CHAPTER V
SYSTEMS OF MATERIAL POINTS

§ I. Equations of motion. Let there be given a system of material
points of masses my, My, ..., m,. Let us denote the sums of the forces act-
ing on the individual points by P,, P, ..., P, and the accelerations of
these points with respect to an inertial system of coordinates by p;, p,, ..
P Then according to Newton’s law:

"

mypy = Pl: MoPy = PZ) vy MpPp = Pn-
We write these equations compactly as

mx‘Pi = P'L (7/. == 1, 2, sy ?’L). (I)

Let the point m; have the coordinates =, y;, 2;. Equations (I) can be
written in the form:

AR (I‘I)

Unconstrained systems. We assume that the forces P, P,, ..., P,, in
the most general case, depend on the time, position, and acceleration, of
the system of points. We shall therefore suppose that the forces are
functions of: the time ¢, the variables x;, ¥, 2y, ..., z,, Y, 2, defining the
positions of the points, as well as the variables x;, Yis 21s -0 Ty Yins &,
defining the velocities of the points. Hence we can write:

mixi- = P-

Tpd

my; =P,, mzy =P, (i=12,.

Py, = Filty %1, Y1, 21, s Ty Yo Ty T4, Yl 25 < 0r By Y 20)5

and similarly P, =0, P;, =V,
We shall assume that the functions P, P;, and P; are continuous

and that they have continuous first partial derivatives with respect to
each variable.

Equations (IT) are called Newton’s equations of motion.

They constitute a systenr of differential equations of the second order.
From the theory of differential equations it follows that equations (II)
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determine the motion of the system of points if there are given at the
initial moment ¢ = #;, the initial positions of the points (i. e. coordinates
al, 43, 23, ..., 23), and the initial velocities (i. e. 3%, ¥7°, 7% -.-, 2;)-

Internal and external forces. The forces acting on the points of a
gystem are divided into two groups.

In the first group are included those forces which arise from the
mutual interactions of the points of the system. These forces are called
internal forces.

The remaining forces are called external forces.

The internal forces are assumed to conform to the law of action and
reaction (p. 72).

Let us consider the pair of forces which the two points m’ and m” of
a system exert on each other. The sum of these forces is zero, and because
they act along the line joining the points m’ and m”, their moment with
respect to an arbitrary point is zero. Since the internal forces can be
grouped in such pairs, the sum and the total moment of the internal forces are
zero.

Equilibrium of a system of points. A system of points is in equi-
librium if each point is in equilibrium.

Therefore, if a system of points is in equilibrium, then the sum of
the forces acting on each point is equal to zero. A system offorces having
this property issaid to be in equilibrium or that the forces of this system
balance each other. '

Let a given system of forces be in equilibrium. Let us consider the
forces of this system acting on an arbitrary material point. Since the sum
of these forces as well as the total moment with respect to an arbitrary
point of space are equal to zero, the given system is equipollent fo zero
(p. 22).

Hence: if the forces acting on a material system of points balance each
other, then the sum of these forces and the total moment are zero.

This condition is a necessary condition for equilibrium of forces,
but it is not a sufficient condition. Since the internal forces have
a sum and total moment equal to zero, from the given condition it follows
that if @ system of material points is in equilibrium, then the sum and the
total moment of the external forces are zero.

This condition, as the preceding one,is only a necessary condition
for the equilibrium of a system.
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D’Alembert’s principle. We. can write equations (I), p. 186, in the

form
_ P; + (—mp;) =0 (=12, ...mn)

We have called the vectors — m;p; forces of inertia of the points m,
(p. 73). We can therefore say that the forces of inertia balance the forces
acting on a system of points.

The above theorem is called d’A4lembert’s principle.

The significance of this principle appears chiefly in systems of
constrained points which we shall consider further on. It is necessary to
remember what we have said on p. 73, that forces of inertia are not forces,
but vectors, which we have called forces only for the sake of convenience.

Example I. Two points 4,, A, of masses my, m,, attracting each
other with a force P according to Newton’s law, move along the z-axis.
Hence |P| = Kmym, [ 1%, where r = A, 4,. Denoting the coordinates of the
points by 2, and z, (¥, < =,) (Fig. 128), we obtain the equations of
motion in the form:

mxy = Kmlm2 [ @y —2y)%  mgxy = — Kmym, [ (5, — ;)% (1)

0

x, P r -P x x
Fig. 128.

Let us suppose that at the time t =0, &, = a}, @, =13, 2; =0,
x5 = 0. Adding equations (1), we get m,z; + mgxy = 0, whence after
integrating ,
” Mm%y + MaTy = @, MyTy + Myy = at + b. _

In view of the initial conditions we obtain ¢ = 0, and b = m,x? +
+ mgal. Therefore: ‘

mym; + may = 0,  mmy + Mgy = My27 + My, (2)

From equations (1) we obtain in addition

zy — xy = — K(my + my) [ (@, — %)% (3)

Let us set ,— 2y, = 7, and K(m; + m,) = h. Weget r* = —h [r%
Multiplying both sides by 7~ and integrating, we obtain §r2 = A [r 4 c.
Since at t=0, m =2, —2°=0 as well as r=2)—ad =r, it
follows that ¢ = — & / ro. Therefore 4% = h /r —h | r,, whence

r=—2h(1 [r—1 7). . (4)

We have taken the minus sign because the points will come closer to
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each other, and hence r will become smaller, whence r < 0. From (4)

we get
— dr =dt;henoe——f ___L._+c’=t.
V2h(1 [r—1 1) V2R [ r— 177y
After integrating we obtain
l@[ﬂfﬁ;—rﬁ{-r a.rcsinro—zr + =t (5)
2 1/2;& o 0 N .
. Since r =r, at £ =0,
’ mﬂl"fr_ﬂ
¢ = . 6
425 (©)

The time 7' at which the points meet is obtained from (5) by setting
r = 0. Therefore

T=in rol/r = rolm
R 2)2K(m, = my)
We obtain T = 3055 sec for my=m,=1g, r,= lcem and
K =16.6-10"%cm?gsec™

Formulae (2), (5) and (6) (where r = z, — x,) determine the motion
of the points.

Constrained systems. If conditions exist which limit the possible
motion of a system of material points, then it is called a constrained system
and the limiting conditions are called constraints. As in the case of one
constrained point, we assume that the constraints are the result of certain
forces termed reactions, which cause the system to maintain the con-
straints.

If the forces of reaction are added to the forces acting on the points
of a system, then the system can be considered as unconstrained. In this
way the investigation of motions of constrained systems is reduced to the
investigation of motions of unconstrained systems.

Therefore, if forces {P;} act on a system of points of masses {m,},
then, denoting the reactions by {R;}, we have

mp; = P; + R; (t=1,2 ...,n). (III)

In particular, a constrained system is in equilibrium if the aecting
forces and the reactions balance each other.

The constraints of a system can be such that some points must con-
stantly remain on certain curves or surfaces. In addition to this kind of
constraints, already considered (cf. p. 121), we also meet with others.
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For instance, two material points can be joined by an inextensible string
of length [; consequently the distance between the points must be con-
stantly < I. The string acts on the points only when it is in tension (Fig.
129). If we assume that the mass of the string is so small that it can

be neglected, then the forces that the string exerts

,_-E———-——~—_£-—~= on the points will be of equal magnitude, even if
i ™ the string is wound around some body (Fig. 129)
— provided that there is no friction. These
R R forces are obviously reactions. The reactions are
/s m; tangent to the string and have a sense in the di-

" Fig. 129. rection of the string.

