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PREFACE

My lectures in mechanics, given for many yoars at the Jan Kazimierz
University and the Lwéw Polytechnic Institute, consisted of the contents
of this work. ‘

I have limited myself to the mechanics of a system of material pointy
and a rigid body. The material coveredissuitablein generalfor university
requirements, however, keeping in mind the needs of the students at the
Polytechnic Institute, chapter VI which treats of the statics of a rigid
body was worked out so that it could be accessible without a knowledge
of kinematics and dynamics. It can be read immediately after chapter I
when supplemented with several facts according to instructions included
in the footnote on p. 231. Taking into account the requirements in meeha-
nics ab the Polytechnic Institute, I have also given in chapter VI certain
information from engineering mechanics, :

The mathematics necessary to understand this work in its entirety
is limited to the elements of analytic geometry as well as to the differential
and. integral caleulus. Other necessary notions and theorems have been
given in the text in order not to send the reader to works too specialized.
In particular, T give in the Appendix (at the end of the work) a method
of solving ordinary differential equations of second order with constant
coefficients which arise frequently in mechanics.

I have endeavoured to give in this book as easy an exposition as pos-
sible. The more difficult considerations are illustrated by many examples.
Problems to be solved have not been. inserted in the text; the reader will
find them in most texthocks and in the collections of problerns which are
given below. I have also considered it unnecessary to burden the con-
tents with the names of the authors of particular theorems or examples,
since I congider the material contained in this book ag clagsical.

The reader will find detailed bibliographic instructions in corres-
ponding articles of volume IV of the Bnzyklopadie der mathematischen
Wissenschaften (Teubner, Leipzig 1901-1985) as well as in volume V of
the work Handbuch der Phystk (Berlin 1927), and historical data and cri-
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tical remarks in the work of . Macw, Die Mechanik in ihrer Entwicklung
(9 Aufl., Leipzig 1933). Here I limit, myself to the presentation from lite-
rature of a number of the more important works, namely:

P. AveuLy, Traité de mécanique rationelle, vol. I, 5-éme éd., Paris 1926,
vol. II, 4-8me éd., Paris 1931;

P. Areriy et G. DAUTHEVILLE Pyéeis deméconiquerationelle, 5-éme éd.,
Paris 1934;

A. Forer, Vorlesungen diber technische M. echamlc Bd I, I1, IV, VI,
4-8 Aufl., Leipzig 1921-1983;

G. Hawmsr, Blementare Mechanil, Lelpz1g 1912;

T. Leve-Crvita e U. Awmaror, Leziont di meccanica razionale, vol. T,
Bologna 1922, vol. II, Bologna, 1927,

A. E. H. Lovs, Theoretical Mechanics, 2°% ed., Cambridge 1921;

J. Niursex, Blementare Mechanik, Berlin 1935;

Ch. de la Varrsm-Poussiy, Legons de mécanique analytique, vol, T,
2-8me éd., Paris 1926,

E. J. Rours, An elementary treatise on the dynamics of a system of
rigid bodies, 3" ed., London 1877; :

E. J. Rovrs, A treatise of analytical statics, vol. I, TI, 2°¢ of,,
Cambridge 1902;

E. J. Rours, Dynamws of @ system of rigid bodies, T ed., London
1805;

Cl. Scuirer, Hinfihrung in die theoretische Physik, 3. Aufl., 1. Bd.,
Berlin-Leipzig 1928;

Cl. Scuirsr, Die Prinzipien der Mechanik, Berlin-Leipzig 1919;

A. G. Wesster, The dynamics of particies and of rigid, elastic and fluid
bodies, 8°% ed., Leipzig 1925;

E. T. Warctaxer, A4 treatise on the cmalytwal dynamics of particles and
rigid bodies, 3" od., Cambridge 1927;

F. WITTENBAUER, Aufgaben aus d,’er technisclier. Mechanik, 6. Aufl.,
I. Bd,, Berlin 1929.

It is a pleasure for me to thank Dr Broxiszaw Kyasrur for his effec-

tive help in connection with the publishing of this book, Dr Epwazrp Orro

. for making the drawings and Dr Axrozt Zvemuxp for help in the correc-
tions.

Stefan Banach.
Lwéw, January, 1938.
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CHAPTER T
"THEORY OF VECTORS
I. OPERATIONS ON VECTORS

§ 1. Preliminary definitions. Magnitudes which can be characterized
by mesans of one real number are called scalars. Examples of scalars are:
mags, work, kinetic energy, ete.

