CHAPTER XI

VARIATIONAL PRINCIPLES OF MECHANICS

§ I. Variation without the variation of time. In this paragraph we
shall give certain information from the calculus of variations necessary
for the understanding of what follows. )

Variation of a function. Let us take under consideration the motion
of a point along the x axis, defined by the function
T = x(t) o=t t). (1)
Let there be given a function
T = F(z, o, 1) (2)

continuous and having continuous partial derivatives of the first and
second orders in a certain region D of the variables z, -, .

Let us next take under consideration an arbitrary motion along the
z-axis, defined by the function

x = x(t) . (fo <t 8). (3)
Let us assume that it is possible to choose a number ¢ > 0 such
that if

x(t) —2(t)] <&, Do) —a ()] <e t<t<t), (4)

jchen the function T and its partial derivatives will be continuous functions

in the interval {t,, t,» when x(t) and x*(t) are substituted in (2) for & and
x*, respectively.
Let us put:

0r = x—uz, do =x —a, (5)

where z and x denote the functions z(f) and x(t). Consequently éx and Sa
are functions of the time ¢, defined in the interval by, B>

One should note the difference in the meaning of the symbol dr in chapters

IX, X and now. Before, the symbol z denot i
X . 3 s ted & number, and now it
function of the time ¢, ' now b denctes a
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By (5) we have:

x =z + dx, x =z - dx. (6)
Let ‘
T=F(x,x,t) = Fx + dx,z + ox,1),
where x denotes the function (1), and éz is defined by (5). From Taylor’s
formula we get

T—T = F(x -+ 6z, + 6w, t) — Flx, ) =

oT oT . .
The remainder R can be written in the form
"R = (|| + |8z 7, (8)

where 7 is a function of the time ¢ and depends on z, dz, éxz", and where 7

tends to zero uniformly when the functions éx and dxz- tend to zero

uniformly. Therefore, if |6z| and [dz]| are small, then In] is small, and

consequently |R| is of a still higher order of smallness. We express this

briefly by saying that R is “infinitesimal” as compared with |dz| + | 6|
Let us put

oT oT
= e = ° II
6T p Sz + PR oz, (IT)
Hence by (7) .
T—7T=4T+ R. 9)

The expression 7 is called the wariation of the function T =
= F(z, 2, t) at the place x = x(t) or for the function x = x(t).

In formula (II) the function dz is an arbitrary function of time
having continuous first and second derivatives in the, interval Loy 1
This follows from (5), where x is an arbitrary function having continuous
first and second derivatives. In virtue of (I) the symbol dz- denotes the
derivative of the function dx with respect to the time 7.

The variation 87" therefore depends on the functions z and éx.

For purposes of differentiation we shall call éx the variation of the
independent variable (or of the function) ®, and 6T the variation of the
dependent variable (or of the function) T _

The motion x = x(f) = = 4 0z, will be called a comparative motion.

The variation 67" therefore denotes approximately the increment of
thefunction 7' when we pass from a point in the given motion at themoment¢
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to a point in the comparative motion at the same moment #. In virtue of (8)
the difference B between the variation 67 and the true increment
T — T is “intinitesimal” as compared with the sum |dz| 4 |d2"|.

Since we are investigating the increment of the function T' m tbe give.n mo-
tion and in the comparative motion at the same instant £, the Va,r}a,mo'n OT is also
called the variation without the variation of time in order to differentiate it from ano-
ther kind of variation with which we shall meet later.

The variation §7 is obtained by forming formally the differential of the
function F(z, 2, £) under the assumption that ¢ = const (i. e. d¢ = 0) and
then writing 4 instead of d. We often write 6F(x, -, t) instead of 67 or
briefly 6F.

Example I. Let
T = oa® 4 fa?t + yf,
where «, f, y, are constants. We have:

T oT .
—a-; = 20(23, 5’; = 2/9% t:

consequently by (II)
0T = 20z dx + 2Pzt da,

where 0z is an arbitrary function.

Variation of an integral. Let us consider the integral

t
I= [F(x,a,t)ds (10)
and let n
I = [F(z + éx, z + ox,t) dt.
17
We have

I —I = [P + be,0 + 80, ) — Fla, o, )] s,
to

and hence by (7) and (II)

A @
I —I= [6Fdt+ [Rds. (11)
73 to
The expression
tl
[OF di
to

is called the variation of the integral (10) and we denote it by 1.
Therefore according to the definition

t 1
8T = 6[F dt = [F a. (1T}
17} to
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As before, the variation of the integral (10) represents approxim&tely
the increment of the integral when we pass from a given motion to a
comparative motion. The difference between the true increment and the
variation 4 is “infinitesimal” in comparison with |éz| 4 |6z-|.

Variation of a derivative. Let the function

x = &g, 1) (12)

be given.

Let us assume that g is a certain function of the time £; hence

q = q(t) (b <t < 1) (13)
Regarding ¢ in formula (12) as an independent variable function, we
obtain for the variation of the dependent variable x

0x = = dq, (14)

where dg denotes an arbitrary function continuous together with its first
and second derivatives in the interval {(t,, ¢;>.
Let us form the derivative of (12). We get

ox ox
z = E g + e
the variation 8z of this function is therefore
o ox
S = e oq + Er og-.

From (12) we see that the derivatives oz / ¢ and d | 6¢ do not de-
pend on ¢, because 2 does not depend on ¢*. Hence we obtain

0% 0% ox . . )
O —(87!251 +m)54+§q—59- (15)
Forming the derivative of (14) with respect to ¢, we get

d 02 0%z oz
H‘t“””)z(a?q N at)‘sﬁﬁq“sq’

whence by (15)
. _ 4(%=)
ox = a
Comparing (16) with formula (I) we see that both formulae have the
same form. The difference lies in the fact that in formula (I) z is an inde-
pendent variable and in (16) it is a dependent variable.
Formula (I) holds, therefore, regardless of whether z is a dependent
or independent variable. It follows from this that the variation is inter-

(16)
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changeable with the derivative, i. e. we obtain the same result by first for-
ming the variation and then taking the derivative or conversely.

Variation of a compound function. Let the functions:
T = F(z, 2, 1), (17)

= 9(¢, 1) (18)
be given.
Let us assume that ¢ is a function of the variable ¢:

¢ = q() h=t<t)  (19)
Forming the derivative of (18), we obtain
ox ox
=57 T (20)

Substituting in (17) for # and z- their values from (18) and (20), we
obtain 7' as a function of the variables ¢, ¢°, ¢, 1. e.