Rigid system. An important example of a constrained system of
points is the so-called 7igid system. Tt is a constrained system whose con-
straints are such that the mutual distances of the points of the system
remain unchanged. Let us suppose that in this case there appear certain
internal forces (i. e. forces acting between the points of the system) which.
cause the points to maintain constant distances in spite of the actions of
external forces.

A solid physical body will in general be deformed, i. e. it will change
its form under the influence of forces acting on it. It can happen, however,
that when the forces do not exceed a certain limit, the deformations are so
small that, practically, we can disregard them. In this case, as a model of
such a body acted upon by small forces, we can choose a system of points
which we have called a rigid system. The results that we shall obtain will
then be approximately valid for a physical body. Thus we can apply
to solid physical bodies the theorems that we shall obtain for rigid
systems. Because of the important role that the theory of rigid body
plays, we shall concern ourselves with this theory in all detail in chapter
VI. In this chapter we shall limit ourselves to giving only a few examples
based on the general theory of a system of points. ‘

The simplest example of a rigid system is a system composed of two
material points whose distance r is constant.

We can realize such a system by joining two material points with a
rigid rod of a small mass, which in comparison with the masses of the
points themselves, can be neglected. We then say that the points are
joined by a rigid massless rod. In this manner the internal forces between
the points are replaced by forces with which the rod reacts on these points.
These forces are therefore equal in magnitude, have the direction of the
rod, but opposite senses.
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Example 2. Two heavy material points of masses m, and m, are
connected by a (massless) inextensible string passing over a pulley. Point
mp must remain on a straight vertical line I. What angle ¢ does the string

make with the line I in the position of equilibrium if there is no
friction?

. The forces acting on the point m, are: the tension 7' of the string
directed vertically upwards, and the weight m,g directed vertically down-
wards (Fig. 130). Therefore T — m,g = 0, and hence

T = myg. (7)
iz
)
[ Ok
7 R,
R 5 \A miu?
oo ERINA
m mg  [mgl SNE
mg T Aimno?
mg
Fig. 130. Fig. 131.

The forces acting on the point m, are: the tension 7' of the string
directed along the string, the weight m,g directed vertically downwards,
and the reaction R perpendicular to the line I. Forming the projections of
the forces on the line I, we get 7' cos ¢ — myg = 0, and hence

T cos ¢ = m,g. (8)
From equations (7) and (8) we obtain

COS @ = My [ M,.
.Equilibrium is therefore possible only when m, < m,.

Example 3. Heavy material points 4, and 4, of masses m,, m, are
connected by a massless inextensible string. Point 4, is suspended from
the string 04, which is also massless and inextensible. The entire system
rotates about a vertical axis with a constant angular velocity w, while
the angles « and f, which the strings 04, and 4,4, form with the ver-
tical, do not undergo any change during this rotation. To determine the
angles « and f.

Let us choose the point O as the origin of the moving frame (z, ¥, 2)
rotating about the vertical z-axis with anangular velocity w (Fig. 131). We
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can suppose that the point 4, is always situated in the zz-plane. Since the
angle « is constant, the point 4, is in relative equilibrium with respect to
the frame (z; ¥, 2).-

We shall first show that the point 4, is also sﬁ:ua.ted in the xz—plane

Since the point 4; is in relative equilibrium, its force of transport
P is in equilibrium with the acting forces, i. e. with the weight Q,, the
reaction R, of the string O4,, and the reaction R, of the string 4,4,.
Therefore

PO+ Q + R, + R, = 0. | )

From this equation it follows that R, = — P{¥ — Q, — R,. As the
forces —P{), —Q,, and —R,, lie in the zz-plane, R, also lies in the
2z-plane. In addition, since R, has the direction of the string 4,4,, the
string 4,4, also lies in the az-plane; therefore the point 4, likewise lies in
the az-plane.

Let us proceed to determine the angles « and §. In view of the
fact that the angles are constant, and that the lengths 04, and 4,4, also
remain unchanged, it follows that the point A, is 1ikewise in relative
equilibrium with respect to the frame (z,y,2). Denoting its force of
transport by P{® and its weight by Q,, we obtain

PP+ Q,—R, = 0. (10)

Let us denote the distances of the points 4, and A, from the axis of
revolution by r; and r,. We have:
ry = 04, sinx, (11)

(12)

0) on the z and z axes.

rg = 04, sinx + A,4,sinp,
[P = myrw?.

Let us form the projections of (9) and (1
Putting R, = |R,| and R, = |R,|, we get:

— R, sine + Ry sinf = 0, —m,g + R, cocsa—R, cos =0, (13)
R,sinf =0, —my + Rycosf = 0. (14)
From equations (18) and (14) we obtain »

[PV] = myrie?,

m,yro?

My g0° —

tan § == r0? [ g. (15)
If we denote the distance of the centre of mass § of system of points
A, 4, from the axis of rotation z by r,, then we obtain (m, + my) r, =
= myry -+ M,r,y, Whence by (15) tana = rw? /g, and as r, << 7y << 75, We
have tan o < tan f or & < B.

K_nowmg OA4, and A, 4,, we find «x and # from equations (11) and

tan o = (myr -+ myry) 0 [ (my + my) g,

(15).
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Example 4. Atwood’s machine. At the ends of a string (inextensible,
massless), parsing over a pulley (massless), are suspended two heavy ma-
terial points of masses m, and m, (Fig. 132). Let us assume that both
points move vertically. Since the string is inextensible, the paths
traversed by both points are equal. Therefore the accelerations and velo-
cities of both points are equal in magnitude, but they have opposite
senses. Let us denote by p the projection of the acceleration of m, on the
z-axis directed vertically downwards. Let R denote the absolute value
of the force with which the string acts on the points m, and m, The
weight and the reaction of the string acts on the point m;. Therefore

myp = myg — R. (186)
Similarly, for the point m, we obtain

— myp = myg — R. (17 iR

iom,

. R~
Fr it 16 d (17 t !

om equations (16) and (17) we ge mi |i] ng
my — My 2m1m2 3
=2 24 R=-_—172g 18) ma; |
my + My g My - My g (18) 7 H
Hence the points will move with a constant accele- ==
ration. iz
Fig. 132.

From equation (18) we get (m; -+ m,) p = myg — my:

Therefore the acceleration is such as if a force m,g — m,g, i. e. a force
equal to the difference of the weights, were acting on a material point of
mass m,; + M.

If m,; > m,, then p > 0, which means that the acceleration of the
point m, is directed downwards and that of the point m, upwards.

If m; = m,, then p = 0, which means that the points move with
uniform motion.

Example 5. Two heavy points of masses m; and m,, connected by an
inextensible and massless string, move in a Yertical plane along two lines
1, and 1,. The tension of the string Ty, the weight g, and the reaction of
the line R, act on the point m;. Similarly, the forces T, m,g, and R,act on
the point m,. Let us assume that there is no friction and therefore that R,
and R, are perpendicular to the lines I, and l,, respectively (Fig. 133).

Since the string is inextensible, the paths traversed by both points
will be equal, and the acceleration will then be equal in magnitude.

