CHAPTER VIII

DYNAMICS OF A RIGID BODY

§ I. Work and kinetic energy. In dynamics, as in statics, we shall
also frequently assume that a rigid body is a rigid system of material
points. As a result we shall be able to apply to a rigid body the theorems
from dynamics concerning a system of material points.

Dynamical magnitudes. Dynamical magnitudes such as momentum,
kinetic energy, angular momentum, etc., which we have met in connection
with systems of material points, are also defined for rigid bodies by
passing to the limit as was done in defining centres of gravity, sta-
tical moments and moments of inertia, of systems of material points.
(vide chapt. IV, p. 169). For instance, in order to define the momentum
of a body, we divide the body into parallelepipeds of volumes Az, Az, ...,
and in each one of them we next consider, one at a time, the points
A2y, Y1, 21), Asl@s, Ys, 25), ... Lot oy, 0,, ... denote the densities of the
body at the chosen points, and vy, v,, ... the velocities of these points.
The masses of the parallelepipeds are approximately m, = oy ATy, my =
= py A7y, ... If the body is replaced by a system of material points of
mMasses My, M, ... Placed at 4, 4,, ... and having velocities Vi, Vg,
then the momentum of this system will be equal to '

H = Zmy; = Zoy,; A1, (1)

The limit of this sum as the dimensions of the parallelepipeds tend to
zero is called the momentum of the body.

Denoting by (=, y, z) the density, by v(z, ¥, z) the velocity of a point
whose coordinates are z, y, z, and by H the momentum of the body,
we get:

ey

H:=f£fgvmdt, H":‘quv”dr’ H,:fgfgvsdr, (2)

where D denotes the region of space occupied by the body. We write the
preceding formulae in vector form

H=[[Jovdr, (3)
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Proceeding similarly, we obtain the formula
E= :fygyz dz ' (4)

for the kinetic energy, where » = |v|.
The angular momentum ((I'), p. 199) with respect to the origin of
the coordinate system has the projections:

K,= fl{fe(vyz —vy)de, K,= fgfa(‘vzx —v,2) d, ()
Ko=J[[elvsy —v,z) de.

Denoting by r the radius vector 04, where A4 has the coordinates
%, ¥, 2, we can write formulae (5) in the vector form:

K=[[[ev x r)dw. (6)

Work. Let a force P, whose origin is at the point 4, act on a rigid
body, and let v denote the velocity of this point.

The work of the force P in the time from ¢’ to " is expressed by the
formula (p. 95)

L= f(Pv) dt. (M

Let us consider an arbitrary point O in the body. The instantaneous
motion of the body can be considered as the composition of an advancing
motion with a velocity u of the point O, and a rotation with an angular
velocity w about an axis I passing through O. The velocity of the point 4
is therefore ((I), p. 333)

v=u-+04 X w, (8)
whence
, Pv = Pu 4 P(04 X w). , 9

From formula (II), p. 13, we have (putting a = P, b = O4, and
cC = w) . . )
P(04 X w) = w(P x 04). (10)

Since MomoP = P x OA4 (p. 16), by (9) and (10)
Pv = Pu 4+ o MomyP,
whence by (7)
[ 1 )
A L = [Pudi + [w Mom,P dt. (11)
i 3

If the forces P,, P; ... act on a body, then thejr work is according
to (11) o U :
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t" t”
L= [(ZP,) udt + [w(EMomgP;) dt.
t ot

Denoting by P the sum of the forces and by M, the total moment with
respect to O we get

” g

(Pu) df + [(wM,) dt. (I)
;

e

L=

a

-

Trom this formula it follows that equipollent systems of forces do equal
work. »

In particular, the work done by a system of forces equipollent to zero
(P = 0, M = 0} is zero.

Denoting by « the angle which M, makes ‘with the axis [ of instant-
aneous rotation, and by o the component of the vector w with respect to
the axis I, we have @M, = w|M,| cosx. But [My| cosx is the projection
of the moment M,, on the axis I. Consequently |[My| cos « is equal to M,
i. e. to the total moment of the forces with respect to the instantaneous
axis of rotation; hence from (I) we get

tﬁ "
L= [(Pu)di + fthl d. 1)
t t

When a body moves with an advancing motion, then «w = 0; there-
fore by (I)

L= f(Pu) dt. (12)

When a body rotates about a point O, then u == 0; hence by (I')
: o

L= [oM,dt. | (18)
.

Formula (13) also holds when a body rotates about a fixed axis [; we
obtain it from formula (I') by choosing the point O on the axis I. Denoting
the angle of rotation in this case by ¢, we get w = dp / df, whence
o df = dg; hence by (13)

#

¢
L =JM; dg, (14)

where ¢’ and ¢” denote the angles at the initial and final positions of the
body.

.Kinetic energy. As we know (p. 331), the instantaneous motion of
a body with respect to an arbitrary point O of the body is a rotation with
an instantaneous angular velocity w about an axis passing through O. Let
I denote the moment of inertia with respect to the instantaneous axis of
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rotation. The kinetic energy of the relative motion is 1Zw* Therefore by

Konig’s theorem (p. 215) the kinetic energy of the body is expressed by
the formula

E = ymu? + How? 4 mu(v,— u), (D)

where u denotes the absolute value of the velocity u of the point O, v, the
velocity of the centre of mass, and m the mass of the body.

Therefore: the kinetic energy of a rigid body is equal to the sum of:

1. the kinetic energy of an advancing motion with a welocity of an
arbitrary point O of the body,

9. the kinetic energy of an instantaneous rotation with respect to an
instantaneous axis passing through the point O and
3. the scalar product mu(v, — u),

where m denotes the mass of the body, u the velocity of the point 0, and
v, the velocity of the centre of mass.

Tf the centre of mass is chosen as the point O, then u = v;; putting
vo = |Vo|, We consequently get

E = Imv; + 3o I
Therefore: the kinetic energy of a rigid body is equal to the sum of the
Einetic energy of an advancing motion with a velocity of the centre of mass and

of the kinetic energy of an instantaneous rotation with respect to an instant-
aneous axis passing through the centre of mass.

If the instantaneous motion is an instantaneous twist about the
central axis passing through O, then the vectors w and u are parallel. The
velocity v, of the centre of mass § is then v, = u + OS X w. Sincev, —
— u= 08 X w, the vector v,— u is perpendicular to w and therefore
also to u. It follows from this that the scalar product u(v, — u) is zero. By
(IT) we consequently have

E = Imu® + 3o , (15)

Therefore: if the instantaneous motion of a rigid body is represented as
a twist, then the kinetic energy 4s the sum of the kinetic energies of the advanc-
ing and rotational motions.

An instantaneous plane motion is an instantaneous rotation about
the instantaneous centre of rotation with an instantaneous angular velo-
city.

The kinetic energy in a plane motion is B = {o?, where I is the
moment of inertia with respect to the instantaneous centre of rotation,
and o the instantaneous angular velocity.
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§ 2. Equations of motion. Motion of the centre of mass. Let m denote
the mass of the body, p, the acceleration of the centre of mass, and P the
sum of the external forces acting on the body. Then (p. 196)

mp, = P. oy

Hence, knowing the sum of the external forces, we can determine_

the motion of the centre of mass of the body.

Principle of angular momentum. Let K denote the angular momen-
tum, M the total moment of the external forces with respect to a fixed
point or with respect to the centre of mass. Then (p. 202)

K =M. (I1)

Therefore, knowing the total moment of the forces with respect to
a fixed point or with respect to the centre of mass, we can determine the
angular momentum.

I we calculate the acceleration p, of the centre of mass and the
angular momentum K from equations (I)and (IT), the motion of the
body will be determined. For having p, given, we can determine the
motion of the centre of mass. And knowing the angular momentum K, we
can (as we shall show later, p. 394) determine the instantaneous angular
velocity w. Since the motion of one point and the instantaneous angular
momentum define the motion of a body (p. 337), equations (I) and (II)
are sufficient to determine this motion.

Principle of kinetic energy. Let us consider a rigid body as a rigid
system of material points. Then by the theorem given on p. 208 the
internal forces do no work. Consequently, only the external forces do
work. From the theorem on kinetic energy (p. 216) it follows that the
increase in kinetic energy of a rigid body s equal to the work of the external
forces.

If the external forces possess a potential, then (p. 216) the sum of the
kinetic and poteniial energies is constant.

 D’Alembert’s principle. As we know (p. 188), the forces of inertia
balance the forces acting on the points of a system. Since the internal
forces have a sum and total moment equal to zero, the forces of inertia
balance the external forces.
This principle reduces the investigation of the motion of a rigid body
to problems of statics. '

Advancing motion of a body. If the instantaneous motion of a rigid
body is an advancing motion, then the angular momentum with respect to
the centre of mass is zero (p. 200). Conversely:
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If the angular momentum with respect to the centre of mass is zero at
some instant, then the instantancous motion of a rigid body is an advancing
motion.

Proof. Let us assume that the angular momentum K with respect to
the centre of mass is zero. The instantaneous motion of the rigid body can
be considered as the composition of an instantaneous advancing motion
with a velocity of the centre of mass and a rotation with an angular velo-
city w about an axis [ passing through the centre of mass. Since K is the
sum of the angular momenta of the advancing and rotational motions,
K is equal to the angular momentum of the rotational motion because the
angular momentum of the advancing motion with respect to the centre of
mass is zero (p. 200).

Let us denote by K the angular momentum with respect to the in-
stantaneous axis of rotation I. From formula (7), p. 201, we have K = Iw,
where I is the moment of inertia with respect to the axis I. Since K is
the projection of the angular momentum K on the instantaneous axis of
rotation, K = 0. Consequently Iw = 0, whence w = 0, q. e. d.

If a body moves with an advancing motion during a certain interval
of time, then the angular momentum K with respect to the centre of mass
is constantly zero during this time. Because of this the derivative K' of
the angular momentum is also zero. From formula (II), p. 364, it follows
that M = 0, which means that the moment of the forces with respect to
the centre of mass is zero. Hence by theorem 1, p. 26, the forces have
a resultant acting at the centre of mass.

Conversely, if the forces have a resultant acting constantly at the
centre of mass, then M = 0; hence K’ = 0 constantly, i. e. K = const. If we
assume that the instantaneous motion at the initial moment was an
advancing motion, i. e. that K = 0 at that moment, then K = 0 constant-
ly, which means that the body will move with an advancing motion.

Therefore: in order that a body move with an advancing motion, it
is necessary and sufficient that the following conditions be satisfied:

1° the instantaneous motion is an instantaneous advancing motion af
the initial moment,

2° the forces hawe a resultant acting at the centre of mass at each mo-
ment.

Conditions of equilibrium. The necessary and sufficient conditions
which must be satisfied by a system of forces in equilibrium follow easily
from conditions 1° and 2° (cf. p. 244). ‘
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If a body is at rest, then the acceleration p, of the centre of mass and
the angular momentum K are equal to zero; consequently by (I) and (II),
p- 364, P=0and M = 0.

Conversely, if we assume that the body was at rest at £ = ¢, and that
P = 0 and M = 0 constantly, then from conditions 1° and 2° it follows
that the body will move with an advancing motion. The centre of mass
will be at rest because p, = 0 and the initial velocity v, is zero; the whole
body will consequently be at rest. The system of forces is therefore in
equilibrium.

Hence we have proved that the necessary and sufficient condition for
the equilibrium of forces is the vanishing of the sum and of the total moment
of the forces.

Reactions of bodies in contact. Two rigid bodies I and II, in contact
at the point 4, act on each other with certain forces subject to the law of
action and reaction. The forces with which body IT acts on body I can be
replaced by one force R with its origin at 4 and a force couple of mo-
ment M.

At present we do not possess a general theory for the moment M.
Only in some particular cases have certain laws been established concern-
ing M. For the force R, however, experiments have yielded rather general
laws (although approximate), which give sufficiently accurate results in
practice.

Let us assume that the bodies have a common tangent plane I7 at 4.
The component vector N (of the reaction R) perpendicular to IT is called
the normal reaction, and the tangential component T the friction.

Experiments show that certain relations between N and T obtain. We
shall consider two cases:

1° The poins of contact of the two bodies have equal velocities: these
points therefore have a zero velocity relative to each other. The instant-
aneous motjon of one body relative to the other is a rotation about an axis
passing through the point of contact, it is consequently a relative rolling
motion. In this case (putting 7' = |T} and N = |N|), we have

T</¥, 1

where f denotes the coefficient of static friction (ef. p. 268), depending
only on the nature of the surfaces of two bodies at the point of contact.

2° The velocities v, and v, of the points of contact of the two bodies are
different. The relative velocity v, of the point of contact of body I with
respect to body II is v, = v; — v, and lies in the tangent plane. (Fig.
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‘)83) In this case the friction has the direction of the 1elat1ve velocity
,» but an opposite sense. Moreover, we have

T = uN, @)
where p denotes the so-called coefficient of dynamic friction, depending
only on the nature of the surfaces of the body and not on the velocities of
the points. We can therefore assume that u = const during motion as
long as the bodies are in contact and as long
as the points of contact have different velo-
cities. ‘

In general u is somewhat smaller than f.

The laws given in 1° and 2° are appro-
ximate.

If the friction is zero the surfaces of the

The surfaces of bodies are said to be per-
fectly rough if the bodies can move only in such a way that their points of
contact have equal velocities. Therelative motion of one body with respect
to the other is then a rolling motion.

Work of the friction. Let R denote the reaction of body II on body I;
then —R denotes the reaction of body I on body I1. Let v, and v, denote
the velocities of the material points of contact of the bodies. The work
which the reactions at the point of contact do in the time from ¢’ to ¢ is

t " 1
L = [Rv, dt — [Rvydt = [R(v; — v,) di.
t t t

Since v, — v, lies in a tangent plane (or is zero), the normal reactions

do no work because N(v; — v,) = 0. The work of the reactions is therefore

reduced to the work of the forces of friction. Consequently
o

L= [T(v,—v,)d.
7

When v, = v; — v, = 0, the friction T has in virtue of 2° the direc-
tion of v,, but an opposite sense; hence the scalar product T(v; —v,)is
negative. When v, — v, = 0, then T(v; — v,) = 0. Therefore in both cases
T(v;—v;) <0, whence L 0.