A wector is a line segment in which the initial point is distinguished
from the terminal point. Points are classified as zero veciors.

Magnitudes such as velocity, acceleration and foree can be repre-
sented by means of vectors. A vector will be denoted by bold face type,
for example a; a vector whose origin is 4 and terminus is B will be
denoted by A B (Fig. 1). Tn a drawing an arrow serves to mark the terminus
of a vector. The origin of a vector is also called @ point of application.

By the length or absolute value of the vector 4B is meant the length of
the line segment 4B and it is denoted by |4B|.

Two vectors having the same direction (i. e. parallel vectors) can have
the same or opposite senses (Fig. 2).

B S —
AB T I
a b ash
a=b
v .
Fig. 1. Fig. 2. Fig. 3. Fig. 4.

The vectors a and b having equal lengths, directions and Senses are
said to be egual (Fig. 3) and we write
a=>hb.
Two vectors having equal lengths and directions but opposite senses

are called opposite veotors The vector opposite to a is denoted by —a
(Fig. 11).



APPENDIX

ORDINARY DIFFERENTIAL EQUATIONS OF THE SECOND
ORDER WITH CONSTANT COEFFICIENTS

This is the name given to equations of the form

y' +ay' + by = (), (D
where g, b, are given real numbers, p(z) is a known function; the sought
for function satisfying (I) is ¥ = f().

Equation (I), in which the function ¢(x) is zero, is called a homo-
geneous equation,
A homogeneous equation therefore has the form

¥+ ay by =0. (T)
In order to solve the homogeneous equation (IT), we take
Y= (1)

where 7 is chosen so0 that equation (TT) is satisfied.
Differentiating (1), we obtain:
Yy o=re®, Yy’ = 12", (2)
Substituting (1) and (2) in (II) we obtain
ri’® 4 are’™ - be'™ = |,
whence after dividing by
4 ar+b=0. (III)
Egquation (ITY) is called the characteristic equation of (I1).
The form of the solution of the homogeneous equation (II) depends

on whether the roots 7., r,, of the characteristic equation (III) are real
(equal or different), or complex. Let us therefore examine the three cages:

1° Roats 7, ry, are real and different. The most general solution of
equation (I1) iz then

y — cleh&' + Gae'?',x, (3)
where ¢, ¢4, are arbitrary constants,
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2° Roots ry, 1y, are real and equal, The most general solution of equa-
tion (II) is then
Y= (0% + ¢4) €7, (4)
where ¢,, ¢,, are arbitrary constants.
3° Roots 1y, ry, are complex. Since equation (III) has real coeffi-
cients a, b, then », r,, are conjugate imaginary numbers.
Let us take:
7y o B, Ty = o — fi.
The most general solution of (IT) is in this case
y = e*¥(¢; cos fx + ¢, sin fzx), . (5)
where ¢,, ¢4, are arbitrary constants. ‘
In order to find the general solution of (I), we try first to find a
particular solution of this equation. If we succeed and y = p{x) is this
particular solution, then we next solve the homogeneousequation (IT1}. The

most general solution of equation (I) is obtained by adding the particular
solution g(x) to the general solution of the homogeneous equation (IT).

Example [. Solve the equations:
() y"—38y +2=10; (b)y +2 +y=0;
(¢) " —2y" + By = 0.
The characteristic equations are:

(ay rP—3r4+2=0, b)rr+2r4+1=0
(6) ¥2— 2r + 5= 0.

The roots of these equations are:
(@) ri=1r,=2 (b)r=r=—1
(€) rp=1-4 20, rg=1—2i.
The most general solutions therefore have the form:

(a) y = €.8” + 6™ (b) y= (@ + c)) e
(e) y = €%(¢y cos 2x + ¢, 8in 2x).

Example 2. Solve the equation
(d) y" — 3y’ + 2y = da?.
We try to find a solution of the form. ,
y = ax? + by + c. : (6)
In order to determine a, b, and ¢, we substitute (6) in (d). After '
forming derivatives, we get: '
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2a — 3(2ax -+ b) + 2(ex® + bx -+ ¢) = dx?,
whence
‘ 2ax® + (— 6o + 20) & + (2a — 3b + 2c) = 4x®.

