which it belongs, will be termed an oriented boundary side (tﬁe

. sides drawn with a heavier line in Figs 3, 4, and 5). The vertices

of the squares of the system & will be called briefly the vertices
of the system; a vertex of the system & which belongs to at most
three squares of the system will be termed a boundary vertex. It is
evident that the boundary of the set § is the sum of the boundary
segments of the system S, and in order that a vertex of this

system ‘be a boundary vertex it is necessary and sufficient that it
lie on the boundary of the set S.

a, ) a, ’ . a,
oo 20 0] %%,
a
4 >0’ Q] Q.
. o
Pig. 3. ' " Fig. 4. Fig. 5.

Let a be an arbitrary boundary vertex of the sjrsﬁem &, and
hence an eqd~pojnt of at least one boundary side of this system.
Let us assume that a i e.g. the initial point of the boundary side
",,-:’;’;‘;.“. , "‘. 5 vy :
{a,a,]; we shall show that « is then also the terminal point of a certain

—

. other boundary side. In fact, the segment [a,a,] is an oriented

side of a certain square @,¢S. The point a is therefore the terminal

e — ..

point of a certain oriented side of this square. Let [a,,a] be this
side and let @, be the square of this net adjacent to @, along the side
[@s;,a]. If this square does not belong to the system S (Fig. 3),

—_— .
then the segment [@,,a] is the desired boundary side whose terminal
point is the point 4. In the contrary case, considering that the seg-

_— ‘
ment [a,a,] is an oriented side of the square Q,, this square also
has an oriented side whose terminal point is the point a. We shall dé-

N ‘
note this side by [a;,a], and by Q; the square adjacent to @, along the
side [ay,a]. If this square does not belong to S (cf. Fig. 4), then

the oriented segment [a;,a] is the desired boundary side whose termi-
nal point is the point a. In the contrary case, considering that [a,a,;]
o

is an oriented side of the square Q,, we shall denote by [a,,a] the

8. Saks and A. Zygmund, Analytic Functions. ) 3


Yakuza


34 INTRODUCTION. Theory of sets.

oriented side of this square whose terminal point is the point a, and
by @, the square adjacent to ¢, along the side [ay,a] I—IOWeve?,
since the squares @,Q,, and @; belong to the system &, and their
common vertex a is by hypothesis a boundary point, the square @,
certainly no longer belongs to the system S and the segment

e

[ag,a] is the desired boundary side of the system whose terminal
point is the point a (Fig. 5). _

Similarly, assuming that the point o is the terminal point of an
oriented boundary side, a boundary side can be determined ‘whose
initial point is the point a. We have therefore proved that

(10.1) Every boundary vertex of a finite sysiem of squares of the net
Q™ is the initial point of at least one boundary side of this system
and the terminal point of at least one such side.

A boundary vertex of a finite system of squares of a net will
be termed multiple, if it is a common end-point of more than two
boundary sides of the system. The following theorem follows easily
from theorem 10.1: :

(10.2) If 8 is the sum of a finite system & of squares of o met, and f
the system S has mo multiple boundary vertices, then the boundary
of the set 8 is the sum of a finite number of disjoint simple closed
polygonal lines formed by the oriented sides of the system S.

—
Proof. Let [a,b] be an arbitrary oriented boundary side of the
system . By theorem 10.1 we can define by induction a sequence of

points a;=a, az=b, as, ..., a,..., such that for every » the segment
—
[@pny0n41] is an oriented boundary side of the system &. However,

since this system obviously has only a finite number of vertices,
there certainly exists a pair of distinet indices n, m, such that a,=a,,.
Let n, be the smallest of such indices n for which there exist points
=, With indices m > n; next, let m, be the smallest of the indices
m>mn, for which a,=a,. We say that n,=1; for were n,>1,
then the point a, =a,, would be the common end-point of three
boundary sides [an_1,0n]); [Gns@n41]; 90d [ap 1,6, ], and hence
a multiple boundary vertex. Consequently @, = a;=a, and there-
fore the polygonal line [a=a;,b=as,as,...,a,, ] is closed and with-
out multiple point. —_ ‘

Hence, every boundary side [a,b] of the system & belongs to a
certain simple closed polygonal line formed by the oriented boundary
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sides and — as is easily seen — to only one such polygonal line.
On the other hand, there can be only a finite number of such poly-
gonal lines. Finally, these polygonal lines are disjoint, for in the
contrary case they would meet at a boundary multiple vertex.