13
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Let [, and I, be given downward senses. Let p denote the eo;nponent
(with respect to I,) of the acceleration of the point m,; therefore the com-
ponent (with respect to I,) of the acceleration of the point m, is —p. The

forces T; and T, are equal in magnitude; set 7' = |T;| = |T,|. Let us denote
the angles made by I, and I, with the horizontal by «, and «, Forming
the projection on the lines I, and I,, we obtain mp = — 1" ++ m,g sina,
and — myp = — T - m,g sin «,, whence ' ,

. mq Sinocl—‘mz Si110c2
my + My

Hence the points will move along the lines with uniformly accelerated
motion.

§ 2. Motion of the centre of mass. Kinematic properties of the centre
of mass. Let there be given a system of material points 4,, 4,, ... of mas-

ses ml,. "My, ..., Whose centre of mass is the point S (Fig. 134). Letusselect
an arbitrary point 0. Put m = Zm, as well as:

ro=08, ri=04; (i=12..).
In terms of the above notation the following equation holds
mry = Zm,r,. 45

_ .Proof. Let us choose arbitrarily a system of coordinates with its
origin at 0 If x;, y,, 2; denote the coordinates of the point 4,, and z,, y,, 2
the coordinates of the centre S, then by (II), p. 153,

mxy = Lm.x;, my,= Imy, mzy = Xmgz,. (1)

.Sil?ce the vector r; has the projections z,, Y:, 2;, and r, has the
;(plr)OJectlons Lo, Yo, 2o, €quatidn (I) is only the vector form of the equalities
Let us take the derivative of both sides of the equality (I) with
respect to time; we obtain mry = Zmqr;. Since r, denotes the velocity v;

of the point 4,, and r; the velocity v, of the centre of mass S with respect
to the system O(z, y, 2),

mvy = Zmy,.

(IT)
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The vector mv; is the momentum (p. 72) of the point 4,. The right
side of the equality (II) therefore denotes the sum of the momenta of the
separate points of the system. This sum is called the (Zotal) momentum of
the system.

The vector mv, can be considered as the momentum of a material
point, having a mass equal to the total mass of the system, situated at the
centre of mass (and moving together with the centre of mass).

Therefore: the (fotal) momentum of a system is equal to the momentum
of the total mass situdted at the centre of mass.

Let us differentiate both sides of equation (II) with respect to the
time . We get mvy = Zm,v;. But v; denotes the acceleration p; of the
point A4;, and v; the acceleration p, of the centre of mass S. Hence

(III)
We have called the vector —m p; the force of inertia of the point 4,
(pp- 73 and 188).
Therefore: the sum of the forces of inertia of the points of a system is

equal to the force of inertia of the total mass of the system situated at the centre
of mass.

mpy = Zm;p;.

Remark. Forming the projections on the axes of the coordinate
system, we obtain from equations (II) and (I1I):

(I

(I11")

mx, = Tmx;, Yy = Emy;,  mzy = Em,-z;,

mzy = Smgy, myy = Tmyp, mzy = Imzy

Resultant of a system of weights. Let a system of points A, A4, ...
of masses M., M,, ... be situated in a gravitational force field. Let us
denote the gravitational acceleration vector by g and the centre of mass
by S. Let O be an arbitrary point. As before, let us put r, = 0S and
r; = O4,;fori =1, 2, ... The total moment of the weights with respect to

-0 is M = (m,g X r;) -+ (meg X ry) + ..o therefore

M =g X (mry + mary + ..2),
whence by (I), p. 194,
M =g X mry=mg X Ig (2)

In particular, if the point 0 coincides with S, then ry = 0, whence
by (2) M = 0. '

Therefore: the fotal moment of the weights of the points of a system with
respect to the centre of mass is zero.

Since the weights form a system of parallel forces having the same
direction, this system has a resultant (p. 26). The resultant passes through
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the centre of mass because the total moment with respect to the centre of
mass is zero.

Dynamic properties of the centre of mass. Let the forces P, act on

the material points m; of a given system. Let us denote the acceleration

- of the point m; by p;, and the acceleration of the centre of mass of this
system of points with respect to an inertial system of coordinates by p,.

By formula (ITI), p. 195, we have mp, = Zmp;, where m = Zm,. Since

mp; = P, it follows that mp, = ZP;, whence ‘

(IV)

Therefore: the centre of mass of a system of points moves so as if the total
mass of the system were concentrated there and the sum of all the forces acted
there.

Equation (IV) can be written in the form d(mv,) / dt = P.

Hence: the derivative of the momentum of a system s equal to the sum of
all the acting forces. '

If the sum of the forces acting on the points of a system is equal to
zero, i. e. if P =0, then by (IV) we have mp, =0, i. e. py= 0. If the sum P
is constantly zero, then p, = 0 constantly, and hence the velocity v, of the
centre of mass is constant. The centre of mass is then at rest or in uniform
motion along a straight line. Let us note that by (II), p. 194, mv, =
= 2m,v;; hence in this case the total momentum (or quantity of motion)
of the system is a constant vector.

mp, = P, where P = ZP,.

Therefore: if the sum of the forces acting on a system of points is
constantly equal to zero, then the centre of mass is at rest or in uniform motion
* along a straight line and the total momentum of the system is a constant vector.

This theorem is known as the principle of conservation of momen-
tum or of quantity of motion.

As we know (p. 187), the sum of the internal forces is always zero;
therefore the sum of all the forces acting on the points of a system is equal’
to the sum of the external forces. We can therefore replace the sum of the
forces by the sum of the external forces in the theorems given.

Let us denote the sum of the external forces by P®, By (IV)

mpy = PO, (v)
If no external forces are acting on a system, then p, = 0, and hence

vy = const. We can therefore say that the internal forces cannot change the

velocity of the centre of mass either as to magnitude or as to direction.

Let us consider the solar system (i. e. the system composed of the sun and pla-
-nets). The forces with which the fixed stars attract the bodies of the solar system
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can be neglected since these forces are very small because of the immense distances
of the fixed stars from the solar system. We can therefore assume that only the
internal forces with which the bodies attract each other according to Newton’s law
(p- 89) act on the bodies of the solar systern. It follows from this that relative to
the fixed stars the centre of mass of the solar system is at rest or moves with uni-
form motion along a straight line.

Suppose that we are inquiring into the motion of a system of points
in & gravitational field. The sum of the weights is m,g -+ m.g + ... = mg.
The centre S of mass will therefore move like a material point of mass m
under the influence of the weight mg, i. e. along a straight line or a para-
bola until the moment when at least one of the points of the system
touches the ground. For at this moment a new external force appears
resulting from the collision of the point with the earth.

Examples. 1. The centre of mass of a projectile travels along a parabola even
when the projectile explodes and bursts. The motion of the centre of mass willnot be
disturbed by this, since the explosion takes place under the influence of internal
forces. Only when one of the fragments falls to the earth will the motion of the
centre of mass undergo a change.

2. If a person is on a smooth horizontal plane (e. g. on ice) the external forces
are the reaction of the plane and his weight; both forces are directed vertically.
If the person was at rest initially, then as long as other external forces do not
appear, the centre of mass will only be able to move vertically. The motions which
a person executes by means of museular action occur under the influence of internal
forces, and hence cannot influence the motion of the centre of mass in the horizontal
direction. Therefors, if there were no friction, walking would be impossible.

If at some moment a certain part of & system of points changes its
momentum under the influence of internal forces, then the momentum of
the remaining part experiences simultaneously a change equal in magnit-
ude and direction, but opposite in sense. This is so because the internal
forces cannot change the total momentum. Denoting the masses of the
first and second parts by m’ and m”, and the changes of the velocities
of the centres of these masses by v; and vj, we obtain m'vy 4+ m"vy =0,
whence |vy| / |[vo| = m" / m'.

