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Hence in order to make an interplanetary journey in a rocket having together
with its passengers a mass of one ton, it would be necessary to take along 160000
tons of fuel — which is obviously impossible. This shows that at the present state of

technical sciences such a journey cannot be made. The matter would be pushed'

forward if w (the velocity of theescaping gases), which to-day is close to 2000 m/sec,
could be markedly increased.
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CHAPTER VIY)
STATICS OF A RIGID BODY
I FREE BODY

§ I. Rigid body. A material body which despite the action of forces
does not sustain any deformations (i. e. in which the mutual distances of
the points of the body do not undergo & change) is called a rigid body.

Rigid bodies are not found in nature, since every body becomes deformed more
or less under the influence of the action of forces. However, if some body under the
influence of forces experiences only small deformations not exceeding a certain limit,
then we can take as a model of such a body a rigid body, and the conclusions that
we ghall draw will bé approximately in agreement with experience (provided the
forces are not large). From this arises the great importance of the theory of arigid
body for praetical applications.

We shall consider in turn statics, kinematics and dynamics of a rigid
body.

In the theory of a rigid body we shall meet, in addition to rigid ma-
terial solids, rigid material surfaces and lines (p. 168) as models of bodies
in which one or two dimensions are small in comparison with those
remaining. Examples of such bodies are plates, rods, wires, etc.

Rigid systems of material points. It often proves useful to look
upon & rigid body as a collection (system) of a large number of
material points. We assume then, that the material points act on each
other with certain forces which ensure that the system of points is rigid,
i. e. that the mutual distances of its points do not undergo a change. These
forces are called internal forces.

We assume that Newton’s law of action and reaction (p. 173)
applies to internal forces, i. e. that two points act on each other with

1) For ;,he understanding of this chapter the information included in chapters
I and ITI (from p. 69 to 75) and the theorems on centre of gravity in chapter
IV,81, 2, 6, 7 and 8, are sufficient. :


Yakuza


232 CHAPTER VI — Statics of a rigid body

forces equal in magnitude and oppositely directed along the straight
line joining these points.

In addition to internal forces, other forces, called external forces, can
act on the points of a system. '

Therefore, if a rigid body is considered as & rigid system of material
points, then the forces acting on a rigid body are external forces acting
on the points of the system

One might question whether it is admissible to consider a rigid body as
a system of material points. This assumption can be justified, however, in the
following manner: by subdividing the rigid body into very many small pieces and
replacing each one of them by a material point of the same mass, we obtain a rigid
system of material points representing the given body with considerable appro-
ximation.

Although the assumption that a rigid body is a collection of material points
is not correct, we shall make use of it since it simplifies reasoning and leads to

satisfactory results. Properly, however, the theory of a rigid body and the theory of
rigid systems of material points should be treated separately.

§ 2. Force. Point of application of aforce. In the theory
of a rigid body we assume that the point of application
(origin) of the force acting on a rigid body may belong to
the body or not; in the latter case we assume, however,
that the point of application is rigidly attached to the body
(we can imagine e. g., that the point of application is
joined to the body by means of rigid massless rods)
(Fig. 148). The action of the force will therefore be such as
if the point of application belonged to the body..

,

;
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Fig. 148.

Moment with respect to a point. If the force P-acts at the point 4
whose coordinates are z, ¥, z, then the moment of the force with respect
to the point O whose coordinates are zy, ¥,, 2, has the projections:

MmmP,(z——zo)——P,(y——yo),' M:/=Pz(x"‘"x0)_Pm(z"—zo): (l)
o M, = P,(y—y,) — P,z —=p), ' )
“on the axes of the system (p. 17, (I)). ' ’

- In particular, if O is the ongm of the system i.e.if xo = 1y = 24 = 0,
we get:
My=P,z—P,y M,=P,2—P,z, M, = P,y — P, (2)
From the definition of the moment (p. 15) it follows that
|M| = |P|A, | (8)
where  denotes the distance of the point O from the position of the force

-
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P (i. e. from the line on which P lies); this distance is called the arm of the
force P with respect to the point O.

The moment of the force P with respect to the axis [ is obtained by
selecting an arbitrary point O on I and then forming the projection on

the axis [ of the moment of the force P with respect to O (p. 18).

If a sense is given on the line I, then the moment of the force P with
respect to the axis | will be defined by giving its component with respect
to this axis. This component is also called (if an error is precluded) the
moment of the force P with respect to the axis I.

If the axis I passes through the point O(z,, y,, z,) and forms with the
axes of the coordinate system the angles «, g, , then denoting by M the
moment of the force P with respect to O, and by M, the moment with
respect to the axis I, we get

M= M,cosx + M,cos 8+ M, cosy 4)
or, in virtue of (1),
My = P [(y—y0) cosy — (s —=2) cos f] +

+ P, [(z — %) os'@ — (x — x,) cos p] 4+
+ P, [(x — @) cos f — (y — o) cos ].

 In pé.rtioi;lar; if the point O, thrbugh with the axis l‘paés&sg is the

(5)

-origin of the coordinate system, i. e. if xy = y, = 2, = 0, we obtain

| M, =P, [ycosy —zcos f] + |
-+ P,z cosx — z cosy] -+ P.[x cos f — y cos x]. (6)
The projections M,,, M,,, M,, informulae (1) and (4) are the moments
of the force P with fespect to axes parallel to the axes z, ¥, z, and passing

“through O, whereas in formulae (2) they are the moments’ with respect to

the axes z, 7, 2.

If we denote the distance of the axis [ from the force P by d (more
exactly: from the position of the force P, i. e. the line on which P lies),
and the angle between [ and P by x (Fig. 149), we obtain (p. 18, formula
(IID))

| M| = |P|d sin x. (7}
If, in partlcula,r P | I, or x = }m, then
|M;| =|P|d. ' (8)

The sign of the moment M , is obtained from the following rule

M, > 0if the force P tries to turn.the body about the axis [
counterclockwise (with respect to a person whose feet. are at .an
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arbitrary point O of the axis [, and whose head points in the direction of
the axis I); in the contrary case M; < 0.

By means of the above rule and formula (7) we can determine I,
knowing |P|, d, and «. ;

If the force P and the point O lie in a certain plane IT (Fig. 150), then
the moment M of the force P with respect to O is perpendicular to the plane
IT. Consequently M is equal to the moment of the force P with respect to
the axis I, perpendicular to /T and passing through O:

M| = | M.
{ a:: {
————— LA et
M\ oo
o 0 "\
7 T
)

Fig. 149. Fig. 150.

Fig. 151.

If we consider, for example, a system of forces lying in the xy-plane,
then assuming that O also lies in zy, we have M, = 0 and M, = 0. The
moment with respect to an axis parallel to 2, i. e. M, is then called briefly
the moment with respect to O and we denote it simply by M. Therefore

M=P,(y—y)—P,(&—m) or M=P,y—P,a (8)

Let us suppose, for example, that we have drawn the x and y axes as
in Fig. 151. Therefore the z-axis should be taken directed vertically down-
wards. Hence if we want to determine the moment of the force P with
respect to some point O, it is necessary to remember that M > 0 if
the force tries to turn the piece of paper about O clockwise (i.e.as in
Fig. 151); in the contrary case M < 0, as for the force Q.

Given the arm %, we can therefore obtain M from formula (3), de-
termining the sign in the manner given above.

Equilibrium of forces. If a rigid body is at rest we say that it is in
equilibrium. The forces acting on a rigid body which remains in equilibrium

are said to balance one another (to be in equilibrium) or to annul one
another.

Statics is concerned with the investigation of conditions which forces
in equilibrium must satisfy.
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It is necessary to note the difference that exists between the equilibrium of
a body and the equilibrium of forces. A body is in equilibrium then, and only then,
when it is at rest. If a body is in equilibrium, then the system of forces acting on it
is in equilibrium. Conversely, however, if a system of forces acting on a body is in
equilibrium, it does not follow necessarily that the body is in equilibrium,
since it can move e. g. with & uniformly advancing motion.

At this time we shall deduce conditions for the equilibrium of forces
independently of the principles of dynamics by assuming certain hypothe-
ses which are rather obvious. We shall show later (in chapter IX) that the
conditions for equilibrium follow from the so-called principle of virtual
work.

§3. Hypotheses for the equilibrium of forces. In order to deduce the
conditions for the equilibrium of a rigid body, we shall assume the follow-
ing hypotheses:

1. To a system of forces acting on @ rigid body which is in equilibrium
we can add (or remove from the system) without disturbing equilibrium:

a) two forces equal in magnitude
and acting along the same lime, bul
oppositely directed (Fig. 152a);

b) several forces having a common
point of application and whose sum 18
zero (Fig. 152b).

a) b)
Fig. 152.

II. Zero forces balance one another; in other words: if no forces act on
a rigid body, then the body can remain in equilibrium.

These hypotheses can be verified experimentally. We shall deduce
from them the necessary and sufficient conditions for the equilibrium
of forces. For the time being we shall be concerned with certain corolla-
ries resulting from the assumed hypotheses.

§ 4. Transformation of systems of forces. Making use of the defini-
tion of elementary transformations (p. 28), we can formulate hypothesis
I as follows:

I'. If a rigid body is in equilibrium, we can perform arbitrary elemen-
tary transformations on the system of acting forces without disturbing equi-
librium. » :

Change of the point of application of a force. From theorem 1, p. 28
it follows that

1° the point of application of a force can be chosen amywhere on its line
of action. '
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In the case of equilibrium the action of a force will therefore be
defined if we give its magnitude, direction, sense, and -position; the
point of application of the force is immaterial. In virtue of the theorem
on p. 18. we conclude from this that the action of the force P will be
determined if we give its projections and the projections of its moment M
with respect to an arbitrary point. The projections:

Pa:: Pm Pz: Mw: Mw Mz: (1)

therefore define the action of a force on a rigid body. Let us note that since
M | P, the scalar product M- P is zero, whence

M, P,+M,P,+ M, P,=0. (2)

In general, therefore, five of the numbers (1) are sufficient to define
a force; the sixth can be determined from equation (2).

Law of composition and resolution of forces. From theo-
rems 2 and 3, p. 30, we conclude that:

their sum acting at this same point;
3° each- force can be replaced by several forces having the
~ same origin as the given force and a sum equal to the given
force. '

Fig. 153.

These theorems are known as the law of composition and resolution
of forces. ,

~ Equipollent systems. From hypothesis I and theorem 3, p. 30, we
conclude that: o
4° a system of forces acting on a rigid body can be replaced by an
arbitrary eguipollent system.
In other words: equipollent systems of forces act on a rigid body in the
same manner; hence the importance of the notion of the equipollence of
systems. It is easy to see that theorem 4° includes theorems 1°, 2°, and 3°.

- As we know, two systems of forces are equipollent if they have equal
sums and equal total moments with respect to one point (p. 22). By
theorem 4° the action of a system of forces on a rigid body will therefore
be defined if we give the sum R and.the total moment M of the system of
forces with respect to an arbitrary point. '

I:et the forces P, P,, ..., whose points of application 4,, 4,, ... have
coordinates &, ¥y, 2;, @y, ¥, 2y, ..., actona rigid body. Denoting the sum
by R and the total moment with respect to the origin of tho system by M
we obtain from formula (2), p. 232, -

2° several forces acting at ome point can be replaced by

icm

[§4] Transformation of systems of forces 237

'R,=%P,, R,—=%P,, R, =3P, (3)
My = 2P p— P ys), My=2(P;x;,—P;2), M,= E(Pyy:—Pyzy).

The action of a system of forces is hence defined by means of the six
numbers R,, B, R,, M,, M, M,
The parameter of the system (p. 21)is K =R- M, i. e.

K = Rme + -Rale =+ RzMz' (4‘)
Force couple. A system consisting of two forces equal in magnitude,
parallel, but oppositely directed, is called a force couple (p. 23). The
moment of a couple does not depend on the choice of the point with
respect to which the moment is determined (p. 23). Since the sum of the
forces of a couple is zero, two couples are equipollent if they have equal
moments. Therefore the action of a force couple on a rigid body is defined
by giving its moment.
A force couple tries to turn a body. The action of a couple does not

undergo a change if the couple is arbitrarily
L)
/ //

translated and rotated in its plane (without
Fig. 154.

changing the sense of the moment). A couple
can also be arbitrarily translated in space
without a change of the sense of its moment
so that in every position it remains in a
parallel plane (Fig. 154).

A couple whose moment is equal to
zero is equipollent to a zero vector. Such a couple is also called a zero
couple.

Reduction of a system of forces. The theorems concerning the reduc-
tion of systems (§ 16, p. 28) enable one to determine the simplest system of -
forces equipollent to the given one (i. e. the simplest system of forces by
which one can replace the given system). In particular, the theorem on
reduction can be stated as follows:

Every system of forces acting on a rigid body can be replaced:

a) either by one force equal to the sum of the forces of the system and
acting at an arbitrary point O, and a force couple whose moment is equal to the
moment of the system with respect to O,

b) or by two forces, one of which acts at an arbitrarily chosen point.

The theorems given on pp. 25 and 26 can be stated in a similar
manner. « )

Let a force P whose origin is at the point A act on a rigid body.Let us
choose an arbitrary point 0. From the theorem on reduction it follows (if
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the system is assumed to be the force P) that the force P can be replaced by
an equal force acting at O, and by a force couple whose moment is equal to the
moment of the force P with respect to O. :

Plane system of forces. If a system of forces lies in one plane, then
their system is called a plane system. By theorem 3, p. 26, @ plane system
-of forces either has a resultant or is equipollent to a force couple.

From the table given on p. 25 we see that a plane system has a
resultant if the sum of the forces of a system is different from zero, or if
the sum as well as the total moment are equal to zero; on the other hand,
if the sum is zero and the total moment is different from zero, then
the system is equipollent to a couple.

In the 2y-plane let there be given a plane system of forces Py, Py, ...,
acting at the points 4,, 4,, ... whose coordinates are zy, ¥y, 3, Y2, -« -

The projections of the forces P;, on the z-axis as well as the coordina-
tes z; of the points A; are zero. Therefore, denoting the sum of the forces
by R, and the total moment with, respect to the origin of the system by M,
we obtain from formulae (3), p. 237:

R,=0 M,=0, M,=0. _
Hence the action of a plane system of forces is determined by three
numbers: B,, R,, and M,. ‘
From formulae (3), p. 237, we also obtain (writing M instead of M,):

. .Rz = ZP‘ix) _Ry == EPiy’ M = Z(Piwy,-—P,-”xi). (5)

Parallel system of forces. From theorem 4, p. 26, it follows that
a parallel system of forces has a resultant or is equipollent to a force couple.
~ Let the parallel forces P;, Py, ... (Fig. 155) have origins at the points
- 4,, 4,, ... whose coordinates are ,, ¥y, 21, %, Ya, 2a, - .. Liet us assume that
the sum of the forces R is different from zero. Consequently the given
system has a resultant.

Let us select the sense of an arbitrary force of the system, e. g. the

sense of the force P; as positive. Let us denote for i = 1, 2, ... by P; the ’

number whose absolute value is equal to |P,| and whose sign is positive
or negative depending on whether P, has a positive sense (i. e. agreeing
with the sense of P;) or not. We define R similarly. We have R = ZP,.

On p. 28 we proved that the resultant R passes through a certain
point O called the centre of forces. The coordinates =y, %, 2, Of the
centre of forces are obtained from formula (4), p. 28, by putting a, = Py

%o = ZLP;2; | R, Yo = ZP;y; | R, %= LP;z | R. (6)
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If the forces are rotated about their points of application through the
same angle so that they still remain parallel (as e. g. the dotted vectors in
Fig. 155), then the centre of forces does not undergo a change. This
follows from formulae (6) because the coordinates %, ¥, 2,, depend only on
P, 2;,y,, and z;, and do not depend on the direction of the forces. The new
resultant will therefore also pass through O.

If the points of application of the forces
lie in one plane (or on one line), then the centre
of forces also lies on this plane (or on this line).

R

For assuming that the points of application
lie in the plane II and choosing this plane as
the xzy-plane, we obtain 2, = z,= ... = 0; from
formulae (6) we therefore get z, = 0, which
means that the centre of forces lies in the planeT.

RQ(?
th? 3

o

Similarly, if the points of application lie on Fig. 155.

one line I, then choosing it as the wz-axis, we
have y, = 9, = ... = 0, and 2; = 2, = ... = 0; hence by (6) 7, = 0 and
2o = 0; consequently the centre of forces lies on the line I. ,

Let the material points whose masses are #,, M., ... be acted upon
by forces Py, P,, ... which are parallel, have the same sense, and are in
magnitude proportional to the masses of the individual points. Putting
Py = |P,|, Py = |Py|, ..., we obtain: "

R=P,+Py4...=km, (7

where k is the factor of proportionality, and m = m; + m, + ... From
formulae (6) and (7) we get after substitution:

P, = kmy, Py =lkm,, ...

’
Ty = Zmx; | m, Yo = Tmy;[m, 2= Tmgz;|m.

Comparing these equalities with formulae (I), p. 152, we see that the
centre of forces is the centre of mass of a given system of material points.

Therefore: the centre of mass of a system of material points s the centre
of forces which are parallel, have the same sense and are in magnitude
proportional to the masses of the points on which they act.

Gravitational forces. Let a rigid body be situated in a gravitational
field. Consider the body as a system of material points of masses
My, My, ..., We can assume that the weights of the separate points are
parallel forces, having the same sense (vertically downwards). The weights
therefore have a resultant (Fig. 156).

The magnitudes of the weights of the separate points are @, = myyg,
Q, = myy, ... (where g denotes the acceleration of gravity). Consequently
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the magnitudes of the weights are proportional to the masses of the
points. Therefore in virtue of the preceding theorem, the centre of the
gravitational forces is the centre of mass of the body. The magnitude of the
resultant is -

Q=mgtmg ... = (m1+m2+ ) g =myg,
where m denotes the mass of the body.