T =¥ q,1), (21)
and hence as its variation
oT oT

From the theorem on the derivative of a compound function we
obtain:

of oT'ox o7 ox o oTox  of ox

% o T owde o¢ twdg ' owdg (23)
and by (18):
C oz
7= (24)

Substituting (24) in (23) and then in (22), we obtain

oT'ox T ox oT ox
(8x 8g+ oz Bq) = ox o

oT ax oT (o 0
Bx( )+n (x éq + xé‘l)

It is easy to verify that the expressions in the last two parentheses

are variations of the functions (18) and (20), and therefore equal to dz and
dx-. Consequently

6g. —_

a
o7 = T 6 —|- (25)
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Formula (25) represents the variation of the compound function (21),

where 0z and dz- denote the variations of the functions (18) and (20). Let

us note that (25) also represents the variation of function (17). We see
from this that formula (25), i. e. formula (IT), p. 505, holds regardless of
whether « is the dependent or independent variable function.
Similarly, when ¢ = const, the formula for the differential
oT oT
a7 = —ds — da
o v oz do

holds regardless of whether x and 2 are dependent variables or not.
Let us note that dz in formula (25) is by (16) the derivative of éz.

Systems of points. Let us now define the variation in the case of a
system of points. \
Let there be given a system of n material points
Al(xl’ Y1 21)’ LR An(mm Yns zn)-

Let us consider an arbitrary motion of the system (compatible with
constraints or not) defined by the functions:

z; = w,(t), yi = yi(t), z=2), G St b, 1 =1,2,...,m). (26)

Let the function
T=F(xy, ..., Tp; Yq, - -
be given.

] ym 21, sy Z‘n, m]'_: tery n’ ?/1’ . ~)?/7'1:zi, ceey n>t) (27)

The variation of function (27) for a motion defined by functions (28) is
given by the expression

o =2 by 4o+ b byt g by
0z, 0%, oy,

BT aT

. 521 + .+ 8 8 - 0x) + . + 5% —|— 6y1 + ...+
oT 8 (28)
et . PR . . —_ a .

-+ o 8y, + o dz; + . + 5, 2,
which we write more compactly as

8 oT oT 8T

where 693,-, éy,-, 0z; are arbltrary functions continuous together with their
firgt and second derivatives in the interval {fy, ¢,>, where

d

d: d ,
gz (%) = oz}, 7 (0ys) = Oyi, gz (0%) = éz; (1=1,2,..,n) (V)
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The derivatives 67T [ 0x,, ..., 01" | &z; are pajmrtial derivatives of tohe
functions (27), in which for y, ..., z,, are substituted the corresponding
i 26) and their derivatives. '
funei?}féwi, the variation 67 denotes approximately the increment of
the function 7' when we pass from the position of the system at the mo-
ment ¢ in the given motion, to the position of the system at the same
moment ¢ in the comparative motion:

X, =2; + 0%y, Yi =¥ + OYi Zi =2+ 0% t=12..n)

The difference between the true increment and the variation is — as
is easily seen — ““infinitesimal” in comparison with the sum

16w - 1834l + 1824 + 1623 -+ o] + lézi).

i=1

Let us note that the variation 67 is obtained by forming the cflifferan-
tial of the function 7' under the assumption that ¢ = const (i. e. for
dt = 0) and then writing 6 instead of d.

Let there now be given an integral

11
1= fra (29)
tﬂ

where 7' denotes the function (27). _ o
The variation of the integral (29) for a motion defined by (26) is given

by the expression .
8T = [T dt. (30)
o

Therefore .
t 1
5fT dt = [oT dt. (VI)
ity to

Example 2. Determine the variation of the kinetic energy

E = $>mya? + v + 2.

i=1
‘We have:
B oF
@ZO %:O, @:O’ E—E—zm,ﬂ%, a_: i’i‘:: '_.=mizu
o0z, 7 2y, 0z; ow; ov; 0z
consequently

0B = Zm,(x; dx; L y; Oy; + 2; 02)).

Example 3. Determine the variation of the function VT, where 7'
is a function defined by formula (27).
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Forming the differential under the assumption that ¢ = const, we
have

dJT = 3dT | T, whence oJT = 167/ )7.

Let us assume that the natural coordinates X145 Y15 215+ vs Lopy Yoy 2y ATE
defined in terms of the parameters 91 <+ 9% by means of the functions:

X, = fi(QI: ces Qs t)) Y= (pi(QL oo Qs t)s 2y = 'Wi(QI’ coos Qg t) (31)
G=1,2, .., ).

We do not assume that the Parameters are dependent nor that
they are independent. Let

71 =8, ..., qp= 7(%) =t =t) (32)

be arbitrary functions continuous together with their first and second
derivatives in the interval (t, ,>. The functions (32) together with (33)
define a certain motion of the system which may be compatible with the
constraints or not. Differentiating (31), we obtain

ox; ox; . Oy
wi:-a‘%%‘i‘---”f'@%'l‘”é? (33)

and similar formulae for y; and z;. Let us substitute functions (31)
for zy, y,, 2;, in (27), and functions (33) for x;, 43, 2. We obtain T in the
form of a function of the variables Tis oo Qoos Qi -+ o5 Gy &

T=Fqy .9 G -, G 1). (34)

Proceeding as in the proof of the theorem on the variation of a com -

pound function (vide formula (25), p. 508), it can be shown that the

variation of function (34) is also expressed byt ormula (28) or (IV), where

0x;, 8y,, 0z, are the variations of the functions (31), and 82, dy;, 62;, the
variations of functions (33) and of analogous ones for y;, z;.

Moreover, asin the proof of the theorem on the variation of a derivat-

ive (vide formula (16), p. 507) it can be proved that formulae (V), in which
%, Y3, 2> denote functions (31), will hold.

Let us form the variations of functions (31). We obtain:

Sy — % ot Sy =g ..+ Higy

o, 32, (35)
Sey = og 4 ...+ Pigg,
2 aql 1 —l— + aql x

Comparing (35) with formulae (IIT), p. 473, defining the virtual
displacements, we see that they have the same formal appearance.
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§ 2. Hamilton’s principle. Actual motion. Let the forces Py, ..., P,
act on the points 4;(2y, ¥, 21), -+ A a(@ns Yns Zns of a system of n material
points. Let us assume that the system is holonomic (without friction) and
that the constraints are bilateral, defined by the relations:

Fi(xy, Y1, 215 -+ Zno t)y=20 (f=1,2,...,m). (1)

Let us consider an arbitrary system of functions

xT; = xi(t), Y= yi(t): Ry = zz(t) (i =1 2, ’ﬂ) (2)

continuous together with their first and second derivatives in the interval
{to, t,>. Funetions (2) define a certain motion of the system.