Therefore: the change of the velocities of the centres of mass is inversely
proportional to the masses of both parts of the system.

This explains the recoil of a cannon after it has been fired. Similarly, if a person.
starts to run along the deck of a boat, the boat begins to move in the opposite

direction. The velocities of the boat and the person will be inversely proportional
to their masses.

Examgple 1. One end of a heavy rod 4B (of constant density) rests on
a smooth horizontal plane I7 (Fig. 135). The external forces are the
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weight and the reaction at the point A; both forces are vertical. There-
fore, if the rod was at rest initially, then under the influence of the exter-
nal forces, whose sum is directed vertically, the rod will move in such a
way that the centre § of its mass will fall vertically.

Let us choose the intersection of the vertical
4 plane (passing through the rod) with the plane IT as
the x-axis. As the y-axis let us take the vertical along
which the centre of gravity moves. Put 4B = Jand
denote the angle which 4B makes with the z-axis by
«. Denoting the coordinates of the point B by 2 andy,
we obtain: = }! cosx, and y = I sinx, whence

/3P4 /)=

The end of the rod B will therefore move along an ellipse with axes [
and 2.

Example 2. Let a system of points 4, 4,, ... of masses my, m,, ...
move in a central field (p. 101) of elastic forces (p. 110) proportional to the
masses. Let O be the centre of the field. Set 04, = r;, 04, = r,, etc.
Denoting the forces acting on the points A4,, 4, ... by Py, P,, ... and

R

1
.
'
€
i
i
1
i
H
i
i
b
]
P

Fig. 185.

putting P = P, + P, -+ ..., we obtain P, = — A*m,r,, Py = — A%m,r, etc.,
whence P = — 7*(m;r; + m,ry + ...). Denoting the center of the total
mass m by § and setting OS = r,, we obtain by (I), p. 194,

= — A¥mr,.

Therefore the centre of mass will move just like a material poiﬁt 08
mass m subjected to the action of an elastic force P. The centre of masf

will therefore move with plane harmonic motion along a straight line or
an ellipse (p. 113). '

§ 3. Moment of momentum. Angular momentum with respect to a
point. Let a system of points 4, 4,, ... of masses m,, m,, ... and total
mass m be given. Let us consider a system of momenta i. e. of vectors
MyVy, MaVy, ... With initial points at 4,, 4,, ... '

‘The total moment of a system of momenta with respect to an
- arbitrary point A4 is called the angular momentum or
the moment of momentum of the system with res-
pect to 4.

Therefore the angular momentum K with respect
to 4 is

K = ZMom ,(mv,).
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Setting r; = A4, we obtain
. K =Z(my; X r). (1)
I &, 7, ¢ ave the coordinates of the point 4 and =,, ¥;, 2; the coordin-
ates of the point A4;, then the projections of the angular momentum on the
coordinate axes are
K, = Zm{yiz; — 0) — %ly: — )],
K, = Zm{ 2@, — &) — zi(z; — D), I
K, = Imlzi(y: —n) — yile: — £}
In particular, when § =5 = (=10, we have
K. = Zm(yp: —2y:), K, = Im(zim; — x2)), o)
K, = Zmzy; — yix:)-
Let S be the centre of mass (Fig. 136). Put A4S = r, and S4, = ¢:

for i = 1,2, ... Wehave r; = p; -+ ro. Therefore by (1) the angular mo-
mentum with respect to 4 is '

K = Zmy; X (p; + ro) = Zm,v; X p; + (Zmyv;) X rg.

The first term of the last member is the angular momentum of the
centre of mass. This angular momentum we denote by K. Since Zmyv; =
= mv, (where v, denotes the velocity of the centre of mass),

K = Ky + mvy X ro. (2}

Let us note that mv, X r, is the moment with respect to 4 of the
total momentum whose point of application is at the centre of mass.

Formula (2) follows directly from the theorem on p. 20 concerning
the change of the total moment of a system of vectors.

Angular momentum in an advancing motion. Let us assume that
a system of points moves with an advancing motion with a velocity v,
i. e. that all points move with a velocity v.

The angular momentum with respect to an arbitrary point A4 is there-
fore according to (2) K = Z(my X r;) = X(v X mr;) = v X Zm;r; Bub
by (I), p. 194, Zm;r; = mr,. Hence K =v X mr,, or

K= mv X r, (3)
Therefore: the angular momentum of a system of points moving with
an advancing motion relative to a certain point 4 is equal to the moment with

respect to A of the total momentum whose point of application is at the centre
of mass of the system.
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In particular, if the point 4 coincides with the centre of mass, then
we have r, = 0, and hence K = 0. Hence: the angular momentum with
respect o the centre of mass in an advancing motion is equal to zero.

It follows from this (p. 26) that a system of momenta in an advancing
motion has a resultant whose origin is at the centre of mass of the system.

Angular momentum in a motion relative to the centre of mass. Let a
system of coordinates O(x, y, 2) move with an advancing motion with
a velocity u. Denoting the relative velocities of the points 4, 4,, ... by
W, W, ..., the relative velocity of the centre of their mass § by w,, the
angular momentum of the relative motion by K,, and the angular mo-
mentum of the absolute motion of the system of these points with respect
to O by K,, we obtain

K, = mw, X OA4, + m,w, X O4, + ...

Since wy =v, —u, wy,=v,—u, ..,
K, = (myv; X 04, + movy X 04, + ...) —u x (m,04, + m, 04, + ...

The expression enclosed in the first parenthesis is equal to Kj; the
expression enclosed in the second parenthesis is m - OS (p. 194). Therefore

K, = K, —mu x OS. (4)

In particular, if the origin O of the moving system of coordinates is
chosen at the centre of mass S of the system of points A,, 4,, ..., then
08 = 0, whence by (4) K, = K,.

Therefore, if we are investigating the motion of a system with respect

to the centre of mass, then the angular momenta with respect to the centre of
mass in relative and absolute motion are equal.

Angular momentum with respect to an axis. The total moment of
momenta of a system of points with respect to a certain axis is called the
© angular momentum of a system with respect to this axis.

Formulae (I) represent the angular momenta of a system of points
with respect to axes parallel to the 2, 4, z axes and passing through the
point 4, while formulae (I') represent the angular momenta with respect
to the #, y and z axes. Let us consider the angular momentum with respect
to the y-axis

K, = Emyzz, — ;).

) De.noting' by 8; the areal velocity (p. 47) of the motion which the
projection of the point 4, executes in the vertical xz-plane, we obtain
from formula (IT), p. 48, §, = Hzw; — w;32,); therefore

Ky = 227)7181.
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Hence: the angular momentum wiih respect to a certain axis is equal
to twice the sum of the products of the masses and the areal velocities of the
motions which the projections of the points execute on a plane perpendicular
to this axis:

K = 2%m,S,. (5)

If we introduce the polar coordinates r, ¢ in the plane perpendicular
to the axis, then by (I), p. 47, we obtain S; = 4r2p;, and hence

K = Zmirgwé. (6)

Let a system of points rotate about a certain axis with an angular
velocity . We then have ¢; = @3 = ... = w. Therefore K = Sm 2w =
= o Imy?. Since Zmg? = I, where I is the moment of inertia with res-
pect to the axis of rotation,

K = Io. (7)

Therefore: if a system of points rotates about a certain axis, then the
angular momentum with respect to the azis of rotation is equal to the product
of the angular velocity and the moment of inertia with respect to the axis of
rotation.