Therefore: tn every position of a body the resultant
of the gravitational forces passes through the centre of
gravity of the body. The weight of the body (i. e. the resul-
tant of the gravitational forces acting on its separate
points) ¢s

Q Q= mg, (8)
Fig. 156. where m denotes the mass of the body, and g the accele-
/ ration of gravity. S

On the basis of the above theorem we can replace the action of the
force of gravity by one force situated at the centre of gravity of the body.

Systems of couples. A system consisting of several couples has a zero
sum. From the table on p. 25 it follows that such a system is equipollent
toa couple or o a zero vector (i. e. to a zero couple). Let M,, M,, ...denote
the moments of the individual couples. Then the total moment will be
M =M, + M, | ... From the theorem on reduction (p. 24) we therefore
obtain the following theorem:

A system consisting of several couples is equipollent to one couple whose
moment us equal to the total moment of the system.

Let us note that a force couple (whose moment is different from zero)
cannot be equipollent to one force. For in view of the fact that the sum of
the forces of the couple is zero, this force would have to be zero and its
moment different from zero, which is impossible.

Example I. The centres of the sides of a plane polygon 4,, 4,, ..., 4,
(Fig. 157) are acted upon by forces Py, Py, ..., P,, lying in the plane of
the polygon, forming with its sides A Ay A4y, ..., A4, an angle g,
and directed towards the exterior and proportional in magnitude to the
sides of the polygon.

It is easy to see that the sum of the forces is zero, because forming the

sum P, 4+ P, -4 ... + P, we obtain a polygon similar to the given one,
but turned through an angle g relative to it.

The system of forces is therefore equipollent to a couple or zero.
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Let us select an arbitrary system of coordinates O(x, y) and denote
by %1, ¥1, % Ya, ... the coordinates of the points 4,, 4,, ... The point of
application of the force P, has the coordinates }(z, + ), 3(y1 + ¥s)-
Therefore the moment of the force P, with
respect to O is ((8), p. 234)

My = 3Py, (y1 + y2)] — %[Ply(xl + )] (9)
By hypothesis

|P1| = Ay, (10)

where d, = 4,4, » and 1is the factor of pro-

portionality. If 4,4, forms an angle « with

the z-axis, then the force P, forms an angle
o - @ with the z-axis. Therefore:

le = IPll cos ((X + tp): Plﬂ = |P1| sin ((X + (p)
Hence in virtue of (10), P, = Ad,(cos« cos @ — sina sing). But

-
<

-
i

d, cos o == m, — @, and d, sin & = Yy, — ¥;; consequently
Py, = (2, — ;) cos ¢ — (ya— ¥y) sing].
Similarly
- Piﬂ = A(y2—191) cos @ + (¥, — ;) sing].
Substituting in (9), we obtain
M; = 3A[2(y,s — yot) cOS @ + (43 + 21 —yE —ad)singl. (1)
Putting 04, = r,, 04, = 1y, ... and denoting by p,, D, . -- the areas
of the triangles 04,4, 04,4, ..., we get r3 = 27 + 35,75 = 25 + v5, ...,
D1 = ¥y,2s — ya,), etc. Hence by (11) '
M, = }A[4p, cos @ + (r} —13) sing]. (12)
Similar expressions are obtained for the moments of the remaining

forces. ) .
The total moment of the forces with, respect to O is M = M, +

4 M, + ... Hence according to (12)

M = }M[4(p, + P2+ ...+ pa) cOSP +
42— —rt ..+ — 1Y) sing].
Since p = p; + Py + ... + Do is the area of the polygon 4,4, ... 4,,
' M = 21p cos p. (13)
The total moment is therefore proportional to the area of the
polygon and to the cosine of the angle ¢.
16
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In particular, if the forces are perpendicular to the sides of the poly-
gon, then ¢ = }m and cos ¢ = 0, whence in virtue of (13) M = 0, i. e. the
forces form a system equipollent to zero.

On the other hand, if the forces are directed along the sides (i. e. if
¢ = 0), we have by (13) M = 24p, and hence the moment is then pro-
portional to the area of the polygon.

i Example 2. The points A(a, 0, 0),
B(0, b, 0), and C(0,0,¢c), on the axes of
the coordinate system. (x, g, 2) are the points
of application of the forces Py, P,, and P,
parallel to the axes of the system, equal in
magnitude and having senses as shown in
the Fig. 158. What relation exists among
the coordinates a, b, ¢ if the system has a re-
sultant ?

Let us put P = |Py| = |Py| = |Py|. The sum of the forces R therefore
has the projections

R,=—P, R,=P, R,=P. (14)

Let us caleulate the total moment M with respect to O. The moment
of the forces P; and P; with respect to the z-axis is zero; the moment of
the force
similarly M, = Pc and M, = — Pa. The parameter of the system is
K=R-M=RM,+ R,M,+ R,M, therefore

' K = Pb + ¢ —a).
I the system has a resultant, then K = 0 (p. 26). Consequently
b+c—a=0. (15)

Equation (15) constitutes the sufficient condition and, as is easily
seen from the table on p. 25, also the necessary condition that the
system have a resultant, because R == 0.

As the point of application of the resultant we can take the point
D(z, y, z) with respect to which the total moment is zero.

Let us denote the total moment with respect to D by M’. We have:

M;:—chP(b—y) M, = —Px + P(c—2),
M, ——P(a——x)—l—P't
Assummo g that the moment with respect to D is zero, we get:
y———z:b, ztzxz=c, z+y=a.

P, with respect to the w-axis is —Pb. Hence M, = — Pb; -
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On account of (15) these equations are dependent. Two of them are
the equations of the line on which the resultant lies. Putting z = 0, for
example, we obtain z = ¢, and y = b. Therefore we can take the point
D(e, b, 0) as the point of application of the resultant.

Example 3. Parallel forces P and Q act at the points 4 and B,
P + Q == 0. Determine the center of forces. :

The center of forces lies on the line A B (p. 239). Let us choose it as the
z-axis, taking the point 4 as the origin of the z-axis and giving it a sense
such that the point B lies on its positive part. Let us put P = |P| and de-
note by @ the number whose absolute value is equal to |Q|, while the sign
is 4+ or— depending on whether Q has a sense which agrees, or does not
agree, with that of the force P. Putting AB = d and denoting the coordin-
ate of the centre of forces O by ,, we get from formula (6), p. 238,

= @d | B, where R = P 4 @.

If the forces P and Q have the
same sense (Fig. 159a), then @ > 0,
and consequently 0 << @ /R < 1, whence
0 <z, <d. The centre of forces is
therefore situated between the points
A and B.

On the other hand, if the forces
P and Q have opposite senses and e.g.
|P| < |Q] (Fig. 159Db), then @ < 0, and
R < 0, whence ;> 0. Furthermore
|R| < |Q]; consequently xz,>d. The
centre of forces hence lies beyond the point B.

Tt is easy to verify that in both cases 40 | BO = [Q| / |P|.

Therefore: the centre of two parallel forces (whose sum == 0) is situated
on the line joining the points of application of these forces.

If the forces have the same senses, then their centre lies between the pomts
of application; in the opposite case it lies beyond the point of application of
that force whose absolute value is greater. -

The distances of the cenire of forces from the points of application are
inwversely proportional to the magnitudes of these forces.

Fig. 159,

Example 4. Forces Py, P, ... whose origins are 4;, 4,, ..., and forces
Q., Q,, ... whose origins are By, B,, ..., act onarigid rod AB. All forces
are para]lel to each other and perpendlculal to the rod, and the forces
P,, P,, ... have a sense opposite to that of the forces Qy, Qs,.. . (Fig. 160).
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LetR=P,+ P, & ... + Q, + Q,+ ... Let usdenote by Py, P, ...
and Q;, Q,, ... the absolute values of the forces, and by &y, a5, ... and
by, by, ... the corresponding lengths of the segments A4, A4,, ... and
AB,, AB,, ... Let us assume the sense of the
forces Py, P,, ... a8 positive. Put

R=P1+P2+...—Q1_Qz—-~ (16)

Obviously |R| = |R]. If R > 0, the sum R
has a sense agreeing ‘with the forces Py, P,,...
However, if R < 0, then R has a sense agreeing
with the forces Qy; Qa, ...

Let us calculate the total moment M of the forces with respect
to 4. Denoting by My, M,, ... and M1, M3, ... the moments of the forces
Py, Py, ... and Q;, Q,, ... with respect to 4, we have (according to the
agreement concerning the sign of the moment assumed on p. 233):

M, = Pya;,, M, = P,a,, ..., M%:—lei, Méz"“gzbz, .

Consequently

M=Pia, +Pyaty+ ... — @by — Quby— ... (17)
Let us assume that R = 0. The system of forces is therefore equi-
pollent to a couple of moment M according to formula (17).
If M > 0, the couple will tend to turn the rod clockwise, if M < 0
— counterclockwise. Finally, if M = 0, the system will be equipollent
to zero.
Let us now assume that R == 0. The system therefore has a resultant.
Let O be the origin of the resultant R lying on the line 4B. Set
d = =+ AO, taking the 4- sign if the point O is on the same side of the
point 4 as the origin of the force, and the — sign in the contrary case. The
moment of the resultant with respect to 0, as is easily verified, is Rd

according to our convention. Since the moment of the resultant is equal
to the total moment, we get from (17)

Q Q& @

Fig. 160,

1
d:F(Plaq—{—Pza,z—{- e — @by — Qb — . ).

§5. Conditions for equilibrium of forces. We shall now prove the
following

. Tl’);orfem I.' I‘n order that a system 6]‘ forces acting on a rigid body be
t;t t;glzus ibrium, it 1s mecessary and sufficient that the sum of the forces and the
 moment be zero, i. e. that the system of forcés be equipollent to zero.
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Proof. We shall prove at first that the condition is necessary. Let
ug assume that the rigid body is a rigid system of material points 4,
A,, ... and that it is in equilibrium under the action of a given system of
forces. Let us consider an arbitrary point A4, Denote by P; the sum of
the external forces, and by W, the sum of the internal forces acting at 4.
Since the point A4, is in equilibrium (because the entire rigid system
is in equilibrium), it follows that P; 4 W; = 0. Consequently
Z(P; + W) =0, (1)
where the sum T extends over all the points 4; of the given rigid system.
From the law of action and reaction it follows that the sum of the
forces with which two points react on each other is zero. Since all the
internal forces can be grouped in pairs, the sum of the internal forces is
zero or W, = 0, whence by (1)
IP; =0. (2)
Tt follows from this that the sum of the external forces, i. e. the forces
acting on the rigid body in equilibrium, is zero.

Let us now choose an arbitrary point O. Since the forces P; and W,
have the common origin 4;, and moreover P; 4 W; =0, it follows that
(p. 17) MomyP; -+ Mom,W; =0, whence

E(MomyP; + Mom,W,;) = 0. (3)

The total moment of the internal forces with which two points react
on each other is — as is easily verified — zero. Consequently the total
moment of all the internal forces is zero. Therefore ZMom,W; =0,

" whence by (3)

¥ Mom,P; = 0. (4)

We have proved, therefore, that the sum as well as the total moment
of the forces acting on a rigid body is zero. This proves the necessity of the
condition.

Lot us now assume that the given system of forces is equipollent to
zero. Since a system equipollent to zero is equipollent to a zero force, it is
in equilibrium by hypothesis II (p. 235). The condition is therefore at the
same ‘time sufficient, q. e. d.

From theorem I it follows that if a system of forces acting on a rigid
body is not equipollent to zero, then the body cannot be in equilibrium.
In particular, a rigid body cannot remain in equilibrium under the action
of a system of forces consisting of:
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a) one foree different from zero,

b) one force couple of moment different from zero,

¢) one force different from zero and one couple of moment different
from zero.

As we know (p. 22), a system of forces is equipollent to zero if the
total moments with respect to three non-collinear points are zero. On the
basis of theorem I we obtain from this the following

Theorem 1. In order that a system of forces acting on a rigid body be
in equilibrium, it is necessary and sufficient that the moments of the system
with respect to three non-collinear points be equal to zero.

In applications we frequently find the following theorem useful:

Theorem 111. If a system consisting of three forces is in equilibrium,
then these forces lie in one plane and are either parallel or their prolongations
iniersect in one point.

Theorem III follows from the theorem of chapter I, § 14 (p. 22), in

- the proof of which it was shown that the vectors lie in one plane.

Analytic form of the conditions for equilibrium. Let us choose an
arbitrary system of coordinates O(z, ¥, 2). Let the forces P,, P, ... act on
a rigid body at the points 4,, 4,, ... whose coordinates are =z, ¥y, %,
Zy, Ys, g, --. L6t us denote by R the sum, and by M the total moment,
of the system with respect to 0. According to theorem I (p. 244) the
equations:

R=0, M=0 (5)

constitute the necessary and sufficient conditions for equilibrium. For-
ming the projections on the axes of the system, we obtain from (5) and
from formulae (3), p. 237:

ZPim:C’l EPi,,-:O: ZP1Z=0, (I)
Z(Pizi—Piy) =0, B(P; 2, — Py zy) = 0, (P, y,— P, ) = 0. (I)

Eiquations () are called the condition of projections and equations (II)
the condition of moment.

Equations (I} and (II) are the analytié form of the conditions for ‘the

faqulhbrmm of a system of forces. From these equations we can determine
in general six unknowns.

Plane systems of forces. The conditions for equilibrium obviously
apply also to a plane system of forces. .
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Let the forces lie in the xy-piane. Since P; =0 and z; =0, the
conditions for equilibrium (I) and (II) assume the form:

TP, =0, TP, =0, ()
(P yi— Py z) = 0. (I

In the case of a plaﬁe system we therefore obtain three equations.
From them we can in general determine three unknowns.

Example I. A heavy sphere is in equilibrium under the action of
three forces (Fig. 161): the weight Q (acting at the centre of the sphere 0),
the horizontal force P (acting at the point A situated on the surface of
the sphere at the end of the vertical diameter) and the force R (acting at
the point B situated on the surface of the sphere at the end of the hori-
zontal diameter). The weight Qis given. Determine the forces P and R.

The forces P, Q, and R, are in equilibrium; therefore by theorem 11X
they lie in a plane and their directions intersect in one point which is the
point A. Consequently the force R has the direction of the line BA which
forms an angle of 45° with the horizontal. Since Q + P 4 R = 0, know-
ing the force Q and the directions of the forces P and R, we can form
a triangle of forces (Fig. 162). From this triangle we obtain

P=0Q, R=@Q]coss5’ =120,

where P, @ and R, denote the absolute values of y
the forces.

Example 2. The vertices . >
of a square ABCD of side a P fla
are the points of application W ( A
of four forces Py, Py, Py, Py, Q GD u ‘ —
lying in the plane of the )
square and forming with 0
the sides the angles w4, o,
oy, oy (Fig. 163). Give the
conditions for equilibrium.

Let us denote the absolute values of the forces by Py, Py, Ps, P, Let
us select the x and y axes along the sides of the squere. Forming the pro-
jections of the forces on the z and y axes, we get inthe case of equilibrium
(when the forces have senses as shown in Fig. 163):

Fig. 161. Fig. 162. Fig. 163.

P, cos oy — P 008 ot — Py cos oxg + Py cos g = 0, -(6)

P, sinay + Py sin oy — Py sinog — Py sinay = 0. (7)
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Denoting the arms of the forces with respect to the vertex D by
71, Ta, T3, T4, We Obtain:
7, =@ COS &%y, T3= V?a sin (o, -+ 45°), 73 = @ sin oy
Moreover , = 0. Since in the case of equilibrium the total moment

with respect to D is zero (taking the sign of the moment according to
the rule given on p. 233) we get after dividing by @

P; co8 &, — P, )2 sin (ory 4+ 45°) + Py sin ag = 0. (8)

Equations (6), (7), and (8), constitute the necessary and sufficient
condition for equilibrium.

Example 3. A rod AB lying in the horizontal zy-plane is acted upon
by the forces Py, Py, ..., P,, lying in this plane and acting at the points
Ay, 4, ..., A, (Fig. 164). Give the conditions which the forces must
satisfy in order that the rod be in equilibrium for every position in the
zy-plane, if we assume that the forces do not
change their magnitudes, directions, senses, or
points of application (on the rod).

Let us consider an arbitrary position of the
rod 4B in the xy-plane. Denote by z,, ¥, the coor-
dinates of the point 4, by @y, 41, % Yss -+ > Tus¥n
the coordinates of the points 4., 4,, ..., and by «
the angle which the rod A B makes with the z-axis.
Let us put: d, '::AAI? dy=AA,, ..., d,= AA,.

Fig. 164.

We have-

Z; =2y + d; coS o, Y; = Yo + d;sin e

forvi=1,2,...,n (9)

From the conditions of equilibrium (I') and (IT'), p. 247, we obtain

TP, =0, TP, =0, (10)

2Py —P;z:) =Z[P; (yo + d;sinx) — Py (xy +d;cosx)] =0. (11)
Condition (11) can be written in the form

Yo ZP; — 2, %P; +sinx ZP; d; —cos EPfycli = 0, (12)

whence by (10)
Si.n(x ZPimdi — COS EPiydi = 0. (13)

Since relation (13) has to hold for every angle &, we get for o = in
and then for x = 0

TP d; =0, TP, d,=0. (14)
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Equations (10) and (14) are the necessary and sufficient conditions in
order that the rod be in equilibrium for every position in the plane.

For if conditions (10) and (14) hold, it is easy to see that condition
(13) holds, and consequently by (10) conditions (12) and (11) also hold.

Conditions (10) and (11) are, as we have seen, the necessary and suf-

ficient conditions for equilibrium by (1) and (IT').

§ 6. Graphical statics. String polygon. The problems which one
meets in statics often lead to long and tedious computations. However,
there exist graphical methods which enable one to obtain in many cases
approximate solutions which are sufficiently accurate for applications.