When. the motion of the bodies relative to each other is a rolling
motion, then the work of the friction is zero, and when this motion is a
sliding motion, then the work of the friction is negative and causes a
decrease in the kinetic energy of the bodies.
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Example I. A circular disk falls under the influence of its own weight
in a vertical plane along a circle K. Determine the motion of the disk.

Let O denote the centre of the circle K and O’ the centre of the disk,
R and r their radii, m the mass of the disk, I its moment of inertia with
respect to the centre of mass 0’, and finally ¢ the angle between the ver-
tical and the segment 00’ (Fig. 284).

We shall first consider the case when the disk and the circle K are
smooth, and then when they are perfectly rough.

1° Let us assume that the disk as well as the circle are smooth and
that at the initial moment ¢ = 0 the disk was at rest. The forces acting
on the disk during motion are: the weight Q with its initial point at the
centre of mass O’ and the reaction N
whose direction passes through O'. The
moment of these forces with respect to
the centre of mass is therefore. con-
stantly zero. Since the disk was initially
at rest, it will move with an advancing
motion (p. 365), i.e. it will slide along
the circle K (p. 337). The centre O’ of
the disk will therefore move along a
circle with centre at O and of radius
@& = R —r. Consequently all the points
of the disk will move along circles of
radius a (cf.,, e. g. the path of the point 4 shown Fig. 284).

Denoting by p, the acceleration of the centre of mass of the disk, we
have by the theorem on the motion of the centre of mass (p. 364)

mpy = Q + N. (3)

Forming the projections on the tangent and normal to the path at the
point O, we get:

map = —mg sing, map? =N, (4)

where N = |N|. The first of the equations (4) can be written in the form
9

gn=—-sing. , (5)

Comparing equation (5) with the equation of the simple pendulum
@ = ——-% sing (p. 130), we see that the centre of mass of the disk will

execute an oscillatory motion like that of a simple pendulum of length
l=a.
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2° Let us now assume that the disk and circle are perfectly rough.
The disk will therefore (p. 367) roll along the circle K.
Let us denote by o the instantaneous angular velocity of the disk.
The kinetic energy of the disk is ((IT'), p. 363)
E = imatp? + How?
(because ag is the velocity of the centre of mass). If the body is at rest
at ¢ = 0 and ¢ = ¢,, then from the principle of the equivalence of work
and kinetic energy (p. 364) we get
Imatp® + lw* = mga(cos p — cos o), (6)
because the friction (p. 367) and the reaction N do no work.

The velocity » of the point of contact § is zero. Consequently » =
= ap' —ro = 0, whence w = ag" [ r. Substituting in (6), we therefore get

3a¥(m + I [ 1*) ¢* = mga(cos p — cos @q). (7
From this we obtain ¢ in terms of ¢ and then w. Differentiating
equation (7), we get a¥[m + I /+*] ¢"¢* = — mgag’ sin p, whence after
simplifying
—— mg .
ST am LY (®)

Comparing equation (8) with the equation of the simple pendulum
@ = _% sin @ (p. 130), we see that the centre of the disk will move like
a pendulum of length I = a(1 4 I [ ms*).

Since I = ms* for a homogeneous circle, I = #a. The period of
oscillation will therefore be longer than that of a pendulum of length a.

Example 2. A heavy rigid body hangs on a horizontal axis I (Fig. 285)
abotit which it can only rotate. The position of the body is determined by
giving the position of the axis I and the angle ¢ which the line S@G, passing
through the centre of mass S and cutting the axis [ at right angles in the
point G, makes with the vertical. The axis [
cuts the vertical axis % in the point O and ro-
tates about it with a constant angular velo-
city w. What is the relation between w and ¢
if p is constant?

4

We shall solve the problem by d’Alem-
bert’s principle (p. 364). The forces of inetia
balance the acting forces. Consequently the
24
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total moment of the forces of inertia and that of the acting forces with
respect to the axis [ is zero.

At a certain time £ let us choose a coordinate system, taking the axis I
as the z-axis and the axis k as the z-axis. Since ¢ = const, each point of
the body moves with an angular velocity w along a horizontal circle (whose
centre lies on the z-axis). The acceleration of each point of the body is
therefore directed towards the centre of the circle and is rw?, where r
denotes the radius of the circle.

Let us assume that the body is a set of material points. If p,
denotes the acceleration of the point A4; of mass m; and coordinates
Z;, Ys, 23, then :

piz =5 O. (9)

Consequently the forces of inertia of the point 4 have the pro-
jections:

— — 2
Piy = — T0% Py, = — Y5

— 2 —
MPy, = MT0% miP;, = MY;0°, — MP;, = 0.

The moment of the forces of inertia with respect to the axis I (i. e.
the z-axis) is:

B, = E(—mp; ) 2 = 0* Emyz; = 2D, (10)

where D, denotes the product of inertia with respect to the planes xy
and az.

The centre of gravity S has the coordinates z, = OG Yo = Ly sing,
29 = — lg cos ¢ (where [, = SG). The moment of the weight with respect
to the z-axis is

M, = mglysineg, (11)
where m denotes the mass of the body.

The moment of the reactions with respect to the z-axis is zeros be-
cause the reactions have their points of application on the z-axis. There-
fore B, + M. = 0; hence by (10) and (11)

w*D, + mglysing = 0. (12)

This equation is the sought for relation and can be satisfied only
when D, < 0 (e. g., when the body is in the quadrant in which y > 0
and z < 0).

Example 3. A horizontal rod 04 is attached rigidly at the point O
on a vertical axis which is fixed at the points K and L (Fig. 286). A ma-
terial point (a small sphere) B, which is strung on the rod, is capable of
moving freely along the rod. At the initial moment ¢ = 0 the rod 04
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revolves about KL with an angular velocity w,, while the point B has
a zero velocity relative to the rod and is situated at a distance z, from O.
Determine the motion of the rod 04 and of the material point B.

Let I denote the moment of inertia of the rod with respect to the axis
K L, m the mass of the point B, w the angular velocity of the rod, and = the
length of the segment OB.

Let us assume that there is no friction. The M
external forces acting on the system consisting
of the axis KL, the rod OA4, and the point m,
are: the reactions at L and K as well as the
force of gravity. The moment of these forces O
with respect to KL is zero. The angular mo-
mentum of the system with respect to the axis K
KL is therefore constant. The angular momen-
tum of the rod with respect to KLisIw (p.201).

The velocity v of the point B is the sum of its relative velocity v, with
respect to the rod and the velocity of transport v;. The relative velocity
has the component (with respect to OA4) v, = z- and the direction 04; its
moment with respect to KL is therefore zero. The velocity of transport is
perpendicular to OA, has a horizontal direction, and |v;| = zw. Conse-
quently the moment of momentum of the point B with respect to KL is
equal to ma?w. The angular momentum of the entire system is therefore
Iw + mx?w, whence

Fig. 286.

(I + m2?) w = k = const. (13)

From the given initial conditions we have k = (I + mz;) w,. Let us
note that the work of the acting forees is zero. Therefore the kinetic
energy of the system is constant. The kinetic energy of the rod is $/w?
(p- 363) and that of the point B

vt = fm(v; + v}) = dm(x? + 2%0?).
Consequently
1Io? + m(z? + 2%*) = h = const. (14)

Calculating o from (13) and substituting in (14), we obtain
B[ (I + ma®) + ma? = 2h. (18)

Equation (15) defines the relative motion of the point along the rod.
Knowing z, we determine e from (13).

If the point reaches 4 and then leaves the rod, then the rod will
revolve with a constant angular velocity ' which is obtained from (13)
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by putting x = OA = 1. The velocity of the point at the moment it
leaves the rod is 2 = Pw® - 22, where z% is obtained from (15) by put-
ting 2 = [. ‘ :

Example 4. A material point M rolls down the hypotenuse of a
madterial right-angled triangle ABC (Fig. 287). The triangle lies in a verti-
cal plane and rests on a smooth horizontal line I. Determine the motion
of the system consisting of the point M and the triangle ABC.

Let us take the axis [ as the z-axis of the
coordinate system. Let ¢ and b denote the
lengths of the legs of the triangle, S the
centre of its mass, « and 8 the projections of
the segment AS on the legs,  the angle whose
vertex is at B, m’ the mass of the triangle, m”
the mass of the point, z; and y; = f the coor-
dinates of the point S, and z,, y,, the coor-
dinates of the material point M.

Let us assume that the system consisting of the triangle and the
point M was at rest at £ == 0. ‘

The external forces acting on the system are the reaction of the line
as well as the weight of the triangle and that of the point M. These
forces have a constant vertical direction. Consequently their sum also has
a constant vertical direction, From the principle of centre of mass (p. 364)
it follows that the centre of mass S’ of the whole system will move along
a vertical (since the initial velocity was equal to zero). The coordinates of
the centre of mass 8 of the system are:

b1 i —
AT ! CIM: B X
Fig. 287.

Ty = (M'zy 4+ m"zy) [m, Yo = (m'B+ my,) [ m, (18)

where m = m' + m". Hence
m'z, + m"z, = ¢ = const. (1n
The centre of mass S of the triangle moves along the line y = f;
therefore its velocity is z;. The kinetic energy of the triangle ABC is equal
to m'z;2, and the kinetic energy of the point M is m”(232 -+ y32). Only
the weight of the point M does work. Since the weight has the potential
—m"gy,, from the principle of conservation of total energy we obtain

'z + dm”(25t 4 y3®) + m'gy, = h = const. (18)

The point B has the abscissa z; — « + a. Denoting by M’ the pro-

jection of M on the z-axis, we have tanp = MM’ [ M'B, from which
tan g = y, [ (¢, — o + a — z,). Consequently ,

ya“(¢1““’z‘*“+“)ta'n¢= 0. - (19)
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From equations (17)—(19) we can obtain z;, x,, and y,, as functions
of time.

Equations (17) and (19) are equations of the first degree. We can
therefore determine from them w, and y, as linear functions of z,. We
obtain

2y = Az, -} B, y,= A'x; + B’, (20)

where 4, B and A’, B’ are certain constants. Differentiating and sub-
stituting in (18) we get

Hm' + m"(A4% + 4] 22 + m"g(d'%, + B') = k.
Calculating the derivative, we obtain
[m' 4+ m"(42 + A?)] 22y + m"gd'z; = 0, (21)
whence, after dividing by 23,
2y = const. (22)
Therefore the triangle will move with a uniformly accelerated ad-

vancing motion.
From equations (20) we obtain, knowing x;,

A'z,— Ay,= A'B— AB'. (23)
Hence the point M will move along a straight line.

- In virtue of (20) we have 2 = Ay and yy = A'z; ; therefore accord-
ing to (22) xy = const and y; = const. The projections of the accele-
ration of the point M are constants; hence the acceleration of the point M is
constant. The relative acceleration of the point M with respect to the
triangle is also constant, because we obtain it by subtracting the accele-
ration of the triangle from the acceleration of the point M. The point M
will therefore roll down the hypotenuse with a uniformly accelerated
motion (relative to the hypotenuse). :

Let us also examine whether M does not leave the triangle before
reaching the point B.

Let us denote by R the reaction of the triangle on the point M. Since
the weight Q and the force R act on the point A, forming projections on
the axes « and ¥, we obtain:

m"zy = R, and m'yy = —m'g + Ry

But x; = const and y; = const; hence R, = const and B, =
= const. Consequently R is constant. The force R is therefore directed
constantly towards the point M which cannot consequently fall away from
the triangle 4 BC before reaching the point B.
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§ 3. Rotation about a fixed axis. If a rigid body has a fixed axis [,
then it can only rotate about this axis. Let us assume that the forces
P, P, ... act on the body. Let us give the axis I an arbitrary sense and
denote by I the moment of inertia of the body with respect to I, by M the
moment of the forces with respect to [, and by w the angular velocity.

The angular momentum with respect to the axis I is K = Iw ((7),
p- 201). According to the theorem about angular momentum with respect
t0 an axis (p. 202) we have K" = M; hence

I = M. (1)

The angular acceleration is ¢ = w"; therefore

Ie = M. | T

Let IT and II' be two planes passing through the axis I; let I7 be fixed
and 1" attached rigidly to the body and rotating together with it. Finally,
let @ denote the angle between the planes II and II'. Then ¢° = w and
o = &, whence by (I)

Ig- =M. | (2)

Differential equation (2) has the same form as the equation ma~ = P,
which defines the motion of a material point along the x-axis.

If the forees P; or the moment M are given asfunctions of ¢, ¢, and ¢
(1. e. of the position of the body, the angular velocity, and the time), then
equation (2)is a differential equation of the second order, and determines
the motion if pand ¢~ (i. e. the position and angular velocity of the body)
are known at the initial moment £ == .

The kinetic energy of a body rotating about an axis [ is B = $/e?
{p. 363). Let us denote by w, and w the angular velocities at ¢, and ¢, and
by L., the work of the forces from ¢, to ¢. Since the forces of reaction
holding the axis at rest have their points of application on the axis, they
do no work. From the theorem on the equivalence of work and kinetic
energy (p. 364) we therefore get

o —3wj = L,,. (3)
The work of the forces is expressed by formula (14), p. 362,

¢ .
L, = [M dg, (4)
Po

where ¢, and @ denote the angles of rotation at ¢, and ¢. If M is a function
of p Ofﬂy, we can obfain I, , from formula (4) as a function of the angle ¢.
Substituting in (3), we obtain a differential equation of the first order.
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Example I. Atwood’s machine.l) At the ends of an inextensible
(weightless) string, passing over a perfectly rough material pulley, are
hung two heavy points of masses m, and m,. Let r denote the radius
of the pulley.