(10.3). If ¥y and F, are disjoint closed sets and the set F, does not
contain the point oo, then every net- Q™ of a sufficiently high order

contains a finite system of squares 01,9, ..,Q, without multiple
boundary vertices, such that

» o p
F1C (kZ;Qk) and FZC C ( 2 Qk) .
== k=1
Proof. Let m be an arbitrary integer such that
1 .
(10.4) 571'::1<9(F1a1’12)-

Since the set F, is closed and does not contain the point oo,
it is bounded and the net Q™ contains only a finite num-
ber of squares having points in common with the set 7.
Let B;,R,,...,R, be these squares. The set F, is obviously con-
tained in the interior of their sum. Moreover, since the diameters
of the squares of the net Q™ are smaller than o(F, , ) by (10.4),
none of these squares has points in common with hoth sets 7y
and F, simultaneously, and hence the squares R, are all disjoint
from the set F',. Consequently,

8

(10.5) FIC( ERk)"
k=
and '
(10.6) Fz-(i‘Rk)=0.
k=1

The system of squares R;, R,,..., R, of the net Q™ so defined
can nevertheless contain multiple boundary vertices. For the pur-
pose of avoiding such vertices we denote by r the distance of the
set F, from R,-}+R,+}-...+ R, and we take into consideration a net
Q™ of order n sufficiently high, such that

(10.7) n=m-+2
and
(10-8) 5-":—1—<7'.

3%
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Let us divide each of the squares R, into 4" ™ equal squares
and to the squares of the net Q™ obtained in this manner let us add
all those squares of this net which con-
tain multiple boundary vertices of the
mas system Ry, R,,..., B, (cf. Fig. 6). Hen-
. ce, we obtain a certain finite system
0 Q1,Qs,..-,Q, of squares of the net Q)
o which, as is evident by (10.7), certainly
T no longer contains multiple vertices.

Moreover, by (10.5),

5 »
F 1C( gle) C( ké'le) )

MRS

Fig. 6. »
finally from (10.6) and (10.8) it follows that Fz-(kle,c)=0, i e.
that =

cmo(é‘lgk). k

Therefore the system of squares @i,Q,;...,¢, satisfies the
required conditions.

§11. Real and complex functions. A function defined on the
set H in an arbitrary abstract space H (see §§ 3, 7) and assuming
complex values, 'i. e. values belonging to the plane E (see § 8), is
called a complex function on the set H. If a complex function F' does
not assume the value oo anywhere on the get H, then it is said to
be finite on this set, and if there exists a finite number M such
that |P(z)] < M at each point ze H, then we say that the function #
is bounded on the set H.

A complex function -which assumes real values only, is said
to be a real function.

A fundamental theorem of Weierstrass on continuous functions
in an interval can be generalized for abstract spaces in the fol-
lowing manner:

(11.1) If @ real function F, finite and continuous on a connected set H

i on arbitrary abstract Space, assumes two distinct values o and b

on this set, then it assumes all the values of the interval [a,b] on this
set.' In particular, therefore, a continuous function assuming only real
. integral values on a connected set is comstant on this set.
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Proof. Let us suppose that the function does not assume
on H a certain value ¢ such that a<e<b. Denoting by H; and H}
the sets of those points of the set H*=F(H) which lie on the left
and on the right of ¢ respectively, we verify immediately that these
sets are disjoint and closed in H* and that H*= Hf+ H}; moreover,
neither of the sets Hy or Hj is empty, because aeH' and beH?.
Hence, the set H* is not, connected and therefore by theorem 7.1(b)
the set H is also not connected. In this way we are led to a contra-
diction. '

(11.2) If F(2) is a real function continuous on a set, H in an arbi-
trary abstract space, then for every real number a the set of those points
#e H for which F(2)<a is closed in H. ‘

This theorem follows immediately from theorem 7.1(a), since
the set of those points of the set F(H) which are contained in the
interval [—oo,a] is obviously closed in the set F(H).

Let us consider — as an example, and also with regard to
future application — certain real functions defined.on the plane.

Let F be an arbitrary set in the plane E, closed and not reducing
to the point co. For every point z of the plane we shall denote by
01(2, F) the lower bound of the numbers [z2—=x|, as the point z ranges
over the set F.

Let #; and 2, be two points of the plane, different from oo,
and ¢ an arbitrary positive number. Therefore there exists a point
zyeF such that |2,—a;|<o(#1,F)+e. Consequently,

01(2e, F)< |2 —2 [< |2 —21 |+ |2y — 51 | < a (21, F) 4+ | 2,—21 |+,
and hence, since ¢ is an arbitrary positive number,
01(22, F) — 04 (21, F) < |22 —21] .
Interchanging the points 2; and z,, we obtain

l01(22, F) — 01(21, F) | < |22 —24 |

for each pair of points 2;7500, 2, 7200, From this estimate it follows
immediately that the function p,(2,F) is finite and continuous on
the open plane E, for every closed set ¥ not reducing to the point co.