If equations (1) are satisfied at each moment ¢ when functions (2) are
substituted for 2y, ..., 2,, then we say that functions (2) define the motion
of the system compatible with the constraints or a possible motion.

The motion of the system which will actually take place under the
action of the forces Py, ..., P,, is called the actual motion.

There can be a variety of actual motions, because this depends on
the initial conditions.

Obviously an actual motion is always possible, because it satisfies
relations (1). Conversely, however, not every possible motion is an actual
motion.

For example, if a heavy point is constrained to remain constantly on
a vertical line I (without friction), then the actual motion is a motion in which the
acceleration is directed vertically downwards and equal in magnitude to the gravi-
tational acceleration. On the other hand, a motion compatible with the constraints
is every motion in which the point remains on the line I, in particular, a uniform
motion as well as a motion in which the acceleration is not constant; these motions
are obviously not actual motions.

From d’Alembert’s principle it follows that among motions com-
patible with the constraints, only that motion is actual which satisfies at
every moment the equation (I'), p. 475:

n

SUP;, — may) 8%; + (P, —may;?) 8y + (Py, — miz7) &) = 0, (3)

i=1
where 8z;, 8y,, 0z,, are virtual displacements.

D’Alembert’s principle therefore expresses a characteristic property of
actual motions, distinguishing them from all motions compatible with the
constraints.

Similarly, the equations of Lagrange (p. 481 and 486) and of Hamilton
(p. 499) distinguish the actual motions from the set of all possible motions
compatible with the constraints. However, in this chapter we shall meet
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with still other characteristic properties of actual motions expressed by

means of integrals and variations. They are the so-called integral variational
principles.

~ Comparative motion. Let us consider an arbitrary motion of a system
compatible with the constraints, defined by functions (2), as well as the
comparative motion:

xi + 6'7:1'; yi + 5%: ?; + 5312 ('I: = 13 2; LR ’I’L). (4-‘)

Let us choose the variations éx, dy;, 6z;, so that the variations of the
functions (1) for the given motion (2) are zero:

oF;
0%,

Comparing equations (5) with equations (I), p. 471, we see that dz;,
dy,, 0z;, are at each moment the virtual displacements of the system.

If x;, 8y, 02;, are very small, then from (5) it follows that approxim-
ately

: aF, .
OF = g 8 oo 502, = 0 G=1,2..m). (5)

Fyxy + 6z, ...y 2y + 024, 8) = 0 j=12...,m), (6)

i.e. that the comparative motion is approximately a motion compatible
with the constraints. We express this by saying that the comparative
motion (4) is compatible with the constraints for ‘“infinitesimal’” varia-
tions of 8z, dy;, dz,, satisfying equations (5) (cf. p. 428).

Let us assume that the natural coordinates are defined in terms of the
parameters gy, ..., ¢5 by the functions:

%y = fqQu, oy Qs 1)y ¥i = @ilQ1s -+ Qs B)y 26 = WilQ1s oo s Qi B) (T)
(t=1,2,...,n).

Let us further assume that the parameters defining the position of the
system compatible with the constraints must satisfy the relations:

@r(QI: vees Qs t) =0 (7‘ =1,2,.., 8)' (8)

Let us consider an arbitrary system of functions continuous together
with their first and sécond derivatives in the interval {t,, t,>:

O =q:(0), - @ = qult) GBSt t). (9)

Let us assume, finally, that functions (8) become identically equal to
zero when functions (9) are substituted for ¢y, ..., ¢x.

Under these assumptions, substituting functions (9) in functions (7),
we obtain functions of the time ¢ defining a motion compatible with the
constraints.

33
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Let us consider a comparative motion g¢; + dqy, ..., ¢ + 6¢; and
choose dqy, . . ., 0, such that for the given motion (9) the variations of the
functions (8) are equal to zero:

oD,
o,
Comparing (10) with formulae (IV), p. 473, we see that the variations
891, ..., 0q;, are virtual displacements at every moment ?.
If 6q,, ..., 0qy, are very small, then by (10) we obtain approximately

D¢y + 01, .. G+ 04 ) =0 (r=1,2,..,5). (11)

Hence motion (11) will also be approximately compatible with the
constraints. Using the same kind of expression as on p. 513, we can
therefore say thatif dg,,..., 8¢, are “infinitesimal” and satisfy equations
(10), then the comparative motion is compatible with the constraints.

0D, =

dgy + .. +a'dgL—0 (r=12,..8. (10

Hamilton’s principle for natural coordinates. Let a system of n ma-
terial points A,{xy, ¥4, 21)s -+ Au(@ns Yn, 2n)s 0f masses my, ..., m,, be
acted on by the forces P, ..., P,, depending on the variables z, ...,
Zpy X1y 0eey By L
Therefore:

Py, = Fy(xy, ..s Zny Tjy ooy 2y 1), Pi” =0, P, =Y, (12)

Let us assume that the system is holonomic (without friction) and
that the constraints are bilateral. Let us consider the arbitrary fune-
tions:

zy =x(t), Y =Yill), 2= z(f) G =t 1), (13)
defining the motion of a system compatible with the constraints.

The kinetic energy of motion (13) is

= l?m 24+ 7). . (14)

'l=x1
Let us form the variation of the kinetic energy for the motion (13)
(cf. example 2, p. 510):

08 = z:m,.(x; ox; + y; 8y; + #; Oz;). (15)
i=1
But
2 0x; — d(dz;) _ d(a; dx,)
Codt d¢
and similar formulae hold for y; dy; and for ¢; dz;. Substituting these
values in (15), we therefore get

— x5 Oy ; (16)
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8F = T ZM (; b, + y; Sy, + 2; 0z;) — zmz(z Sy + v 0y -+ = Ozy).
(17)
Let us take "
8L = 3(P; 6, + P; &y; + P, 6z,), (18)
i1

where P; , Piy, P, denote functions (12), in which for a:;, 5, 2;, and 2,15 %
the corresponding functions (13) and their derivatives have been substi-
tuted. From formulae (17) and (18) we obtain

, d <
'L + 0K = T Emi(x; 0x; 4 y; Sy: + =; 6z;) +

i=1

-+ z[(Pim — M) 0%y + (Py —myy;) 8y, + (P;, —mz;7) 2], (19)
i=1

Integrating both sides from ¢, to f;, we obtain
iy n
f[cS’L + 0E]dt = Ymy(x; 6x; + y; Oy, +2; 522-)12 -+
i=1

L n

+f2[

ty i=

—m;) 6x; + (P — muy;) 8y, —+ (P —mgz;) 6z;] di. (20)

The symbol lti here means, as usual, that at first ¢, and then ¢, are to
be substituted for ¢, and the resulting values subtracted from each other.