Let us assume that the points move vertically. The paths traversed
by the points are equal, and therefore the accelerations of the points are
equal in magnitude, but opposite in sense.

Let us denote by p the projection of the acceleration of the point
m, on the z-axis, directed vertically downwards (vide Fig. 132). The
pulley is perfectly rough, and consequently the string does not slide
along it. Therefore, if the pulley rotates through an angle ¢ (where we
assume @ > 0, when the point m, falls), then the point m, will cover a
distance s = r¢. From this s+ = rg and hence

p = rE. ' (5)

Let us denote by R, and R, the reactions of the string on the points m,
and m,, and by R, and R, their absolute values. The reactions R; and Rg
are not equal, because the string does not pass over a smooth body.

The reactions of the string and the weights act on the points m, and
m,. Consequently:

myp = myg — By, —myp = myg — R, (6)

The part of the string from the pointm, to the pulley acts on the pulley
with a force —R;; similarly the part of the string from the point m, to the
pulley acts on the pulley with a force —R,. The moments of these forces
with respect to the axis of the pulley are Eyr and — R,r, where the mo-
ment of the force —R, is positive, as the force —R, tends to rotate the
pulley in the direction assumed previously as positive for the angle ¢.

Therefore, denoting by I the moment of inertia of the pulley with
respect to its axis, we obtain by (I), p- 374, ‘

Ie = (R,— R,) . (7

From equations (5)—(7) we can determine
e, p, Ry, and R, From equations (6) we get
R, — Ry = (my — my) g— (my + M) P Substitut-
ing in formula (7), we obtain Ie = (m; —my) 7§ —
— (my + m,) rp, whence by (5)

(m, — ms) g
8=I+(7n1+m2)72' ®

Hence we see that ¢ = const; consequently in

13y ef. p. 193, example 4.
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view of (5) p = const. The points m, and m, will therefore move with a
uniformly accelerated motion.

The acceleration p is obtained from (8) and (5). The reactions R; and
R, can be calculated from equations (6).

Compound pendulum. A compound pendulum is a rigid body rotating
about a horizontal axis under the influence of the force of gravity.

Through the centre of mass S of the pendulum (Fig. 288) let us pass
a vertical plane, perpendicular to the axis and cutting it in the point 0.
Let ¢ denote the angle between 0S8 and the vertical; the positive sense
of Totation is chosen from left to right. Let us finally denote by M the
moment of the foreé of gravity, by I the moment of inertia of the pen-
dulum with respect to the axis of rotation, and let d = 08.

The angular acceleration is equal to ¢ = ¢, and the moment of the
force of gravity

M = —mgd sin ¢

(where m denotes the mass of the body), whence by (2), p. 374, I¢ =
= — mgd sin ¢, whence

V mgd

¢ = ——I—sintp. (9) -

Comparing equation (9) with the equation of the simple pendulum
{(I), p- 130): @ = —~~%sinq9, we see that if the length I of the simple
pendulum satisfies the condition

—mgd [l =—gl]l, (10)
then the motion of the compound pendulum is the same as that of the
simple pendulum. From (10) we obtain

I =1/md. ' (11)

Therefore: the motion of a compound pendulum is the same as the
motion of a simple pendulum of length | = I [ md, where I denotes the
moment of inertia with respect to the axis of rotation, m the mass of the

pendulum, and 4 the distance of the centre of mass from the axis of
rotation.

Denoting by K the radius of gyration with respect to the axis of ro-
tation, we have I = mK?, whence by (11)
l=K?/d. (12)

The length [ is called the reduced length of the compound pendulum
with respect to the axis of rotation.
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Let I, denote the moment of inertia, and K, the radius of gyration
with respect to the axis passing through the centre of gravity and parallel
to the axis of rotation. Then (p. 158) I = I, -+ md? whence mK> =
= mK?2 4 md* or K*> = K3 + d?, and hence by (12)

_ 5 2 (13)

On the line OS let us consider the point 0’ at a distance I from O.
Since I > d by (13), O’ will fall beyond the point 8. Let us calculate the
reduced length I with respect to the axis of rotation passing through O’
and parallel to the axis | passing through O.

" Since 'S = I — d, we have by (13)

. Ks
V=gt l— (14)

In view of (13) l—~d = K2 ]d; hence after substitution we get
from (14) '
—d+K9
Comparing with (13), we see that
=L

The reduced lengths with respect to the axes passmg through O and
through O are consequently equal.

Therefore, if a body is hung on an axis passing through O’ and
parallel to an axis passing through O, the period of oscillation in both cases
is the same (under the same initial angular displacement).

The point O’ is called the centre of oscillation with respect to the
point O.

Determination of the reaction on an
axis of rotation. Let us assume that the
axis of rotation I is fixed by means of -
reactions (frictionless) acting on the axis .
Taking an arbitrary point O on the axis!
as the centre of reduction, we can replace
the reactions by one force R with its origin
at O and a force couple of moment H. In
general R and H change during the motion.
To compute R and H we shall use d’Alem-
bert’s principle. :
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Let us select O as the origin of the coordinate system, taking the
axis | as the z-axis (Fig. 289). Let us divide the body into small pieces
and replace each of them by a material point of equal mass. In this
manner we obtain a system of material points my, m,, ... having the
coordinates Zy, ¥y, 21, Ts, Ya, Za --- We shall denote the accelerations of
the points of the system by s, s, .-, and the forces acting on these
points by Py, P, ...

The forces of inertia —mp; balance the reactions and the forces Py
hence the sum and total moment (with respect to O) are equal to zero.
Consequently:

ZP; 4+ R + XZ(—m;p;) = 0, (15)
SMom,P; + H + EMomy(—mp,) = 0. (16)

Let the body have an angular velocity w and an angular acceleration

£ at the instant ¢. Let us consider an arbitrary point m,(z;, ¥;, 2,). Let

us resolve the acceleration p; of this point into a tangential acceleration
p;, and a normal aceceleration p;  (p. 40). We obviously have p, = p;, +

=+ p;,- The component accelerations are expressed by the formulae p;, =
= rg,and p; = r0? (p. 45), where r; denotes the distance of the point
from the axis of rotation. Consequently:

Pey, = Y& Piy, = T Py, = 0; (17)
’Pinz = —x0% Piﬂ” = — Y% Pinz = 0. (18)

Denoting by m the mass of the body, by %, ¥, 2, the coordinates,
and by p, the acceleration of the centre § of its mass, we obtain from
formula {IIT), p. 195,

Imp; = mp,. (19)
Equation (15) will therefore assume the form
SP, + R —mp, = 0. (20)

For the tangential acceleration o, and the normal acceleration p,,
of the centre of mass S, we have p, = p,, + P, Therefore by (17) and
(18) we obtain (putting ¢ = 0):

3

Do, = Yo& — T0% Do, = — Ty — Yo% Py, = 0. (21)
Let us now calculate the moments of the forces of inertia. The force

of inertia is
—Mip; = — M P, — MiPy . (22)
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Let us denote by B the moment of the forces of inertia with respect
to 0. by B, the moment of the tangential forces of inertia (i. e. the forces
—m;ps), and by B, the moment of the normal forces of inertia (i. e. the
forces —m;p; ). By (22)

B=B,+B, (23)
The projection of B, on the x-axis is {cf. (2), p. 232)
B, = E(—mipityzi + mipi,zyi), (24)
whence by (17)

B,, = ¢ Zmzz; and similarly B 1, = € MYz,

9 2 25
-Btz:‘-"ezmi(x;”*“ ¥i)- (25)

Proceeding in the same way, we obtain:
B, = 0*Imyz, B,, = o Imzz;, Bn =0. (26)

By dividing the body into smaller and smaller pieces the sums in
formula (24) tend to the products of inertia D, and D,, as well as to the
moment of inertia I, with respect to the z-axis (p. 158). In the limit we
therefore get from (25) and (26):

B, =¢eD,, Bty =D, B, = —¢l,, (27)
B, = w*D,, B, =—oD, B, =0, (28)

whence, by (23),
B,=¢&D,+ 0*D,, B,=¢eD,—0ow*D,, B,=—c¢l.. (29)

Forming projections on the coordinate axes, we get from equations
(20) and (21):
ZP; + RB.—mye + maw* = 0,
ZP; + R, + mze + myew® = 0, (In
ZP; +R,=0.

The forces of reaction have their points of application on the axis I;
consequently H, = 0. Denoting by M the moment of the forces P; with
respect to O, by (16) and (29) we therefore obtain tor the projections on
the coordinate axes: ‘

M.+ H,+ eD,+ 0*D, = 0,
M,+H,+eD,—a?D, =0, (I11)
M,—el,= 0.
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The last of the equations (III) was derived -previously from the
principle of angular momentum (p. 375, formula (I)). From equations (IT)
and (III) we can calculate R and H.

Tet us now assume that the axis is fixed at two points O and O".
Denote the reactions at these points by R’ and N, put d =00, and give
the z-axis the direction 00’. We obtain:

R,=R,+ N, R,=R,+1N, R,=R,+ N (30)
H,= N,d, H,=—N,d, H,=0. (31)

If we determine R and H from (II) and (III), then we can calculate
from (30) and (31) only the components N,, N, E;, E,, and the sum
N.+ R,

Let us assume that O’ is in a frictionless bearing (Fig. 204). Then N
is perpendicular to the axis of rotation; consequently N,=0.

Therefore, if the point O’ is in a frictionless bearing, the reactions
can be determined.

Axis of rotation as a central axis of inertia. Under the assumption that
the centre of gravity lies on the axis of rotation and that the axis of
rotation is one of the central axes of inertia, we have (p. 164):

2y=0, 4,=0, D,=0, D,=0.
Hence equations (II) and (III) assume the form:
2P, + R, =0, 2P, + R, =0, ZP; + R, =0; (32)
M,+H,=0, M,+H,=0, M,—el,=0. " (33)
‘We see from this that under this assumption the reactions do not

depend on the angular velocity or on the angular acceleration. Therefore
they are such as if the body were at rest.

If the forces Py, P,, ... are equal to zero, then from equations (32)
and (33) we obtain R = 0, H = 0, and ¢ = 0; hence w = const. Since the
reactions are equipollent to zero, we can assume that the axis I is not
fixed, i. e. that the axis of rotation is free.

Conversely, if we assume that no forces act on the body, and there-

fore that P; = 0, R = 0,and H = 0, then equations (II) and (IIT) assume
the form:

_y08+ xowz = 0)
EDv + szr. =0,

Toe + Yo? = 0,

D, — 2D, =0, oI, =0.

From the last of the equations (34) ¢ = 0; consequently w = const.
If w == § (i. e. when the body is not at rest), we obtain from (34) &, = 0,

C(34)
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1y = 0,and D, = 0, D, = 0. The z-axis (i. e. the axis of rotation)is there-
fore the central axis of inertia. ,

‘Hence we have derived the following property of the central axes
of inertia:

If a free rigid body on which no forces act rotates about a fized awis,
then this axis is one of the central axes of inertia.

Example 2. A heavy rectangular door OABC (Fig. 290) (where 04 and
CBhave a vertically upward sense) can rotate about the vertical axis 04 -
which is fixed at the points O, and O, of the side 04, where 00, =
= 0,4 = d. At the instant ¢ = 0 the door is at rest and a force P of
constant absolute value P, perpendicular to the door and applied cons-
tantly at the centre D of the side BC, begins to act. Determine the reac-
tions at the points O, and O, at the moment .

Let us denote the mass of the door by m and the moment of inertia
with respect to the axis 04 by I. Let 04 = aand OC = b. Let us assume
that the force P revolves the door from right to left with respect to the
axis of rotation, which is directed upwards. '

The moment of the force P with respect
to the axis of rotation is constant and equal
to bP. Consequently Ie = bP, whence &=
= bP [ I. If the door is homogeneous, then
by (8), p- 180, I = 1mb2. Hence

¢ = 3P | mb. (35) *
The angular acceleration & = const;
consequently
. » = ¢t = 3Pt [ mb. (36)

The door will therefore rotate with a uniformly accelerated motion.

We shall now determine the reactions. At the instant £ let us take O as
the origin of the coordinate system, giving the axes z and = the directions
04 and OC. Let us denote by R’ the reaction at O;, by N the reaction at
0,, finally by R the sum, and by H the moment, of the reactions with res-
pect to O. Assuming that there is a bearing at O, (p. 278), we obtain:

R,=R.,+ N, R,=R,+ N, R,=R;; (37)
H,=Rd+N,a—d), H,= —Rd—N,(a—d), H, =0. (38)

From equations (II) and (ILT), p. 379, we obtain R and H, and then
we calculate R’ and N from (37) and (38). .
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The acting forces are the weight Q and the force P. The coordinates of
the centre of mass S of the door are: z, = 3b, ¥o = 0, 2, = }a, and
those of the initial point of the force P:& = b,y = 0,2 = }a. Since the
door lies in the zz-plane, D, = 0. The product of inertia D, is (p. 175)

ba b
D, = [[oxz dz dz = [}ea*x de = 1a%%,
¢ 0 0

where o denotes the density. Since abg = m, D, = 3mab. From equations
(II) and (I1X), p. 379, we obtain: i

R, imbe? =0, — P+ R, + imbe = 0, —mg + B, = 0; (39)
— %aP + H, + }mabe = 0, — 4mbg + H,— Imabw? = 0. (40)

From equations (39) and (40) we calculate R and H by means of (35)
and (36), and then we determine the reactions R” and N from equations
(37) and (38).

Example 3. A heavy rod A0 hangs from a horizontal axis and can
only rotate in a vertical plane about its end 0. The rod is released freely
from a horizontal position. What is the reaction at O when the rod makes
an angle ¢ with the vertical? '

Let us denote by R the reaction at O, by Q the weight of the rod, by
m the mass of the body, and by p, the acceleration ot the centre of mass §
of the rod (Fig. 291).