These methods are of great importance in engineering for they lead
more rapidly to the goal omitting intricate computations.

That part of theoretical statics which deals with graphical methods
is called graphical statics.

Here we shall become acquainted only with some graphical methods
as, for example, the graphical determination (by means of a string poly-

gon) of the resultant of a plane system of forces 0
and certain applications of these methods. /?\‘
Later (in §16) we shall become acquainted /10

with graphical methods serving to determine
the stress in the bars of a frame. ,'

Composition of forces. Having two forces Py
and P, whose directions intersect at the point %)ig 165 b)
0, we determine the sum R (Fig. 165a), and T
then we draw the resultant through the point O (Fig. 165b).

If the point O lies outside the limits of the drawing, we can proceed as
follows: we add two forces T and —T acting at the points 4 and B (i. e. at
the initial points of the forces P, and P,) and along the line 4B. The
system T,—T, Py, P,, is obviously equipollentto the system Py, P,, because
the forces T and —T annul each other, and consequently the resultant of
the new system of four forces is the same as before.

The forces T and P, are replaced by the force Q, = T -~ P, with its
origin at A; similarly the forces —T and P, are replaced by the force
Q, = —T - P, with its origin at B. The resultant R passes through the
point of intersection O’ of the forces Qy, Q..

This construction can also be applied to the case of two. parallel
forces not forming a couple (Fig. 166a, 166b and 167a, 167b).
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In this way we can obtain the resultant (or the resultant couple) of
the system of forces Py, P, ..., P, (Fig. 168a and 168b). We first form tl.le
resultant R, of two of these forces (e. g. the forces P, and P;) and we obtain

a system consisting of only n — 1 forces. _ o
A method that we shall become acquainted with presently will lead

us to the goal more quickly.

Fig. 169.

Fig. 170,

String polygon. Let us assume that we have to find the resultant of
the system of forces Py, P,, Py, P, (Fig. 169a).

We first form the sum R = P; 4+ P, + P, 4 P,. The polygon obtain-
ed is called the polygon of forces.l)

Let us denote (in the polygon of forces) by 4, the origin of the force
Py, and by 4,, 4,, A,, 4,, the terminiof the forces Py, P,, P;, P,. Let us now
select an arbitrary point O outside the polygon of forces. This point is
called the pole.

We connect the pole O with the points 4, 4, ..., 4,. From an
arbitrary point 4 situated on the direction of the force P, we draw the
lines [, and I, parallel to the lines 04, and OA4,, respectively. The line I,
is prolonged to the point B of its intersection with the direction of the

1) In Fig. 169a, 170a, and those appearing farther on, only the positions
of the forces are given. The magnitudes of the forces are indicated in the force
polygons (Fig. 169b, 170b, ete.).
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force P, The line I, will cut the direction of the force P,, because [, is
parallel to 04, and OA4, is not parallel to P, (Fig. 169Db).

From the point B we draw the line I, || 04, to the point C of its inter-
section with the direction of the force P;. From the point C' we draw the
line I; || 04, to the point D of its intersection with the direction of the
force Py. From the point D we draw the line I, || 04,.

We now determine the point of intersection Z of the lines loand I,
The resultant R passes through the point E. Since R is known from the
polygon of forces, this resultant can be drawn.

We shall now justify the above construction.

Let us denote the vectors 4,0, 4,0y, ..., 4,0 by S, S,, .
spectively. From the force polygon ( Fig. 169b) we obtain:

P, 4-5, +("‘So)= 0, P+ S, (—51) =0, (1)
P, —}-53—{—(——52):0, P44154+(—53)=0-

Let us add to the system of forces Py, P,, P, P, the forces S, and —S$,
lying on the line l,, the forces S, and —$, lying on 1, etc., finally the forces
S, and —S, lying on I;. The system added is obviously equipollent to zero,
because the forces S,, —S,, S;, —S,, etc. annul each other in pairs. The
resultant of the enlarged system is therefore the same as before.

cey Sy, TO-

In virtue of (1) the forces Py, S;,and —S§,, annul one another because
their sum is zero and their directions intersect at 4. These forces can
therefore be removed. Similarly we can remove the forces P, S,, and —S5,,
next, Py, S5, and —S,, etc., and finally the forces P,, S,, and —S,. The
remaining forces S, and —S, consequently form a system equipollent to
the given one. The resultant R therefore. passes through the point of
intersection E of the forces S, and —S§, (i. e. of the lines I, Z,).

The segments Iy, I, I, Iy, [, form a so-called string polygon; I, and I,
are called its extreme sides.

Therefore: the resultant passes through the point of intersection of the
extreme sides of the string polygon.

The name of string polygon arises from the fact that a weightless and inex-
tensible string fastened at the points I and M on the lines [, and /, in the directions .
—8, and §, (in other respects arbitrary), and assuming the position of the
polygon LABCDM, will be in equilibrium under the action of the forces Py, Py, P,,
P,, whose points of application are at the points 4, B, C, D, respectively.

In practice superfluous notations are omitted and the drawing is
as in Fig. 170 as well as in the Fig. 171 and 172.
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Fig. 171a represents a system of forces whose sum is zero. We then
say that the polygon of forces is closed (Fig. 171b).

Drawing the string polygon we sec that its extreme sides do not
intersect (are parallel). We then say that the string polygon is not closed.

The system of forces in this case is equipollent to the system of forces
S, and —S,, which, asis seen from the polygon of forces, form a couple.
The system is then equipollent to the force couple S, and —S, lying on the
extreme sides of the string polygon.

Fig. 171.

Fig. 172.

Therefore: if the force polygon is closed and the string polygon is not
closed, then the system is equipollent to a force couple.

In Fig. 172a we see a system of forces for which the polygon of
forces (Fig. 172b) is closed and the extreme sides of the string polygon lie on
one line. We then say that the string polygon is closed.

A system of forces in this case is equipollent to the system of forces
S, and —S, lying on the extreme sides of the string polygon and hence on
one straight line: Since (as is seen from the polygon of forces) S, = 54‘
the forces S, and —S§, bala,nce each other; the given system is then equi-
pollent to zero.

Therefore: if the polygon of forces and the string polygon are closed, then
the system of forces is equipollent to zero.

Resultant of a part of a system. Having a string polygon of a certain
system of forces one can easily determine the resultant of an arbitrary
part of the system consisting of the
forces following each other in the
polygon of forces.

For example, let the system
of parallel forces Py, Py, Py, Py, P, be
given (Fig. 173). Let the resultant R
of the entire system and theresultant
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R; of the forces P,, P;, P, be determined. From Fig. 173 we see that the

_ string polygon for the system P,, Py, P, is a part of the string polygon

for the entire system.

§ 7. Some applications of the string polygon. Determination of the
reactions at the points of support of a beam. A system of parallel forces
Py, Py, ..., Ps, is given. Determine two forces Ry, R,, parallel to the pre-
ceding and forming together with them
a system equipollent to zero. The lines
k, and k, on which the forces R, and R,
are to lie are given. '

A problem like this occurs in the
case of a rigid horizontal beam sup-
ported at the points.4 and B and acted
upon by vertical forces P,,P,, ..., P;
(Fig. 174). If there is no friction, the
reactions at the points 4 and B are vertical and in equilibrium with
the forces Py, Py, ..., Py (p. 263). .

In order to determine the forces R, and R,, we draw the string polygon
for the given system of forces in the order P, P,, ..., P;, Ry, R,. In the
polygon of forces the line 4,0 joining the terminus of the force R, with
the pole O is for the moment unknown. Since the polygon of forces is
closed, the point A4, i. e. the terminus of the force R,, coincides with the
initial point of the force Py, i. e. with the point A4,.

We draw the string polygon starting from the line [, || 4,0 until we
get to the line I || 4;0.

Let us denote by E, F the points of intersection of the lines I, and I,
with the directions of the forces R, and R,, i. e. with the given lines k, and
k,. Drawing in the polygon of forces the line 04, parallel to the line EF,
we obtain the forces R, = A 4, and R, = A A,. For it is easy to see that
by continuing the drawing of the string polygon for the forces R, and R,
8o determined, we obtain a closed string polygon.

Determination of the moment of forces. If we have to determine the
moment of the force P with respect to a certain point A, we first draw the
string polygon from an arbitrary point B situated on the direction of the
force P, as in Fig. 175.

Next, we pass through 4 a line parallel to P. We denote the points
of intersection of this line with the sides of the string polygon by L, K.
From the similarity of triangles 4,4,0 and KLB we obtain KL : |P|=h:w,
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where h and w are the altitudes of these triangles. From this [P|h =
= KL - w. Denoting the moment of the force P with respect to 4 by M,
we have [M| = |P|h, or
M| = KL - w. (1)
Therefore: the moment of the force P with respect to the point 4 is (in
absolute value) proportional to the segment which the sides of the string
polygon cut off from the line passing through A and parallel to P; the factor
of proportionality is the distance of the pole from the force in the polygon of
forces.

> 1

. A,
P K

Fig. 175.

Let there now be given a force couple P,, P, (where P, = — P,). We
draw the string polygon of this couple as in Fig. 176. Let us pass through
an arbitrary point 4 a line parallel to the forces and denote by K and L the
points of intersection of this line with the extreme sides of the string
polygon.

We shall prove that if we denote the moment of the couple by M and
the distance of the pole from the forces P, and P, in the polygon of forces
by w, then formula (1) will hold.

For let us consider the triangle BC'D, where B is a point on the direc-
tion of the force P, from which we started to draw the string polygon, while
C and D are the points of intersection of the direction of the force P, with
the extreme sides of the string polygon.

Let & denote the altitude of the triangle BCD. From the similarity of
the triangles BCD and 4,4,0 we have OD: |P;| = h: w, from which
[Pifh = CD - w. Since |M| = |P,|h and 0D = KL, we get formula (1).

Consequently: the moment of a force couple is (in magnitude) pro-
portional to the segment which the extreme sides of the string polygon cut off
from an arbitrary line parallel to the force couple; the factor of proportionality
18 the distance of the pole from the force in the force polygon.

Similar methods of determining the moment are useful when
we are dealing with several parallel forces, because then we can take the
same w for all the forces (Fig. 177). If we have to determine the moment
of a system of parallel forces we determine at first the resultant (or the
resultant force couple) and then its moment.
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Having drawn the string polygon of a system of parallel forces, we
can determine with respect to 4 the moment of an arbitrary part of the
system consisting of the forces following each other in the same order asin
the force polygon. This can be done because the string polygon of this part
is included in the string polygon of the entire system. In the drawing the
segment K'L’ is proportional (in absolute value) to the moment of the
system of forces P,, P; with respect to 4.

Finally, let the system of forces Py, Py, ..., P;, Ry, R, be given, equi-
pollent to zero (Fig. 174). Through an arbitrary point C' we pass
a line parallel to the forces. The segment LK of this line lying between
the sides of the string polygon is proportional (in absolute value) to the
total moment with respect to C' of the forees situated on one side of this
line (in our case to the moment of the forces R,, P, P,, P, or to that of
the forces Py, P;, Ry; the moments of both parts of the system with re-
spect to € are equal in absolute value, since their sum is zero as a conse-
quence of the assumption that the system is equipollent to zero). The
factor of proportionality is w, i. e. the distance of the pole O from the
forces in the force polygon.

Fig. 177.

Fig. 178.

Determination of the centre of gravity and of the statical moment of
plane figures. In order to determine the centre of gravity of a plane figure
F, we divide it into strips by means of parallel lines. If at the centres
of gravity S, S,, ... of the strips obtained we attach the forces P, P,, ...
which are parallel, have the same sense, and are proportional in magni-
tude to the areas Fy, F,, ... of these strips, then the centre of the forces
P,, Py, ... will be the center of gravity of the figure F.

For let us note that the centre of gravity of the figure F is the centre
of mass of the system of material points which is obtained if each strip is
replaced by a material point whose mass is equal to the mass of the strip
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(p- 1;4); and by the theorem proved on p. 239 the centre of mass of the
system of material points obtained is the centre of the system of parallel
forces Py, Py, ... . '

Strips that are sufficiently narrow can be consulex:ed as trape‘zmds;
the centres of gravity of the trapezoids can be determined a:e.cordmg to
the construction given on p. 177, Fig. 118. The lines of division of the
figure are usually drawn at equal intervals (Fig. 178). Hence the‘ areas of
the trapezoids will be proportional to their medians. The ma.l.gmtudes of
the forces Py, Py, ... can therefore be considered as proportional to the
medians of the trapezoids. .

The resultant R passes through the centre of gravity S; we determine
it by means of the string polygon (Fig. 178). _

Changing the direction of the forces and determining & new resultant
R’, we obtain the centre of gravity S as the point of intersection of both
resultants R and R'. :

In order to determine the statical moment of the figure F with
respect to a certain line I, we draw the forces Py, Py, ... parallel to I.

The moment of the resultant R with respect to an arbitrary point 4
of the line I is in magnitude proportional to the statical moment of the
figure F with respect to I.

For denoting by M the moment of the force R with respect to 4, by
% the distance of 4 from the direction of the force R, by M, the statical
moment of the given figure with respect to I, finally by F the area of the
figure, we have

(M| = hIR|, |3, = AF, @
where the centre of gravity lies on the direction of the resultant.

Since the magnitudes of the forces Py, P,, ... have been chosen as
proportional to the areas Fy, F,, ... of the individual strips,

[PII = AFl: IPZI = AFﬁ, ete., (3)
where 2 is the factor of proportionality. But
‘ R = IPs] + [P + ...

whence
IRl = MF, + Fy+ ..) = AF.

In virtue of (2), therefore, [M| = ALF = A|M |, whence |
|, = |M] ] A (4)

Consequently: the statical moment of a figure is (in absolute value)
proportional to the moment of the resultant.
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Statical moments of plane figures can therefore be determined by
means of a string polygon.

In Fig. 178, M| = w - KL, whence by (4) _
|M,| =w.-KL|2 (5)

Let us denote by d,, d,, ... the lengths of the medians of the trapezoids and by
a the distance between the lines of division. Therefore F, = ady, F, = ad,, ... Since
it was assumed in the drawing that |P,| = kdy, |Py| = kd,, ..., where k =}, it

follows that, |P| = kF,/a, |P)| = kF,/a,... By (3) we then have A=1k/a,
whence by (5)

|M,| = aw . KL | & = 3aw - KL.

Measuring o, w, and KL, in the drawing, we obtain {M,| from the above
formula.

II. CONSTRAINED BODY

§ 8. Conditions of equilibrium. A rigid body is said to be constrained
if the positions or the motions of this body are subject to certain condi-
tions. These conditions are called constraints.

For eﬁmmple, if one point of a body is fixed, the body can turn only about this
point. If two points 4 and B are fixed, the body can turn only about the line AB.
Later we shall learn of still other examples of constrained rigid bodies.

When a constrained rigid body is in equilibrium we say that the forces
acting on this body balance one another or are in equilibrium.

A rigid body fixed at the two points 4, B (Fig. 179) and being in
equilibrium, will remain in equilibrium when we add an arbitrary force
P whose origin is at the point C lying on the line 4.B. This is evident
intuitively because the body can turn only about the axis 4B, and hence
the force P acting on the fixed axis cannot move the body. If the body were
free, then it would remain in equilibrium only in the case when P = 0.

We see from this that the conditions for the equilibrium of a free body
are different from those for a constrained body.

The investigation of the conditions for equilibrium in the case of
a constrained rigid body can be reduced to the case of a
free body. With this in view we shall assume that besides
the given forces the constrained rigid body is acted upon 4

)

by additional forces called reactions which cause the 0 4
body to maintain the constraints. The reactions arise Bt

from those bodies which limit the freedom of the mo-

tions of the given constrained rigid body. Fig. 179.

17
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Tor example, if a heavy body rests on a table, then it is not free because it
cannot pass through the surface of the table. In this case the reactions are the forces
with which the surface of the table presses on the body.

The other forces acting on a constrained rigid body will be called
acting forces (in order to differentiate them from the reactions). If we
introduce the reactions to the acting forces, then we can consider the con-
strained rigid body as free.

It follows from this that the necessary and sufficient condition for the
equilibrium of the acting forces is that the acting forces balance the reactions.

However, this condition is not convenient because it involves the forces
of reaction which are in general unknown. In some instances, as in the case of
a body fixed at one point or two points, we can nevertheless give conditions for the
equilibrium of the acting forces without reference to the reactions (p. 270). The

condition for equilibrium in which the reactions do mnot occur is the so-called
principle of virtual work which we shall consider in chapter IX.

§ 9. Reactions of bodies in contact. Every two rigid bodies (solids,
surfaces or lines) which are in contact with each other act on each other
with certain forces. These forces are reactions and they arise from. the
actions of the points of both bodies on each other. Reactions conform
to the law of action and reaction.

By the theorem on reduction (p. 237) the forces with which one body
acts on the other can always be replaced by a force R and a couple of
moment M. Conversely, by the law of action and reaction, the second
body acts on the first body with forces equipollent to the force —R (with
the same origin as R) and a couple of moment —M. ‘

The determination of reactions is very important in problems con-
nected with engineering. So far we do not yet have a theory which solves
this matter in its entirety. In practice we make use of certain hypotheses
agreeing approximately with experience. We shall consider here only cer-
tain problems concerning the reactions of bodies in contact. This matter
is taken up fully in textbooks on engineering mechanics.

Experience reveals that in rigid bodies in contact, only those points
which are situated near the points of contact act on one another. Let us
assume here the simplifying hypothesis that only the points of contact of
both bodies act on one another; the reactions will then be the forces
acting at the points of contact.

This hypothesis does not hold in all generality. According to this hypothe-
sis, the reactions of two rigid bodies in contact only at one point would be
reduced to one force having its origin at the point of contact. On the other hand,
experience teaches that in addition to this force there can still appear a force couple
whose moment is different from zero, which is contrary to the hypothesis.
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For example, if a heavy rigid sphere rests on a rigid horizontal plate, then it
can remain in equilibrium even if it is acted upon by & force couple (lying in the
horizontal plane) of small moment. In the state of equilibrium the reactions of the
plate balance the weight of the sphere as well as the force couple, which would be
impossible were the reactions of the plate reduced to only one force acting at the

point of tangency.