We shall now investigate the distance g(2,F) of the point
z from the closed set F (ef. § 8, p. 19). If the set F does not
contain the point oo, then p(z,F)=g,(2,F) for every point 2s£co;
the function ¢(z,F) is therefore continuous on the open plane E,.
If the set F réduces to the point co, then o(z,F)=g(z,00)=1/|2|
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and the function o(z,F) is obviously continuous on the whole
plane E. Hence, there remains to be investigated the case .When the
set I contains the point oo, but does not reduce to this point. Then

(11.3) o(2, ) =min{oy(z, F), 1/2l},

where by min{a,b} we mean, for every pair of real numbers a,b,
the smaller of these numbers when the numbers are different, and
their common value when they are equal. If g:(2), gs(2) are real
and continuous functions on a certain set, then — as is easily seen —
the function g(z)=min{g1(z) , gz(z)} is also continuous on this set.
From formula (£1.3) it consequently follows that the function ¢(z,I)
is continuous on the entire open plane. Since the set I' containg
the point oo, it follows that g(co,F)=0, and that o(¢, )< 1/|2 |0,
when z—soco. Therefore the function go(z,F) is also continuous at
infinity. Summarizing, we have proved that

(11.4) The function o(2,F) is continuous on the open plane E, for
every closed set B in the plane E; in the case when the set I contains
the point oo, it s comtinuous on the entire plane E,

EXERCISES. 1. If § is a family of continuous real functions on the
abstract space H, and M an arbitrary real number, then the set of those
points ze H at which F(2)<{ M for every function F of the family &, is a closed
set. .

9. It § is a family of real functions, continuous on a complete metric
space A, and if the upper bound of the values of the functions of this family
is finite at each point of this space (i. e. if for each point zeA there exigts a fi-
nite number M(z) such that F(z) << M (2) for each function I of the family &),
then there exists a sphere K in the space A and a finite number M independent
of 2, such that F(2)< M for each point # of the sphere K and for each function
F of the family &. ‘

[Hint. See § 8, exercise 4.]

§ 12. Curves. If #(f) is a continuous function on a finite inter-
val [a,b], assuming values belonging to the abstract space H, then
the equation

(12.1) 2=2z(t), where a<\t<D,

will often be called the equation of @ curve or simply a curve lying
in the space H and defined on the interval [a,b]. The variable ¢ is called
the parameter of the curve (12.1). We say that the points 2(f), where
a<{ECh, lie on the curve (12.1), or that they are points. of this curve;
in particular, the points z(a) and z(b) are called the inditial and
the terminal point of the curve, respectively. If 2(f,)7%2(t,) whenever
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41, <1,<<b, then the curve (12.1) is termed a simple arc. If 2(a)=z(b),
the curve (12.1) is said to be closed. Finally if z(a)=2(b) and if,
except for the case t,=a, t,=b, we always have 2(t,) #2(t;) when-
ever a<Cf,<<l,<\b, then the curve (12.1) is said to be a closed curve
without multiple points or a simple closed curve.

. If @(v) is a real continuous function assuming values in the
1nterT'fa,1 .[a,b] when 7 ranges over the finite interval [a,B], then
substituting t=g(z) in the equation (12.1), we obtain a new curve

a22) - e=slpl],

. We shall say that the curves (12.1) and (12.2) are not essentially
different, or that the parameter of the curve (12.1) has been non-essen-
tially changed, if:

1° the function ¢() is increasing and continuous in the interval
[aiﬁ]y )

2° p(a)=0a and ¢(B)="b, '

3° the interval [a,8] can be divided into a finite number of
non-overlapping subintervals such that in each of them the function
¢(7) has a finite, positive, and continuous derivative (at the end-
points of these subintervals, however, the function can have only
one-sided derivatives). ‘

If two curves ¢ and I" are not essentially different, then we
write O=I". It is evident that for every curve ¢ we have C=C;
besides, that if C,=0,, then also C,=0C,; finally, if C;=C, and
C,=0;, then C,=0C;.

In the sequel, curves which are not essentially different will
be frequently denoted by the same letters. We shall distinguish
only those properties of curves which are common to a curve C,
and to every curve C=0(,. Concerning these properties we shall
say that they do not depend on the parametric representation of the
curve. Such properties are ¢. g. the above mentioned properties, that
the curve be a simple are, a closed curve, ete.