' From the theorem on the motion of the centre of mass it follows that

mp, =R+ Q. (41)

From this equation one can determine R if p, is known. Let us put

1 =08 and denott?’ by @ and ¢ the angular velocity and the angular

acceleration of the rod, respectively; then the accelerations: tangential
Po, and normal p,  are:

Po, = le and p, = lo®

The angular acceleration is obtained from the equation Ie =M.
Since the moment of the force of gravity with
respect to O is equal to mgl sin ¢,

e=myglsing I, (42)
where I denotes the moment of inertia of the
rod with respect to O.

The angular velocity w is calculated by

appealing to the principle of equivalence of
work and kinetic energy (p. 364). The increase
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in kinetic energy of the rod is equal to the work of the force of gravity. The
kinetic energy of the rod is B = }Iw? and the work of the weight L =

. = mgl cos ¢, because the level of the centre of mass was lowered by

b =l cos . Initially the kinetic energy was equal to zero. Therefore
310* = mgl cos p, whence
®? = 2mglcosg /1. (43)

Let us take the direction OS as the positive direction of the z-axis of
the coordinate system (z, ). Forming the projections on the axes x and ¥,
we obtain from equations (41):

— mlw? = mgcosp + R,, —mle=—mgsing + R,.
From (42) and (43) we therefore get:
R, = —mgcosg[l + 2ml2 [ I], R, = mgsing[l —mi* [ I].

If the rod is homogeneous, then its length is equal to @ = 21, and the
moment of inertia I = 4ml? (p. 179). Consequently:

R, = —3mgcosp, R,=}mgsing,
whence
IR] = $mg)/1 + 99 cos®p.
The maximum value of |R] therefore occurs for ¢ = 0 and is
[R| = §mg.
Centre of percussion. Let us assume that the axis of rotation z is

a principal axis of inertia at the point O and that the centre of mass lies in
the yz-plane (where y, > 0) ata certain instant £,(Fig. 292). Consequently:

2p=0, 1,>0, D,=0, D,=0. (44)
Equations (IT) and (III), p. 379, then assume the form:
2P, 4 Ry — myee = 0, ZP; + R, + myw® =0,
5P, +R,=0,
M,+H,=0, M,+H,=0, M,—el,=0. (46)

(45)

Let us assume that the force P, with its point of application at 4
whose coordinates are z, ¥, z (Fig. 202), suddenly began to act at the
instant t,. As a result of the action of the force P, the reaction R and the
moment H changed to R + R" and H -+ H’; the acceleration & assumed
the value ¢ -+ &; the angular velocity, equal to w at the instant %, did
not undergo a sudden change. At the instant when the force P begins
to act, equations (II) and (III) assume (in view of (44)) the form:
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P,+ IP; + R, + R, —mye + &) =

P + ZP;, + Ry + R, -!—myocoz—O (47)
P, +XP; + R, + R, =0, '
‘Z‘I;+Mm+ﬂm +Hw=O>

M, +M,+H,+H,=0, (48)
M, M, —(+&)],=0,

where M denotes the moment of the force P with respect to O. Comparmg '

equations (45) and (46) with (47) and (48), we get:

P,+ R, =0, P,+R,=0
M,+H,=0, M, —¢&I,=0.

P, +Rz_my0£ =90,
M, H,=0,

(49)

From equations (49) we can determine
R and H'.
Let us assume that P has the direction

of the z-axis and lies in the zy-plane.
Then:

z2=0, P,=0, P,=0, .
M,—0, M —0, M =Py O
From (49) we obtain:
H =0, . (51)
g =P,y|l,. (52)
From (49), (50) and (52) we get:
R, =P, (myy,|I.—1), R, =0, R,=0. (53)

On the y-axis let us consider a point O; whose ordinate [ is defined by
the formula

1= 1,]my, (54)
If the direction of the force P passes through Oy, then y = [ and hence
by (53) R, = 0, R, = 0, and R, = 0, whence
R=0. (55)
The point O, is called the centre of percussion.
The centre of percussion lies on the line of intersection of the plane
I, passing through the axis of rotation and the centre of mass, with the

plane I7, perpendicular to the axis of rotation at the point O: The centre
of percussion lies in I7; on the same side of the axis of rotation as the
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centre of mass. The distance of the centre of percussion from the axis of
rotation is defined by formula (54).

If a body is acted upon suddenly by a force whose direction passes
through the centre of percussion and is perpendicular to the plane passing
through the axis of rotation and the centre of mass, then the reactions
supporting the axis of rotation do not change suddenly (the axis does
not quiver).

By (53) and (54) we have
R, = P,y /l—1). . (56)

Hence if y > I, then R” and P have the same senses, and if
y < 1, then R and P have opposite senses.

Let us assume that in a compound pendulum a certain plane I7,, per-
pendicular to the axis, passes through the centre of mass § and is a central
plane. Consequently the axis of rotation is a principal axis of inertia with
respect to the point O in which the axis pierces the plane I7,. The line 08 is
the intersection of the plane IT, with the plane II;, passing through the
axis of rotation and the centre of mass. The centre of percussion hence lies
on the line O at a distance I from O, defined by formula (54), where
obviously y, = OS. Therefore putting OS = d and I, = I, we get l =
= I [ md. Comparing with formula (11), p. 376, we see that the centre of
percussion coincides with the centre of oscillation.

Let us assume that the pendulum is at rest and that the axis of
the pendulum lies on two smooth horizontal rods. The plane I7; (passing
through the axis and the centre of mass) is therefore vertical.

If the pendulum is struck at the centre of percussion in a horizontal
direction perpendicular to II;, then the axis will not quiver.

If it is struck above the centre of percussion, then by (56) a reaction
having a sense opposite to that of striking is necessary to maintain the
axis at rest. Since this reaction cannot appear (because the rods on which
the axis lies are smooth and cannot therefore induce a horizontal reaction),
the axis will move in the direction of striking.

On the other hand, it the pendulum is struck below the centre of
percussion, then the axis will move in the direction opposite to that of
striking.

§ 4. Plane motion. Plane motion of a plane figure. Let a material
figure move in the plane IT and let the acting forces Py, Py, ..., also liein
this plane (Fig. 293). Let us denote by p, the acceleration of the centre
25
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of mass § of the figure, by m the mass, and by P the sum of the forces.
Then according to (I), p. 364,
mp, = P. )
Let us further denote by w the instantaneous angular velocity and
by I, the moment of inertia with respect to the centre of mass. The
instantaneous motion of the figure can be considered as the composition
of an advancing motion with a velocity of the centre of mass and a ro-
tating motion with a velocity w about the centre of mass. Since the
angular momentum of an advancing motion with respect to the centre
of mass is zero (p. 200), the angular momentum K of the instantaneous
motion with respect to the centre of mass is equal to the angular momen-
tum of the rotating motion. By formula (7), p. 201, we therefore have

K= Iw, (1)

whence K' = Ie, where ¢ = w'. Denoting
by M the moment of the forces with respect
to the centre ot mass, we obtain from (IT),
p. 364,

Ie = M. an

Equations (I) and (II) define the
motion of the material figure in the plane.

Fig. 293.

Let us consider a fixed line ! in the figure, and denote by ¢ the angle
between I and the z-axis, measured clockwise (Fig. 293). The coordinates
Zg, Yo, OF the centre of mass and the angle ¢ define the position of the
figure.

Forming projections on the coordinate axes, we obtain from equa-
tion (I):

mxy = P,, myy; = P, (I

Since ¢ = w and ¢ = ¢, by (II) )

Ip~ = M. (119

From equations (I’) and (IT') we can determine z,, 7/,, and ¢.

Plane motion of a body. Let a body move with a plane motion, i. e.
let its points move in planes parallel to a certain fixed plane II, called the
directional plane (p. 312). Let us resolve the forces {P;} acting on the body
into the components {P;} parallel to I7 and into the components {P;}
perpendicular to I7 (Fig. 294). Since the centre of gravity S moves ina
plane parallel to I7, its acceleration p, lies in the plane I7. By the principle
of the motion of the centre of mass we have

icm

[§4 Plane motion 387

mp, = ZP; = ZP; - TP,
and hence after forming projections on the directional plane
mp, = ZP;. . (2)

Denoting by I the axis perpendicular to IT and passing constantly
through the center of gravity, by I the moment of inertia, and by K the
angular momentum with respect to the axis I, we obtain (p. 364) K* =
= ZMom,P;. But the moment of the forces P; with respect to I is zero,
because P{ || [; consequently

K' = ZMom,P;. (3)

The instantaneous axis of rotation in a
plane motion is perpendicular to the direc-
tional plane; the axis lis therefore an instant-
aneous axis of rotation. Since it passes con- / ’

stantly through the centre of mass, K = I
((7), p. 201), from which K = I = I¢
and by (3)

Ie¢ = ZMom,P;. (4)

Fig. 204.

In the plane II let us consider an arbitrary plane figure F attached
rigidly to the body: this can be, for example, a section of the body made
by the plane II or the projection of the body on this plane. The motion
of the figure F obviously determines the motion of the body. Let us form
the projections of the forces {P,} and the centre of gravity S on the plane
II. Equations (2) and (4) define the plane motion of the figure F under the
assumption that:

1. the mass of the figure F is equal to the mass of the entire body,

2. the centre of gravity of the figure F is the projection of the centre
of mass of the body, .

3. the moment of inertia of the figure ¥ with respect to S is equal to
the moment of inertia I of the body with respect to the axis I (Fig. 294).

It follows from this that the plane motion of a body will be deter-
mined if we give the projections of the forces on the directional plane, the
mass of the body, the projection of its centre of gravity and the moment
of inertia of the body with respect to a line passing through the centre of
mass and perpendicular to the directional plane.
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Example I. A heavy rod AB slides down in a vertical plane with its
ends resting on two smooth planes: horizontal and vertical (floor and wall).
Hence the forces acting on the rod are: the weight at the centre of the rod
and the reactions N, R, perpendicular to the planes. The components N
and R of the reactions with respect to the axes »
and y are non-negative (as in Fig. 295).

Let us denote by %, ¥, the coordinates of the
centre of mass S of the body, by ¢ the angle which
the rod makes with the coordinate axes, by I, the
moment of inertia with respect to the centre of
mass, and by 2d the length of the rod.

From equations (I) and (IL'), p. 386, we obtain:

may = N, myy = —mg + B, Ly =dl sing — Rcosg). (5)

Fig. 295.

In addition to the above equations the following relations hold:
2o =d cosp, Yo=dsing. (5"
From equations (5) and (5’) we can obtain a differential equation

determining @ as a function of the time ¢. We shall obtain this equation
by applying the principle of equivalence of work and kinetic energy.

The forces R and N do no work; only the force of gravity does work.
Let us note that the velocities of the points 4 and B have the directions
of the axes y and x. Consequently the instantaneous centre of rotation 0
is the point of intersection of the lines perpendicular to the axes z and y
at the points B and A4 (p. 326). The moment of inertia with respect to O is
(cf. (I), p. 159)
I=1I,+4 md, (6)
and hence I has a constant value. The kinetic energy F is therefore
expressed by the formula F = {lw® = g2

If ¢ = g, initially, then the work of the force of gravity is L =
= mgd(sin p, — sin ¢). Consequently, under the assumption that ¢~ = 0
initially, we obtain )

3l ® = mgd(sin o — sin ). (7)

 The solution of equation (7) requires a knowledge of the theory of

elliptic functions. Nevertheless, we can determine the reactions N and R
without solving the equation if we know @. With this in view, differentia-
ting equation (7), we obtain Ig ¢ = — mgdy" cos p, whence

Iy = —mgd cos p. » (8)
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By (5') we have after differentiating:
Ty = — Jqp'2 cosp —do sing, yy = —de?sing + de cosp. (9)
From equations (5) we obtain:

N = mzy, B = myy + mg. (10)

From equations (7) and (8) we can determine ¢* and ¢. From
equations (9) we then obtain zy and y;, whence by (10) we get the re-
actions R and N. :

Let us calculate the value of the reaction N = |N|. In virtue of (7),
(8), and (9),

9 N
gy = —dcos g mgd(smqloo sin ) 14 Sinq)mgd Icos<p;
hence by (10) ‘
2772
N:mmb‘:m—gii——;osfwsingv——fzsin(pu). (11)
Since N must be a non-negative number,
3sing — 2 sing, = 0. (12)

The point 4 will therefore slide down along the vertical wall as long
as the angle ¢ satisfies the inequality (12). The moment the angle @
reaches the value ¢, satisfying the equation

3sing, — 2sing, = 0, (13)
the point 4 will stop sliding along the vertical wall, since the reaction N
would then have to become negative, i. e. the wall would have to attract
the point A. At that moment, therefore, the rod will fall away from the
vertical wall.

Let h, denote the initial height of the point 4, and %, the height of
this point at the moment it falls away from the vertical wall. Since
ho = 2d sin g, and h, = 2d sin ¢,, it follows by (13) that

hy = %hy. : (14)

Consequently the point 4 will fall away at % of its initial height. After

falling away from the wall the motion of the rod will be defined by
equations (5) under the assumption that N = 0 and y, = d sing.

Example 2. A cylinder' of revolution moves down a perfectly rough
inclined plane; it will therefore roll. The instantaneous motion of the
cylinder will hence be a rotation about a generatrix along which the
cylinder is in contact with the plane. Let us assume that this generatrix
is horizontal.
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The friction does no work because the points of application of the
friction (i. e. the points of contact of the cylinder and the plane) have
a zero velocity (p. 210). The only force doing work is the weight of the
oylinder.

Let us denote by I the moment of inertia of the cylinder with respect
to the generatrix, and by o the angular velocity of rolling at the instant ¢.
The kinetic energy is consequently

E =} (15)

Further, let m denote the mass of the cylin-
der, % the height of the centre of mass at the in-
stant £, and A, its height at the instant f, (Fig.
296). The work of the force of gravity from ¢, to ¢
is therefore

Fig. 296.