Dynamic properties of angular momentum. Let A be an arbitrary
point which is either fixed or in motion (Fig. 137). Denote the vectors
AA;byr,;, the vectors OA4; by p; (where O is the origin of the inertial
system of coordinates), the vector O4 by p, and the velocity of the point
A by u. Therefore:

pr=u and p;=v; =12 ..). (8

Let K be the angular momentum with respect
to A. By (1), p. 199, K = Z(myv; X r;). Denoting
the accelerations of the. points 4; by p;, we obtain
after differentiating with respect to 2,

K = Z(mp; X ry) + Z(my; +r5). (9)
But r; = p;,—p; hence r; = p; — p*. There-
fore by (8) ri=v,—u, and Z(my; Xr})=

= X(my; X v;) —Z(myv; X u), But v, Xv; =0, and Zm,v; = my,,
where v, denotes the velocity of the centre of mass. Therefore

Fig. 137.

Z(my; X r}) = —mvy X u. (10)

If the force P; acts on the point 4;, then mp; = P;, and therefore
msp; X r; = P; X r; = Mom ,P;. Hence, if M is the total moment of the
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forces with respect to 4, then Zm;p; X r; = ZP; X r; = Mom P; = M.
This formula together with formula (10) gives by (9)

K=M—mv, Xu. (1)

The expression v, X u will be zero if we assume that the point 4 is
at rest (hence that u = 0), or that 4 coincides with the centre of mass
(hence that u = v,). In both instances we obtain

K =M. (IIT)

Therefore: the derivative of the angular momentum (with respect to a
fixed point or a centre of mass) is equal to the total moment of the acting
forces.

Forming the projections on a fixed axis or on one passing through the
centre of mass and not changing its direction, we conclude from formula
(I11) that the derivative of the angular momentum with respect to a fixed axis
(or to one passing through the centre of mass and not changing its direction) is
equal to the total moment of the forces with respect to this axis.

In particular, if the total moment of the forces with respect to a
certain fixed point or with respect to the centre of mass is constantly zero,
then the derivative of the angular momentum is zero, i. e. the angular
momentum is a constant vector.

Therefore: if the total moment of the forces (with respect to a certain
fized point or the centre of mass) is constantly zero, then the angular momen-
tum is a constant vector. '

The preceding theorem is known as the principle of conservation of
angular momentum.

A similar theorem is obtained for the angular momentum with res-
pect to an axis.

Therefore: if the moment of the forces with respect to a certain fized axis
(or ome passing through the centre of mass and not changing its direction) is
constantly zero, then the angular momentum with respect to this azis is con-

' stant.

The angular momentum by formula (5), p. 201, is K = 2%mS,,
where S; denote the areal velocities of the motions executed by the
projections on the plane IT perpendicular to the axis. Therefore, if the
angular momentum is constant, then

Em;S; = ¢ = const. (11)

Let us note that

t
ai == flgl dt
- t'
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represents the area swept out in the plane I7 by the projection on it of the '
radius vector 7; of the point A, from the time £, to t. Therefore by (11)

» Zmaa, = ot —1,). (12)

Therefore: the sum of the products of the masses and areas swept out
by the projections of the radiis vectors on the plane perpendicular to the axis
is proportional to the time.

Because of this the principle of conservation of angular momentum is
also known as the principle of conservation of areas.

As we know (p. 187), the moment of the internal forces with respect
to an arbitrary point is zero. Hence the moment of all the acting forces is
reduced to the moment of the external forces. Therefore, if the moment of
the external forces with respect to a certain fixed point A or the centre
of mass is denoted by M®, then the equality (ITI) will assume the form

K = M®. (IIT)

In the theorems given previously we can therefore replace the mo-
ment of all the acting forces by the moment of the external forces.

If no external forces act on a system of points, then the principle of
conservation of areas (of angular momentum) obviously holds, and hence
the angular momentum with respect to each fixed point or centre of mass is
then a constant vector. Since the angular momentum with respect to each
fixed axis (or one passing through the centre of mass and not changing its
direction) is then constant, equations (11) and (12) hold for motions which
are executed by the projections of the points on an arbitrary fixed plane
(or on one moving together with the centre of mass and not changing its
direction).

Motion in a gravitational field. Let a system of material points
A, 4, ... of masses my, m,, ... move in a gravitational field. If the only
external forces are the weights of the points, then the total moment of the
weights with respect to the centre of mass is zero (p. 195) and hence the
angular momentum with respect to the centre of mass is constant.

Let us assume that a system of coordinates with its origin at the
centre of gravity is moving with an advancing motion. In order to obtain
the relative motion it is necessary to add to the acting forces the forces
of transport (the force of Coriolis is zero because, by hypothesis, the system
of coordinates is moving with an advaneing motion).

Denote the gravitational acceleration vector by g. Since the centre
of gravity has an acceleration g, the acceleration of transport is also g.
Therefore the force of transport for the individual points is —mg,
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—M,g, ..., respectively. We see then that the forces of transport are
balanced by the weights of the points. Therefore the relative motion will
be such as if the force of gravity were not acting. If there are no exter-

nal forces besides the weights, then the angular momentum with respect

to the centre of mass in relative motion will be a constant vector, and by
(4), - 200, will be equal to the angular momentum with respect to the
centre of mass in absolute motion.

Example: I. Two material points 4 and B of masses m, and m, joined
by a rigid massless rod are moving in a gravitational field. Therefore
the forces R and —R of weight and reactions of the rod act on the points
4 and B. The reactions behave just like internal forces because they act
along the line joining these points, are equal in magnitude, and have
opposite senses. The centre of mass will therefore move (like a material
point of mass m, - m, under the influence of gravity) with a vertical
acceleration g along a straight line or along a parabola.

Let us denote the velocities of the points 4 and B by v, and v,, and

the centre of mass by 8. The angular momentum with respect to the
centre of mass is

K = myv, X SA4 —+ mpv, X SB. (12)
Since '
84=_"2 4B Ssp—_Ta__
my + m, My + My 45,
(p. 156),
Sd=—_"2 75 Fp__"
my + m, my + m, !

from which we obtain after substituting in (12)
K= MM
My —+ My

Let us assume that K == 0; therefore K 1 AB. Since K is a constant
vecto‘r, the segment 4B (Fig. 138) is always parallel during motion to a
certain plane /7 perpendicular to the angular momentum K.

(vo—v,) x 4AB. (13)

Let us choose the centre of mass as the
origih of the coordinate system (', ¥, 2')
moving with an advancing motion. Assume

Therefore the z"-axis is parallel to K. The rod
AB therefore always remains in the x'y’-plane.
It follows from this that the relative motion of

that the z'y’-plane is always parallel to IT.
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the rod AB will be a rotation about the 2’-axis (because the point S of
the rod is motionless relative to the frame (', y', 2')). Since the angular
momentum in relative motion is constant, the angular momentum with
respect to the z’-axis will be, by formula (7), p. 201,

K, = I,0 = const, (14)
where the moment of inertia
I = M _‘482 2 _ M 2
s 1 -+ myBS' o, AB2,

and o denotes the angular velocity. Therefore w = const.
Hence the relative motion will be a rotation in the z'y’-plane aboust
the centre of mass S with a constant angular velocity.