Normal and tangential reactions. Let two rigid bodies I and IT be in
contact ab the point 4 (Fig. 180). Let us denote by R theforce with which.
body II acts on body I at the point 4. The force R has its origin at 4.
By the law of action and reaction body I acts on body IT with a force
—R, whose origin is also at 4.

Fig. 181.

Let body I be a solid or a surface having a tangent plane IT at the
point 4.

Let us resolve the reaction R into two components: a component N
perpendicular to the body, i. e. to the plane I7, and a component T tangent
to the body, i. e. lying in /1.

The component N is called the normal reaction, and the component
T the tangential reaction or the friction. The normal reaction is usually
directed with respect to body ITI to that side in which body I is situated;
it is then called the pressure. If there is no friction at the points of
contact, the bodies in contact are called smooth. '

. Let us consider two more cases:

1° Body Iis a surface bounded by a certain curve on which the point
of contact 4 lies, and the bounding curve has a straight line tangent [ at
A (Fig. 181a).

2° Body Iis a curve having a straight line tangent [ at 4, where 4 is
not the end of this curve (Fig. 181b).

An example of 1° can be a rigid hemisphere bounded by a eircum-
ference on which the point 4 lies; an example of 2° can be an arc of a
circumference with the point 4 lying at its midpoint. In cases 1° and 2°
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the normal reaction will be the component of the reaction R perpendicular

to the tangent I; the friction will be the component of the reaction R lying

on the line [.

" Tor two smooth bodies in contact at the point 4, the direction and
sense of the reaction are determined if one of the bodies is a solid or a sur-
face possessing a tangent plane at 4. The direction and sense of the
reaction are also determined for bodies 1° and 2° if the lines tangent to
them at their point of contact do mnotb coincide. For in this case the
reaction must be perpendicular to both tangents. For bodies, one of which
is body 1° or 2°, we know only this about the reaction, namely, that it
lies in the plane perpendicular to the tangent line Z.

Supports. A fixed rigid body (e. g. one attached rigidly to the earth)
is called a support. In many applications it is necessary to determine the
reactions of the supports on other rigid bodies.

Tf a rigid body resting on supports is in equilibrium, then the forces
acting on this body balance the reactions of the supports. If a smooth body
rests on smooth supports, then we assume that reactions (obviously nor-
mal) are induced which balance the forces acting on the body.

Because of this hypothesis we can in many cases give the necessary
and sufficient conditions for the equilibrium of forces which act on a rigid
body resting on smooth supports.

Centre of pressure. Let two smooth bodies I and IT be in contact at
the points lying in & certain plane IT (Fig. 182). The reactions will therefore
be perpendicular to the plane IT. The reactions acting on the body I are
consequently parallel; let us assume that they are pressures. Hence they
have the same sense. It follows from this that they have a resultant R
which we can assume to be acting at a certain point O of the plane I7. The
point O is called the centre of pressure. ‘ '

Obviously the reactions acting on the other body have a resultant
—R and the same centre of pressure.

Reactions of a string. An
inextensible string fastened
to a body acts on it only
when the string is in tension.
If the mass of the string is
small (so that it.can be neg-
" lected) and both ends- are
Fig. 182. Tig. 183. fagtned to the body, then
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the string acts at both ends with forces which are equal in magnitude also
in the case when it is Wound around some smooth body (Fig. 183). The
forces with which thQ string acts at its ends are tangent to the string and
have senses in the direction of the string. These forces are called the fen~
sions of a string.”

Example I. If a heavy body hanging on a string at the point 4 is
in equilibrium, then the tension T of the string whose origin is 4 balances
the weight: Q whose origin is at the centre of gravity 3.

Consequently T 4+ Q = 0, or
Tl = [Ql. (1)
Moreover, the forces T-and Q must act along one line. The string is
therefore directed vertically and its prolongation passes through the
centre of gravity (Fig. 184). Hence, hanging the body in succession from

two points and drawing the directions of the string in the body, we obtain
as the point of intersection the centre of gravity of the body.

Example 2. If a body hanging by two
strings at the points 4 and B is in equi-
librium, then the tensions T, and T, with
its origins at 4 and B balance the weight
Q whose origin is at the centre of gra-

Fig. 184.

Fig. 185.

T+T:+ Q=0 (2)

Therefore by the theorem given on p. 246 the directions of the forces
either intersect at the point O or the forces are parallel. In both cases
we can determine the forces T, and T, by taking the moment with respect
to an arbitrary point, e. g. with respect to the point 4. Denoting by a,
and d the arms of the forces T, and Q with respect to A4, we get
[Tola = [Qld, or _ .

ITo| = [Qld /. (3)

Similarly, we obtain |T;| by taking the moment with respect to B. In
the case when the forces T, and T, are not parallel, we can determine them

‘graphically by forming the triangle of forces (Fig. 185).

Example 3. A heavy rigid rod hangs at the ends 4 and B of a mass-
less inextensible string passing through a smooth ring at the point c
(Fig. 186a). Determine the tension of the string in the position of equilib-
rium.
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Let us denote the length of the string by I, the angle ACB by ¢, and
the centre of gravity of the rod by 8. Let us put:
AB=a, AC =1, BC=1, AS =5,

Let us suppose that a, b, [, and the
weight of the rod Q, are given.

Since the tensions T; and T, of the
string balance the weight Q, these forces
intersect at the point C' (because the forces
T, and T, pass through the point C (p. 246))
and moreover

T,+T,+ Q@=0. (4)
In addition to this (p. 261)
Tyl = [T4|. (6)
When ¢ =0, the rod has a vertical position and the forces T, and T,
have vertical directions. Therefore by (5) T, = T,, whence by (4)
T = |Ts| = 3{Q|.
Let us inquire in what case ¢ can be different from zero, asin Fig. 186.
Let us therefore assume that ¢ = 0.

Denoting by d, and d, the distances of the directions of the forces T,
and T, from S and taking the moment with respect to 8, we get |T;|d, =
= |T,|dy; consequently from (5), d, = d,. The centre of gravity S is equi-
distant from the sides AC and BC, i. e. theline C'S is the bisector of the
angle . From a known geometrical theorem concerning the angle bi-
sectors of a triangle, we obtain AC : BC' = AS : BS, i. e.

Il =05b:(a—7D). (6)
Since :
L+1,=1, (7)
solving the system of equations (6) and (7), we get:
Li=blja, ly=(a—Db)l/a. (8)

In order that the sides 1, I, a, form a triangle, the inequalities

h+li>a L+a>1, l,+a>1 must hold. They can be written
in the form: ’

L+L>a o> ]l1'*"lzl,
whence in virtue of (8) '

I>a>|a—2b1]a. (9)
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The inequalities @ < I < a? [ |@ — 2b] must therefore be fulfilled, or,

setting £ = b | a,
a<l<alll—2k (10)

Hence: when ¢ == 0 equilibrium will occur if the length 1 satisfies con-
dition (10).

Let us note that if k = b/ a = § (i. . if the centre of gravity S falls
at the centre of the segment 4 B), then conditions (9) are satisfied for all
1 > a. In this case, therefore, the position of equilibrium of the rod is
always possible when ¢ == 0.

Angle ¢ is obtained from the theorem of Carnot

a? = 1§ + 13 — 211, cos . (11)
From the triangle of forces we get
Ty| = [To| = §| Q] cosip. (12)

After expressing cos}e in terms of a, b, I, from formulae (8) and (11),

we obtain by (12)
11/(e—b)b
Ta| = [Tl = Q| ;V-fr_j;:
In particular, for b= {2 we get

1Ty = T = 1@l =

2|F —a?

Example 4. A horizontal beam rests at the points 4 and B on two
smooth supports. Vertical forces (directed downwards) Py, Py, ..., Ps
(Fig. 174) act on the beam. Determine the reactions of the supports.

Let us denote by =, @,, ..., x5 the distances of the points of applica-
tion of the forces from 4. Put AB = d. The reactions R, and R, at 4 and
B are vertical. Taking the moment with respect to 4 and denoting by
P., P, ..., Ps, R, R, the absolute values of the forces, we obtain Pz, +
+ Py, -+ ... + Py — Ry = 0, whence

R, = (P, + Poxy -+ ... + Pgg) [ d. (13)
Since B, + B, = P, + Py + ... + P,
R, = [Py(d — ;) + ... + Ps(d— )] 4. (14)

The reactions R, and Rg can also be determined by means of the string
polygon as on p. 253.
Example 5. A heavy sphere of constant density touches a smooth

plane IT inclined at an angle o with the horizontal (Fig. 187). Determine
the horizontal force P maintaining the sphere in equilibrium.
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The origin of the weight Q of the sphere is at its centre O, and that of
the reaction R of the plane IT at the point of tangency 4; the reaction is
perpendicular to II. The forces Q and R intersect at the point O. Since the
forces P, Q and R balance one another, in virtue of theorem III, p. 246,
they intersect at the point 0. Moreover P 4 Q 4 R = 0; hence the forces
P and R are obtained from the triangle of forces. We have

R=Q/cos, P = Qtana,

where P, @ and R, denote the absolute values of the corresponding forces.

R P B y N_ F,/l T R ------- d
\P ’ l ’. f
Q o
4 R 5L e W W
Q 0 a

/M A X
Fig. 188, 189, 190.

’/
Fig. 187.

Example 6. A heavy rod AB of constant denéity lies in the vertical

plane JT and rests against two smooth. planes: a horizontal plane T, and
a vertical plane IT,. Let Ox and Oy be the lines of intersection of the planes
11, and IT, with the plane II. The rod 4B is tied by an inextensible string
OC to the point O. The rod is in equilibrium. Determine the reac-
tions, having been given: AB = 2], the angle & between 4B and the
z-axis, and the angle ¢ between OC and the z-axis (Fig. 188).

The force acting on the rod is the weight Q acting at the midpoint D
of the rod AB. The reactions are the reactions of the planes R and N,
acting at 4 and B and perpendicular to the planes, as well as the reaction
of the string T acting at ¢' and directed along the string towards the
point 0. The acting force balances the reactions. From. the condition of
projections on the x and y axes we obtain

Net+T:=0, R, 4+Q,+T,=0, (15)

and from the condition of moment with respect to O: .
—R,,-2Zcosoc+N,,-2lsim——Qu-lcoszxm 0. (16)
Let us denote by B, N, 7, 0, the absolute values of the corresponding

forces. We obviously have R, = R, N,=N, @, =—¢Q and T, =

=—Tcosp, T,=—"Tsin ¢. Consequently from equations (15) and
(16) we obtain; "
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N—~.T cosp =0, R—@Q—7T sinp = 0, (17)
— 2R cosx + 2N sinx + Q cosax = 0. (18)

Determining R and N from equations (17) and substituting in (18) we
obtain -

_ Qecosx
~ 2sin(a —g) (19)
whence by equations (17)
_ Q cosa Ccosp . cosx sing
N= 2 sin(ox — ¢)’ kE=¢ (1 T3 sin(zx-—q;))' (20)

Since T' > 0, in virtue of (19) « > @; hence the point € must lie
between A and D.

The prbblem can also be solved graphically (Fig. 189 and 190).

Denote by & the point of intersection of the forces T and Q, and by F
that of the forces N and R. The resultant W, of the forces T and Q acts at
E, whereas the resultant W, of the forces R and N acts at F. Since the
system of forces N, R, T, Q is equipollent to zero, the system of forces
W;, W, is also equipollent to zero. Hence the forces act along the line EF

-and W, + W, = 0. The force Q as well as the directions of the forces T

and W, =T - Q aro given; therefore we can determine the forces W,
and T as in Fig. 189. Since N 4- R = W, = — W,, the forces N and R are
obtained by resolving the force W, into components inthe directions of
the x and y axes (Fig. 190).

Example 7. A heavy rod 4B whose centre of gravity is at S rests

.on a smooth horizontal plane at the point 4 and on a smooth sphere at the

point B (Fig. 191). An inextensible string fastened at 4 passes over a
pulley C and sustains a weight P at its other end. Determine the weight
P, the reaction R of the horizontal plane and the reaction N of the sphere
in the position of equilibrium, having been given @ = A4S, b = AB,
the angle « between the rod and the plane,
and the weight Q of the rod.

Let us choose the axes z and y as in
drawing. Since the tension in the string at the
point 4 is P, denoting by P, @, R, N, the ab-
solute values of the forces and forming pro-
jections on the x and y axes, we get:

P—Nsine=0, R— Q- Ncosa=0. (21)
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The total moment with respect to 4 is
Qa cosx — N = 0. (22)
From equations (21) and (22) we obtain

acosx  p_g a sin29f’ R=¢@ (1 ———%coszoc).

N=e—— 2b

The problem can also be solved graphically. With this in view, let us
denote by W, the resultant of the forces R and P, and by W, the resultant
of the forces Q and N. The force W; = R + P acts at the point A, and
W, = Q -+ N at the point O in which the directions of the forces Q and
N intersect. Since we know the positions of the forces Q and N, the point
O can be determined.

The forces P, R, Q, and N, are in equilibrium; therefore the forces W,
and W, balance each other. Consequently Wy -4 W, = 0; moreover the
forces W, and W, lie on one line. This line is obviously the line 4 0. Since
we already know the direction of the force W,, we can determine W,and N
from the relation W, = Q + N by drawing the triangle of forces. We have
W, = — W,, and W; = R -+ P, hence we obtain the forces R and P by
resolving the force W, in the directions of the forces R and P.

Example 8. A heavy rigid wire.of constant
density, in the form of a semicircle, lies in a
vertical plane and rests on a horizontal line I
(Fig. 192). Forces P, and P,, directed vertically
downwards, act at the ends 4 and B of the
wire. Determine the angle @ which the dia-
meter AB makes with the horizontal in the
position of equilibrium, as well as the reaction
R at the point of tangency O (under the
agssumption that there is no friction).

In the position of equilibrium the forces Py, P,, the weight Q acting
at the centre of mass S, and the reaction R perpendicular to 7, balance one
another. Since these forces are parallel, (denoting their absolute
values by P,, P,, @, and R), we obtain from the condition of projections on
the y-axis, which is directed vertically upwards, — P, + R — @ —
— P, = 0, whence

E=P + P, +0Q. (23)

Let us calculate the total moment of the forces with respect to the
point of tangency C. From the condition of moment we obtain
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— Pypy+ Qg + Pyp, = 0, (24)

where Py, P,,and ¢, denote thearms of the forces P, P,, and @, with respect

to 0. Putting » = OB (where O is the centre of the diameter AB), we
obtain:

‘ Pr=Dpa=rcosp, q=08-sing, ‘ (25)
and since OS == 27 [x (p. 176),
_ 2rsing
=—" (26)
From (25) and (26) we get, after substituting in (24),
o)
(Py— P,)r cosp + -”LQ??—IE(B = 0,
whence
(P,—Py=m
tanp =1 ¥ 50 ) (27

§ 10. Friction. Let two bodies I and II, which are at rest, be in
contact at the point 4 and let them have a common tangent plane I7 at
this point (F.g. 193). Let us denote by R the reaction which body II
exerts on body I at the point 4. If the bodies are

to the plane IT.

Let « be the angle which R makes with the nor-
mal » to II.

Denoting the normal component by N, the tan-
gential component or friction by T, and putting B =
= |R|, N = |N|, T = |T|, we obtain:

T = Rsinx, N = Rcosa, (1)

whence
T = N tana. @)
Experiment shows that the angle « cannot exceed a certain limit
which depends on the nature of the surfaces I and II.
Let us denote by @ the maximum value of the angle x at the point 4
for a given pair of bodies I and II in the position of equilibrium. We
therefore have 0 < « < ¢, 1. e. 0 < tanx < tan @, whence by (2)

T < N tang. (3)
Putting f = tan g, we get ,
T < N (4)
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The number | is called the static coefficient of friction for a given pair
of bodies I and IT at the point of contact 4.

Let us consider a cone of revolution whose vertex is at 4, and whose
axis is the normal  inclined at an angle  with respect to the generatrices
of the cone. This cone is called the cone of friction at the point 4.

Since « < g, the reaction lies within the cone of friction or on its surface.

. Exactly as for smooth supports (p. 259), we also assume in the case
of friction the following principle:

If a rigid body rests on supports and reactions (lying within the cones of
friction), which balance the forces acting on the body, are possible, then such
reactions are actually induced (if the body was initially at rest).

Example I. A heavy rod 4B, lying in a vertical plane, rests against

a vertical plane and a horizontal plane (Fig. 194). The coefficients of fric-

tion at 4 and B are f, and f,. Examine the condi-

tions for equilibrium.

Let us consider the cones of friction at 4 and

B. The generatrices of these cones are inclined to

. the normals at 4 and B at the angles ¢, and ¢,

where tanp, = f;, and tanp, = f,. The reactions

R, and R, at A and B must lie within or on the
surface of these cones.

Fig. 194,

Three forces act on the rod 4B: R, R,, and the weight Q acting at
- the centre of gravity S. A ’

If the rod is in equilibrium, then the directions of these forces pass
through one point C (p. 246). This point must obviously lie in @ region
common to both cones of friction (vide shaded region in the figure)
because the directions of there actions can only intersect in this region. The
direction of the weight must therefore pass through the region common
to both cones of friction. :

Conversely, if the direction of the weight Q passes through the region
common to the cones of friction, then the rod can remain in equilibrium.
For let us choose on the vertical passing through § an arbitrary point ¢
within the region common to the cones of friction. It is easy to see that
reactions R, and R,, having directions 40 and BC and balancing the
weight Q, can occur. Therefore the rod can in this case remain in equi-
librium.