L = myg(hy— h). (16)

Assuming that the initial angular velocity was w, at the instant t,, we
obtain from (15) and (16) by the principle of the equivalence of work and
kinetic energy

Ho® — Hop = mg(hy — ), . (17)
from which we can determine w.

Finally, let s denote the path traversed by the centre of mass from
the initial instant ¢, to the instant ¢. Let us assume that the centre of mass
lies on the axis of the cylinder, and let « be the angle made by the inclined
plane with the horizontal. Then

hoy—h = s 8in «. (18)
Since the velocity of the centre of mass § at the instant tisv = ¢ =
= ro (where r is the radius of the cylinder), and at the initial instantt,
it was v, = 85 = rw,, by (17) and (18) we obtain
Is% [ 2r2 — Is;2 | 292 = mgs sin x, (19)
whence, differentiating with respect to ¢, we get Is's |12 = mgs'sina.
Consequently
p=¢" =mgrisin« [I. (20)
The centre of mass will therefore fall with a uniformly accelerated
motion. ‘

The moment of inertia of a solid eylinder (of constant density) with
respect to a generatrix is (p. 183, formula (23)) I = $ms2. Hence by (20)
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p = 3¢ sine. The centre of mass will theretore fall with an acceleration
smaller than that for a free point, for which p = g sin« (p. 122).

The moment of inertia of a hollow cylinder (e. g. of a pipe) with respect
to the axis is mr?, and with respect to a generatrix it is I = 2ms2. Hence
by (6) » = 3¢gsinx. Asolid cylinder will therefore fall faster than a hollow
one.

If the initial velocity was w, = 0, then the centre of mass traverses
a path s in the time :

t = |/2s] p = |/2sI | mgr® sinx. (21)

Formula (21) can be used to determine the moment of inertia I
experimentally.

Let us denote by T the sum of the irictional forces, by N the sum of
the normal reactions, by Q the weight, and by p (as above) the accele-
ration of the centre of mass of the cylinder. From the theorem on the
motion of the centre of mass we havemp =T + N + Q. Since p, N, and Q,
are perpendicular to the axis of the cylinder, T is also perpendicular to the
axis of the cylinder. Forming projections on the inclined plane and on the -
normal to the inclined plane (and putting 7' = |T| and N = |N]), we obtain:

mp = — T + mg sinx, 0= N — mg cosyx,
whence by (20):
T = mg sina(1 —m2 [ I), N = mg cosx.

Example 3. A circle moves in a vertical plane II, always remaining
tangent to a horizontal line I (Fig. 207). At ¢ = 0 the instantaneous
motion of the circle was a rotation about the centre of the circle with
an angular velocity w,. Determine the motion of the circle taking friction
into consideration.

Let us take the line [ as the z-axis and give to the y-axis a sense
vertically upwards. Let us assume that the centre of the circle S isat the
same time the centre of mass. Let us denote by r,m, and I, the radius, the
mass, and the moment of inertia, of the circle with
respect to S, by %,,%, the coordinates of the
centre of the circle, by w and ¢ the angular velo-
city and the angular acceleration of the centre
8, finally by T and N the components (with
respect to the axes z and y) of the friction T-and
of the normal reaction N, acting at the point of
tangency 4. From equations (I) and (II), p. 386,
we get:
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may =T, myy=DN-—mg, Ie=—Tr. (22)
Since y, = r constantly, y; = 0, whence by (22)
N = myg. (23)

Let v be the component (with respect to the z-axis) of the velocity v
of the point 4. Since the instantaneous motion of the circle at the time £ is
a composition of the advancing motion of the centre of mass with a velo-
city x; and a rotation about the centre of mass with an angular velocity w,

v =Ty — T, o (24)
whence by differentiation
v = Xy — Te. : (25)

By (22) we have zy = T /m and e = — T [ I, from which by sub-

stitution in equation (25)
v=_1/m+2[I)T. (26)

If v <= 0, then T has a sense opposite to that of v (p. 367); conse-
quently »7' < 0; whereas if v = 0, then »7" = 0. Hence we always have
T < 0. Therefore, multiplying both sides of the equation (26) by v, we
obtain vy = (1 /m + 2/ I) T'v; consequently

4 w <0, ~ 27)

But 2vv is the derivative of v% hence by (27) the derivative of v2 is
not positive, and consequently ¢* is a non-increasing function. If, therefore,
at a certain instant ¢, the value of v reaches 0, then from this instant on
v = 0 constantly, i. e. from this instant on the circle will roll along the
line 1. -

Let us first examine the motion of the circle from the time ¢ = 0 to
t = t,. In this interval of time » == 0; hence 7' = uN, where x denotes the
coefficient of friction (p. 367). Taking the sense of the rotation as in the
figure, we have T >> 0; hence according to (28) 7' = umg, whence by
substitution in (22)

xy = pg, e=—npumrg [l (28)

Integrating equations (28) and making use of the conditions x5 = 0

and o = w, at £ = 0, we obtain:

T = pgt, © = w0 — pmgrt | 1 (29)
By (24) we have
v=pugt(l + mr® [ I) —rog; (30)
hence v = Q occurs at the instant
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£ rwg
Y opg(L 4 mt Iy

.Since, as we have shown, we shall have v = 0 constantly from the
moment ¢, on, v = 0, and consequently for ¢ > ¢, in virtue of (26) 7'= 0
constantly, or by (22) z, = 0 and & = 0.

Therefore for ¢ > ¢, the circle will roll with a constant angular
velocity w; and the centre of mass will move with a uniform motion with
a velocity v, = rw;.

From formulae (29) and (31) we get

0w =y [ (1 4+ mr2 [ I). (32)

From the instant t; on the kinetic energy is B, = const. Since £, is
equal to the sum of the kinetic energies of the advaneing motion with the
velocity of the centre of mass v, = rw; and of the rotational motion,

(31)

E, = tmrro? + 3o? = 3 | (1 +mr2 | I). (33)
E, = Hw; at t = 0; consequently
E, =E,](1+ me]I). (34)

§ 5. Angular momentum. Let O be an arbitrary point of a moving
body. The instantaneous motion of the body is the composition of an
instantaneous advancing motion with a velocity u of the point’'O and a
rotation with an angular velocity w about an axis passing through O.

Let us divide the body into small pieces and replace each of them by
a material point of the same mass. We shall obtain a system of points
A, A,, ..., of masses m,, m,, ... At a given moment ¢ let us choose an
arbitrary system of coordinates (&, %, {) whose origin is at O. Let us denote
the coordinates of the points A, 4,, ..., by £, 11, L1, &2, M2y Cas -

The velocity of the point 4, can be represented in the form (Fig. 298)

v;=Uu + Wi, (]‘)

where w, is the velocity of the instantaneous

rotation. By (V), p. 46, we have
wip = Nwg — L0y, Wiy = G — &g, @)
Wiy = o, — N0

Let K; be the moment with respect to O of

the momentum m,v; of the point 4, i.e. K; =

= Momg(mv;). By (II), p. 18, the projection

of K; on the &-axis is K;p = my(v;yl; — viga),
whence by (1) and (2) '

Fig. 298.
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K= my (1, + Liwg— Eqwy) Li— (ug + &g — N0¢) 7:],
i. e.
lK{g = wgmi@? + 77?) - wo;’”"ifi??i — wgmifiCi ‘+ ’Uw;miCs — UM,
Since the angular momentum with respect to the point Ois K = 2K,
K= w; Zmy(LF + ;) — w, ZmEa; — g EmaEls + Uy Zmgl; —
— Ug Emmi.

As the body is subdivided into smaller and smaller pieces the sums

appearing in the last formula will tend respectively to:
Ig: -D{,’s -Dq: mCo’ m’)o,

where m denotes the mass of the body, and &, 7, o, the coordinates of the
centre of mass. We therefore obtain (after carrying out a similar calcula-
tion for the projections K, and Ky): »

Kg == COEIE — w,ng -_— “’CDﬂ + m(C()uﬂ - 770'“;),

.K.q == a),)I,]——wng——wgD;—F m(fouC—Cnug), (I)

K{ = CO;IC — wE‘D"] —_ co,,DE "}" 'm('r]oug — Eouﬂ)'

Angular momentum with respect to the centre of mass of a body or
with respect to its fixed point. If O is the centre of mass, then &, =0,
7o = 0, {o = 0. On the other hand, if O is fixed, then u; = 0, u, = 0,
u; = 0. In both cases we have by (I):

Kg = O)EIg——CO,I.DE'—— ch,,’,
K, =w,l,—oDi—oDy, - (1)
Ki..' = a)gIc—— Q)E.Dq —_ a),,Dg.

In particular, if the axes of the coordinate system are principal axes

of inertia at the point O, then D; = 0, D, = 0, D; = 0, and consequently:
Ke‘: “’EIE: K,’ = 60,,1”, K;: CO;I;. (HI)

From formulae (III) it follows that we can determine the angular

momentum if we know the instantaneous angular velocity and conversely.

The directions of the angular momentum and the angular velocity are
in general different. The scalar product K - w is by (III)

K-o =K+ K0, + Kwp= ofl; + o, + ofly
consequently if ® == 0, then Kw > 0.’

Therefore: the angular momentum forms an acute angle with the angular
velocity vector.

We shall now prove the following
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Theorem. If the angular momentum K or the angular velocity vector w
have the direction of one of the principal axes of inertia, then the angular
momentum and the angular velocity have the same direction and conversely.

Proof. Let us take as the £-axis that principal axis of inertia whose
direction is the direction of the angular momentum K. Then K = 0and
K, = 0, whence by (I1I) w, = 0 and w; = 0. Therefore the vector w has
the direction of the £-axis, i. e. of the angular momentum.

The proof is carried out in a similar manner if & has the direction of
one of the principal axes of inertia.

Conversely, if K and w have the same direction, we take this direction
as the direction of the &-axis. Then w; = 0 and w; = 0, as well as K, = 0
and K = 0, whence by (II) K; = I w;, 0=—w Dy, and 0 = — w,D,,
and hence D; = 0, D, = 0. The &-axis is therefore a principal axis of
inertia, q. e. d.

If the point O is a spherical point, i. e. if I; = I, = I, then, denoting
the moments of inertia by I, we have by (III) K; = Jo,, K,=Io,,
Ky = Iwg, whence

K=Iw. (3)

Therefore: if the centre of mass (or a fized point of a body) is a spherical
point, then the angular momentum constantly has the direction and sense of
the angular velocity. '

Derivative of the angular momentum. Let K be the angular momen-
tum of a body with respect to an arbitrary point O of this body and let
(%, ¥ 2) be a fixed system of coordinates with its origin at O’, and (&, %, {)
an arbitrary moving system of coordinates with its origin at O (Fig. 299).
Let us denote by u the velocity of the point O, and by ' the instan-
taneous angular velocity of the system (&, 7, {). Let us draw a vector
04 = K from the point O. Putting 0'0O=r and O'A = p, we obtain
p =r + K, whence K = p —r. Calculating the derivative, we obtain
K' = p* —r. But rr = u, and p* is equal to the absolute velocity v, of
the point A with respect to the fixed system

O'(z, y, ). Consequently 2 %
. ¥
K=v,—u (4) i @,
P =>4
Let v, be the relative velocity of the point n O
A with respect to the system (£,7,8), andv, = | 7 \\5
the velocity of transport. Hence (p. 57) o e £

vV, =V, +V,

whence by (4)
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K =v, + (v,—u). (6)

In the system (£, 7, £) the point 4 has the coordinates K¢, K,, K.
Consequently

v,

¢ = Kéi ’U,.)] = I{ﬂ’ 'U,.C = KC' s, (7)

The instantaneous motion of the system (&, 7, £) is the comyposition
of an advancing motion with a velocity u of the point O and a rotation
with an instantaneous angular velocity «’about an axis passing through O.

Hence (p. 62)

v,:u—{—OiZXw':u—«}—KXw'. ‘ (8)
Taking ' .
w=KX o’ 9
‘we therefore obtain by (8) and (6)
K=v +w (10

From (9) we get:
We = K,,w; —K;w;, Wy = .KC(D;——.ngg, We = Kga); -— K,,a); (11)

Let us denote the projections of the vector K" on the axes &,%, and {,

by (K')g, (K'),, and (K);. From (10) in virtue of (7) and (11) we obtain:
(K)g = E; + Eyo; — Ko, (K), = K, + Ko, — Koy,
(K)= K; + wa,', ,—Kﬂw;' :
Formulae (IV) determine the projections of the derivative of the
angular momentum K° with respect to O on the axes &, 7, ¢ of the moving
system in terms 1° of the projections K ¢, K, K, of the angular momentum
K on these axes, 2° of the derivatives K;, K,, K;, of the projections K,
K,, K, and 3° of the projections w;, wy, Wy, of the instantaneous velocity
of thesystem (£, 7, £)—butnot of the body! — on the axes of this system.

(V)

One should note the difference between the symbols (K')s and K's. The value
‘of the first symbol is obtained by first calculating the derivative and then forming
the projection on the §-axis; whereas the value of the second symbol is obtained,
conversely, by projecting first the vector K on the §-axis and then caleulating
the derivative of the projection. As formula (IV) indicates, in general (K*)z == Ke

Let us assume that O is a fixed point or the centre of mass and that
the axes £,7, ¢ constantly have the directions of the principal axes of
inertia of the body at the point O. In this case the instantaneous, an-
gular velocity w of the body is equal to the instantaneous angular velo-
city of the coordinate system (&, 9, {):

W= (12)
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Since by (ITII), p. 394,

ngIgmg, K,) 2171[0,7, K;:I;w;, (13)
as Ig, I, I, ave fixed, we get:
K, =Iw; K,=Iw, K, =Iw;. (14)
Substituting the values from (12)—(14) in (IV}), we obtain:

(K)g = Leop + (I — Ip) wg0p, (K')y = Lo, + (Ie— 1) oo, V)
(K)e = Top + (Is— 1) oo,
Formulae (V) refer to a system of coordinates whose origin is the

centre of mass or a fixed point of a body and whose axes constantly have
the directions of the principal axes of inertia.