If the curve C is given by the equation z=z(f) in the interval
[a,b] of the parameter ¢, and if ¢, and O, are curves given by the
same equation in the intervals [a,c] and [e,b], respectively, where
a<<c<b, or more generally, if they are curves not differing essen-
tially from these curves, then we say that the curve C is the sum
of the curves (¢, and C,, and we write (=C;-C,. The relation
CO=(,+ C, implies, then, that the terminal point of the curve C, is

where a<{r<{8.
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the initial point of the eurve C,. Conversely, if two curves 0, and C,
are given by the equations z=z,(f) and z=gz,(¢) in the intervals
[@y,b,] and [ay,b,], and if 2,(b;)==2,(a,), then, taking 2(f)=2,(¢) for
0, <t<byy and z(f)=2,(t—b,+ a,) for b, <t<Lby+by— a,, We obtain
a curve ¢ which is defined by the equation z=z(t) in the interval
[aq,b;+ Dy— a,] and which is the sum of the cutves (; and C, (since
the equation z=2(t) in the interval [b;,b,+b,—a,] defines a curve
which does not differ essentially from the given curve C,). By
induction we immediately extend the definition of-the sum of curves
to every finite system of curves Cy,C,,...,0,; in order that their
sum be defined it is necessary and sufficient that the initial point
of each successive curve be the terminal point of the one immediately
preceding it. Finally, if ¢ denotes the curve given by equation
(12.1), then —C will denote the curve z=2(—t) in the interval
[—b,—a], as well ag every curve not essentially different from it.
The transition from curve ¢ to —C is referred to as a change of the
“gense” of the curve and, in particular, implies the interchange
of the initial point and the terminal point of the curve.

In general, one should obviously distingumish the curve from
the set of points of the curve, which we shall call its geometric image;
however, in cases which do not lead to any misunderstanding, we
shall say for brevity ‘“‘curve’” instead of ‘“geometric image of the
curve”. Similarly, & curve in the plane, defined by equation (8.1)
in' the interval [0,1], will be called — just like its image — the

v ? . —_— )
segment, or the oriented segment [21,2,] (since on every curve we

have distinguished its initial and terminal points). A curve which is
the sum of a finite number of segments will be called a polygonal line.

In the sequel (see Chapter I, §§ 16-18) we shall congider almost
exclusively curves in the plane. The function 2(¢) in equation (12.1)
is then a complex function; denoting its real and imaginary
parts by «(¢) and y(?), respectively, we frequently write the equation
of the curve (12.1) in the form of two real equations:

(12.3) g=a(t),  y=y(i),

ag is customary in real anaiysis, however, we write the equation
of the curve (12.1) in this form only when the function z(t) does
not assume the value oo.

where a<{t<b,

§ 13, Cartesian product of sets. By the Cartesian (or com-
binatorial) product of sets A,,4,,...,4,,, we mean the set of all

cm

© point a=(a®,a®,...
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systems of the form (ay,ay,...,a,,), Where Qyy Q.. eylly, are TeS-
pectively elements of the sets A;,4,,...,4,,. We shall denote
this product by 4, X 4;X ... X 4,, and When Ay=A,=...=4,=A,
by A™; the set 4™ will be caJled the Cartesian m-th power (and henee
¢. g. in the case m=2 the Cartesian square) of the set A.

If AD, AP, ... A™ are abstract spaces with their associated
families of nelghbourhoods AD, AA ., U™, satistying postulates I
and II of § 3, then the Cartesian produet A;A“’x AP X .. x A™
will be considered an abstract space by associating with it, as
a system of neighbourhoods, the family % of all sets of the form
V=T X POx...x V™, where VDeUD, TReAAD, ..., V™™,
The system of neighbourhoods 9 defined in this way obviously
satisfies postulate I of §3 with respect to the space 4. With the
view of verifying postulate II, let us consider an arbitrary
)¢ A. In each of the families A®), where
k=1,2,...,m, there exists a decreasing sequence of meighbour-
hoods {U4),_, , .. containing a®, such that if V™ is an arbitrary
neighbourhood of the family A™® containing the point a®, then
UECV®, beginning from a certain value of the index n. Taking

M T um)
U,=U ' xU % ...x Uy

we obtain a decreasing sequence of neighbourhoods {U,} belonging =
to the family 9 and containing the point a. Let

—7gm (2) (m)
U=U0""xU0%%x...xUT

be an arbitrary neighbourhood belonging to % and containing the
point a. Then, for sufficiently large values of », we have simulta-
neously

o Ccoym, u»Co?, U™ C U‘m),
and hence also U, CU. The family of neighbourhoods 9 conse-
quently satisfies postulate IT, § 3.