If the centre of gravity were at a point 8’ such that the vertical pas-
sing through this point did not cut the region common. to the cones of
friction, then the equilibrium of the rod would be impossible.
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Consequently: the necessary and sufficient condition for the equilibrium
of the rod is that the direction of the weight pass through the region common to
the cones of friction. ‘

Let us put: AB = [, AS = d, BS = d’ and let us denote by « the
angle which 4B makes with the horizontal. Let us choose the 2 and y
axes of the coordinate system as in the drawing and assume that the rod is
in equilibrium. From the conditions of projections and of moment with
respect to O we obtain '

le + Rzm =0, Rl,, + sz“ @ =0, (5)
as well ag —- lel coso Rzml sing - Qd’ cosx = 0, i. e.
— R1,,l + Ryl tana + Qd' = 0. (6)

Moreover, we have the. following inequalities:
By, | < Byt |Boy| < Ry fo (7)

The reactions cannot be determined from formulae (5) and (6).
Relations (5)—(7) permit us only to give limits which the components of
the reactions cannot exceed.

Let us denote by z, the abscissa of the point 8, and by & the abscissa
of the point G at which the extreme generatrices of the cones of friction
intersect. Equilibrium will result if

£ <z, (8)
" Tn order to determine &, let us write the equations of the lines BG

and AG:
y = fux -+ lsing, y=—(x—Ilcosa)/fs

The point & is the point of intersection of these lines; hence

_ L htansy oo (9)
THhh
Since %, = d' cos «, the inequality (8) assumes the form
(1—fytana) /(1 + fofs) S d' [ L. (10)

Equilibrium follows if the left side of this inequality is a negative
number or zero. In this case 1 — f, tana < 0; hence 1/f; < tanx or
cot tan«; consequently jm — ¢, < .

qj%[‘l%reff)lre, if 47 E— Py =<}: c%:, thez equilibrinm follows.. On the _other

hand, if jo — ¢, > , then the left side of the inequality (10) will be
positive and equilibrium will not oceur for too small d'.

Tt is easy to verify these results in the drawing (p. 268).
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Example 2. A beam I passes loosely through a groove in beam II.

A force P parallel to beam T acts on beam II. The beams are pressed to
each other at the points 4 and B (Fig. 195).

Let us determine the cones of friction at 4 and B. If the direction of

the force P passes through the region common to the cones of friction,

then reactions R;, R, balancing the

- force P and acting on the beam II

R A L will appear at the points 4 and B.

e S /Y Then beam II will not move. The beam
I , 2 sticks fast.

B\, P From the drawing it is easy to see

Py \\\ that beam II will move if the force P’

/ AN has its origin near beam I and is parallel

_.-;'ig. 195, ; to it. For then the direction of the force

P’ will not pass through the common
part of both cones of friction; equilibrium will therefore be impossible.

§11. Conditions for equilibrium not involving the reaction. The
condition for the equilibrium of forces acting on a rigid body given on
p. 257 expresses the relation that obtains between the acting forces and
the reactions. We now give several examples in which the conditions for
the equilibrium of the acting forces can be made to refer only to the acting
forces without including the reaction.

Body with one fixed point. Let a rigid body have one fixed point, e. g.
the point 0. We can therefore assume that the body is free and that the
point O is acted upon by a reaction R holding the point O (Fig. 196).

Let us further assume that the body is in equilibrium under the
action of the forces Py, P,, ..., P,,. These forces consequently balance the
reaction R. From the conditions of equilibrium it follows that the sum of
the forces and the moment with respect to the point O are equal to
zero, i. e.

R+ SP, =0, (1)
IMom,P; = 0. (I
The reaction R (being a force whose origin is at O) does not appear in

equation (I) because its moment with respect to O is zero. From equation
(1) we can determine R. We have

' 2)

Equation (I) constitutes the necessary condition which the acting
| forces Py, P,, ..., P,,, must satisfy in the case of equilibrium.
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We shall now prove that condition (I)is also a sufficient condition
for equilibrium.

Let us assume that the system of forces P, P,,..., P,, satisfies equa-
tion (I), i. e. that the moment of this system of forces with respect to O is
zero. It follows from this that the forces Py, P,, ..., P,, have a resultant

- P = XP; whose origin is at O (p. 26). Now the force P acting at O cannot

move the given body which is at rest, because the point O is fixed. The
system of forces Py, P,, ..., P, (equipollent to the force P), is therefore in
equilibrium.

Hence: 4 necessary and sufficient condition that a system of forces
acting on @ rigid body fized at one point O be in equilibrium is that the total
moment of the acting forces
with respect to the point O be
zero (or that the system
have a resultant passing
through 0).

Body with a fixed axis.
Let a rigid body have a cer-
tain fixed line [ (it is suffi-
cient for this purpose, for example, to fix two
points of this line). We can assume that the body
is free and that the points lying on the axis are
acted upon by forces of reaction which cause the axis to be fixed.

Let us assume that the body is in equilibrium under the action of
the forces {P;}. Hence the forces {P;} balance the forces of reaction. From
the conditions of equilibrium it follows that the total moment of these
forces with respect to the axis [ is equal to zero. Since the moment of the
forces of reaction with respect to the axis ! is zero (because the reactions
are forces whose origins lie on the axis), the total moment of the forces
{P;} with respect to the axis [ is zero, i. e.

ZMom;P, = 0. Im

The forces of reaction do not appear in equation (II). This equation
is consequently the necessary condition that the given system of forces
{P,} must satisfy in order that the body be in equilibrium.

‘We shall now prove that condition (II) is also a sufficient condi-
tion for equilibrium.

Let us assume, then, that an arbitrary system of forces P, ..., P,
satisfies condition (IT). Let us select an arbitrary point O on the axis I
(Fig. 197). By the theorem on reduction (p. 237), the given system is

R
Fig. 196.

Fig. 197.
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equipollent to a system composed of two forces S and T, of which §
has its origin at O. Since the total moment of the forces Py, Py, ..., P,
with respect to [ is zero, the total moment of the forces S and T with
respect to [ is also zero. Since Mom,;S = 0 (because the force S acts at
the point O lying on I), we must also have Mom,T = 0. Therefore the
force T either cuts I or is parallel to L.

Let us consider an arbitrary point O’ == O on the axis I. Let A4 be
the origin of the force T. Since the force T lies in the plane passing through
land A, we can resolve T into two forces T, and T, having directions 04
and 0’4, and then translate their points of application to O and 0. In
this manner we have shown that the system of forces Py, Py, ..., Py, is
equipollent to a system of forces acting at the points of the axis I.

Since it is obvious that the forces acting at the points of the axis [,
which is fixed by hypothesis, cannot move a body being at rest, the
given system of acting forces Py, Py, ..., Py, i8 in equilibrium.

Therefore: the necessary and sufficient condition that a system of forces
acting on o rigid body having a fized axis be in equilibrium is that the total
moment of the system of forces with respect to this axis be zero.

Remark. Let I7 be an arbitrary plane perpendicular to the line [, and
0, the point of intersection of the plane I7 with the axis . Let us denote
by P;, P, ... the projections on the plane I7 of the acting forces Py, Py, ...
From the definition of a moment with respect to an axis (p. 233) it follows
that the moment of the force P; with respect to O, is equal to the moment
of the force P, with respect to I. Consequently the total moment of the
forces {P;} with respect to the point O, is equal to the total moment of the
forces {P;} with respect to the axis I.

- Therefore: the necessary and sufficient condition for the equilibrium of
a system of forces {P;} is that the total moment of the forces {P;} with respect
to O, be zero.

This condition is such as if the projection of a body on the plane I7
had a fixed point O, and the projections of the forces Py, P,, ... acted on
the projection of the body. :

In order to see whether a system of forces acting on a rigid body
having a fixed axis is in equilibrium, it is therefore sufficient to know only
the projections of the acting forces on a plane perpendicular to the axis
and the point of intersection of the axis with this plane.

Plane motion of a body. Let it be possible for a rigid body to move
only in such a way that the path of each of its points is plane and lies in
a plane parallel to a certain fixed plane I7.
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We then say that the body can execute only a plane motion and we
call the plane I7 a directional plane.

An example of a body executing a plane motion is a cylinder whose
bases lie in two parallel planes IT and II’ (F.g. 198). If there is no friction
the reactions of the planes IT and II" are per-
pendicular to these planes.

In general, let us assume that whenever there
is no friction the reactions which cause the body to
execute only a plane motion are perpendicular to RIR
the directional plane IT. VoAl ' REL

It is obvious, therefore, that a system of F/! _.‘4""—%*:‘:
forces perpendicular to the directional plane is ' !
in equilibrium; this means that forces perpendi- W o0 T,
cular to I7 cannot move a body which can execute Fig. 198.
only a plane motion if the body is at rest.

)

:Ql N

S W

Let a body which can execute only a plane motion be in equilibrium
under the action of a system of forces Py, P,, ... The acting forces therefore
balance the reactions R,, R,, ..., i. e. they form a system equipollent to
zero. It follows from this that the projections of the forces Py, Py, ... and
those of the reactions Ry, R,, ... on the directional plane I7 also form a
system equipollent to zero. Since the projections of the reactions are
zero (because the reactions are perpendicular to IT), the projections Py,
P,, ... of the forces Py, P,, ... on the directional plane themselves also
form a system equipollent to zero.

Let O be an arbitrary point of the plane I1. If the forces Py, P,, ... are
in equilibrium, we obtain:

SP; =0, SMomyP;= 0. (8)

Condition (3) is therefore a necessary condition for the equilibrium
the system of forces P, P,, ... We shall prove that it is also a sufficient
condition.

With this in view, let us assume that the system of forces Py, P, ...
satisfies equations (3). In virtue of the theorem on reduction this system
is equipollent to a system consisting of the force P = ZP; and a certain
couple U, —U. Let us denote by P’, U’, and—U’, the projections of these
forces on the plane /7. By (3) we obtain:

P’ =0, Mom(V',—U’)= 0.
Consequently P is perpendicular to II; and the couple U, —U lies in
the plane perpendicular to I7. Hence we can rotate the couple U, —Uin
18
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its plane (leaving the moment unchanged) so that in the new position
the forces are perpendicular to JI. Denoting by V, —V the new couple
equipollent to the former, we see that the system of forces Py, P,, ... is
equipollent to the system of forces P, ¥, and —V, perpendicular to I7. It
follows that the system Py, P,, ... is in equilibrium.

Therefore: a necessary and sufficient condition that a system of forces
acting on a rigid body which can execute only a plane motion be vn equilibrium
18 that the projections of these forces on the directional plane form a system
equipollent to zero.

Hence, in order to find out whether a system of forces acting on
a body which can execute only a plane motion is in equilibrium, it is
sufficient to know the projections of the acting forces on the directional
plane.

Example I. Lever. A beam having a fixed horizontal axis perpen-
dicular to it is called a lever. :

We assume that the forces acting on a lever lie in one plane II per-
pendicular to the axis of rotation and passing through the centre of
gravity.

Let us denote by Qy, Q,, ... the forces acting on the beam at the
points A4,, 4,, ..., by Q the weight of the beam acting at its centre of
gravity 8, by @, @, ..., @ the absolute values, and by ¢, ¢, ..., ¢ the
arms of these forces with respect to the point of intersection O of the
plane IT with the axis of rotation (Fig. 199).

The moment of the system of forces Q,, Q,, ..., Q, with respect to the
axis of rotation in this case is equal to the moment of this system with
respect to 0. The acting forces will therefore be in equilibrium if the sum
of their moments with respect to O is zero. Hence the condition of equi-
librium can be written in the form

+ Qi Qg t ... Q7 =0, (4)
where the signs - and — are taken according to the rule given on p. 233.

icm

[§11] Conditions for equilibrium 275

Let us assume that the center of gravity lies under the axisof
rotation when the beam has a horizontal position. Tt follows from this,
obviously, that for a beam on which no forces act (except gravity) a hori-
zontal position is a position of equilibrium. Let us assume, in addition,
that the acting forces have a vertical direction (Fig. 200).

Let ¢ denote the angle which the beam makes with the horizontal.
Since OS is perpendicular to the beam, OS also makes an angle ¢ with the
vertical.

Hence we have:

Q1 = OA4, cosp, ¢y = 0A,cosp, ..., ¢ =08 sing,

whence by substituting in (4)
(£ @-04; 4+ Q,-04,+ ...) cosp + Q - OS sin ¢ = 0,
or, dividing by cos g,
4@ 04, +0Q,-04,4+ ...+ Q-0S tangp = 0.

Knowing the forces Qy, Qy, ..., Q, we can calculate from equation
(5) the angle ¢ which the beam makes with the horizontal in the position
of equilibrium. , .

In particular, if the beam is acted upon by two forces Q and Q,,
directed downwards and applied on opposite sides of the beam (asin
Fig. 201), we obtain from (5) —@,-04 +Q,-0B —Q-0OStang =
= 0, whence

tan g = (@, - OB—Q,-04)/ @ - OS. (6)
If = 0 (i e. if the beam is in equilibrium in a horizontal pesition),
we obtain
@,-04 =@, -0B.

In particular, therefore, if 04 = OB, then @, = @,.

An instrument called a balance, which serves to compare the weights
of two bodies and indirectly their masses, de-
pends on this principle.

Example 2. Arigid body, having a fixed
axis J, is in equilibrium under the action of the
forces Py, P,, ..., P,, whose points of.applica-
tion are A, 4,, ..., 4, (Fig. 202). Give the
necessary and sufficient conditions ‘which
these forces must satisfy in order that the
body continue to be in equilibrium, if it is
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turned about the axis I through an arbitrary angle « and during this
rotation the directions, senses, magnitudes, and the points of applica-
tion (in the body) of these forces remain unchanged.

Let us take the axis [ as the z-axis of the coordinate system; denote
by %1, Y1, 21, T, Y2, 29, -.. the coordinates of the points of application
Ay, 4, ..., and by ), y1, 21, ¥y, Ys, 25, -.- the coordinates of the points
A4y, 4;, ..., into which the points 4,, 4,, ... went when the body turned
through an angle & about the axis I. Let B, and B; be the projections of
the points 4; and 4; on the xy-plane, and @ the angle between OB and the
z-axis. Putting r, = OB, = 0B;, we have: .

Z, =1 co8¢p, Y, =r sing, (7)

g =ryco8(p + &), ¥ =rsinl +o), 2z =z (8)
Consequently :c{ = r; CO8 @ cO8 & — 7y sin @ sin &, whence by (7)

%, = &, cosx — y, sine, and similarly y; = y, cosa + =, sinx.  (9)

Analogous formulae are obtained for the remaining points 4,, 4, ...
Since the body has to maintain equilibrium after turning through an
angle &, the moment of the forces with respect to the z-axis must be zero,
i.e.
I(Py; — P.a;) =0.

Substitﬁtmg for ;, y; the expressions from formulae (9), we obtain
cosx Z(Pixy,-——Piyzi) + sinx X(P; x; + Piyyf) = 0. (10)

Since equilibrium occurs for « = 0, substituting « = 0 in formula
(10), we obtain

(P y, —P; ;) = 0. (11)
From (10) we have for « = in :
L(P;z; + P;y:) = 0. (12)

Conversely, if conditions (11) and (12) hold, then obviously condition
(10) holds for every «. Equations (11) and (12) are therefore the sought
for necessary and sufficient conditions.

Determination of the reactions acting on a fixed axis. Let a rigid body
have a line I fixed at the two points O and 0. We can then assume that the
forces of reaction act at the points O and 0. ‘ k

Let: us assume that a system {P,} of forces acting on the body is in
equilibrium. i )
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Let the point O be the origin of asystem of coordinates and the axis
I the z-axis (Fig. 203). Let us denote by ;, y,, 2;, the coordinates of the
points of application of the forces {P,}, by R and N the reactions at the
points O and O', and by d the length of the segment 00".

Since the system of forces {P;} together with the reactions R and N
is in equilibrium, forming the projections of the sum and total moment
with respect to O on the axes of the coordinate system, we obtain six
equations: ‘

P, + R, +N,=0, ()
P, + Ry + N, =0, ()
2P, LR, + N, =0, (IIT)
5Pz —Puys) + Nyd =0, Iv) -
Z(P;g; — Py 2;) — Nyd =0, V)
(P y; — P xi) = 0. (VI)

0

Fig. 203.

Fig. 204.

From equations (IV) and (V) we can determine N, and N,. Next we
determine R, and R, from equations (I) and (II). Finally we calculate
R, + N, from equation (III).

We see, therefore, that the above equations do not permit us to
determine the reactions. It is true that the number of unknowns is six
(Rs, Ry, R,and N, N,, N,),i. e. ag many as there are equations, however,
they appear only in five equations. Equation (VI) expresses the condition
for the equilibrium of the acting forces. From equations (I)—(V) we can
determine only the components of reaction perpendicular to the axis [ and
the sum of the components parallel to the axis I.

Problems in which the forces of reaction cannot be determined from
the conditions of equilibrium are called statically indeterminate.

Therefore the calculation of the reactions of a rigid body which is
fixed at two points is statically indeterminate.
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If we assume that the given body is not a rigid body, but one that
can be deformed, then the forces of reaction could be calculated by appeal-
ing to the theory of elasticity. '

Our problem can be made statically determinate by assuming tha
the point O’ is fixed in a smooth bearing (Fig. 204).

The reaction N is then perpendicular to the axis [. In this case we
have N, = 0, and therefore we can determine R, from equation (ITI).

Example 3. A heavy rectangular plate has a horizontal axis I fixed
at the point O and at the bearing O’ (Fig. 205). The centre of the side
parallel to the axis is the point of application of the force P perpendicu-
lar to the plate. Given are: the weight Q whose origin is at the centre §
of the rectangle, sides @ and b of the rectangle, and the length d = 00'.
Determine in the position of equilibrium the re-
actions R and N (at O and O) and the angle ¢
which the plate makes with the horizontal.