" §6. Euler’s equations. We shall now consider the motion a body
acted on by forces executes if it has one fixed point O, and is therefore
only capable of rotating about this point. For it is to this case that we can
reduce the investigation of the motion of a rigid body under the influence
of forces in the most general case. } ]

Let K be the angular momentum and M the total moment of the for-
ces with respect to 0. Then according to the prineiple of angular momen-
tum (IT), p. 364,

K =M. (1)

Let us note that M does not depend on a force applied at O, because
its moment with respect to O is zero.

Let us choose two coordinate systems having the origin 0: a fixed
system (z, y, z) and a moving system (&, 7, {) whose axes are the principal
axes of inertia with respect to 0. Let 4, B, C, denote the moments of
inertia of the body with respect to the principal axes of inertia (i. e. to
the axes &, 7, £), and let «w denote the instantaneous angular velocity of
the body. By (1) and (V) we get: -

Aw; + (B — 0) w,m = M,
Bo;, + (C — A) wywy = M,, @
Cw; + (A — B) ww, = M,.
Equations (I) are called Euler’s equations. , :
Equations (I) serve to determine w, w,, w,, asfunctions of the time ?.
Knowing we, w,, wg, we can define the position of the moving system
(§,7, ¢) and hence also the position of the body by means of Euler’s
angles &, o, v (p. 354), calculated from the differential equations (II),
p. 356. In this manner, by means of Euler’s equations (I) and equations
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(II), p. 356, we can determine the motion of the body. The solution of
these equations presents many difficulties and not always can it be car-
ried out. However, we shall meet with some casesin which these solutions
can be obtained. The most important of these is the case when no forces
except the reaction at the point O act on the body.

If we know the motion of the body, then we can calculate the re-
action R applied at O. For let us denote by P the sum of the acting forces,
by m the mass of the body, and by p, the acceleration of the centre of
mass. By the theorem on the motion of the centre of mass ((I), p- 364), we
hence have mp, = P -+ R, whence

R = mp, —P. (2)

Remark I. Euler’s equations (I) also hold when the point O is not-

a fixed point, but the centre of mass of the body, for then the theorem
concerning the angular momentum K' = M (p. 364) holds, and the for-
mulae (II), p. 356, are true for any point O.

Remark 2. Making use-of formulae (IV), p. 396, we can give
equations which are more general than Euler’s equations.

Let O be a fixed point or the centre of mass, and (&, 77, {) an arbitrary
system of coordinates with origin at O and having an instantaneous an-
gular velocity @', Since K' = M, by formulae (IV), p. 396, we obtain:

K+ K,w,—E;0,= M,
K, + Kpo,— Keop = My, (I1)
K, + ng,']—K,,w; = M,

Motion ofan unconstrained rigid body. Let us take the centre of mass S of
a body as the origin of the coordinate system (z, y, 2), moving with an
advancing motion relative to an inertial frame. The motion of the body in
space will be defined if we determine the motion of the centre of mass
8 and the motion of the body relative to S, i. e. relative to the system (2,
Y, 2).

The motion of the centre of mass can be obtained from equations
(T), p. 364.

On the other hand, in order to determine the motion of the body
relative to the system (z, y, 2), we can assume that this system is at rest
(p. 135) and that in addition to the forces acting on the body, only the
forces of transport act on it (because the forces of Coriolis are zero (p. 136)).
The acceleration of transport is equal to the acceleration p, of the centre
of mags and is common to all the points of the body (p. 60). If we consider
the body as a system of material points m,, m,, ..., then the forces of
transport are — m,p,, — myp,, ... The forces of transport are therefore
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proportional to the masses and have the same directions as well as senses.
Consequently (p. 239) the forces of transport have a resultant R whose
origin is at the centre of mass:

R = "*mlpo”‘mzpo“’“-u = —mP,,

where m denotes the mass of the body. Denoting the sum of the acting
forces by P, we obtain from the theorem on the motion of the centre of
mass mp, = P, whence R = — P,

Since the centre of mass § is fixed relative to the system (z, y, 2), and
the force of transport has its origin at S, the motion of the body relative to
the centre of mass (and consequently also relative to the system (z, ¥, 2)) is
such as if the centre of mass were fixed and the body were acted upon by the
same forces.

The motion of a body relative to the centre of mass is therefore in-
dependent of the motion of the centre of mass itself and we can determine
it by means of Euler’s equations.

We see from this that the investigation of the motion of a body in
the most general case does indeed reduce to the investigation of the
motion of the centre of mass and the rotation of the body about a fixed
point.

§ 7. Rotation of a body about a point under the action of no forces.
Let us assume that no forces act on a rigid body having a fixed point O.

- In this case the moment of the forces is M = 0; hence Euler’s equations

(1), p. 397, assume the form:

Aw; + (B— C) wywp =0, Bo; + (C —A4) o0 =0,
Cw; 4+ (4 — B) ww, = 0.

Equations (I') also hold under the assumption alone that M= 0
constantly, i. e. that the forces acting on the body have a resultant whose
direction constantly passes through the point O. It follows from this that
equations (I') also apply to the motion of a heavy rigid body having a
fixed centre of gravity when no forces other than gravity act on the
body.

The solution of equations (I') in the general case requires a knowledge
of the theory of elliptic functions. Here we shall give the solutions of those
equations only in the cases when the ellipsoid of inertia with respect to O
is a sphere or an ellipsoid of revolution, i. e. when all three or at least two
of the numbers 4, B, C, are equal.

(I

At present we shall deduce certain general propositions from equa-

- tions (I'). : ‘
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Angular momentum and kinetic energy. Since M= 0, from the
theorem concerning angular momentum it follows that the angular mo-
mentum K is a constant vector. '

Since |K[* = K2+ K2 + K3, by (III), p. 394, we get, putting 1, =
=A,I,=B,and I; = C,

K2 = A2} + Brw? + C20?

Let us multiply both sides of Euler’s equations by wg, @,, @y, and add.
We obtam Awgwg + Bww, + Cwjoy = 0, which can be written in the

= const. (1)

form dt%(Aw: + Bo: + Cuwi) = 0, whence A
Aa’e -} Bcu,, + Cw} = const. (2)

" “In order to give equation (2) a meaning, let us consider the angles
o, B, 7, which © makes with the axes £, 7, {. We therefore have wg=

= |w}| cos &, w, = || cos §, oy = |w] cosy, whernce
Aw? + Bol 4+ Cof = (4 cos’x + B cos®f + o] cos?y) |w]2. (3)

Let I be the moment of inertia of a body with respect to the instant-
aneous axis of rotation. In virtue of formula (I), p. 162, I = 4 (?oszoc +
<+ Becos?8 + C costy, and consequently by (3) the left side of (2) is equal
to I]w[2. Now, since the kinetic energy of the body is & = }I |w]? (p.364),

2F = Aw? + Bw? + Cw} = const. , C(4)

From this it is apparent, that equation (2) expresses the-fact that
the kineiic energy of the body is constant.

By (III), p. 394, we further have Kw = Ao} 4+ Bw)+ C'wg, whence,
by (4), Kw = const. Since Kw = |K| Projcw and accordmg to (1) |K| =
= const, Projcw = const.

Therefore: the projection of the instantaneous angular 'uelomty on-the
direction of the angular momentum is constant.

Let us suppose that the direction of the angular momentum at ¢t = 0

was the same as the direction of the instantaneous angular velocity. There-

fore K and w had (p. 394) the direction of one of the principal axes of iner-
tia, e. g. the {-axis. Consequently at { = 0:
Wg = 0,

where w? denotes the projection of w on the {-axis at £ = 0.
1 P C

Euler’s equations (I') are differential equations of the first order.
From the theory of differential equations it is known that there exists

w, =0 and ;= (5)
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only one solution satisfying the conditions (5) at ¢ = 0. This umque solu-
tion is

wg=const =0, w,=const =0, w;= const= w),

because it satisfies the conditions (5)for t= 0, and, asit is easily verified,
Euler’s equations (I'). The vector w therefore has a constant magnitude
and it always has the direction of the principal axis of inertia & con-
sequently (p. 394) w likewise has the direction of the angular momentum K.
And, since the angular momentum K maintains a constant direction in
space, the direction of the vector w is also constant.

Therefore: if the instantaneous angular velocity initially has the di-
rection of a principal axis of inertia, then (under the assumption that the
moment of the forces with respect to a fixed point is zero) the motion of the
body 1is a rotation about & fized axis with a constant angular velocity.

Rotation about a spherical point. Let us assume that the point O is
aspherical point, i. e. that 4 = B = (. Euler’s equations (I') then assume
the form w; = 0, w; = 0, w; = 0, i. e.

Wg = Cy, Wy = Cyy - Wg = Cg. (III)

It follows from this that the angular velocity is constant in magni-
tude. The point Ois by hypothesis a spherical point; therefore by (3), p. 395
(putting 7 = A), we have K = Aw, and consequently the instantaneous
axis of rotation has the direction of the angular momentum; and because
K is a constant vector, the instantaneous axis of rotation has a constant

direction in space. In view of this the body rotates about a fixed axis with
a constant angular velocity.

Therefore: if the point O is a spherical point (i. e. if A = B = C), then
the motion of a body under the action of forces whose moment with respect to O
18 zero, is a rotation about a fized axis with a constant angular velocity.

Rotation about a point whose ellipsoid of inertia is an ellipsoid of
revolution. Let us assume that 4 = B, i. e. that the ellipsoid of inertia
with respect to the point is one of revolution. This case occurs if the body
possesses e. g. an axis of symmetry passing through O. Euler’s equations
(I') then assume the form:

we—l— Ow;w,,:O, w,‘,—AZGwa5=O, w; = 0. (IT")
The third of the equations (I1") gives
wy = ¢ = const. (6)

26
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From equation (4), putting A4 = B, we obtain
A} + of) + Cw} = const;
bence in virtue of (6) we have
w? + ¥ = ¢f = const. (1)

Sinece |} = wf + w?, + @}, by (6) and (7)
|o|? = ¢* 4 ¢f = const. (8)

Hence: the instantaneous angular velocity is constant in, magnitude.

Let us set
A4A—-C

A
Since wg = const in view of (6), % = const and the first two
equations (II') assume the form:

Wy = h. (9)

o + ho, =0, o —hw,= 0. (10)
Let A = 0. Differentiating the first of the equations (10), we get
oy + ko, = 0or w; = — o} | k, whence by substituting in the second of
the equations (10) we obtain after multiplying by &
wp + Hog;=0. (11)
The general solution of equation (11) has the form
wg = asinht + b cosht, (12)

where @ and b are arbitrary constants. The first of the equations (10) gives
= — w; [ h, whence by (12)

w, = — a cos ki + b sin At. (13)

Equations (6), (12), and (13), represent the general solution of

Euler’s equations (II”) also when & = 0. The solution contains three arbi-
trary constants a, b, ¢, which are determined from the initial conditions.

Wy

Determination of Euler’s angles. We shall now consider the deter-
mination of Euler’s angles by means of equations (6), (12), and (13), and
equations (II), p. 356.

Since the angular momentum K is a constant vector, we can take the
direction of the angular momentum as the direction of the z-axis. The
projection of the angular momentum on the {-axis is K; = |K| cos . On
the other hand (putting I, = C) we have by (III), p. 394, K; = Coy;
therefore |K|cos# = Cw,, whence

cos? = Coy ] |K|. (14)

icm

;57 Rotation under the action of no forces 403

Since |K| = const and w; = const,
# = §, = const. (15)

If #y = 0 or #, = =, then the angular momentum K constantly has
the direction of the axis of inertia {; consequently according to the
theorém given on p. 395 the instantaneous angular velocity has the direc-
tion of the angular momentum. Similarly, if #, = =, then by (14) w; = 0;
hence ((ILI), p. 394) K; = Aw;, K, = Aw,, K; = 0, whence K= Aw;
therefore the angular momentum has the direction of the instantaneous
angular velocity. From the theorem given on p. 395 we conclude,
therefore, that if # = 0 or  or s, then the motion of a body is a rotation
about a fized axis with a constant angular velocity.

Let us now assume that ¢, + 0, ¢ %= =, and 9, + Lx. Since ¢ =
= ¥, = const, the {-axis describes a cone of revolution whose axis is the
z-axis. Substituting the values w, and w, from equations (12) and (13)
in equations (II), p. 356, we obtain (because & == 0):

a sin(kt — @) -+ b cos(ht — @) = 0, (16)
v = [ cos(ht — @) — b sin(ht — )]/ sind,, (17)
@ = wy — [a cos(ht — @) — b sin(ht — @)] cos,. (18)

Were a = 0 and b = 0, then by (12) and (13) we should have w; = 0
and w, = 0; hence w would have the direction of the axis of inertia £,and
consequently of the angular momentum K (in virtue of the theorem an
p. 395). The {-axis would therefore have the direction of the z-axis and 9,
would be zero or m, contrary to hypothesis. One of the numbers a and b
is therefore different from zero, whence by (16) k% — ¢ = const.

Let ¢ = g, for ¢ = 0. Consequently kit — ¢ = — g@,, i. e.
, ¢ = ht + @, (19)
Substituting this value of ¢ in (17) and (18), we get: -
p° = (@ cosp, + b sing,) [ sinty, (20)
b = wy— (a cosp, + b singy) cotdy. (21)

Since ¥y == 0, ¥, ===, and ¥, == 3o, from (21) we obtain @ cos g, +
—+ bsingp, = (wy — k) tand,, whence by (20)
p = (wgy —h) [ cosdy,. (22)
Substituting in equations (19) and (22) the value of % from equation
(9), we obtain together with equation (15):

4—C ¢
=T % YT T oosd,

We, '19' = 0. (23)
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Integrating equations (23) and assuming that ¢ = @, ¥ = y,, and
& = y, for £ = 0, we get:

4-—-C
=

A

Since according to (6) wy = const, from (23) it follows that ¢ =
= const and - = const.