‘We shall mention a few fundamental properties of the Cartesian
product of spaces:

(13 1) Let A be the Cartesian product of m abstract spaces A™®, A‘z)
., A™, Then :

(a) for every sequence {a,=(ag’,al’,.

space A, the rélation a=lima,, where a—(a,“), a® ...,
n

—ag) of points of the
a™), is equi-
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valent to the set of m relations a,”)——]jma“) a”)—hma@) .

o™ =1lima{™, in the spaces AN, AD,. A(m) respectively ;

n
(b) if AD, 4O,
M)y 4O

spaces AD, AP, . A‘m’ then the set A=AMx A®x.
a closed set in the space A;

(c) if BD,B®, ... ,B™ are compact sets in the corresponding
spaces AD, A(Z’ A""’ then the set B=BMx B®x ... x B"™ g3
a compact set in the space A.

Proof. Part (a) of the theorem is obvious, and part (b) follows
immediately from part (a). To prove part (c) let us assume for
simplicity that m=2 and let {b,=(b3", b)) be an arbitrary se-
quence of points of the set B. From the sequence {b}},_, ., which
consists of points of the set B, we can extract a subsequence
{b‘ Nj1s,.. convergent in the space A, Next, from the sequence
{08 )}k 12.., Whose points belong to the set B, we can extract

a subsequence {5{)}; ., . convergent in the space AP, The
A

LA™ are closed sets in the corresponding
X A™ g

sequence {(65), b)), 15, ., extracted from the given sequence

{05, b)}nzrs,.., is consequently (by (a)) convergent in the
space A. The set BCA is therefore compact.

‘We can regard the Cartesian m-th power E™ of the plane E as an
example of a Cartesian product of spaces. The system of neighbour-
hoods for the space E™ is formed by Cartesian. products of the type

K(#5r) X K(2D57) X ..o X K(e™s7,,),

where 7,,7s,...,7, are arbitrary positive real numbers and 2%,
#P,...,2"™ are points of the plane. In the case m=2 we shall also
call the neighbourhood X(ey;r:) X K(2y;7s) a bicircular meighbour-
hood with centre (21,2,) or a bicircular neighbourhood of the point
(21,2y).

By the distance o(21,2,) of two points y=(20,27, .., ™)
and z,=(2",2(",...,2{™) in the space E™ we shall mean the lar-
gest of the numbers p(2{),2{") for %k=1,2,...,m. From theorem
13.1 (a) it follows immediately that the relation lime,=2 in the

k

space E™ is equivalent to the relation o(2;,2)—>0.
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CHAPTER I
FUNCTIONS OF A COMPLEX VARIABLE

§ 1. Continuous functions. In this section we shall establish
fundamental definitions and notations concerning functions of one
and of several variables. The independent variables as well as the
functions will assume complex values; the value co will also be
admissible provided, of course, that the context does not necessﬂaate
its execlugion.

A function F(#,%,,...,2,) of n complex variables, ranging
respectively over m sets Z;,Z,,...,Z, in the plane E, can be
congidered as a function of the ‘point 2=/(2y,2,,...,2,), defined on
the Cartesian product (cf. Introduction, § 13) Z=2,X Z, X ... X Z,.
Instead of F(e,2s,...,2,), Where 2,67, 2,6Z,,..., 2,¢Z,, we can also
write F'(2), where z€Z; X ZyX ... X Z,. The function F is said to be:

1° bounded on the set Z, if-there exists a finite number M such
that |F(2)|<<M for each point zeZ;

2° uniformly continuouws on Z, if for each number s>0 there
exists a number 5>>0 such that the inequality o(2,,2,)<<7 implies

|F(2,)—F(2,)[< & for every pair of points z,,2, of the set Z (this

definition presupposes. that F is finite-valued).
We denote by o(#,2,;) the distance between the poinfs 2z, and
2, in agreement with the definitions in the Introduction, §§ 8, 13.

(1.1) If the sets Z,,Z,,...,Z, are closed, then every finite and con-
tinuous function B on the set Z=Z;XZyX ... X Z, s bounded and
uniformly continuous on this set. Moreover, if the function F is real,
then at a certain point of the set Z it attains the upper bound of its
values on this set.

Proof. Let us assume that the function # is not bounded
on Z. Then there exists a sequence of points {2™},_;, -in the set Z
such that F(z*)—>oco. Let {2(*)} be a convergent subsequence ex-
tracted from the sequence {z*}. Such a subsequence exists in
virtue of the compactness of the space E™ (Introduction, theorems
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