Rotation of a system about an axis. Let us assume that no external
forces act on a system of material points U. Suppose that the system was
at restinitially, and then some part of the system U, began to rotate about
a certain fixed axis ] under the influence of internal forces. Let us denote
the moment of inertia of this part of the system with respect to I by I,
and the angular velocity by w,. Then its angular momentum with respect
to the axis of rotation is K; = I,m,.

Since the total angular momentum of a system must be zero, because
the internal forces cannot change the angular momentum, the remaining
part of the system U, must execute a motion whose angular momentum
with respect to the l-axis is K, = — K, such that the sum of both angular
momenta is zero (i. e. so that K, + K, = 0). Suppose that the motion of
the other part is also a rotation about the l-axis (this case occurs if we
assume e. g., that both parts can only rotate about I). If we denote the
moment of inertia of the part U, with respect to I by I, and its angular
velocity by w,, then K, = I,w,.

Since K; 4+ K, = 0,

Lo, + Tw, = 0. (15)

The preceding equation expresses the relation between the angular
velocities of both parts of the system U. Since

wy [ wy=—1I,/1, (16)
both parts of the system rotate in opposite directions and their angular
velocities are in magnitude inversely proportional to the moments of
inertia.

Denote by ¢, and ¢, the angles through which both parts U; and U, of
the system U have turned in the time f. Since ¢; = w;, and @; = w,,
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it follows by (13), that I,p; + I,p; = 0, whence L, + gy =c. As-
suming that ¢, = 0 and ¢, = 0 at the moment ¢ = 0, we obtain I,p, 4
Ig,=0,1i.e.
@1/ @ =—1Is/ 15 (17)
The angles of rotation are therefore in magnitude also inversely
‘proportional to the moments of inertia of the two parts of the system.

If at a certain moment ¢, — @, = 2km, where k is an arbitrary
integer, then the position of the system is such as if it had turned through
an angle ¢,.

We see then that the action of internal forces is sufficient for turning
a system of points about an axis through an arbitrary angle ¢. Such a
rotation can oceur for instance in the following manner: one part of the
system turns through an angle @, and the other part through an angle
2m — ¢ in the opposite direction.

This explains the fact that when a cat falls it can turn in the air in such a way
as to fall on all fours.

If we start to turn a material wheel about a vertical axis with an angular
velocity o, on the deck of a boat, then the boat begins to turn in the opposite
direction with an angular velocity w,; both velocities will satisfy relations (15) and
(16), where I, and I, denote the moments of inertia of the wheel and boat respect-
ively.

Example 2. A piece of paper rests on a smooth horizontal plane; the
paper is pierced by a pin at the point O so that it can only turn about this

point. An insect A crawls over the paper
(Fig. 139).

The external forces acting on the system
consisting of the paper and insect are: the re-
action of the pin with its origin at the point
0, the weight of the paper and that of the in-
sect as well as the reaction of the horizontal
plane; these orces have a vertical direction.
The moment of these forces with respect to
the vertical z-axis passing through O is there-
fore equal to zero, and because of this the
angular momentum with respect to the z-axis is constant.

Let us assume that the insect and the piece of paper were at rest at
¢ = 0. The angular momentum with respect to the z-axis will therefore
be constantly zero. '

Select a fixed coordinate system (2, y') in the horizontal plane and

Fig. 139.
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a moving system (z, y) on the piece of paper, both having a common
origin at O. Denote the angle between 04 and 2’ by ¢, the angle between
OA and z by ¢, and the angle through which the paper has turned by 1,
i. e. the angle between « and 2'. Finally, let m denote the mass of the
insect, I the moment of inertia of the paper with respect to O and let
r = OA. Then the angular momentum with respect to the z-axis is
mr2p; + Iy = 0, and since ¢, = ¢ + vy,

mrip 4 (mr2 -+ I)y = 0. (18)

Let us suppose that the insect crawls along a curve whose equation
is r = f(p). By (18), and from the fact that ¢ / ¢* = dy / dp, we obtain

dy / dp = — mr? | (me? 4 I). Therefore, integrating from g,to ¢, we get
mr?
Y—Yo=— Wd% (19)

Po
The difference y — 1, represents the angle through which the paper
has turned while the insect crawled along the curve r = f(g) from ¢, to .
We see that the angle of rotation does not depend on the velocity of
the insect, but only on the curve along which it crawls. In particular, if
the insect crawls along the circle » = const, then by (19) ‘

mr?
‘/J—%=f—m(?’—*%)- (20)

Angular momentum in relative motion. Let the coordinate system
O'(z', y', 2’) move relative to the inertial system of coordinates O(z, y, ).
In order to determine the relative motion of the system of material points
it is necessary to add the forces of transport and Coriolis to the acting
forces. Denote by K, the angular momentum of the relative motion with
respect to the origin O’, and by M, M, and M, the moments of the acting
forces, the force of transport, and the force of Coriolis, with respect to the
point 0. Since Newton’s laws apply to relative motion if we add the
forces of transport and Coriolis to the acting forces (p. 135),

K= M+ M, + M, (21)

This formula becomes simpler in the case when O’ coincides with
the centre of mass of a system of material points, and the system of
coordinates (z, ¥, z) moves with an advancing motion. This is so because
as we have proved (p. 200), in this case K, = K, where K denotes the
angular momentum (with respect to the centre of mass) in absolute
motion. Therefore K; = K, and since K = M, we obtain

K. =M. (22)
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Hence, if we are investigating motion relative to the centre of mass,
then the derivative of the angular momentum (with, respect to the centre of
mass) in relative motion is equal to the moment (with respect to the centre
of mass) of the acting forces.

§ 4. Work and potential of a system of points. Work. Let forces
P,, P,, ... act on the points of a system. The work of the force P; is expres-
sed (p. 94) by the formula

L; = f(Pixdxi—l" Piyd-yi +Pizdzt‘);
G
where C; denotes the path of the i-th point.
The total work (or briefly the work) of the forces Py, Py, ... is defined as

the sum of the works of the separate forces.
Therefore the total work is

LzEf(ledm,+P1ydy;+Pzz dzl) (I)
¢

The total work done by the forces from the time £, to ¢ can be re-
presented in the form (IV), p. 95,

i
L= tf 3(P; ; + Py it P, ) dt (IT)
or ((V), p. 95) ' ,
L= tf I(Py,) dt, (11"

where v; denote the velocities of the points, and P.v; is a scalar product.
Work equal to zero. The cases in which the work of the forces acting
on a system is zero are very important. We shall give several examples.
Example I. For a rigid system of material poinfs (p. 190) the follow-
ing theorem holds:
The work of the internal forces in a rigid system is zero.

Proof. Let us first consider two points of the rigid system 4, and

4, (Fig. 140). Put:
ro=04,, r,=04, r=4/4, (1)
where O is the origin of the coordinate system.

If vi, v, are the velocities of the points 4,
A,, then
Vi=T], Vy=r; (2)
By (1) we have r =r,—r;, whence
r- = ry; —r;, and therefore

= V,—v,. (3)
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Since 4,4, = const, r* = const. Differentiating with respect to the
time £, we obtain 2rr- = 0. Hence by (3)
riv,—v;) = 0. (4)
Denote the force which the point 4, (or 4,) exerts on the point 4,
(or 4,) by Py (or P,). In virtue of the law of action and reaction
P 1= — P,. (5)
Since the forces P; and P, have the direction of the vector 4,4, = r,
we can assume that
P,=4r and P,=—1r, {8)
where A is a factor of proportionality depending on time (because the

magnitude of the forces P, and P, can change in the course of time). By
(IT’) the work of the forces P; and P, is

1,
L = [(Pyvy + Pyv,) di. (7)
1y

From equations (8) we get Pyv; + Pavy = A(rv, —rvy) = ir(vy — V),
and hence by (4) Pyv; - Py, = 0. It follows from this and (7) that

L =0.