Consequently: the motion of @ body 1s the composition of two rotations,
one of which is about the fixed axis { in the body, and the other about the
fized axis z in space. The angular veloctly of both rotations is constant.

0]
o+ ¢, Y= cost, o +ve $=% (24

Such a motion was called a steady precession (p. 356). The relation
between the two angular velocities is according to (23)

¢ [y = (4 —C)cosd, [ C. (25)
We have therefore proved the

Theorem. If the ellipsoid of inertia at the point O is an ellipsoid of
revolution, then the motion of the body is either a rotation about a fized azis
with a constant angular velocity or it is a steady precession.

Rotation of a body about a point in the general case. We shall now
make certain remarks concerning a body which rotates about a point O,
under the assumption that the moment of the forces with respect to the
point O is zero. ‘

Let us retain the notations used up to the present. The axes &, 7, ¢,
have the directions of the principal axes of inertia at the point O, and
hence the equation of the ellipsoid of inertia with respect to O has in
the system (£, %, {) the form (formula (8), p. 164) A% 4 By 4 C{2 = ¢,
where ¢ is an arbitrary constant. Since the kinetic energy E is constant, we
can assume ¢ = 2K. Hence the ellipsoid of
inertia will have the equation

A+ Bpr+ C2=2E. - (26)

Let us denote by G the terminus of
the angular velocity vector «w (Fig. 300).
The point @ consequently has the coordi-
nates wg, w,, and w,. By formula (4), p.
400, the eoordinates of the point & satisfy
equation (26). It follows from this that the
terminus of the vector w lies on the ellipsoid
of inertia (26).

Fig. 300.
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The equation of the plane I, tangent to the ellipsoid (26) at the
point &, has the form
Aweé 4+ Boy + Col = 2E. (27)
Since by (III), p. 394, the angular momentum K has the projections
K;= Awg, K, = Bwy, and K; = Coy, on the axes &, 1, {, the angular
momentum K is perpendicular to the plane I7. The distance of the plane
IT from the point Oisd = 2E/1/A2w‘§’ + B’o? + C*w}; consequently by )
(1), p. 400,

= 2F [ |K| = const. (28)

The distance of the plane II from the point O is therefore constant.
Moreover, since the plane I7 is constantly perpendicular to the fixed -
vector K, 11 is a fixed plane in space.

The ellipsoid of inertia is constantly tangent to the plane I7. The
instantaneous motion of the body is an instantaneous rotation with an
angular velocity w, while G is the terminus of the vector w, and conse-
quently the velocity of the point & is zero. It follows from this that the
ellipsoid of inertia rolls on the plane II.

‘We shall now consider the question, what positions can the vector w
assume in the body, i. e. what curve does the point & describe on the
ellipsoid of inertia.

Let us denote the coordinates of the point G by £, 7, {. Consequently
&= wg n = o, and { = w;. Hence by (1), p. 400, we have

4284 Bup 4 2 = K2, (29)

where K = |K|. The coordinates of the point G also satisfy equation (26)
of the ellipsoid of inertia. Multiplying both sides of equation (26) by K2,
and of equation (29) by 2%, and subtracting, we obtain

(AK2 — 2EA%) & + (BK® — 2EB?) i 4+ (CK? — 2EC?) 2 = 0. (30)
Equation (30) is the equation of a cone with its vertex at O. The

“point G therefore describes a curve which is the intersection of the ellip-

soid of inertia (26) and the cone (30). These curvesare closed and (in gene-
ral) of the fourth degree. In particular, the cone (30) is a cone of revolution
when, e. g. A = B (or A = C or B= C).If 4, B, and C, are different,
the‘cone can degenerate into two planes. '

The angular velocities traced in the body form the cone (30). Con-
sequently the cone defined by equation (30) is the moving cone of in-
stantaneous angular velocities (p. 339). ' ‘

If we trace the positions of the point G on the fixed plane 77, then we
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shall obtain a certain curve. The cone for which this curve is the directrix,
and O the vertex, is the fixed cone of instantaneous angular velocities
(p. 339).

§ 8. Rotation of a heavy body about a point. We shall now consider
the motion of a heavy body in which an arbitrary point O other than the
centre of gravity is fixed.

Such a motion is executed, for example, by a top rotating about an axis one
of whose ends Tests on a sufficiently rough floor, so that the sliding of the end of
the axis on the floor is impossible.

For simplicity’s sake, let us assume that the body has an axis of
symmetry passing through O (Fig. 301). The centre of mass 8 obviously
lies on this axis. Let us take the axis of sym-
metry as the {-axis of the moving coordi-
nate system and give it a sense towards the
centre of massS. Let us put OS =I. Let the
z-axis of the fixed coordinate system have a
sense vertically upwards. The weight of the

z-axis. Denoting by k the unit vector lying
on the z-axis, and by m the mass of the

body, we have Q ==—mgk. Forming the
Fig. 301. projections on the axes &, 7, {, we obtain by
(24), p. 356:
Q¢ = —mg sind sinp, Q, = mg sind cosp, @y = — my cosd.

Since Q has its origin at the centre of mass S whose coordinates in the
system (£, 7, £) are 0, 0, 7, denoting by M the moment of the weight Q
with respect to O, we get:

M = mgl sind cosp, M, = myglsind sinp, M, = 0.
As 4 = B, Buler’s equations (I), p. 397, assume the form:
Aw; + (A — C) w,w, = mgl sind cosy,
Aw; — (4 — C) wyw; = mgl sind sing, (1)
Cwp = 0.
If we express wy, w,, 0y, in equations (1) in terms of Euler’s angles
according to formulae (I), p. 356, we obtain a system of differential

equations of the second order, where the unknowns will be 9, ¢, and o,
as funections of the time.

System (1) can be reduced to a system of ditferential equations of

body Q therefore has the direction of the’
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the first order in a simple way. We get one equation from the third
equation of system (1). Integrating this equation, we obtain C'w, = const; -
hence

¢ = r = const. (2)

Two other equations of the first order are obtained from the prin-
ciple of conservation of energy (for the weight possesses a potential) and
from the principle of angular momentum, according to which the angular
momentum with respect to the fixed axis z is in this case constant, be-
cause the moment of the weight with respect to this axis is zero (for the
weight has the direction of the z-axis).

The centre of mass has the coordinate z = [ cosd; therefore the
potential of the weight is V = — mgz = — mgl cos?.

The kinetic energy of the body ((4), p. 400) is

E = }[A(w} + 0?) + Cowf],

and from the principle of conservation of energy we have Z — V = const;
consequently
A(w} + «f) + Cwf + 2mgl cos® = h = const. (3)

Denoting by K the angular momentum with respect to O, we have
((IIT), p. 394) K; = Aw;, K, = Aw,,and K; = Cw,. The z-axis makes
with the axes £, 7, and {, angles whose cosines are ke, k,, and k, (because k
isthe unit vector having the sense and the direction of the z-axis). Therefore
the projection of the angular momentum K on the z-axis is K, = K k¢ +
+ Kk, 4+ K k¢ Substituting into this formulathe values ke, k., kg, from
formulae (24), p. 356, and remembering that K, = const, because the
moment of the weight with respect to the vertical axis zis zero, we obtain

K, = A(w¢sind sing — w, sind cosp) + Coy cos?h = const. (4)

Let us now express the projections wg, w,, g, in formulae (2)—(4) in

terms of Euler’s angles according to formulae (I), p. 356. We obtain:
’ v cos? + @ =r, 92+ y?sin®® -+ acosd = b, (5)
' e sind + & cost = B,
where
r=ow, a=2mgl[/A, b=(h—0r[4, «=0Cr]A, (6)
ﬁ b Kz / A. '

The third of the equations (5) gives ' = (f— « cos?) [ sin®d.
Substituting this value of y' into the second of the equations (5) and
multiplying by sin®*#, we get '

92 sin2¢ -+ (B — x cos?)? = (b — a cosd) sin*d. (7

1


Yakuza


408 CHAPTER VIII — Dynamics of a rigid body

Let us substitute
u=-cosf or w =—7v sind (8)

into (7), and then into the first and third of the equations (5).
We obtain:

w? = (b— au)(l — u?) — (B — vu), (9)
= (B — ~u) [ (1 — u?), (10)
g =r—@F—osu)u/(l—u) (11)

From (9) we can determine , i. e. cos &, and then from (10) and (11)
the angles v and ¢.

Let us denote the right side of equation (9) by f(u Assummg that
B—=x == 0and B + o == 0 we have:

f(+1) <0, f(—1)<0, (12)
and in addition, since ¢ > 0, by (6)
limf(u) =+ 0. (13)
%~ 0

If #, was the value of the angle ¢ for t = 0, and u, = cos &, then

by (9) ‘
f(ug) = ug* = 0. (14)

From relations (12)—(14) it follows that the equation f(u) = 0 has
three real roots, two of which, namely, %, and u,, lie between —1 and |- 1,
and the third u, > 1. In a particular case we can have 4, = u, (a double
root).

Let us assume that u, < u,. Since u = cos ¥ must lie between —1 and
-1, and moreover f(u) = 0 (by (9)), then u; <u < u,or

#; L cost X U, (15)

Therefore: during motion the angle 9 varies between the limits &, and 9,
where cosd;=1u, and cosPy=1u, Since lcos® denotes the height of the
centre of mass above the horizontal xy-plane, the cenire of mass oscillutes
between two horizontal planes 2 = [ cos#, and z = lcos B,

The numerator of the right member of equation (10) is zero only for

u = f | x. Therefore, if |# / »| > 1, then the sign of y* is constant, because
|#] £ 1. It is obvious that if

Uy < B[ < uy, } (16)

then 4~ changes its sign. It is ea.sy to show that inequality (16) is equi-
valent to the inequalities:

Brsi<1 Bla<bla (17)
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For if (16) holds, then | / «| << 1 and moreover
f(B o) =(b—ap|x)(1—p2]a2)> 0; (18)

hence b —aff [« > 0, whence f [« < b [a (because a > 0 by (6)). Con-
versely, if the inequalities (17) hold, then according to (18) f(8 /) > 0;
hence either inequality (16) or inequality § / & > u, holds. However the
latter is impossible, since f(b / @) = — (8 — &b [ a)> < 0; hence b o <
< u3, and consequently f [« < u, by (17).

§ 9. Motion of a sphere on a plane. Let a heavy sphere of con-
stant density move along a horizontal plane I7 (example: the motion of
a sphere along a billiard table). Let us consider friction and assume that
the reaction of the plane reduces to one force acting at the point of tan-
gency S (Fig. 302). Let us denote by B and 7T the absolute values of the
reactions: normal R and tangent (friction) T, and by u the coefficient
of friction. Consequently

T = puR. (1) ?

If the point of tangency S of the sphere
with the plane /T has a velocity different from
zero, then the friction T has the direction of
this velocity, but an opposite sense (p. 367). YT
Let us take the plane IT as the zy-plane of
the coordinate system (z, y, z) and give the
z-axis a sense vertically upwards. Denoting
by p,the acceleration of the centre of mass O(x,, 7,, 2,) of the sphere, by m
the mass of the sphere, and by Q its weight, we have

mpy= Q-+ R+ T. (2)

sl e
N

Forming projections on the coordinate axes, we get:
may = Ty my; =T, mey =—mg + R. (3)

Since z, = const = r (where r denotes the radius of the sphere),

- zy = 0, and consequently R = mg, and by (1), under the assumption that

S has a velocity different from zero,
T = pmyg. (4)

Let K be the angular momentum with respect to the centre O of the
sphere, w the instantaneous angular velocity, and 4 the moment of
inertia with respect to a diameter. Since by hypothesis the sphere is
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homogeneous, its centre O is a spherical point. Consequently (by (3),

p- 395) K = Aw, whence
K = Ao-. (8)

The moment M of the forces with respect to the point O reduces to
the moment of the force T. Consequently:
M,=—rT,, M,=T,, M,=0. (6)
Since K' = M, we get from (5): .
Aw; = —1T, Aw,=1T, Aw,=0. (7
From the last equation we obtain
w, = const. (8)

Let u denote the velocity of the point of tangency S. The instant-
aneous motion of the sphere is the composition of an advancing motion
with a velocity v, of the center of mass O and of a rotation about an
axis passing through O with an angular velocity w. Therefore u = v, +
+ 08 X ®, whence:

Uy = Ty + Ty, Uy = Y§ — 10 U, = 0. (9)
N Calculating the derivatives with respect to time, we obtain:
Uy = Ty —I" roy, Uy =yy —ro;, =0, (10)
whence by (3) and (7):
uy=01/m+r]A)T, uy=Q[/m+2[]AT, wu,=0 (11)
Multiplying both sides of the first of the equations (11) by u,, and
both sides of the second by u,, and adding, we obtain:
Ugth; + gy, = (1 [m —{—l 2| AYTpty + Tyuy). (12)

If u == 0, then T has the direction of u, but an apposite sense. Con-
sequently Tu < 0 constantly,i.e. T u, + T,u, < 0, from which by (12)
u iy + uguy < 0. Since uu, + uyuy, = 3d(u + u2) [ dt, it follows that

|u® = %2 4 u is a non-increasing function. Therefore, if u = 0 at a certain

moment, then from this moment on u = 0 constantly.