Equating coefficients, we obtain:
%26 =4, —6a- 20 =0 20— 3b-+ 2 =0
consequently:
0=2 b=6 ¢=1
Therefore by (6) the particular solution of equation (d) is
y=2+ 6w +7 (7

The homogeneous equation 3" — 3y’ + 2y = 0 has the general
solution

¥ = o+ oge® (8)
(ef example 1 (a)). Therefore by (7) and (8) the most general solution
of equation (d) is .

Y= "+ c6™ + 2w - 6 L 7,
where c,, ¢,, are ai‘bitra.ry constants.
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Abgolute acceleration, 59; force, 135
motion, 69; time, 89; value of a vector, 1;
velocity, 6.

Acceleration, 38; absolute, §9; angular, 45;
gravitational, 74; normal, 40; of Coriolis,
60; of tranaport, 59; relatlve, 59; tangon-
tial, 40.

Action and reaction, law of, 73.

Actual motion, 512,

Advancing motion, 54, 318.

Amplitude, 111,

Angular ncoeleration, 45; momentum, 198,
200; velocity, 40, 820.

Anomaly, eceentric, 90; mean, 02; trus, 01,

Axrxc coordinate, 34,

Arm of force, 238.

Atwood’s machine, 103,

Average velocity, 33.

Axes of inertia, central, 164; prineipal, 163.

Axial field, 102.

Axis, central, 27, 334; of a field, 102; -of
rotation, 308 ,324; of twist, 318,

Balance, 275; decimal, 294,
Binot's formula 87.
Boundary position, 420,

Cardan’s suspension, 412.

Carnot’s theorem, 9.

Catenary, 305.

Central axis, 27, 334; axes of inertia, 164;
ellipsoid of inertis, 184; field, 85, 101;
motion, 85; plane, 164; systern, 20,

Centre, 20; of forces, 238; of instantaneous
accelerations, 868; of instantaneous rota-
tion, 326; of gravity (of mass), 152, 171;
of motion, 85 of oscillation, 877; of
peroussion, 384; of pressure, 260; of
reduction, 24; of symwmetry, 166; of a
field, 86, 101; of a syster, 28.

Centrifugal foroe, 135,

Chein 30%.

Chaales’ theorem, 315.

Coefficient, of dynamic frieiion, 367; of
gtatic feiction, 268,

C. g. 5. system, 74.

Comparative motion, 505.

Components, tadial, 47; caf 8 vector, 2;
transverse, 47,

Compound centrifugal force, 135; motion,
58.

Compound pendulum, 376.

Compression, 289.

Concentrated mass, 158.

Condition, of moment, 248; of projections,
246,

Cone, of friction, 2688.

Cone of instantaneous axes, fized, 339;
moving, 339.

Conservative field, 97, 210.

Constant field, 100. .

Constrained body, 257; material point, 121;
gystera, 189,

Constraints, 121, 188, 257; dependent on
time, 487; in a finite form, 420, 467,

Coordinate, arc, 34. }

Coordinate system, left (right) hended, 2

Coordinates, oyclic, 489; Lagranpge’s gene-
ralized, 452; natural, £52.

Coriclia, acceleration of, 60; force of, 133.

Cremona force diagram, 299.

Curve of instantaneous centres, 388.

Cyecloid, 44.

D’Alembert’s principle 73, 188.

Damped harmonic motion, 114.

Deoimal balance, 294.

Degroes of freedom, 421, 467,

Density, 167; linear, surface, 169.

Diagram, 54; of veloecitieg, 44.6.

Difference of the vectors, ¢

Directional plane, 273, 312,

Dimension, 50.

Dirichlet’s theorexn, 119.

Digplacement, 34; impossible, 422; of a
body, 307; parallel. 307; possible, 422;
virtual, 428, 469, 470; of a system, 425.

Displacerent vector, 307,

Division of a vector by & number, 5.

Dynamomster, 75.
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Elastic foree, 110, 113.

Element, of area, 168; of length, 169; of
vaohune, 168.

Ellipse of inertia, 167.

Ellipsoid of inertia, 163; central, 164.

Energy, kinetic, 105, 214; potential, 105,
218; total, 105, 216.

Equation, homogeneous, 534; characteris-
tic, 534.

Equilibrium, 73, 187; of & rigid body, 234;
stable, 119, 132; unstable, 119.

Equipollent systems, 2I; vectors, 2.

Euler’s angles, 355; equations, 397.