We have therefore proved that the work of the internal forces with
which any two points of a rigid system react on each other is zero. The
sum of the works of all the internal forces is hence also zero, g. e. d.

Example 2. Two material points 4, and 4, are connected by an in-
extensible (massless) string passing through a fixed point O (Fig. 141). Let
us assume that there is no friction. We shall prove that the work of the
forces exerted by the string on the points of the system is equal to zero.

Choose the point O as the origin of the system of coordinates. Let
%, ¥y, 2, be the coordinates of the point A,,and xy, ¥,, 2, the coordinates of
the point 4,. Put ‘

r=04,= Vm‘i -+ y? + 23, and r,=04,= 1’9:§ -+ yg 423 (8)
Since the length of the string [ = const,
andr, +r, =1,
=0 (9)
Denote the forces which the string exerts
on the points 4, and 4, by P; and P,. We have
(p. 190)

Ipll = ]P?.l' (10)

14
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Putting P = — |P| = — [Py|, we obtain: X
Ty _pH __pt.
P, = " Plﬂ = P;;, and P, = P o
hence

Pz + Pyi+Pa= P(my; + yyi + 22i) [ 12 = Pry,

and analogously
Py x5 + Py ys + P, z; = Pry.

By (II), p. 208, the work of the forces P, and P, is then
t t
L= [[Pr; + Pr;]dt = [P[r; + r;] dt.
ts to

Trom (9) we therefore get L = 0.

Example 3. Let us suppose that some body K moves in such a way
that it constantly remains tangent to a certain surface X. Assuming that
the forces of reaction of the surface have their points of application at the
points of tangency, we see that the reactions change their points of applic-
ation if the body comes in contact with the surface X at different points
each time. Let us suppose that the work of the forces of reaction is in this
case expressed by formula (II'), p. 208, where v; denote the velocities of
the points of tangency at which the reactions P; have their points of
application at a given time.

If the velocities of the points of tangency are always equal to zero,
then we say that the body K rolls on the surface Z.

Therefore: when a body rolls the work of the forces of reaction is zero.

Potential of a system. If the forces P, Py, ... depend only on the
_position of the system of points, then the forces are said toform a force
field.

Since the position of a system is defined by the coordinates z;, ¥5, z;,

Z3, Y3 Za, - OF its points, the forces Py, P,, ... are functions of the variables
21, Y15 215 Tay Yoy %9, ... Consequently

Piﬂ: = Fi(xl’ Y 215 .- ')’ 'Pi-y = d;i(wl: Y1, 2y, - '): P’:z = T—;(Zl, Y1s 215 -+ .).

If the total work in a force field does not depend on the path described
by a system of points, but only on the initial and final positions of these
points, then the force field is called a conservative or potential field.

Let us consider an arbitrary position S, of the system of points
defined by the coordinates af, ¥3, 23, 23, 33, 23, ... Denote by V the work
done by the forces in displacing the system from the position S, to the
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position 8 whose coordinates are zj, ¥y, 21, €3, ¥a, 25, ..- If the field is
a potential field, then the work V will not depend on the path described.
Therefore V will be a function of the variables xy, ¥y, 21, Zs, ¥, 25, --. The
function ¥ is known as the potential or the force function.

The following formulae can be proved by the same reasoning as in
the case of one material point (p. 99):

v oV oV
iﬁ_ﬁ;—; Piy—g?—/—: Pis:‘é-z—‘

Conversely, if there exists a function V satisfying equations (III),
then the field is a potential field and V is a potential.

If a system is displaced from a position whose potential is ¥, to a
position whose potential is ¥, then the work is

L=V,—V,.
If each one of the forces P, P,, ... forms a potential field whose

potentials are V;, ¥y, ..., then the field is a potential field whose potential
is

P (i=12..). (III)

V=V, +Vo+... (11)
Potential of the force of gravity. Let a system of points of masses

My, My, ... MOVe in a gravitatienal field. If we assume that the z-axis is
directed vertically upwards, then (p. 100)

Vy=—mgz, Vi=—mszy,

Therefore by (11) the field will be a potential field whose potential is

V = —(mz + mgs + .-} 9- (12)

Denoting the coordinate of the center of mass of the system by z, we
shall have m,2, + Mg2y + ... = Mz, Where m denotes the total mass of
the system (p. 152). Therefore according to (12)
V = — mgz,. (13)

Let us note that mg is the weight of the entire system (i. e. the sum
of the weights of the separate points).

If in one position of the system the centre of gravity has coordinates
AD and in the other 2, then the work done by the force of gravity is
L = (— mgz®) — (— mg2y), whence

L = mg(? —#7). (14)

Hence: the work in a gravitational field depends only on the difference of
the levels of the cenlre of grawity of the system, and does not depend -on
the paths of its individual points.
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The work of the weights is therefore equal to the work that would be done
by the total weight of the system whose point of application would be at the
cenire of its mass.

Potential of the internal forces. Let a system of points 4,, 4,, ..., 4,
of masses M, Ma, ..., M, be given. Assume that the internal forces with
which two arbitrary points of the system react on each other depend in
magnitude only on the distances between these points, 1. e. if P¥ denotes
the foree with which the point 4 (25, ¥;, 2;) reacts on the point 4 ,(%;, ¥;, 24),
and r;; the distance between the points A, and A; (Fig. 142), then |P¥| is

a function of the distance ry;, i. e.
[PH| = fuslris)s (15)

where

rg = Vo —oF + Wi —vP + @ —a) (16)

Then:
].o |Pi1| = lP“l

d
P;"\ A 2° P,; <0, if the points 4; and
A‘ pi—~7/mxyz) Ay attract each other, and Py = 0 if
ﬁi{x-,}} ) A the points 4, and 4, repel each other.
: Since by the law of action and re-

action P#¥ = —P% it follows that

P,; = P;;, whence by (15) and condi-

tion 1°

Py = = fus(rss)

or Py = Fylry). (17)

From the definition of the number P,; it follows that the projections
of the force P# on the axes of the system (z, y, z) can be written in the
form:

PZ:P{jmi_zj: P?zPiy'yi_yi’ P;:’:Pwé;—zj (18)
i . L] T4
Let us put
. Vi = [Py dry = [Fyry) dry. (19)
Since P;; = P;; and r;; = 1y,
V=TV, (20)

We have

Let P,; denote the projection of the force P% on the direction of 4,4,
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6Vi]- — % . Brﬁ — P.‘TC, — ZE,"
ax,- dri:i 89:‘- 4 Tij
and therefore by (18):
aV“ / axi = P;’:’, aV,-,/ ay,- - P;',], BV;,« / azi = P;’. (21)
Let us set
V = %EVH = %ZfP,jj d‘."i,», (22)

where the summation is extended over all number pairs %, §, such that
i %4 i< nand < n.
Let P; denote the sum of all the internal forces acting on the point ‘A,

Hence -
n

P,= > Pi for j=i. (23)

. =1
Let us calculate the partial derivative oV / oz;. The variable x;
appears only in the functions V;; and ¥, where j = i. In virtue of this

and (22)
v < |V Vs for i =1
=i m e
From equations (20) and (21) it therefore follows that
oV Sopii < pii .,
””=%22Pm}=ZPm] for i =4,
0x; i=1 j=1
whence by (23):
oV v
P P 5?:’: = P,-z'

g'x"i = Ly a_% = Ly

Hence V is a potential. We have therefore proved the following
theorem:

If the internal forces with which the points of a system react on each
other depend only on the distances of these points, then the internal forces
form a potential field whose potential is given by formula (22).