Let O be the origin and the axis I the z-axis of
the coordinate system; let us give the z-axis a
horizontal direction and the y-axis a direction
vertically upwards. We shall be able to apply equa-
tions (I)—(VI), p. 277.

The point S has the coordinates 3a cos ¢, 4a sin @, 3b; and the point
A:acosp, asinp, 1b. We have:

Qm =0,. Qy = "‘“Q: Qz =0, where Q = IQI:
P, =— Psing, P,=Pcosp, P,=0, where P= |P|.

Since N, = 0, we get by formulae (I)—(VL), p. 277:

— Psing+ B, + N, =0, Pcosp—@Q + R, — N, =0, R, = 0,
3P cosp— 3Qb + Nod = 0, 3bP sing— N,d = 0,
— Pa + 1Qa cosp = 0.

' From the last equation we obtain cos ¢ = 2P / @, and from the re-
maining equations we determine R,, R, and N,, N,. We have R,=N,=0.

Equilibrium is obviously possible if 2P / @ < 1,i.e.if P < Q /2.

§ 12. Equilibrium of heavy supported bodies. If a rigid body which
is not acted upon by any forces other than the force of gravity rests on
a horizontal plane IT and is in equilibrium, then the forces of reaction
which the plane exerts on the body (at the points of support) balance the
weights of the individual points of the body.
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Let us agsume that the supporting plane IT is smooth. The reactions
are then perpendicular to the plane; hence they have a resultant F acting
at a certain point O of the plane II. The point O was called the centre of
pressure (p. 260). The weights of the individual points of the body have
a resultant Q whose point of application is at the centre of gravity S.

If the body is in equilibrium, the forces F and
Q balance each other. Consequently F4 Q =0,
and moreover Fand Q lie on one line. Because of
this the centre of pressure lies at the point of inter-
section of the direction of the force Q with the
plane II. The centre of pressure O is therefore the
projection of the centre of gravity S on the sup-
porting plane I7.

If a body rests on a plane IT only at one point O and is in equilibrium,
then the reaction acts at 0. Consequently the centre of gravity lies above
the point of support.

Let the body now rest on the plane II at the points A,, 4,, ... and
let C be an arbitrary closed convex polygon enclosing all the points of
support A, A,, ... (Fig. 206). We shall prove that the centre of pressure
O in this case also lies either within or on the polygon C.

For let us assume that the centre of pressure lies outside the polygon
C at the point 0'. Let us draw an arbitrary line I in the plane IT such that
the point O’ and the line C lie on opposite sides of the line I. The moments
of the forces of reaction with respect to ! would therefore be directed op-
posite to the moment of the force F. This is impossible, however, because
the total moment of the forces of reaction is equal to the moment of the
force F. Hence the centre of pressure must lie within the convex polygon C.
If K is the smallest convex polygon (in the figure the polygon 4, 4,,
Ay, A ) within which the points of support lie,’) then the centre of pres-
sure also lies within this polygon. Since we have assumed that the body is
in equilibrium, the direction of the force of gravity passes through the
centre of pressure and therefore also falls within the polygon K.

We shall now prove that if the weight falls within the polygon K,
then reactions will appear. which balance the weight.

We shall consider two cases:
1° A body is supported at two points A and B. In this case the poly-
gon K is the line segment AB. If the direction of the force of gravity

1) In geometry it is proved that such a polygon always exists and lies within
every convex polygon containing the points of support.
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passes through the point G of the segment 4.5, then there exist two forces
of reaction R, and R, directed vertically upwards and having their origins
at 4 and B. These forces can be determined graphically as on p. 253, or
calculated as in example 4, p. 263. It follows from this by the principle
given on p. 260 that the reactions balance the weight.

2° A body is supported at » > 2 points. If the points are collinear,
then denoting the extreme points of support by 4 and B, we can proceed
as in case 1°. Suppose, then, thatnot all the points of support are collinear.
If the force of gravity falls within the polygon K at the point O, then
we can find three points of support such that the point O will lie within
a triangle of which these points are the vertices (the points A,, A, A,
in the figure). As we shall show (vide example 4), we can then
determine the reactions acting at the vertices of this trlangle and balancing
the force of gravity.

We therefore have the following theorem:

If a heavy rigid body rests on a smooth horizontal plane, then the neces-
sary and sufficient condition that the reactions of the plane balance the weight
of the body is that the force of gravity fall within the smallest convex polygon K
containing all the poinis of support

More generally: let a rigid body rest on a smooth horizontal plane and
in addition to the force of gravity let other forces act on it. If the body is
in equilibrium, then the resultant F of the reactions balances the acting
forces. It follows from this that the forces acting on the body have a ver-
tical resultant — F whose direction passesthrough the centre of pressure O
and falls within the polygon K. Conversely, if the acting forces have a
vertical resultant, directed downwards and falling within the polygon X,
then reactions will appear which balance the forces acting on the body. The
proof is carried out as before.

Example 4. A three-legged stool rests on the floor II. Determine
the reactions at the points of support A,, 4,, 4,, under the agsumption
that there is no friction.

Let us denote by S the centre of gravity of the stool, by 8’ the pro-
jection of § on /7, by Q the weight of the stool, and by Ry, Ry, R, the reac-
tions (Fig. 207).

The problem can be solved most simply by calculating the total
moments of the forces with respect to the lines 4,4 g9, A5 A, A A,; these
moments are obviously zero. '
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Let hy denote the distance of 4, from 4,4,, and w, the distance of &’
from A4.,4,. Tauking the moment with respect to the axis 4,4 ,, we obtain:

Ryh, —Qwy = 0, where Ry = |R,| and Q__ |Ql,
because the moments of the forces R; and R, are zero. Consequently
Ry = Qu, [ hs.
Analogously we obtain
Ry=Qwy/h and R,= Qu,/h,

Fig. 207.

Example 5. Lot a rigid body rest on a horizontal plane II at the n-
points of support 4,, 4,, ..., 4,. Let us take the plane I7 as the zy-plane
of the coordinate system (z,y,%); denote by ¥, 0, @5 ¥, 0, ...,
%, Yn, 0, the coordinates of the points of support 4;, 4, ..., A,, and by
g, Yo, 20 the coordinates of the centre of gravity S (Fig. 208).

Let R, R,, ..., R, denote the reactions, Q the weight, and R, R,,...,
R,, @, the absolute values of these forces.

Forming the projections on the coordinate axes, we obtain for the
projection on the z-axis

B £ Ry+ ... +RB,—Q =10 (13)

The remaining two equations drop out because they become iden-

tically zero.
Forming next the moments with respect to the origin of the coordin-

ate system, we obtain only two equations:
— Ry, — RBoya— ... + QY =0, Rz, + Ry + ... — @z =0, (14)
because the moment of the forces with respect to the z-axis is zero.

' We thus have only three equations for the determination of the reac-
tions. Hence if n> 3, then we shall not be able to determine the reactions.
The problem of determining the reactions in the case, for example, of
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a table standing on four legs is therefore statically indeterminate (vide
p. 277). ' '
However, if a body supported at n > 3 points is not rigid, then the
reactions can be determined by appealing to the theory of elasticity. We
shall show this in the next example.

Example 6. A rectangular table rests on four legs at the points
4,, 4, A, 4,, of a smooth horizontal plane II (Fig. 209).

Tet us denote the reactions by Ry, Ry, Ry, Ry, the weight by Q, and
the absolute values of these forces by Ri, By, Ry, By, @. Let us assume
that the points 4,, 4,, 4, Ay ave the vertices of

the rectangle and let us put:
/ A A, = A, =0, A A = 4,4,=0. (15)
& Let us take 4, as the origin of the coordinate
system, the lines 4,4, and 4,4, as the x and y
T I axes, and the sense of the z-axis vertically up-
= wards. Finally, let us denote by o, ¥, 2, the coor-
dinates of the centre of gravity S of the table top.
Forming the projections of the forces on the
coordinate axes and taking the moments of the

forces with respect to these axes, we obtain (cf. equations (13) and (14)
of example 5):

Fig. 209.

’ R1+R2+R3+R4"‘Q=O: (16)
——(.Ra—j—R4)b+Qyo=0, (By+ Bg)a — Q= 0. (17)

The reactions cannot be determined from these equations. -

Let us assume, however, that the table top and the plane I (on-which
the legs of the table rest) are rigid, that the legs of the table are not rigid,
but can be compressed, and that the reactions are proportional (in magni-
tude) to the contraction of the respective legs.

Therefore, if we denote the original length of the legs by I, and their
lengths after compression by z,, 2, 23, %, then the contractions are I — 2,
1 —zy, 1 — 25, | — 2, whence according to the assumption

v =ml—2), By =m(l —z,), By =m(l —2z;), By=m(l—z), (18)
where m is the factor of proportionality.

Equations (16), (17) and (18) constitute a system of seven equations
with eight unknowns R,, Ry, Ry, Ry, and z,, 2,, 25, 2,. We obtain the eighth
equation by stipulating that the points B;, B,, B;, By, at which the table

iom
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top rests on the legs, lie in one plane; for we have assumed that the table
top is rigid.

The points By, By, B, and By, have the coordinates 0, 0, 2,, @, 0, 2,,
a, b, 25, and 0, b, z,. As is known from analytic geometry, the condition
that these points lie in one plane is expressed by the formula

002 1
a0z 1
abz 1
0b 21

Evaluating the determinant, we obtain:

="0.

2y —2y - 2y —2, = 0. ‘ (19)

From equations (16)—(19) we can determine the unknown reactions.
We obtain:

1 1
z1=l+m0[——3 + 2(%—{-%9)], 2y = l+ZﬁQ[‘l_2(%‘"‘yf)]’
20
1 X Y . 1 B Zg Y
z,,.—:l—}—mQ[l——Z(wé’—l——bQ)], z4—l+mQ-+—l+2(;——l)9)],

Tn order that formulae (21) give non-negative values for the reactions
R,, ..., R, the following relations must hold:

(21)

pBabgy —3<I-P<h (22)
Tt follows from this that the projection of the centre of gravity on the
horizontal pléne, i. e. the point §'(,, ¥y, 0), must lie within the parallelo-
gram EFGH whose vertices are the midpoints of the sides of the rectangle
A,4,4,4,.
Let us suppose that the point S’ falls within the triangle 4,EH
(beyond the side EH). Then we would have

. %y, Y
e 1~2(7“i’+—5‘1)>0,

whence by (20) 23 > I; this means that the leg 4;B; becomes. elongated,
which is obviously impossible.
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We must therefore assume that the table rests on only three legs,

namely, at the points 4,, 4,, 4,. Putting Ry = 0, we then obtain from

equations (17):
Ry = Qy, /b, B, = @z, [ @,

and from equation (16)

Ty ¥
o

Example 7. A heavy cylinder rests on a smooth horizontal plane. The
cylinder is acted upon by a force couple P and —P lying in a vertical plane
passing through the centre of gravity S. What can be the maximum
magnitude of the moment of the couple if the cylinder is in equilibrium ?

Let us denote by M the moment of the couple, by Q the weight of the
cylinder, by F the resultant of the forces of reaction acting at O, and by
r the radius of the base of the cylinder (Fig. 210).

If the cylinder is in equilibrium, the sum of the forces is zero; hence

F+-Q=0o0r F=—Q.

11 P Assuming that S lies on the axis of the cylinder
= and putting d = 40, we get from the calculation
Pls i of the moment with respect to 4
Sk M)+ 1o — [Fig =0
! Fig 21(§J 5 - Since |Q] = |F,
M| = Qd—r),

where @ = |Q)|. Since the maximum value of d is 2, the maximum value
of M| is @r. :

Hence if |[M| > Qr, equilibrium is impossible. However, if M| < Qr,
then, as is easily verified, the resultant of the forces Q, P and —P is equal
to Q and intersects the horizontal plane within the base of the cylinder.
The cylinder can therefore remain in equilibrium.

§ 13. Internal forces. Through an arbitrary point O of an axis chosen
in a given rigid body, e. g. in a beam, let us pass a plane IT perpendijcular
to this axis. The plane will divide the body into two parts I and IT. Let us
assume that the body is acted upon by certain forces and that it is in
equilibrium. In many problems of engineering mechanics it is convenient
to consider the parts I and II as separate rigid bodies tangent along the
intersecting plane I7 (Fig. 211). :
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From such a conception it follows that part II acts on part I with
certain forces. These forces are called stresses.
Taking the point O as the centre of reduction, we can replace the

stresses by one force R with its origin at O and a force couple of mo-
ment M.

The component OA of the force R, perpendicular to the section, is
called the compressive or tensile resultant at O, depending on whether the
component is ;direetecﬁowa,rdsvp&rt I or away from it.

The component OB of the force R, tangent to the section, is called the
resultant bending or shearing force at O.

The component OC of the moment M, perpendicular to the intersect-
ing plane 1T, is called the twisting moment at 0, and the component OD
tangent to the surface is called the bending moment at O.

The twisting moment can be considered as the moment of a certain
force couple lying in the intersecting plane, and the bending moment as
the moment of a force couple lying in the '
plane tangent to the axis at the point O.
The action of these couples, of which the
first tends to twist and the second to bend,
explain to us the names of the moments.

If the body is in equilibrium, then the
external forces acting on part I balance the
stresses. Consequently —R and —M are
equal, respectively, to the sum and total
moment with respect to O of the external forces acting on part I.
Knowing the external forces, we can therefore determine R and M.

A knowledge of the forces R and of the moment M is of great impor-
tance in the subject of strength of materials. In general, the larger the
forces R and M are, the greater is the possibility that the body will be
ruptured.

According to the law of action and reaction, the stresses with which
part I acts on I can be replaced by the sum —R with its origin at O and
by a couple of moment — M.

Example I. A beam supported at the points 4 and B carries the loads
Py, Py, ..., P, directed vertically downwards and situated at the distances
Zy, Ty, +.., T5, from A (Fig. 174). Assuming that the supports are smooth,
we obtain (cf. formulae (13) and (14), p. 263):

By = (P&, + Pyy 4 ... + Pyxy)

/d,
R, =[P,d —x;) 4 ... + Py(d —x5)] /

3
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where AB = d, and P,, R,, R,, denote the absolute values of the forces and
reactions.

Let us cut the beam by a plane perpendicular to the axis at the point
O at a distance z from A. Let us denote by R the sum, and by M the
moment with respect to C, of the stresses of part OB on part AC.
Assuming that the cut occurs between the forces P, and P,, we obtain:

_R:R1+P1+P2+Ps>
— M = MomR; + MomP; + MomgP, + MomgP,.

Giving the y-axis a vertical direction with an upward sense, we
obtain:
R, = R, —P, —P,— P,

M = 2R, — (v — ;) Py — (# — 25) Py — ( — 25) Py.

Since R and M lie in the intersecting plane, R is the bending force
and M the bending moment. The compressive (or tensile) force and the
twisting moment are zero. The force R and the moment M can also be
determined by means of a string polygon as on pp. 252 and 253.

Example 2. A beam, built-in. as in the Fig. 212, is loaded at 4 by

; the force P. Let us form a section at the point C.
%/ Denote by R the sum, and by M the moment
B Pe—— with respect to C, of the stresses of the left part

on the right part. Consequently we have:
P —R=P, —M = Mom_gP.

Fig. 212.
Hence the right part acts on the left part
(built-in) with stresses of sum —R and moment — M. The reactions of
the wall, balancing these stresses, therefore have the sum R =—P and
the moment M =—DMomP.

ITT. SYSTEMS OF BODIES

§ 14. Conditions of equilibrium. A necessary and sufficient condition
for the equilibrium of a system of rigid bodies (free or not) is that each
body of the system be in equilibrium. It follows from this that the neces-
sary and sufficient condition for the equilibrium of a system of rigid bodies
is that; for each body separately, the forces acting on this body balance the
reactions.

The forces with which two bodies of a system act on each other are
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. called the internal forces of the system. The remaining forces are called

external.

For example, if two bodies of a system touch each other, then the
reactions at the points of contact are internal forces. On the other hand,
those acting forces and reactions which arise from bodies not belonging to
the system (e. g. from supports) are external forces.

Internal forces occur in pairs and are subject to the law of action and
reaction; consequently the sum and total moment of the external forces
are zero.

If a system of bodies is in equilibrium, then, for each body, the
external forces acting on the body balance the internal forces. It follows
from this that the external forces acting on the entire system balance the
internal forces of the system. Since (as we have mentioned above) the
internal forces have a sum and total moment equal to zero, it follows that
if a system of rigid bodies is in equilibrium, the sum and total moment of
the external forces are zero.

This condition is only sufficient, but not necessary for the
equilibrium of a system of rigid bodies.

Each part of a system of rigid bodies which is in equilibrium is ob-
viously itself in equilibrium. The external forces with respect to a certain
part of the system are:

a) those external forces of the whole system which act on its given
part,

b) the reactions exerted on this part by the remaining bodies of the
system.

It follows from this that the necessary and sufficient condition for the
equilibrium of a system of rigid bodies is that the external forces acting on
any part of the system balance the reactions exerted on this part by the remain-
ing bodies of the system.

For we can choose individual bodies of the Z d
system as the parts of the system. 4 1

Example. Two heavy rods AC and BC, lying
in a vertical plane and touching at the point C,
lean against vertical walls at A and B, and against
horizontal plane at C' (Fig. 213). Given are: the
weights of the rods Q; and Q, acting at the
centres of gravity, as well as the lengths I, = AC,
l,= B0, a, = 8,0, ay = 8,0 and the distance d
between the vertical walls. Determine in the posi-
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tion of equilibrium the angles a; and x, which the rods make with the
horizontal under the assumption that there is no friction.

Let us denote the reactions of the vertical walls by Ny and N, (these
reactions therefore have a horizontal direction), the reactions of the hori-
zontal wall by R, and R, (hence having & vertical direction), finally, the
force with which the rod (B acts on the rod AC at the point ¢ by T.
Then by the law of action and reaction the rod AC acts on the rod CB
with a force —T. Nothing can be said beforehand about the direction of
the force T.