Extornal forces, 187, 232, 287.

Field, axial, 102; axis of, 102; central,
centre of the, 85, 101; conservative
(potential}, 97, 210; constant, 100.

Force, absolute, 135; arm of, 233; bending,
285; centrifugal (of +transport), 135;
compound centrifugal (of Coriolis), 135;
elastic, 110, 113; line of, 96; of inertia,
73; of perturbation, 225; relative, 135;
shearing (bending), 285; vorhof, 94, 208.

Force couple, 237.

Force diagram, Cremona, 299; reciprocal,
300.

Foree field, 77, 96, 210.

Force funetion, 97, 211.

Forcea, centre of, 238; external, 187, 232,
287; generalized, 456; internal, 187, 231,
287; moment of, 234; plane system of,

. 288; polygon of, 250,

Foueault’s pendulum, 143.

Frame, plane, 295; space, 204; statically
determinate, 294.

Friction, 121, 122, 259, 366; dynamie
coefficient of, 367; static coefficient of,
268; cone of, 268.

Generalized forces, 456; impulses, 498; po-
tential, 408.

Goeodesics, 522.

Graph, 34

Graphical statics, 249,

Gravitational acceleration, T4.

Gravity, eentre of, 152, 171.

Guldin’s rules, 174.

Gyration, radius of, 158.

Hamilton’s, function, 499; canonical equa.-
tions, 499; principle, 516.

Harmonic motion, darmped, 114; plans, 113;

- simple, 110.

Helical motion, 55.

Helix, 336.

Hodograph, 39.

Hslder’s transformation, 529,

Holonomic constraints, hilateral, 419; uni-
Iateral, 420,

Holonomic gystem, 468.
Holonomo-scleronomie system, 420.

Independent pararneters, 452.

Inertia, ceniral axes of, 184; ocentfral el-
lipsoid of, 164; ellipse of, 167; ellipsoid
of, 163; foree of, 73; law of, 72; moment
of, 157; principal axes of, 163; product
of, 157, 166; total moment of, 157; total
produst of, 157.

Inertial frame, 69.

Instantaneous, advencing motion, 323; an-
gular velocity vector, 324; sxis of rota-
tion, 324; centre of rotation, 326; mo-
tion, 323; rotation, 324; twist (screw
motion), 334; velocity of an advancing
motion, 323. .

Integral veriational principles, 513.

Internal forces, 187, 231, 287.

Joints, 289.
Jolly’s balance, 89.

Kepler's equation, 92; laws, 87.
Kinematical method, 445,
Kinetic energy, 105, 214.
Kbonig’s theorem, 215.

Lagrange’s equations, of the first kind, 481;
of the gecond kind, 486.

Lagrange’s, generalized coordinates, 452;
moultipliers, 448.

Law, of composition of displacements, 308;
of composition and resolution of forces,
236; of universal gravitation, 89.

Lead of helix, 338. '

Lever, 274.

Line of nodes, 35¢.

Links, 302,

Lissajous’ curves, 118.

Mass, contre of, 152, 171; concentrated,
158.

Material point, 71; constrained, uncon-
strained, 121,

Mathematical pendulum, 120.

Maupertuig’ prineiple, 530.

Metrie gravitational system of units, 75.

Moment, of a system (total), 19; of a vector,
15, 18; of forces, 284; of inertia; 157;
momentum see Angular momentum;
statical, 151, 169, 171,

Momentam, 72, 360; angular, 198, 200; of
a system (total), 195.

Motion, actual, 512; absolute, 69; ad-
vaeing, 54, 318; central, 85; compara-
tive, 505; compatible with the con-
straints, 512; eompound, 58; helical, §5;
instantaneous, 323; plane, 310; quan-
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tity. of, 72; relative, 85; resultant, 342
rolling, 837, 338; scrow, 334; sliding, 338;
uniform, 38, 42; uniformly accelerated,
43. :

Multipliers of Lagrange, 448,

Natural coordinates, 452.

Newton's equations, 79, 186.

Nodes, 295; line of, 354.
Non-hclonomic systern, 468.

Normal acceleration, 40.

Normal reaction, 259, 366.

Number of degrees of freedom, 421, 467.

Parallel system, 21.

Path, 34.

Perfectly rough surface, 367.

Period, 114, i

Perturbation, foree of, 225.

Plane, ceniral, 164; of symmetry, 156.