So far we have not used any principles of mechanies. Formula (20)
therefore holds for an arbitrary motion (compatible with the constraints
or not) defined by functions (13) if functions (12) are defined for this
motion.

Let us now assume that motion (13) is an actual motion and that the
variations dx;, dy;, 0z;, are virtual motions at every moment ¢.

Then from d’Alembert’s principle it follows that at every moment ¢
n
Z[(sz —mz;) dz; + (Piy“‘mi?/i') 8y; + (sz -
i=1 :

From formula (20) we obtain

f( 'L+ 0BYdt = z'm(m bz, + y; Sy; + 2; Ozl

to i=
Let us assume, in adchtwn, that the system is at the same position
at fy and ¢, in motion (13) and in the comparative motion; i. e. that éx,,
dy;, 0z, are zero for t = ¢, and ¢ = ¢,.

mz;) 0z;] = 0. (21)

t (22)

Under this assumption the right side of the equality (22) becomes
zero and we obtain

f(afL 4 6B) dt = o. @

to
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Therefore: equality (I) holds for an actual motion if 6x;, Oy, 02, are
virtual displacements at every moment and if they are zero for t = t, and
t=t,.

This theorem is known as Hamilion’s principle.

Hamilton’s principle therefore gwes a certain property of actual
motions. We shall prove that this property is characteristic, i. e. that among
the motions compatible with the constraints only actual motions satisfy

Hamilton’s principle. With this in view it is sufficient to prove that .

a motion compatible with the constraints and satisfying Hamilton’s
principle also satisfies d’Alembert’s principle.

Proof. Let us assume that a motion defined by functions (13) and
compatible with the constraints satisfies Hamilton’s principle (I). If this
did not satisfy d’Alembert’s principle at a certain moment ¢’ (where
t, < t' <t,), then it would be possible to find numbers 3x;, 0y, 0z,
defining the virtual displacement of the system at the moment ¢ such that

SIUPs, — maai’) 32+ (Po, — mgi') 0ys + (Pi,— mazi) S2] 0 (23)
i=1l

for t =1t'.

Let us choose the variations 8'x;, 8'y;, 8'z;, such that they define the
virtual displacement of the system at each moment ¢ and such that at the
moment ¢

6lxi = gx—';, 6’?/1' = 5?—/:’: 5lz1' = E;
from this by (23)
z') 0'2;] =

Z[(Pi,n —m;') 8'z; + (P my;’) 8'y: + (Piz — My
i=1
=4 +0 (24)
for t=1¢".

Let us suppose, for instance, that 4 > 0 for ¢ = #'. From the con-
tinuity of the motion it follows that in a certain small interval {#', t"> 4 is
also greater than zero.

Consequently
A>0, when "<t (25)

» Let «(t) be an arbitrary function continuous together with its first and
second derivatives in the interval (¢, t,>, positive for ' < ¢ < t" and zero
outside of this interval. Let us put: '

0x; = aft) 6'n;,  Oy; = x(t) 8y, 2y = x(f) 82,
From: this by (24) and (25)
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, n
f Z[(Pix —mx;’) 6, + (P' —my;’) 0y + (P, —mez7) 6z, dt =
ty i=1 .
iy
= [A«x(t)d f.Aoc 1) di> 0. (26)
tﬂ

Since the variations dx;, dy;, 6z;, represent the virtual displacements
at every moment ¢ and by assumption are equal to zero at ¢ = ¢, and
t = t,, from formula (20) we therefore obtain by (26)

iy
[(8'L + 8F)dt > o,

t
contrary to the assumption that the given motion satisfies Hamilton’s
prineiple.

In this manner we have proved that the principles of d’Alembert and
of Hamilton are equivalent.

Example. A. heavy point of mass m is constrained to remain on the
sphere 2% + 2 + 22 — 72 = 0. We have (taking the z-axis directed ver-
tically upwards):

'L = —mg 0z, O0F = m(x dx + y oy + = dz°);

consequently by Hamilton’s principle (I), p. 516,

t
[[— g&z—}—x'éx'+y'5y'—|—z-6z~]dt=0.

to
This formula holds for an actual motion under the assumption that
dx, 8y, 0z, are virtual displacements at every moment, i. e. that they
satisfy the equation

x 6x + y 8y + 2z 62 = 0,
and, in addition, become zero at t = ¢y and £ = i,.

Hamilton’s principle for generalized coordinates. Let the natural
coordinates be defined as functions of the parameters ¢;, ..., ¢

Ty = fiqr oo Qoo B Y = @il@as s Qoo B)s 26 = Wil0w -0 e B)  (27)
(t=12,...,m).
Let us assume that the parameters defining the positions of the
system compatible with the constraints satisfy the equations
D(qy, -3 Gry 8) =0 (r=1,2,...,8) (28)

and let us consider an arbitrary actual motion of the system defined by
the functions:

q: = (%) (r=1,2,..., k). (29)
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The variations of the functions (27) for this motion are
O, == q ¢y + - —l— i 6q - (30)
and similarly for dy; and dz;.
Let us further assume that dg; are virtual displacements at every
moment ¢, i. e. that they sa,tisfy equations (IV), p. 473:
c@,. D, .

consequently (hti, 0y, 02;, are a]so virtual displacements (p. 473).

(r=12,...,8); (31)

Finally, let us assume that dg; are zero fort = ¢, and ¢ = #;; from (30)
it follows that dx;, dy;, dz;, will also be zero for £ == £, and ¢ = £,. Since the
variation is interchangeable with the derivative (p. 507), the variations
of the first derivatives of the functions (27), i. e. dx;, dy;, dz;, are equal
to the derivatives of the functions ox;, dy;, 62,

In virtue of (15), p. 514, and (18), p. 515, we can write Hamilton’s
prineciple (I), p. 515, in the form: '

f[Z (P, 82, + P, oys+ P,_oz) + 5‘mz<x 8a; + 43 Oy + % 6)] dt = 0,

‘ (32)
where 2;,3;,%;, are functions defining the actual motion; &x;, dy;, d2,, are
the virtual displacements at every moment, assuming the value zero at
¢t = fyand ¢ = #,; and da;, dy;, Oz;, are derivatives of the functions dz;, 0y,
62;. As follows from the considerations of example 3, p. 510, equation (32)
will also be satisfied if we assume that the functions ;, y,, 2;, given by the
formulae (27) and (29), define the actual motion, while éz; and dx; are the
variations of the functions (27) and their derivatives, where d¢; are virtual
displacements equal to zero for ¢ = ¢, and t = ¢,.