Let us select the z and z axes in the plane of the rods, giving the
z-axis a horizontal direction and the z-axis a direction vertically upwards.
If the rod AC is in equilibrium, the forces acting on this rod balance one
another. Therefore, forming their projections on the z and z axes and
calculating the moment with respect to C, we obtain:

N1+Tm:O= ”“Q1+R1+T1/=0.« (1)
N, sin o, — Q0 Cos oy = 0, (2)

where N, B, and @,, denote the absolute values of the corresponding
forces. Similarly, for the rod CB we get: :

Ny To=0, —Qut Ry— T,y =0, (3)
— Nylysine, + @0, COS 0y = 0. (4)
From equdtions (2) and (4) we have:
1= Qua cotxy |1, Ny= Quap coty /Ly, (5)
and from the first of the equations (1) and (3) N, = N,, whence by (5)

Qi0; cob oy | 1y = Qutty cOb vy [ Ly (6)

Moreover, as is seen from the drawing,
I, cos oy + I, cos oy =d. (7)

From equations (6) and (7) we can determine the angles «, and «,.

Remark. We cannot determine the forces R;, R,, and T, from equations
(1)—(4). However, we can obtain the forces T' = R, 4 T and T" = R, —
— T. They are the resultants of the reactions acting on the rods at €. We
get: '
T%:Tmz—Nl, T,=R, +T,=¢,

T:u:'_‘ m:lvzs TZ:Rz““Tszz-

§ 15. Systems of bars. If two forces act at the ends 4 and B of a rigid
bar and the bar is in equilibrium, then these forces (because their sum and
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total moment are equal to zero) act along the bar, are equal in magnitude
and oppositely directed. Let us denote these forces by P and —P.

Stresses in bars. Let us cut a bar at some point C' and remove its
right part CB (Fig. 214). Now, in order that the left part of the bar remain
in equilibrium, it would be necessary to add the force —P with its initial
point at C. Consequently we can assume that the right part CB acts on
the left part AC with a force — P. This force is called the stress in the bar.

If the forces P and —P are directed towards each other, the stress
is called a compression (Fig. 215), in the opposite case a tension (Fig. 214).

At every point of the bar the stress has the same magnitude and
direction; the sense of the stress, however, depends on whether we are
considering the reaction of the right part on the left, or conversely. With
reference to the end of the bar, we can only talk about the reaction of the
whole bar on the end. Therefore, if we give the magnitude of the stress and
its kind (i. e. whether it is a tension or a compression), then the stresses
at the ends of the bar will be completely defined.

P_A ¢ g

P A C -P P 4 ¢ P . N
Fig. 214, Fig. 215. Fig. 216,

Pin-connections. Let us imagine that several rigid bars are so con-
nected that they must constantly be in contact with each other at certain
points, e. g. at the ends. If, in addition to this, the connection does not cause
other limitations of the motion of the bars, we say that the bars are pin-
connected and the points at which the bars are pinned are called joints.

A pin-connection can be obtained approximately by joining, for
example, the ends of the bars by a very short inextensible string.

According to the theorem on reduction, the reactions which one bar
exerts on the other can be replaced by one force R acting at the point of
contact and a force couple of moment M.

For simplicity’s sake we shall assume that M = 0. We then say
that the joint is smooth.

Tt should be noted that not always can we assume that a joint is
smooth; examples of this will be given later (p. 294).

In the case of a smooth joint, the reaction with which one bar acts
on the other is a force acting at the point of contact, i. e. at the joint. In
particular, if several bars come together at a smooth joint, then the

- 19
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reaction exerted on a certain bar by those remaining will be a force acting
at the joint (e. g. the reaction Ry of the bars 2, 3, 4, on the bar I,
shown in Fig. 216). :

Systems of bars. Let us consider a system of bars connected at their
ends. If some external force acts at a joint, then it is necessary to specify
clearly on which bar this force acts. -

If a system of bars is in equilibrium, the forces acting on each bar
must obviously balance the reactions exerted on this bar.

In Fig. 217 is shown a system of bars in which the external forces P, P,
and P,, areacting on the bar A B. The force P, is acting at the end 4 of the bar. These
forces balance the reactions R, and R, at the ends 4 and B.

Tt is often convenient to consider a joint as a separate material
point (as a separate body) connected with the ends of the bars coming
together at this joint. In other words, it is assumed that the ends of the
bars are not connected together directly, but by means of a joint.Under
this assumption the reactions of the pinned bars are replaced by the re-
actions of the joint on these bars and the forces applied at a joint are
considered as forces acting on the joint, and not on the bars. The only
internal forces of a system of bars will then be the reactions of the joints
on the bars and those of the bars on the joints. ‘

In the case of the equilibrium of a system each bar and joint is in
equilibrium; consequently (p. 286):

1° external forces acting on an arbitrary bar (not attached at a joint)
balance the reactions which the joints exert on this bar;

9° external forces acting at any joint whatsoever balance the reactions of
the bars at this joint. :

In Fig. 218 the force P, with its origin at 4 balances the reactions S, S,, S5 of
the bars 1, 2, 3, on the joint 4. On the other hand, the external forces Py, Pg, acting
on the bar 4B balance the reactions T, and T, of the joints 4 and B on this bar.

" In general, nothing can be said in advance about the directions of the
reactions of the joints on the bars. The situation is different, however,
when the external forces are applied only at the joints.

Let us consider just such a system of bars which remain in equilibrium
(Fig. 219). Let T, and T, denote the reactions of the joints 4 and B on the
bar connecting these joints. Since no external forces act on the bar, the
reactions T, and T, must balance (this follows from condition 1°). There-
fore the reactions act along the bar and we have T) = — T,.

Hence: if a system of pin-connected bars is in equilibrium, and the
external forces are applied only at the joints, then the reactions of the joints on
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the bars are forces directed along the bars; the reactions which the joints exert
on the bar connecting them are equal in magnitude and direction, - but op-
posite tn sense. :

The reactions of the joints 4 and B cause a stress in the bar which
may be a tension or a compression (in our case the stress is a tension). By

Fig. 218.

the law of action and reaction the bar 4B acts on the joint 4 with a force
S, = — T,. The force §, is therefore a stress in the bar at the end 4. The
reactions of the bars on the joints are then equal to the stresses in these
bars. From condition 2°, therefore, we obtain the following theorem:

The external forces applied at a joint balance the stresses in the bars
(coming together at this joint).

In Fig. 219 the stresses S,, S,, Sy, S; in the bars 1, 2, 3, 4, balance the force
P acting at the joint A4; therefore P 4 §; 4+ S, + S, + §, = 0.

Example . Three bars AB, BC, and CD, pin-connected at the points
B and C, and fixed by means of the joints at the points 4 and D,
remain in equilibrium in'a vertical plane under the action of the vertical
forces P and Q whose origins are B and F. Given are: the force P and the
points of application E and F. Determine the force Q (Fig. 220).

The reactions R, and T, act at the points 4 and B of the bars 4B and
BO0, respectively. We have R, - Ty = 0; the reactions R, and T, therefore
act along the bar AB. :

The reaction — T, the force P,and the reaction T, of the bar CD at the

bar BC is in equilibrium, the directions
of these forces intersect at one point @,
which we find as the intersection of the
line 4 B and of the direction of the force
P. Having the point &, we can obtain
the direction OG of the reaction T,.
Since — T, - P+ T, = 0, knowing the

Fig. 220.
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directions of the forces T, T,, and the force P, we can determine the forces
T,, T, from the triangle of forces. .

The reactions — T, R, and the force Q, act on the bar CD. These for-
ces intersect at one point H which we obtain as the point of intersection
of the directions of the forces —T, and Q. Having the point H, we obtain
the direction of the force R,. Since — T, + Q 4 R, = 0, knowing T,, we
obtain the forces Q and R, from the triangle of forces.

Example 2. Four bars 1, 2, 3, 4, are pin-connected at 4, B, and C,and
fixed at the joints £ and F'. The bars are inclined to the horizontal at the
angles «, 8, y, and 8. Vertical forces Py, Py, and Py, act at the joints 4,
B, and C. The force P, is given.
Determine the forces P, and P, as
well as the reactions R, and R, at
E and F (Fig. 221).

Since the external forces act
only at the joints, the stresses in
the bars at each joint balance the
external forces acting at this joint.

At the joint E the stress T,
in the bar 1 balances the reac-

Fig. 221.

tion Ry : Ty + R, = 0.
At the joint 4 the stresses —T; in bar 1 and T, in bar 2 balance the
force Py: — T, + T3 + P; = 0. Denoting the absolute values of these

forces by Ty, T,, and P,, and forming their projections on the horizontal
and vertical directions, we obtain:

Tycosx —Tyeosf =0, Tysinog—7T,sinf— P, =0.
From these equations we calculate 7', and 7,.
At the joint B for the stress T; in bar 3 we get the relation — T, +

+ T, 4+ P, = 0. Forming the projections on the horizontal and vertical
directions and putting 7’3 = |T,| and P, = [P,|, we obtain:

Tycosp—Tscosy =0, Tysinf+ Tysiny —P, = 0.
Using an analogous notation, we get at the joint C:
— Tysiny + T, sinéd — Py = 0,
from which we calculate 7', and P,.
At the joint ¥ we finally obtain — T, 4+ Ry = O or R, = T,.

Tyeosy —T,cosd =0,

Example 3. Decimal balance. A beam AC, supported at O, is con-
nected at the points B and C with the beams DF and GK by means of the
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rods BD and CG. The beam DF, supported at the point F, rests at the
point H on the beam GK, supported at K. At the points B, C, G'and D
there are pin-connections (Fig. 222).

A weight Q, which is to be weighed, is put on the beam DF and ba-
lanced by the weight P placed on a pan hanging from 4. The weights of
the beams and bars are meglected.
Determine the relation between the
weights P and Q.

Let us denote by T, T,, the
stresses in the bars BD and C@G at
the points B and C.

If the beam AC is in equilib-
rium, the sum of the moments of
the forces acting on it with respect
to O is equal to zero:

— Pa 4 bT,y+ (b4 ) Ty =0, ®)
where P = |P|, Ty=|T,|, T,=|T,|,and the lengths a, b, and ¢, are those
shown in the figure.

The forces acting on the beam DJF are: the stress —T; in the bar BD
at the point D, the weight Q, and the reaction R at the point F. Forming
the projections on a vertical direction and taking the moment with
respect to F, we obtain in the position of equilibrium for the beam DF:

T,+R—Q=0, Tyd—@e=0, (9)
where B = |R|, @ = |Q|, and the lengths d and e are those given in the
figure. . ,

The forces acting on the beam GK are: the stress —T, in the bar CG
at the point @ and the reaction —R of the beam DF at the point H.
Forming the moment of these forces with respect to the point of support
K, we obtain

Fig. 222.

Tf + 9)— Bg = 0. (10)
From equations (9) we obtain:

d—e

TISQ'%: -R=Q' d 3

T Q d — € g
g = 8 ————— e,

Substituting the values obtained in equation (8) for T, and T',, we
obtain
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(bf —cg)e + (b +o)gd
P = . 11
Ol T g) (1
If we assume that bf — cg = 0, whence
b/'/c___g/fa_ (12)

then P will be independent of e, i. e. of the position of the weight Q on
the beam DF. Hence in virtue of (11) and (12)

5 .

For b/ a = 1% we have a decimal balance.

~ Example 4. Two bars fixed at the ends 4 and B and pinned at C' are
collinear. A force P whose origin is at D acts on the bar AC in a direction
perpendicular to AC (Fig. 223). The system of bars is in equilibrium,
since the point ¢ cannot change its position.

7T

Fig. 223.

Let us suppose for a moment that the bar AC acts on C.B with a force
T whose initial point is at C. Consequently the bar OB would act on the
bar AC with a force —T also acting at C.

Let us denote by R, and R, the reactions at 4 and B.

Since the bar CB is in equilibrium, the forces R, and T act along the
-bar 4B. Tt follows from this that the bar AC cannot be in equilibrium
because the forces —T, Ry, and P, acting on this bar do not balance one
another, for their total moment with respect to 4 is equal to the moment
of the force P with respect to 4, which is different from zero. We have thus
arrived at a contradiction.

We must therefore assume that the bar AC acts on the bar CB with

a force equipollent to one force and a force couple of moment different '

from zero. :

§ 16. Frames. A system of rigid bars, pin-connected and forming as

& whole a rigid body, is called a space frame (or truss).
VExa,I‘npl.es of space frames are 1. a system of three bars, pin-connected
-and forming a tringle (Fig. 224a), 2. a system of six bars formin g the edges
of a tetrahedron (Fig. 224b). On the other hand, a system of bars forming
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theedges of a rectangular parallelepiped and pin-connected at the vertices
is not a frame because the bars can change their relative positions.
Joints of a frame are also called nodes.

Plane frame. If a system of pin-connected rigid bars is coplanar and

"the bars cannot change their mutual positions in this plane, then such

a system is called a plane frame.

A !
a) b) c)
Dy— C E D E
A IAVAN c
// /’l‘
A A B c A
o) ’ e f 4
Fig. 224.

Examples of plane frames are represented in Fig. 224a, b, ¢, e, and f.
The system of bars in Fig. 224d does not form a frame, even a plane
frame, because the bars can change their relative positions; they can
assume e. g. the position indicated by the dotted lines.
'A plane frame does not form a rigid system if we admit motions
-of the bars in space. For example, if we fix the joints B,C,D,and E, of
the frame in Fig. 224e, then we can rotate the bars AE and AB in space
about EB. In the plane of the frame, the bars A and 4B cannot move.
If we remove the bar A Bin the frame shown in Fig. 224f, then in its
plane the system of bars continues to remain a rigid system, i. e. a frame.
Such a bar is called a redundant bar.
The frame shown in Fig. 224e does not have any redundant bars.

Analytical method of determining stresses
in a frame. A plane frame has p bars and
w joints Ay, 4, ..., 4y, at which the ex-
ternal forces Py, Py, ..., P, are applied. When
the joint A; is connected by a bar with the
joint A, (Fig. 225), we denote the length of
this bar by d;and the number whose ab-

A"()<il)/i)
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solute value is equal to the magnitude of the stress in this rod by 8,
the sign is -+ or — depending on whether the stress is a tension or a
compression (p. 289).

Let us choose an arbitrary coordinate system and denote the co-
ordinates of the joints 4y, 4, ..., Aw, Y T1, Y15 T, Yo 70 Ly, Y- Fromthe
definition of the number S;; it follows that for i = 1, 2, ..., w, the stress
in the bar at the joint 4; has the projections

X — Xy

dﬁ —‘Sih

Yi — Yq S .
d,;; i3
on the coordinate axes. .
Since the external force P; at the joint A ; balances the stresses in the
bars pinned at this joint (p. 291),

. 3y — &g : Yi—Yig _
Piz—*—yzgfjd'j 28, =0, Piy—f- Z]_J——(Z;-—-SU =0,

Tr;— X i Y
Pix:;: dﬁ—jsm Piy=§j:y‘—j;%"gm (1)
where the summation extends over all indices j for which the joint 4; is
connected by a bar with the joint 4. Since, by hypothesis, there are w
joints, system (1) consists of 2w equations.
Equations (1) serve to determine the stresses 8;; when the forces P;
are given. It may happen, however, that system (1) does not possess
a solution or there are too few equations to determine the unknowns Sy;.

For instance, in the frame shown in Fig. 224¢, p. 295, the bars in contact at
the joint 4, are collinear and the external foree P, acting at this joint does not lie on
this line. The stresses in these bars cannot balance the force P,. The system of
equations (1) for this frame does not therefore have a solution (p. 294).

In the frame of Fig. 224f, p. 205, we have 13 bars and 6 vertices. The number
of unknown stresses is consequently 13 and the number of equations in Bystem (1)
is only 2 . 6 = 12. Therefore there are too few equations.

In equations (1) let us denote the right sides of the first equations by
B, and those of the second by F;. Equations (1) then assume the form:

-Pix=Eis Pi,,”—‘:Ff- . (2)
It can be easily verified by calculation that:
w w
ZE,; = 0, EF‘ == 0,
i=1 i=1

The equalities (3) are identities, i. e. they hold for all values of Sy

w

Z(Eiyi—thi) = 0. (3)

is=1
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The identities (3) can also be derived without calculation in the fol-
lowing manner:

Let us choose S;; entirely arbitrarily and determine P, and P,
. . z 1”
from equations (1). Since these equations express the fact that the stres-
ses at every joint of the bars balance the external forces, the forces so
determined will be in equilibrium (p. 290). Consequently the external
forces will be in equilibrium, i. e. the following equalities will hold:
w w w

ZPim - 0, P“"v - O, E(Pizyi_‘Pz xi) = O. (4)
=l i=1 i=1 v

It follows from this, in virtue of (2), that relations (3) must be satis-
fied identically for all values of Sj;.

Let us now assume that for a certain frame equations (1) have a
solution for every system of forces {P,} equipollent to zero. Let us further

assume that the right sides of equations (1) satisfy identically some linear
relation of the form

lly + ally + ... 40, F, +b,F,+ ... =0, (5)

where a4, &,, ... and by, b,, ..

Let the system of forces {P;} be equipollent to zero; equations (1)

therefore have a solution. By (2) and (5) the forces {P,} must consequently
satisfy the relation

Py, + Py + ... 4 a,Py + b;Plv + 04Py, + ... 4 0Py, = 0. (6)

Hence, if the forces {P,} satisfy equations (4), then they also satisfy
equation (8). Relation (6) is therefore dependent on relations (4). It fol-
lows from this that relation (5) depends on relations (3).

The right sides of equations (1) consequently satisfy only three
independent relations (3). Hence the system of equations (1) has 2w — 3
independent equations (while three equations depend on the remaining
ones). The unknowns must be at least as many as there are independent
equations, i. e. 2> 2w — 3. Since there are as many unknowns §;; as there
are bars, namely p,

. are certain constants.

p = 2w— 3. (7)

When p > 2w — 3, the number of independent equations is less than

the number of unknowns; hence there exist infinitely many solutions.