Plane harmonic motion, 118,

Plane system, 21, 155,

Point, material, 71; spherical, 164.

Potential, 97, 21L

Potential, enorgy, 105, 2186; field, 97, 210;
sarfaces, $9.

Product, of inertia, 157, 168; scalar, 7;
vector, 9. ’

Principal axes of inertia, 163.

Principle of conservation, of energy, 216;
of moment of momentum (of areas), 85,
202, 2038; of momentum, 196,

- Principle, of equivalence of work and of

kinetic energy, 479; of the least action
(Mauvpertuis®), 630; of virtual work, 436.
Problems statically indeterminate, 247.
Projection, condition of, 246; of a wvector,
2, 8; range of the, 82.

Quantity of motion see Momentum.

Radial componehts, 47.

Radius of gyration, 158.

Rading vector, 46. )

Reaction, 121, 189, 257; normal, tangen-
tial, 121, 122, 259.

Reciprocal force diagram, 300.

Reduced length of pendulum, 376.

Reduection theorem, 24, i

Redundant bar, 295.

Relative, acoeleration, 59; force, 135; mo-
tian, 68; velocity, 56, 68; work, 138.

Resultant, 25; compressive (tensile), 285;
motion, 58, 342.

Reversible virtual displacement, 427,

Rheonomic gystom, 467.

Rigid body, 231,

Rigid system, 190.

Rolling motion, 337, 338,

Rope, 303.

Rotation, about an axis, 320; about a line,
308; about a point, 811; angle of, 309;
axis of, 308, 324; instantaneous, 324.

Scalar, 1.

Sealar product, 7.

Screw motion, 334.

Bhearing (bending) force, 285.

Skew vectors, 21.

Sliding motion, 338.

Smooth, bodies, 25%; joints, 289,

Spherical point, 164.

Stable equilibrium, 119, 132,

Static cosfficient of frietion, 268.

Statical moment, 153, 169, 3470, 171, -

Statically, determinate frame, 297; inde-
terminate problems, 277,

Steady precession, 349.

Stress, 285, 289,

Stress field, 98.

String polygon, 251,

Support, 260. ‘

Surface density, 168.

Burface of central axes, fixed, 339; moving,
339,

System, central, 20; centre of, 28; ¢. g. s.,
74; congtrained, 189; displacement of a,
425; equipollent to zero, 22; holonomis,
466; holonomo-seleronomic, #420; mo-
ment of, 19; non-holonomic,” 468; of
points, 151; parallel, 21; plane, 21, 155;
rhecnomic, 467; rigid, 190; scleronomnic,
4686; virtual displacement of a, 425.

Systerns, equipollent, 21.

Tangential acceleration, 40.

Tensile resultant, 285.

Tension, 289; of a cable, 304; of a string,
281,

Time, absolute, 69.

Times of return, 115.

Total energy, 105, 206; mass, 152; moment,
19: moment of inertie, 157; momentum,
195; produet of inertia, 157.

Trajectory, 34.

Translation, 307. #

Transverse components, 47.

Trugses, 204.

Twist, axis of, 318; instantaneous, 334.

Twisting moment, 285,

Unconstrained point, 121.
Uniform motion, 38, 42.
Uniformly accelersted motion, 43.
Unit vector, 7.

Universal gravitation, law of, 89,
Unstable equilibriu, 119,
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Variation, of a compound function, 509; of
the dependent variable, 505; of & fune-
tion, 505, 509; of the independent vari-
able, 505; of an integral, 506, 510; of
time, 524; together with the variation
of time, 524, 526, 527; without the vari-
ation of time, 506, 509.

Variational (integral) principles, 513.

Vector, 1; absolute value of, 1; components
of, 2; moment of, 15; point of applieation
of, 1; position of, 2; projection of, 2, 8.

Vector couple, 23.

Vector funetion, 13.

Vector product, 9.

Velocity, 35; absolute, 56; angular, 45, 320;
areal, 47; average, 35; impossible, 422;

of transport, 56, 334; possible, 422; rola-
tive, 56.

Virtual displacement, of & poing, 423, 469,
470; of a system, 425, 471; reversible,
4217,

Virtual work, 434; principle of, 436.

Weight, 74, 240.

Work, 94, 208; principle of virtual, 436;
relative, 138,

Wrench, 27.

Zero couple, 237.
Zero forcee, 70.
Zero veotor, 1.
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