Under these assumptions we have ((4), p. 483)
n n
o'L Z‘ZI(P% ox; + P; Oy + Py, dz;) = >0, dq,, (33)
i= i=1

where @; denote the components of the generalized force. Moreover, from
the theorem on the variation of a compound function (p- 508) we have

Zm z; 0x; - y; Oy; + z; 02;) S‘m + ¥+ %2 = 0B, (34)
where the functions z;, y;, z;, are given by formulae (27) and (29) defining

the actual motion, &x;, 6y;, 8z; are the variations of the derivatives of
the functions (27), and E the kinetic energy expressed in terms of the
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parameters qy, ..., 7, By (32), (33) and (34) Hamilton’s principle can there-
fore be written in the form (I), p. 515, where §'L is defined by formula (33)
and the kinetic energy E is expressed in terms of the generalized coordin-
ates qq, .. 05 ‘

Therefore: Hamilton’s principle also holds for generalized coordinates
under the assumption that dq; are virtual dzsplacements equal to zero for
t =ty and t =1,.

Hamilton’s principle in a potential field. Let us assume that a system
of forces has a potential V. Consequently ((1), p. 434)

'L = oV. (35)

From Hamilton’s principle we therefore obtain

iy ’ ty ty

[[6V 4 6E]dt =0 or [6(V + E)dt =0V + E)di = 0.
o 1o iy

The expression W == E + V was called the kinetic potential (p. 488).
Hence

iy
5[ W dt = 0. (IT)
o

Therefore: the variation of the integral of the kinelic potential is equal
to zero for am actual motion if the variations 6x;, 0y;, 0z;, represent the virtual
displacement of the system at every moment and if they are equal to zero at
t=tyand t = 1,

Formula (35) holds for generalized coordinates (cf. (39), 463). Since
Hamilton’s principle also holds for generalized coordinates, (II) is satisfied
for an actual motion under the assumption that the kinetic potential W is
expressed in terms of the parameters gy, ..., ¢x, and the variation was
formed for an actual motion, where dg; are virtual displacements equal to
zero at t = t, and ¢ =1{,.

Holonomo-scleronomic systems in a potential field. Let a holonomo-
scleronomic system be given in which the forces have a potential

V="TV(2, ..., 2n) (36)
Let us assume that the motion of a system defined by the functions:

@y = a,(t), Yy = Yult), 2 = 2,(0) (G Lt By t=1,2,...,m) (37)

is an actual motion for which the kinetic energy in (f,, ¢, does not vanish,

ie.: ‘
B0 for f<t<t,. (38)
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By Hamilton’s principle (I), p. 515, and (35) we have

t,

JHER
i=1 %4

t

. n
-+ f [iglm,-(m; dx; + y; 0y; + = 62;)] dt = 0, (39)

where dx;, 8y;, 6z,, are the virtual displacements at every moment and are
equal to zero at t = ¢, and ¢t = ¢,. Let
t = ¥v) (S T= ™) (40)
be an arbitrary function of the variable 7, continuous together with its
first and second derivatives in the interval (7, 7,> and satisfying the
conditions:
W) =1ty Hr) =1, () <O (S v< ), (41)

where ¢ denotes the derivative with respect to 7. Substituting (40) in (37),
we obtain: ;
z; = x,(0(7)) = &(7), yi=nu(x), 2= {i(7), (42)
(oLt w50 =1,2,...,n).
Functions (42) represent the parametric equations of the path of
the points of the system in terms of the parameter 7.
Denoting by =, y;, 2;, the derivatives of the functions (42), and by
t' the derivative of function (40) with respect to the parameter 7, we
obtain:

&T; = :’E: / ¢, Yi = yz, [t 2 = z; /¢, (43)
whence for the kinetic energy
n n z’_Z
— Pomep +yp o = 45 DTS b
i=1 i=1 t
From the principle of conservation of total energy we have

E—V ="h, where A = const, (45)

whence by (44)

Y \/%tglmz(x? +y+ 27 (46)
h+V T

Formula (46) holds, because by (45) & + V = E and by (38) B == 0.
Let us assume that the coordinates z;, v, 2, appearing in V (cf. for-
mula (36)) are expressed in formula (46) by functions (42). In virtue of (40)
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the variations dx;, dy;, dz;, which are functions of the variable t, can be
regarded as functions of the variable =.

Denoting by dx;, dy;, 6z, the derivatives with respect to z, we obtain:
0x; = 0wy [ ¥, Sy; = Oy, |1, Oz; = bz} /4. (47)

Expressmg the variable  in (39) in terms of 7 by means of function
(40), we get by (41), (43), and (47),

f[iz(ax" + 5 +a )]t’dr_;_

+f[2 o5 0] +yf2611+z 0z, )]t’ dr —o, (48)

where x,, ¥, 2;, 5xi, 8y;, 0z;, are functions of the variable 7. Formula (48)
can be written in the form

Ty

f [av t +—-al\“m,(x’2+J +z§2)] dr =0, (49)

where the concept of variation is to be understood as before, but now =
appears instead of ¢. Substituting (46) in (49), we obtain

T3

f []/h = AT

” SShm(2 + o2 z?)]

f [ +V+y: VSymde + y2 + 22)

To

It is easy to verify that the integrand is equal to the variation of

26 [Vh ¥ VVlth 24y + z’Z)]

whence by (50)

s f[l/h +7 ﬁmi(x? + 92 + z;z)] dr = 0. (I
i=1

To

Y2+ z?)] dr+

Ty

= 0. (50) °

From the assumptions concerning dz;, dy;, dz,, it follows that formula
(I) holds for arbitrary functions dx,, 8y;, 62,, of the parameter ¢, which for
every value t are the virtual displacements in the position of the system
defined by functions (42), and which are zero for v = ¢, and 7 = 7,.
The variation is formed for the functions (42), which define the path of
the points of the system in an actual motion.


Yakuza


ot
o
[

CHAPTER XI — Variational principles of mechanics

Since the time ¢ does not appear in formula (I), this formula expres-
ses a certain property of the paths of the actual motion.