Let us assume that, during a certain interval of time, u was different
from zero and the friction T had the direction of v (but an opposite sense);
we can therefore assume that T = Au, where 4 << 0 (while 4 depends on
the time). Hence du, = T', and iu, = T, whence by (11)

Uglfy — Uty = 0. (13)
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From equation (13) it follows that u has a constant direction: for
putting % = |u| and denoting by ¢ the angle between u and the 2-axis,
we get u, = ucosp, u, =wusng, u, = w oS ¢ — ug" sin @, and u; =
= w' 8in ¢ + up' cos g; hence u,u; — uzu, = u2p, whence by (13) u?yr =
=0, and since 4? = 0, ¢* = 0, i. e. @ = const.

Now, since T has the direction of the velocity u, the direction of
the friction T is also constant. Under the assumption that the coefficient
of friction y is constant (p. 367) we obtain by (4) T = const.

Therefore: during the entire time in which u & 0, T = const.

Since the motion of a material point under the influence of a constant
force takes place along a parabola (p. 82), the centre of mass of the sphere
describes a parabola (whose axis is parallel to the direction of T) during the
enture time in which u == 0 (i. e. in which the point of tangency of the sphere
with the plane II has a velocity different from zero).

Let us assume that at { = 0:

Z=10, 4=0, zp=r, ¥y=0a, y;=25, z;=0, (14)
— 0
Wy =h 0, =o0) o,=aol

Hence by (9) the initial velocity u, of the point of contact § has the
projections:
ug=a+raf, ul=>—rwd ud=0. (15)
Let us assume that u, == 0 and give to the y-axis a direction and
sense of the velocity u,. Therefore by (15) there will be the following
relations among the given initial values:

uy = a + ro) = 0, Up = b —rol > 0. (16)
Now, because u and T have the same directions, but opposite senses,
TmZOs Tﬂz_lu'””g (17)

After integration and consideration of the initial conditions, we
obtain from equations (3) and (7):

Ty = at, Yo =—%ugt®+ bt, z,=r, ® (18)

Wy = pmgrt [ A + o), 0,=0f) o,=od (19)

Substituting the values from (18) and (19) in equations (9), we
obtain in view of (16):

U =10, Uy=(b—rol)—1+m?]A4)gty, u,=0. (20)

Since b — rapy > 0 it follows by (16), that after the time
b— rwy
(14 mr*[ A) ug

t =

(21)
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uy =0, u,=0, and u,=0, i.e. u = 0; and after the time £, ¥ = 0 con-
stantly. Hence by (11) T, = 0 and T, = 0,i.e. T=10 constantly. From
equations (3) and (7) we obtain then:

wp =0, gp=0, zy=0, 0;=0, 0;=0 ;=0

Therefore: from the time , v, = const. and w == const. constanily,
i. e. the centre of the sphere will move with a uniform motion along a straight
line from the time t, on, while the instantaneous angular velocity of the sphere
will be constant.

§ 10. Foucault’s gyroscope. This is the name we give toa heavy body
having an axis of symmetry and suspended at the centre of mass (the so-
-called Cardan’s suspension). ‘ '

Since the force of gravity acts at the center of mass, in the case when
no other forces act on the body, the motion of a gyroscope reduces to
a rotation of the body about the centre of mass under the action of no
forces.

If the body is set spinning about the centre of mass and initially
the axis of symmetry is the instantaneous axis of rotation, then the axis
of symmetry will maintain a constant direction in space. This follows
from the theorem given on p. 401 and from the observation that the axis
of symmetry is a central axis of inertia of the body.

It is true that the axis of symmetry will move relative to the earth,
however, this will only be an apparent motion (induced by the rotation
of the earth): for if the axis of symmetry is directed towards some fixed
star, then the axis will point to it constantly.

We shall consider here the cases in which the axis of symmetry is
not free, but is confined either to a meridional plane or to a horizontal
plane.

Motion of the axis of symmetry in a meridional plane. Let it be possible
for a body (suspended at the centre of mass) to move only in a meridional
plane passing through a given point on the earth. We can assume that
the forces (reactions) holding the axis in the meridional plane are per-
pendicular to this plane and have their points of application on the axis
of symmetry.

Let us denote by w, the angular velocity vector of the earth and set:

_ Wy = lel- (1)
~+ Let us take the centre of mass O of the body as the origin of the co-
ordinate system (z, , 2), giving the z-axis the direction and sense of the
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angular velocity w, of the earth, and the z-axis a horizontal direction with
a sense towards the east (Fig. 303).

The yz-plane will consequently be a meridional plane, and at a given
place the z-axis will make an angle of 90° — ¢ with the vertica}, where @
denotes the latitude of this place.

In addition, let us select a second coor-
dinate system (£, %, {) whose origin is at O,
taking the axis of symmetry of the body as
the {-axis, and the z-axis as the &-axis. The
plane #{ will therefore be identical with the
meridional plane yz. The position of the
system (&, #, {) is defined by the angle &
which the axes { and z make with each other
(where the angle ¥ is defined as the angle
through which it is necessary to rotate the )
z-axis from right to left with respect to the z-axis, in order that the positive
directions of the axes z and { coincide with each other).

Let w’ be the instantaneous angular velocity of the system (&, 7, )
with respect to an inertial frame, which we take to be a frame attached
to the sun and the fixed stars. It is easy to see that w’ is the resultant of
the instantaneous angular velocity w, of the system (£, #, {) relative to
(%, y, ) and of thie angular velocity w, of the system (z,y, 2) relative to
the inertial frame. Consequently ’

Fig. 303.

0 =, + 0, (2)

Since the vector w, has by hypothesis the direction and sense of the

z-axis, its projections on the axes of the system (£, %, {) are in virtue
ot (1):

w,=0, w,_ =-—uwsind, Wy, = 0y cos . (3)

7

The system (&, 5, {) rotates about the &-axis relative to the system
(z, y, ). Since the angle of rotation is 9, the instantaneous angular velo-
city has the direction of the £-axis and its component with respect to the
&-axis is . Consequently:

Wy, = AR @y, = 0, wg = 0. (4)

In virtue of (2) — (4):
wp =%, w,=—osind, o= o cosd (5)
Let w denote the instantaneous angular velocity of a body relative

to the inertial frame. The vector w can be considered as the composition of
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the instantaneous angular velocity w; of the body relative to the system
(&, 7, ) and the velocity «’ of the system (&, 7, ¢) relative to the inertial
frame. Therefore w = w; -+ w’. Since the motion of the body relative to
(£, 7, £) is a rotation about the C-axis, it follows that wg = 0 and W, = 0,
whence: , '

wg = oy, co,,::w,'], wp = wg, + ' (6)

(in addition, since w, is very small, by (5) w; is also small; hence for all

practical purposes w; = wg,). Putting o, = o, We obtain by (5) and (6):

w;=1%, w,=—aosind, w;=o. (7

The axes &, 7, {, are the central axes of inertia of the body, because {;

is the axis of symmetry and O the centre of mass. Denoting the angular

momentum with respect to O by K, the moments of inertia with respect to

£ and by 4, and the moment of inertia with respect to ¢ by C, we
obtain by (III), p. 394, and (7):

K;= A%, K,=—Aw;sind, K,y = Co, (8)
whence after differentiation: ‘
K, =A%, K,= Ao cosd, K= Cw. (9)

The moment of the weight with respect to O is zero. The moment of
the forces holding the axis of symmetry of the body in the plane of the
meridian is zero with respect to the axes £ and [, because these forces have
their points of application on the {-axis and are parallel to the &-axis.
Therefore, denoting by M the moment of the forces with respect to the
centre of mass O, we obtain:

M =0, M;=0. (10)

To determine the motion of the body we apply equations (II), p. 398.
From these equations, after substituting in them the values from (5), (8),
(9), (10), and after reducing, we obtain:

Ad — Aw? sind cos? + Cow, sind = 0, 1
— 24 w9 cos® + Cowd = M,, Co- = 0.
In virtue of the last equation o = const. Dropping the term con-

taining o} from the first of the equations (I), because it is very small,
we obtain

00)(01 .
v sin 9. .(11)

Since @ = const, we can give the {-axis a sense such that o > 0
constantly, i. e. such that the rotation of the body relative to the axis of

9 = —
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symmetry £ is from right to left. Under this assumption Cow, / 4 > 0.
Equation (11) therefore has the form of the differential equation for the
simple pendulum (p. 130, formula (I)). The positions of equlibrium oc-
cur for 4 = 0 and 4 = =.

The axis of symmetry of the body will therefore oscillate about the
z-axis, i. e. about a line parallel to the axis of the earth. The axis of the
body can be at rest only for # = 0 or for 4 = =, i. e. only when it is parallel
to the axis of the earth. Therefore, determining the position of equilibrium
of the axis of the body, we obtain the direction of the axis of the earth.
Since the axis of the earth makes an angle of 90° — ¢ with the vertical
at a given place; we can in this manner obtain the latitude ¢ of the given
place.

It can be shown that ¢ = 0 is the position of stable equilibrium, and
$ = 7 that of unstable equilibrium. Hence the {-axis tends to assume a
position such that its direction and sense agree with the direction of the
axis of the earth and the sense of the vector w;. From formula (8), p.
130, it follows that the period of oscillation of the axis of the body
(when the initial angle &, is small and ¥; = 0) is

T = 2z)/A [ Cow,. (12)
The period of oscillation is large because w, is small (ca 0.00007

sec ). However, we can decrease it by increasing o, i. e. by spinning the
body faster about its own axis of symmetry.

Motion of the axis in a horizontal plane. Let us now assume that the
axis of symmetry of a body can move only in a horizontal plane. We can
therefore assume that the reactions holding the axis horizontally have
their points of application on this axis and have a vertical direction.

Let us choose two systems of coordinates (z, ¥, z) and (&, », ) whose
common origin is at the center of mass O of the body (Fig 304). Let us give
the y-axis a sense vertically upwards, the z-axis a
sense towards the east, and the z-axis towards the
north. Let us take the axis of symmetry of the
body as the {-axis and the y-axis as the #-axis.
Therefore the £ plane will be constantly hori-
zontal. The position of the system (&, , {)is de-
fined by the angle ¢ between the axes { and 2z
(where 9 is defined as the angle through which it
is necessary to rotate the z-axis about the y-axis
from right toleft, in order that the positive direc-
tions of the axes ¢ and z coincide with each other).

O @, ¢

\

Fig. 304.
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The instatanenous angular velocity of the system (%, ¥, 2) with
respect to the inertial frame is equal to w; (i. e. to the angular velocity
of the earth). The vector w, lies in the yz plane and makes an angle of
90° — ¢ with the y-axis (where ¢ denotes the latitude of the given place).
Let w; = |w,]. The projections of w, on the axes & 7, L, are therefore:

w1, = wycospsind, w, = sin @, w;, = w; COS ¢ COS . (13)

£

The instantaneous angular velocity «, of the system (&, 7, §) with
respect to the system (z, ¥, 2) is equal to ¢ and has the direction of the
7-axis, because (&, 1, {) rotates about 7 relative to (z,y, ). Consequently,
the instantaneous angular velocity w’ of the system (£, 7, {) with respect
to the inertial frame is the composition of the angular velocity w, and the
angular velocity w,, whence by (13):

w; = w;cospsind, w, =1 + o;sing, w; = w;cospeosd.  (14)

Let w denote the instantaneous angular velocity of a body relative
to the inertial frame. Since the instantaneous motion of the body relative
to the system (£, #, {) is an instantaneous rotation about the {-axis, the
projections of the instantaneous angular velocity w, of the body rela-
tive to the system (&, 7, {) on the axes of thissystem are: w; (= 0, Wy, = 0.
Since w = 0’ + w,, we obtain by (14) (putting w, = w):

o= w, cospsind, w,=% 1 o sing, w;=ow. (15)

Denoting the angular momentum with respect to O by K, the mo-

ments of inertia with respect to the axes & and 5 by 4, and with respect
to ¢ by C, we obtain by (III), p. 394, and (15):

K;= Aw,cospsind, K,=A@ + w,sing), K,=Cow, (16)

whence by differentiation:
K, =Aw,¥ cospcosd, K, = Ad, K, = Cw. (17)
As the reactions holding the axis of the body in the horizontal plane
have their points of application on the {-axis of the body and are per-
pendicular to &, denoting by M the moment of the acting forces, we
obtain: ‘
M,=0, M;=0. " (18)
From formulae (II), p. 398, we obtain after substituting the values
from (17), (16), (14), and (18):

Awyd cos g cos? + A(9 + o, sinp) w, cos @ cos P —
— Co(d + w, sin ¢) = My, (In
Ad + Cow, cosgsind — Aw? cos?p cos #sind = 0, Cow = 0.

icm

[§10] Foucault’s gyroscope 417

In virtue of the last of the equations (II) w = const. Dropping
the term o] in the second of these equations, because it is very small,
we get

P = _g@fﬂsinﬁ. (19)

Let us give the {-axis a sense so that o > 0. Then
Cww, cosp [ 4 >0

and equation (19) assumes the form of the equation of the simple pen-
dulum ((I), p. 130). The positions of equilibrium occur for #=0 and ¢ =.

The axis of symmetry of the body will therefore oscillate about the
z-axis, i. e. about a horizontal axis running from south to north. The axis
of the body can be at rest only for & = 0 or & = =, i. e. only when it
lies in a meridional plane. Consequently, determining the position of
equilibrium of the axis of a body, we obtain the direction of the meridian:
the body can therefore be used as o compass.

Let us still note that, as before, ¢ = 0 corresponds to stable equi-
librium, and ¢ = = to unstable equilibrium.

The period of oscillation is obtained from formula (3), p. 130:
T = 2:mVA | Cow, cosp. (20)
It will be smallest on the equator (i. e. for ¢ = 0). On the pole,
however (i. e. for p = 90°), every position will be a position of equilibrium,
as follows from formula (19). For when ¢ = 90°, J* = 0; as one comes
closer to the pole 7' —co.

The results obtained found confirmation in experiments which proves the
earth’s rotation about an axis. Such experiments were first performed by
L. FOUCAULT.
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