When p = 2w — 3, there are as many unknowns as linearly independent
equations; consequently the stresses S; are uniquely determined.

A frame is said to be statically determinate if equations (1) determine
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uniquely the stresses S;; of the bars for every system of forces {P;} which
is in equilibrium. Therefore we have proved the theorem

1. If a frame is statically determinate, then p = 2w — 3 (where p
denotes the number of bars and w the number of joints).

One can prove the theorem ’

II. A statically determinate frame does mot possess redundant bars.

The conditions expressed in theorems I and II are necessary, but
not sufficient, in order that a frame be statically determinate (vide
Fig. 224c, p. 295).

Determination of stresses in a frame (by means of force diagrams).
We are to determine the stresses in the bars of the frame shown in the
Fig. 226. Joints are denoted by the letters A, B, C, D, and bars by the
numbers 1, 2, 3, 4, 5. The frame is loaded by a vertical force P at the joint
C and rests on smooth supports 4 and B. ‘

Let us first determine the reactions at 4 and B. On account of sym-
metry each of the reactions is equal to — }P.

D +4
4
_ -1
17/ 3\5 ‘ﬁ‘%" olf O3 _‘fp
w -5
A 2 _IC 4 +2‘
|

3
5
5;1 ) -gPT | —21P

A P

Fig. 226.

The joint 4 is acted upon by the external force — 4P and the stresses
in the bars I and 2. Since these forces balance one another, they form
a closed polygon which we can draw because we know the force — 4P and
the directions of the stresses. This polygon is shown in Fig. 226 (A); the
stresses are denoted by the numbers I and 2, and the signs before the
numbers denote whether the stress is a tension (4) or a compression (—).

The joint C is acted upon by the stresses in the bars 2, 3, and 4, which
balance the force P. Since only two forces are unknown, namely, the

- stresses in the bars 3 and 4, we can draw a force polygon, remembering
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that the stress in bar 2 at the joint C' has a sense opposite to that at the
joint 4. This polygon is shown in Fig. 226 (C). ‘

No external forces act at the joint D; consequently the stresses
balance one another. Therefore they form a closed polygon which can be
drawn (Fig. 226 (D)), remembering that the stresses in bars 7 and 3 at the
joint D have serises opposite to those at 4 and C.

We have determined the stresses in every bar. In order to verify our
reasoning we can form another polygon for the joint B (Fig. 226 (B)).

Proceeding in this manner we have drawn each force twice. However

‘we can simplify matters by combining all the polygons (4), (B), (C), and

(D), as in Fig. 226 (E).
In Fig. 228 (E) each force appears only once; such a drawing is called

‘a Cremona force diagram for the given frame.

We shall give certain directions for obtaining a Cremona force

‘diagram in the following example:

Fig. 227 represents a frame and Fig. 228 its Cremona force diagram.
The frame is loaded at the joints @and F by forces Pand 2P. At the joints
A and I it rests on smooth supports. Bars 2, 6, and 10, are horizontal and
equal in length. Calculating the moment of the external forces with
respect to & and 4, we find that the reactions at 4 and E are — $P and
— 4P, respectively. ‘

We now draw the polygon of external forces in the order in which
they appear on the perimeter of the frame. For instance, going clockwise
we draw in turn — $P, — {P, 2P, and P.

We next construct a polygon for the joint 4. Let us note that bar 2

' connects the joints 4 and G at which the external forces — 4P and P act.

In the force diagram the stress in bar 2 is drawn from the origin of the
force — #P and from the terminus of the force P. The force — §P defines
the sense of the forces in the polygon for the joint 4. We obtain the

B 4 € &8 D *10
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stresses in the bars I and 2 and indicate that bar I is in compression (—)

while 2is in tension (4-).

Let us now proceed to consider a joint where only two stresses are
unknown. Such a joint is B. We determine the polygon of stresses in the
bars I, 3, and 4. We obtain the sense of the forces because we know
from the preceding polygon that bar I is in compression.

Let us next consider the joint G at which only two stresses a.re
unknown, namely, the stresses in bars § and 6. Proceeding as before, we
consider in turn the joints C, F, D, and E.

In preparing a Cremona force diagram it is necessary to adhere to the
following rules:

1. The external forces in the polygon of forces are drawn on the
diagram in the order in which they appear on the perimeter of the frame.

2. If a bar on the perimeter of the frame connects joints which are the
origins of the external forces, then the stress in the bar is drawn on the
diagram of forces from the point at which the terminus of one external
force meets with the origin of the other.

Let us note that the Cremona force diagram represented in Fig. 228,
P. 299, has, besides, the following two properties:

a) the forces acting at a joint form a closed polygon in the diagram,

b) if three bars form a triangle, then in the diagram their stresses
have origin at one point.

A Cremona force diagram having the above two properties is called
a reciprocal force diagram.

This name has reference to the so-called theory of reciprocal figures.
Let us note that it is not possible to construct a Cremona force
diagram for every statically determinate frame.

Determination of stresses by means of sections. Let us suppose that a
frame is such that it is possible to cut three of its bars whose ori-
gins are not at one joint, in such a manner that the frame is divided into
two parts. If at least two of the bars cut are not parallel, then it is possible
to determine the stresses in the bars cut without calculating the stresses
in the remaining bars.

Let us denote the bars cut by I, 2, 3. If one part of the frame is
removed, e. g. the right part, then the left part will remain in equilibrium
after the addition of the stresses S,, S,, and S,.

Let the bars 1 and 2 intersect at the point O (Fig. 229). Since the left
part of the frame is in equilibrium, the external forces acting on this part
balance the stresses S, S,, and S,. Denoting by M the moment of the
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external forces (acting on the left part of the frame) with respect to 0, and
by d the distanceof O from the bar 3, weget |[M| = |S,|d, i. e. |S,| = |M|/d.

We choose the sense of the force S; such that M and the moment of
the force S, with respect to O have opposite signs. The moment M can be
obtained by determining at first the resultant R (or possibly a resultant
couple) of the external forces acting on the left part, and next calculating
the moment of the resultant R (or a resultant couple) with respect to O.
Woe calculate Syand S; similarly by forming the moment with respect to
the point of intersection of bars 1, 3 and 2, 3.

0__
7-/:\\\
R 7 ! S,
& [
A R| /6
c/_ 3 S;
3 5
Fig. 229 Fig. 230.

If bars 1 and 3 were parallel, we would obtain the force S, by forming
the projections of the forces on a line perpendicular to the bars 1 and 3
(for the projections of the forces S, and S; will be zero).

The method described above of calculating stresses was given by
J. W. Rirrer. The stresses S,, S,, and S, can also be determined graphically
by means of a method given by K. Curmaxx.

Let the bars I and 2 intersect at O, let the external forces have a

resultant R, and let R and S, intersect at the point 4. Let us denote the
resultant of the forces S; and S, by T, and the resultant of the forces R and
S, by G.
k Since the forces R, S;, §;,and S;, are in equilibrium, the forces T and G
are also in equilibrium. It follows from this that T = — G and that the
forces T and G are collinear. Since T has its origin at O, and G at 4, the
forces T and G lie on the line 04. Knowing already the direction of the
forces T and G, we determine the triangle of forces R, S;, and G, from which
we obtain the forces S; and G. Since T = — G, we can construct the triang-
le of forces S,, S, and T, from which we can get S; and S, (Fig. 230).

If the resultant R were parallel to the bar 3, the force G would also be
parallel to 3 and would pass through O. Since R is the resultant of the
forces G and —S;, the problem would then be reduced to the resolutmn of
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the force R into two forces G and —S, whose positions are given. Such
a problem was solved by means of a string polygon on p. 253.

Finally, if the external forces were reduced to a couple R, and R,, we
should have R, = — R,and theresultant@G of the forces R, R,, and Sg, would
be equal to S, and would have its origin at 0. The problem would then be
reduced to the resolution of the system of forces R; and R, into two forces
G and —S; whose positions are given (cf. p. 253).

§ 17. Equilibrium of heavy cables. Chain. A system of rigid pin-

connected rods is called a chain if only two rods are pinned at each joint.

The rods of & chain are also called links.

TFig. 231.

~ Let us assume that a chain consisting of the links 4,4,, 4,4 ,, 4,4,,
and A4,4,, pin-connected at the joints 4,, 4, and A4, remains in equilib-
rium under the action of the forces Py, P,, and P, applied at the joints, and
the forces T; and T, applied at 4, and 4, (Fig. 291). The forces T, and T,
obviously have the directions of the rods 4,4, and 434, (p. 291).

It is easy to show that a chain in equilibrium assumes the form of
a string polygon of the system of forces Py, P, and Pg.

To show this let us construct a polygon of forces 4,4, 4,45 for the
system P,, P,, P;. For the pole O let us take the point of intersection of the
lines drawn from the points 4;, 45 and parallel to the extreme rods of the
chain.

Since the chain is in equilibrium, the sum of the forces is zero:

T, 4+T,4+P, 4Py +-Py=0.

Since P, -{—,Pz,—{— P, = AE, and (322, A—Q,B are ‘parallel to Ty, T,
from triangle 4,430 we obtain:

T, = 04), T,= 4:0. (1)
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Let us now consider the joint 4,. The stress of the link AyA, at the
joint A4, is Ty; let us denote by T, the stress of the link 4,4 ,at the joint 4,.
‘We obviously have

T+ T, +P =0 @)

From the SﬁriI_l-_g_m polygon we obtain 52; + P, + fﬁé = 0, whence
by (1) Ty + P, + A1{0 = 0, and from this by (2) jif(") = T,. The segment
A0 is therefore parallel to the rod 4,4,. :

Similarly, we ascertain that the segments 4,0 and 4;0 are parallel
to the rods 4,4, and A,4,.

It follows from this that the string polygon drawn from the point
A, will assume the form of a chain.

Cable. A rope or a cable (flexible and inextensible) is defined as a ma-
terial line which can be bent arbitrarily without changing its length or
that of any of its parts.

A rope can therefore assume the form of an arbitrary curve of the
same length. A cable can be considered approximately asa chain consisting
of very many small links.

" Let a heavy cable (flexible and
inextensible) be suspended from two
points 4 and B. Let us assume that the
density of the cable p = constant. The
weight of a portion of the cable of length
s cm is therefore

Q = sog = 80, (3)
where 0 = gg.

Let us determine the form that the cable will assumeunder theaction
of its own weight.

Let us choose a system of coordinates (z,y,2), giving the z-axis
a vertical direction and an upward sense; let the zz-plane be taken
vertically and passing through the points 4 and B (Fig. 232).

The external forces acting on the cable are: the weight, acting at the
centre of gravity S of the cable, and the reactions R, and R, at the points
A and B. If the cable is in equilibrium, these forces balance each other.
Tt follows from this that they lie in one vertical plane, namely, the zz-pla-
ne. Consequently:

1y == 03 -st, = 0. (4)


Yakuza


304 CHAPTER VI — Statics of a rigid body

Let us cut the cable at an arbitrary point €' and remove the part UB.
Tn order that the portion AC remain in equilibrium, it is necessary to add

at the point C the force T which the portion OB exerts on the portion AC.-

The force T is the tension of the cable.

Since the cable is considered approximately as a chain consisting of
small links, the force T is tangent to CB.

Let us denote the length of the arc A4C by s. The external forces
acting on the part AC are: the weight Q" of magnitude 80, acting at the
centre of gravity S’ of the part AC, the reaction R,, and the tension T.
Since the sum of these forces is zero, because the part AC remains in
equilibrium, forming the projections on the coordinate axes, we obtain:

T,+ R, =0, T,+R, —s5=0, T,+ R, =0. (5)

From (4) R, = 0; hence T, = 0. Since the tension T is tangent to
the curve, and C is an arbitrary point of this curve, the tangent at each
point is parallel to the vertical zz-plane. It follows from this that the curve
lies in a vertical plane, namely, the xz-plane, because it has in common
with it the two points 4 and B. The first of the equations (5) gives

T,=— R, = const. (6)

Therefore: the horizontal component of the tension of the cable is the
same at each point of the cable.

Let us denote by ¢ the angle which T makes with the z-axis. We
therefore have tangp = T, [ T',, whence by the second of the equations (5)

tang = (— ds / le) -+ (R1z / le). (7)
Let us put:
a=—06/R,, o’ =R, | R, (8)

If z = f(z) is the equation of the curve, then 2’ = tan . Hence in
virtue of (7) and (8)
2 =as+a' ' (9)
Equation (9) is the differential equation of the curve whose form the
cable assumes. Differentiating it, we obtain 2” = a ds/ dw, and since
ds= Vl -+ 22 dz, it follows that 2" = a,l/ 1422, Let us substitute 2’ = w.
Hence z” = dw/dx, whence dw/dz =al/1 - w? i. e. dw/}/1+ w® = adx.
Integrating, we obtain [dw/]/14 w® = [a dw; therefore In()/T+ w?+ w) =
= ax + ¢, where c is the constant of integration. Consequently

T+ w? + w=]1F 22+ 2 = emmtc, (10)
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We have
1/ (T 2%+ 2) =T F27—2 = ez, (11)
From equations (10) and (11) we obtain
zI — %(eam+c _____6—(1.’40-'6 )’ (12)
ds [ do = |/TF 2% = J(esste 4 g—oa—e), (13)
Integrating equations (12) and (13), we obtain
1 ,
=g (e f o) b, (14)
1
§ = %(e"’th — e—am=e) ¢, {15)

where ¢’ and ¢” are.certain constants.

The curve defined by equation (14) is called the catenary.
Therefore: a cable hangs in the form of a catenary.

Equations (14) and (15) depend on four constants a, ¢, ¢/, and c".
These constants can be determined if we know, for instance, the coordin-
ates Xy, 1, Ty, 25, of the points 4, B and the length I of the cable, because
from the conditions that z = z,, for © =, and 2 = z,, for 2 = a,,
we obtain by (14):

1 1
2= oo (€00 + e ) 0, 2y = o (€7 4 e7te) - ¢/, (16)

While from the conditions that s = 0, for x = z;, and s =1, for

Z == x,, Wwe obtain by (15):
— _1__ ATy+C __ p —aT,—C ” — i

Q__za(er e )+ ¢, l_Za(

It can be shown that equations (16) and (17) define the constants
a, ¢, ¢’, and ¢”; uniquely.

Let us still compute the tension T of the cable at an arbitrary point €
whose coordinates are x, z. From equations (6) and (8) we get

eaa:,-*—c + e-—az,—c) “l— G”. (17)

T,=0d/a. (18)
Since T,/ T, =tang =2, T, = T,2’; consequently
T, =62 | a. (19)

From equations (18) and (19) we obtain
o é d )
T=VT;+T3=§ I¥i= .5 =

AT 4C ’ —Q L
a dr 20 te ¢ )
and hence by (14)

T = §(z—c) (20)
20
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Loaded cable. Let a force P directed vertically downwards be applied
at a point O of a cable. As we already know, parts OB and AC of the cable
are catenaries. Let us denote the constants for the curves BC and C4 in
equations (14) and (15) by ay, ¢y, ¢}, ¢; and @y, o, 6y, Cy, Tespectively, and
the tensions in the parts BC and C4 at
the point € by T, and T, (Fig. 233).

Considering the cable as a chain
consisting of many small links, and the
point C as a joint, we have in the po-

% sition of equilibrium T, 4+ T, + P = 0.
Forming projections on the z and 2
axes and putting R = |P|, we obtain:

Ty, + T, =0 T, +T, —P=0. (21)

Fig. 233.

Denoting the right-hand and the left-hand derivatives at C' by 2; and
2, We obtain by (18) and (19):

Ty, =6]ay, T, =0z, | ay, Ty, =—0/ay T, =— 0z, | ay,
whence by (21) o
6 8 Sz O
—_———=0 — =P =
@y Oy ’ @ ay P=0
Hence we get:
a; = @y, zl—z;_%."l:‘%a’ﬁ,' ‘ (22)

Knowing the lengths I, and I, of the arcs BC and 04 we can obtain
the equations of the curves C'B and AC. In this case it is necessary to
determine ten constants ay, ¢, c;, c'l, gy Cgy Cgy Co and =, 2y, Where x, and
2, are the coordinates of the point . To determine these constants for
OB and AC we have two sets of four equations analogous to (16) and (17),
and in addition two equations (22), i. e. ten altogether.
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CHAPTER VII
KINEMATICS OF A RIGID BODY

§ 1. Displacement and rotation of abodyabout an axis. According to
the definition of a rigid body (p. 231), its points do not change their mu-
tual distances during motion. When the point 4 moved to the point B, the
vector AB was called the displacement of the point (p. 34). During a
change of position of a rigid body, the points of this body undergo, in
general, various displacements.

We shall first become acquainted with certain theorems from geo-
metry which give the resolution of the displacements of the points of a
body. These theorems will be helpful to us in determining the velocities
of these points.

Parallel displacement or translation. A body is said to undergo a
parallel displacement or a translation if the displacements of all the
points of the body during a change of its position are equal.

The displacement common to all points of the body is called the
displacement vector or the displacement of the body.

The position of the body after a displacement is therefore deter-
mined by the initial position and the displacement vector.

Let us assume that the points 4;, B; moved to the points 4,, B, after
a translation. Since the displacements of both points are equal,
4,4, = B,B,. Tt follows from this that 4,8, = 4,B,

Therefore: the vectors attached to a body do not change either their sense
or direction during a translation.

Conversely, it is easy to prove that if the vectors in a body maintain
their sense and direction during a displacement of the body, then the displa-
cement s a translation.

For let us assume that two arbitrary points - A, B; moved to the
points 4,, B, (Fig. 234). By hypothesis, 4 A, B,= A,B,;hence 4, A, A,= BB,
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