In particular, let the system consist of one point %, ¥, 2, of mass m,
moving without the action of forces. Consequently V = 0. From (I) we
obtain

3[J7 g7+ 22dv = 0.
Since the differential of arc is ds = ]/ 2’2 + g2+ 2% dv,
5fds = 0. (51)

Let us assume that the point is constrained to the surface S.

Curves having property (51) are the so-called geodesics. In differential
geometry it is proved that the shortest curve on a surface joining two
sufficiently close points of the geodesic is an arc of this geodesic. From
(51) it follows, therefore, that the motion of a point on a surface without
the action of forces always takes place along geodesics.

Remark. Formula (I) is usually proved more easily from. the so-called principle
of Maupertuis (p. 530). However, it is then necessary to make use of certain

theorems from the caleulus of variations which we do not assume tobe known to
the reader.

§ 3. Variation with the variation of time. Variation of a function. Let
a motion along the z-axis be defined by the function

z = a(t) (h=t=t) (1)

Let us consider an arbitrary comparative motion

x = x(t) h<t<d), (2

where the moments ¢, and £, can be different from #, and #,. Let us denote
by At and arbitrary function of the time ¢, continuous together with its
first and second derivatives in the interval (i, t,> and satisfying the
inequality
<t A<y St t). (8)
Finally, let '
Az = x(t + A8) — x(t); ' (I)

Az is therefore a function of the time ¢ and denotes the increment of the
coordinate x, when we pass from the point 4 in the given motion at the
moment ¢ to the point A’ in thecomparative motion at the moment
t + At. Forming the derivative of (I), we obtain
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d
3 (A2) = [t + A (1 + -—d‘d“lt)) — (),
whence

x(t 4 A) = [d(ft”) + x'(t)] ( (1 + L(ﬁ)).

Subtracting x*(t) from both sides, we get after some easy transforma-
tions ‘

X (b + At) — (1) = d.(éltm) — (1) ———d(it) + e, (4)
where
_ . d(4y) d(4 d /
ot o fil gt )

Therefore, if Az, At, and their derivatives, tend to zero uniformly,
then # tends to zero uniformly. Consequently R is ““infinitesimal” in
comparison with |d(dx) [ d¢ + |d(4¢) [ dy.

Let

. d(4e) .d(4¢)
 Aw =g =g

Therefore by (4)
x(t + At) — () = Az + . (6)

The left side of equality (6) denotes the increment of the velocity of
the points 4 and 4, i. e. the increment of the velocity when we pass from
the point A at the moment ¢ in the given motion to the point 4’ at the
moment ¢+ At in the comparative motion. Consequently Az represents this
increment approximately, with a difference which is “infinitesimal®
as compared with the sum |d(4x) / di| + |d(4¢) / d¢|.

Let us note that by (6) we have in general

d(4z)
&

(Im)

Az % (1)

Let the function
T = F(z,x, ) (7N
be given.

Let us denote by 7' the value of the function (7) in a given motion
at the moment ¢, and by T the value of this function in a comparative
motion at the moment ¢ - Af. Consequently the difference of these
values is

T s F(x(t 4 At), x:(t + Ab), & + Ab) — F(as(t), a(t), £).  (8)
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From Taylor’s formula we obtain
or
0%

or
+ & et + Aty — () + 46+ B,

T—T = (x(t + At)—2z ()

(9)

where the remainder B is an ‘“infinitesimal” of higher order than the
increments x(t 4+ At) — x(2), x-(t + 4f) — () and At.
In virtue of (I), (6), and (9), we obtain

T oT oT ,
_o oL g 1 & R, 10
T—T_axAx—l—ax_Ax—}—atAt—i— (10)
where ‘
, oT
.R == R + & -9;,
and hence where R’ is “infinitesimal”’ as compared with
\da| + |44 + |d(4w) [ i + [a(4t) ] (1)
Let us put
or oor T IT1

By (10) we have T— 7T = AT + R’; consequently 47" denotes
approximately ‘the increment of the function I' when we pass from the
point 4 at the moment #in the given motion to the point 4’ at the moment
t 4+ At in the comparative motion, where the error committed is ““infini-
tesimal” as compared with (11).

The expression 47T is called the variation together with the variation
of time of the function 7' for the motion x = %(t), and the function At is
called the variation of time. _

In virtue of (I), p. 505, and (5), p. 504, we shall have Az = dz for
At =0, and by (IT) and (I), p. 505, 42+ = dz*. From (III) we therefore get

oT or .
i.e. AT = oT.
Hence, when At = 0, the variation together with the variation of

time becomes an ordinary variation.

Example. Form the variation together with the variation of time
for the function
T = yma? + oxt,

where « and m are constants.
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We have

AT = «t Az + ma Az + oz At;
hence by (IT)
AT = ot Ax + ma- (—i—(gf—) + ax At — ma-2 d(gltt) .

Systems of points. Let the motion of a system of # material points
be defined by the functions:

2o =z,t), ¥yi = y:(t), z=2(t), QoS t<t;0=12,...,m) (12)
and let the function

T=PF(,..,2,%;,...,2,1) (13)

be given.
Let us consider an arbitrary comparative motion
X = X,(t), Yi=Yi(t), Z; = z,(t), (g <t <ty 1=1,2,...,n). (14).

Let At be an arbitrary function of the time ¢, continuous with its first
and second derivatives in the interval {3, ¢;> and satisfying the condition

fa <t A<y H<t< h). (16)

Let us put:
Az = x,(t + At) — 2,(t), Ay, =yt + At) —yi(b),

Aoy = 2t + M) — 2(8), av)
. d(dx,) . d(4e) . A(dy,) . d(41)
Az; — e _ o
=g g M=—g —Yitg o
gy A0d2) 440 (V)
& &

The expressions dx;, Ay, 4z,, denote the increments of the coordin-
ates, and Ax;, Ay;, 4z;, the approximate increments of the derivatives of
these coordinates when we pass from the position of the system at the mo-
ment ¢ in the given motion to the position of the system.at the moment
t 4 At in the comparative motion. The error made by this approximation
is “infinitesimal” as compared with

d(4y,)
+‘ dt

Let us denote by 7' the value of the function (13) in the given motion
at the moment ¢, and by T its value at the moment t -+ 4¢ in the
comparative motion. Putting

d(4=,)
dt

d(4t)
+ ‘ | (16)

d(4z,)
ds

+ .t
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k(3

0 oT
AT = 2 (@Axi‘{"%gdyi"_TAzi) -+

i=1

BT
+Z( Axz; + Ay,—l—a )+—At (VI)
and proceeding as before, we obtam
T—T=AT + R, (17)
where R is “infinitesimal” as compared with the sum
e d(4=; (4 (4z;)
.Z(|Axii+1Ayl+lAz]+f “)+l 2 +\ )+
At)

+ |4t + : (18)

The expression A7 is called the variation together with the variation of
time of the function T for the motion (12) of a system of points.

The variation 47T therefore represents approximately the increment
of the function 7" when we pass from the position of the system at the
moment ¢ in a given motion to the position of a system at the moment
t + At in a comparative motion, where the difference between the true
increment and AT is “infinitesimal” as compared with (18).

In virtue of (IV), (V), (5), p. 504, and (I), p. 505, we get for A¢ = 0:

Ax; = bx;, Ay, = Sy, Az = 0z, Ax; = dx;, Ay; = Oy;, Az; = 6z,
whence by (VI) AT = 67T.

Hence, when At = 0, the variation together with the variation of
time becomes an ordinary variation.

Variation together with the variation of time of an integral. Let the
integral

5}
I=[Tdt (19)
tﬂ

be given, where 7' denotes the function (13). Let us denote by 4t, and A¢,
the values of the function 4t at {; and £,. ‘

Let I be the value of the integral (19) for a given motion, and I the
value of this integral for a comparative motion taken between the
limits ¢, + A¢, and ¢, + 4f;, i. e.

ty+4diy

I'= [T, di, (20)

o4ty
where T'; denotes the value of the function T at the moment ¢ in the
comparative motion. Substituting ¢ + At for ¢ in (20), we obtain
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d(49) '

I = .
f ( +—g )dt, (21)
where T denotes the value of the function 7' at the moment ¢ + A4t in the

comparative motion.
By (19) and (21) we obtain

|1 —f[r T) + (‘”)] :,

whence by (17) after some easy transformations

l—I_.f[AT+T e )]dt—}—R' (22)
where

__f[(ATJ-R d)—|—R]dt (23)
It is easy to verify that R’ is “mﬁmtesimé,l” in comparison with (18).

Let us put “ .

(At)
Al = A | Tdt= | | AT + T ——|dt. (VII)
i “ta

The expression Al is called the variation together with the variation
of time of the integral I.
By (22) and (VIL) we have

| —I=AI +R, (24)

AI therefore represents approximately the increment of the integral (19)
when we pass from the given motion to the comparative motion; we
calculate the integral between the limits ¢, + 4ty ¢, 4 4f; in the compara-
tive motion. The difference between Al and the true increment is “infini-
tesimal” in comparison with (18). ‘

In the case when 4t = 0, the variation together with the variation
of time becomes — as it is easily seen — an ordinary variation.

§ 4. Maupertuis’ principle (of least action). Holder’s transformation.
Let a system of material points A(%y, ¥y, 2); - - -» An(®n, Yns2n), of Masses
My, ..., My, be subjected to the action of the forces Py, ..., Py, depending
ON Ty, .oy By ?5:1', «.ws 2, & Therefore

P, = Fi@y, ..., 20, B, .. % 1), P;, = P P, =W, (1)
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Let us assume that the system is holonomic without friction and

that the constraints are bilateral. . )
Lot us consider an arbitrary motion of the system compatible with

the constraints or not, defined by the functions:
@ =z(l), ¥ = yull), ze=2t) GSESti=12..,m). (2
~ The kinetic energy is
BE= %_ilm,.(x
=
Let us -form the variation of the kinetic energy together with the
variation of time for the motion (2):

2+ v+ ). )

AE = Ymyw; Az; + y; Ay; + z; 4z). (4)

i=1

Expressing 4z;, Ay;, 4z, by means of formulae (V), p. 525, we get

AE = Zmi[ (Ax,)+ v (Ay¢)+z d(AE,_)]MMd(m) (5)

dt

Transposing the last term to the left and integrating, we obtain
121

f [AE Y d(‘”)] dt =

1 fe
— f Sy [x d(fl'f 4y d(gty‘) +2; d(gf‘)] dt. (6)
i=1

Integrating by parts, we obtain

i iy

fxéfl_(flfﬁ_ —fx;'Axidt
dt .

t t
and similar formulae are obtained for y; and z,. Applying them to the
right side of equation (6), we get

4

f [AE + 2 (jt)]dt
i (7).
""zml(x szT Yi Ayz "}" z Az tl-—f[Z'm‘i Loy Az, + yi AJ'I"I" z Az, )] dt.
=1 ty i=1
Let us put .
A'L = Z(Piz Az, + P, Ay, + Py, Az). (8)
i=1
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Integrating formula (8) and adding to.both sides of equation (7),
we get
17

[[ 'L + AE + 2F (A‘)]
to

+ ]S

t =1

n
t = _Zlmi(x«i Az, + y; Ay, + 2; Az.-)]f: +

max;) Az + (P, —mgy;) dy; + (P, —mz;') dz2;]1 dt. (1)

Formula (I) is called Holder's transformation.

It holds for every motion, whether compatible with the constraints
or not (on contition that the functions (1) are defined for this motion).

If we take the ordinary variation § instead of the variation 4 to-
gether with the variation of time, i. . if we put 4¢ =0, then — ag it is
easily seen — we obtain formula (20), p. 515.

More general form of Hamilton’s principle. Let us assume that

functions (2) define an actual motion. In addition, let us assume that the

functions Aw;, Ay,, Az,, are virtual displacements of the system at every
moment .
By d’Alembert’s principle the integrand on the right side of (I) is
zero. Consequently
1

f[ ’L+AE+2Ed(At)]dt Em @ Ay + y; Ay + = Az

t

Let us assume that Az, Ay, 4z, are equal to zero at = £, and
t = ¢;. The right side of the last equality will therefore be zero. Hence

'we obtain
ty

f[ 'L+ AE + 28 (‘f:)]dt=0. (IT)
o
Bquation (IL) holds for an actual motion under the assumption that
Az, Ay;, Az;, arevirtual displacements at every moment t and ‘are equal to
zero for t = ty and t = t,, while At is arbitrary.

When A4t = 0 the variation 4 becomes the variation 8. It is easy
to see that (IT) then assumes the form of Hamilton’s principle (I), p. 515.
Form (II) of the variational principle is therefore more general than
Hamilton’s principle. However, it does not represent a more general
property. For by (5) and (8) we can write (IT) in the form
33
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f PIREER RS Azi)] @+

=1

I

Since Ami, Ay;, Az;, are arbitrary functions representing virtual
displacements and vanishing at ¢ = #,and t = #;, while 4f does not appear
at all in formula (9), writing dz;, 8y;, 6z;, for Awx;, Ay;, Az;, we obtain Ha-
milton’s prineiple from (9).

Equation (II) is therefore equivalent to Hamilton’s principle.

Maupertuis’ principle. Equation (II) holds for an arbitrary 4¢, while
Ax;, Ay, Az;, should only be virtual displacements at every moment ¢,
vanishing at ¢ =, and t = {;.

Let us now assume that Az,, 4y, 4z;, and At are so chosen that they
satisfy, in addition, the condition

A'L= AE. (IIT)

By (5) and (8) condition (III) can be written in the form

nZ(P Az, + Py Ay; + P, Az;) =

f=1

—Zm( (A | g A td(gtz‘)) 280 o)

From (II) and (III) we obtain

i

.f[zw-k 28 d(At)] —o, )

ty

whence by formula (VII), p. 527,

t
A[E dt = o. (Iv)
t
Therefore: the vartation together with the variation of time of the integral
of the kinetic energy is zero for an actual motion if Ax;, Ay,, Az,, are virtual
displacements at every moment, equal to zero at t = t, and t = t;, and if
condition. (III) holds (i. e. if the virtual work for the displacement
Azx;, Ay, Az, is equal to the variation together with the variation of time
of the kinetic energy).

This theorem is called Maupertuis’ principle or the principle of
the least action.
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Denoting by ds; the differential of arc along which the point m; moves, and
by v; the velocity of the pomt we have ds; = v; df. Consequently

f Edt = Zm,w,ﬂ) at =} f zmw. ds;.
ia' te ‘L‘- t, i=1

The expression m; is the momentum (““‘action’?).

On the basis of (IV) it can be proved that under certain assumptions the
integral of the kinetic energy for an actual motion has the smallest value among

motions satisfying certain conditions. Hence the name principle of the lea,at action.

Let us assume that a certain motion compatible with the constraints
satisfies Maupertuis’ principle, and, in addition, that the kinetic energy
does not vanish in (t,, t,)>:

E+0 L=t<1t). (12)

Let the functions Az, Ay, 4z, at every moment ¢ be virtual
displacements, equal to zero at ¢ = ¢, and ¢ = £,, and arbitrary in other
respects. Let us choose At so that equality (III), or — which amounts
to the same thing — equation (10), holds. In virtue of (12) and (10) we
can assume

i
|41 A“’: A4y . d(4z)
At_fw[tzmi( Lty & i@ )‘“
1o

=1

— Z(Pim Axi + Piy A?/i + Pi, Azi):l dt- (13)
i=1

Formula (IV) holds for 4z, dy;, 4z, At, chosen in the above way,
and consequently (11) also holds. By (III) and (11)

iy

1
f[2AE+2E (At)]dt:f[A’L+( 'L+ 28 (é“))] dt = o,
i t,

whenece by (10) we obtain formula (9), in which Az, Ay,, Az;, satisfy the
same conditions as dz;, 8y, 6z;, in Hamilton’s principle. Since, as we have
Proved (p. 529), (9) is equivalent to Hamilton’s prineiple, the given motion
isan actual motion. Hence we see that among these motions compatible
with the constraints for which # = 0, only actual motions satisfy Mau-
pertuis’ principle.

Therefore: Maupertuis’ principle represents a characteristic property
of those actual motions for which E == 0.

Let us assume that a motion takes place in a potential field having
a potential V. Consequently:
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oV | ow, =Py, OV |0y, =Pi, [0 =Py,

AL = 3P, Az, + Py, Ay, + Py, A2) =
=1 .
& (o7 v v, )
=-§(a'x2“”‘+a”y}4”‘+ 72 2

Since ¥V is a function of the coordinates %, ¥s, % only, it follows
that A'L = AV, and hence condition (IIT) can be written in the form
AV = AE; consequently

A(E—V)=0. (ITT")

Remark |. The assumption B =0 is es sential; this means that if a
motion compatible with the constraints satisfies Maupertuis’ principle
but not the condition B == 0, then the motion need not be an actual
motion. '

For example, let some scleronomic system be given. Let us consider
a motion in which the system is at rest from ¢, to ¢, in a certain position
compatible with the constraints. Therefore we have E = 0 constantly,
whence by (4) 4E = 0 constantly also. It follows from this that formula
(11), and consequently formula (IV), will be satisfied for arbitrary Az,
Ay, Az;, At, and in particular, therefore, also for all those which satisfy
formuls (III); or — which amounts to the same thing — formula (10).
Thus the given motion satisfies Maupertuis’ principle. However, it is ob-
vious that for a suitable choice of forces, rest is impossible, i. e. rest is not
an actual motion.

Remark 2. If the variation together with the variation of time were
replaced in Maupertuis’ principle by an ordinary variation, i. e. if we
assumed that 4t = 0, writing 6 for 4, then formulae (IIT) and (IV) would
assume the forms:

'L = 6F, (14)

tl zl
6(E dt = 0, whence [0F df= 0. ‘ (15)
tl ’ tﬂ

Therefore: for an actual motion formula (15) holds under the as-
sumption that dx;, dy,, dz,, are virtual displacements at every moment,
equal to zero at t = i, and t = ¢, and satisfying condition (14).

The principle expressed in this manner, however, would not represent
the characteristic properties of actual motions. For assuming e. g. that no
forces act on a system, we should have §'L = 0. Consequently condition
(14) would assume the form 6F = 0 and hence it would imply formula (15)
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for every motion compatible with the constraints. Therefore in this case
every motion compatible with the constraints, and not only an actual
motion, would satisfy formula (15), i.e. Maupertuis’ principle, in which
the variation 4 is replaced by the ordinary variation 4.

‘We see from this that in Maupertuis’ principle it is also essential
that we form the variation together with the variation of time.

Remark 3. For a motion given in generalized coordinates it can be
proved that in holonomo-scleronomic systems Mawpertuis® principle tn the
form (IV) holds under the assumption that the energy E is also expressed in
generalized coordinates, and the variations Aq; are virtual displacements
equal to zero for t =ty and t = t; and satisfying condition (III), in which
A'L = ZQ; Ag; (i. e. expressed in terms of the generalized forces @,).

Formula (IV) does not hold for rheonomic systems and generalized
coordinates, and for them Maupertuis’ principle is given in another form.
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