Example 4. Let the points of a system attract each other according
to Newton’s law. Then P, = — Kmm;/[ry for @ +j, and hence
&Gcording to (19) Vii == f‘Pi]' drij = Kmimj / Tiis Whence by (22)

V = 1K Zmam; | 1ij, (24)

where the summation extends over every number pair i, j such that
i+, i<nandj< n.
In particular, for two points we have
V = Kmyms, | 11 (25)
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Example 5. Let the points of a system atitract each other with forces
proportional to the distances. Then Py; = — Mry; for i = §, where A, is
a factor of proportionality depending on the pair of points m;, m;. There-

2

fore according to (19) Vi = [Py dry = — 32575, from which by (22)
V = — 31542 (26)
§ 5. Kinetic energy of a system of points. Let there be given a
system of points my, Mm,, ..., having velocities vy, vy, ... at a certain
moment . :
" The kinetic energy of a system of points at the time ¢ is defined as the
sum of the kinetic energies of the separate points.
Tf we set v; = |vq|, ¥, = [v4], ..., then the kinetic energy of the system
will be
B = mp? + Jmpl + ... = }Empl. (I
Kinetic energy of a system in an advancing motion. If a system
moves with an advancing motion with a velocity v (i. e. if each of its points
has this same velocity v), then, putting v = |v|, we have B = }Zma? =
= 3v*°Zm;, or
B = Imv?,

where m denotes the total mass of the system.

(IT)

Kinetic energy in a rotating motion about an axis. Let a system of
points rotate about an axis [ with an angular velocity w. Denoting the
distances of the points of the system from the axis of rotation by r;, r, ...,
we have v; = r,0, and therefore B = {Zmp] = {Emaio® = o Zma?.
Since Zm,r7 is the moment of inertia of the system with reépect to the a,xis
of rotation, setting Tm? = I, we obtain

E = o’ (IT1)

Theorem of Kénig. Let an arbitrary system of coordinates with
origin at O move with an advancing motion relative to a frame of referen-
ce. Denote the velocity of the point O by u, the absolute velocities by v;
and the relative velocities of the material points m; (¢ = 1, 2, ...) by w"
Since u is the velocity of transport, it follows that ’ z

vV, =u-4 w, ' (1)

whence v} = (u 4 w,)* = u* + w2 + 2uw,. Putting v, = |v,], wl = |wy,
and % = |u|, we obtain

— 1 2
B = }Emy = §Imad + §Ema? + Smuw,.
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If we set m = Zm,, then we get
E = jmu? + 3Zmaw] + uZmw;. (2)

Denote the absolute and relative velocities of the centre of mass by
v, and w,, respectively. By (1) we have v, = u + w,. Since Zmw; =
— mw,, it follows from (2) that B = }mu? + }Zmw? + muw, or, writing
v, — u instead of wy, ,

B = }mu? 4 1Zmo% -+ mu(v, — u). vy

The first term of this sum denotes the energy of the advancing motion
of the system of points moving with a velocity u. The second term denotes
the kinetic energy of the relative motion, where the velocities w; can be
considered as the velocities of the points m; relative to the point O which
moves with a velocity u. '

Therefore, if we agsume that the motion of the system consists of an
advancing motion with a velocity of the arbitrary point O and a relative
motion with respect to this point O, then the kinetic energy of the system
is equal to the sum of the kinetic energy of the advancing motion, the kinetic
energy of the relative motion, and the product of the total mass of the system
by the scalar product of the velocity of the point O and the relative velocity of
the centre of mass.

This theorem is known as the theorem of Konig.

- In particular, if the centre of mass is chosen as the point O, then
u = u,, whence by (IV)
E = ymv? + Emal. (3)

Therefore, if the motion of a system is considered as a motion con-
sisting of an advancing motion whose velocity is that of the centre of
mass and a relative motion with respect to the centre of mass, then the
Kinetic energy of the system is equal to the sum of the kinetic energy of the
advancing motion and the kinetic energy of the relative motion.

Principle of the equivalence of work and kinetic energy. Let the
forces P; act on the material points m,. Denote the velocity of the point
m; at the time ¢ by v, its velocity at the time £, by v{¥, and the work of the
foree P; during the time from £, to ¢ by L{). Therefore ((3), p. 105)
Ima? — dm () = L{7), whence

FEmot — 1Em (o) = EL%‘
Setting: B = ¥=maf, Bq = 3Zmy (0", Ly, = =L, we obtain

E—E,= Ly, (V)
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In this formula & denotes the kinetic energy of the system at the
time ¢, and F, at the time #,; the expression L, represents the sum of the
works of the separate forces acting on the system, i. e. the total work
which these forces did in the time from £, to 2.

Therefore: the increase in the kinetic energy of a system of material
poinis is equal to the total work of the forces acting on the points of the system.

This theorem is known as the principle of the equivalence of work and
kinetic energy. v

If the total work of the acting forces is zero, i. e. L, ;= 0, then by v
BE—Ey=0, or

E=E,

Therefore: if the total work of the forces acting on the points of a system‘

15 constantly zero, then the kinetic energy of the system is constan.

The above theorem is known as the principle of conservation of kinetic
energy.

Let us assume that a system of acting forces possesses a potential.
If we denote the potential at the time ¢ by ¥V, and the potential at the time
to by Vy, then I, = V — ¥, and hence by (V)E—Ey,=V —V,or
E—V=EF—7,.

The magnitude U = — ¥ is called the potential energy of the system.
Consequently

E 4 U= E,+ U, = const.
The sum & + U is called the fotal energy of the system.

Therefore: if a system of points moves in a potential field,*then the total
energy of the system is constant.

These theorems are obviously generalizations of the corresponding
theorems proved on p. 105 for one material point. ‘

(VD)

Kinetic energy in relative motion. Let the system of coordinates
0'(z', y', 2') move relative to the inertial frame O(x, y, 2). Denote by E
and B the kinetic energy in relative motion at the times ¢ and #,, by L :
L}, and L, the works in relative motion of the acting forces, tl;e forctgs’
of transport and Coriolis during the time from #, to ¢ Since Newton’s
laws apply to relative motion if the forces of transport and Coriolis
(p. 135) are added to the acting forces, it follows that

E,. —E’(fl) = Lt,t -+ ‘Lgnt -+ Lt(zt (4)

ﬁince the acceleration of Coriolis is perpendicular to the relative
velocity, the force of Coriolis is also perpendicular to this velocity.
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Therefore the work of the forces of Coriolis in relative motion is zero, and
because of this we can write

B, —E® =L, + L, (5)

Hence: the increase in kinetic energy in relative motion is equal to the
sum of the works in relative motion of the acting forces and of the forces
of tramsport.

In particular, let the point O’ be situated at the centre of mass S
of the system O'(z’, y’, 2’} and let this system move with an advancing
motion. Since the acceleration of transport is by this assumption equal
to the acceleration p, of the centre of mass, the forces of transport of the
soparate points of the system m,, m,, ... are:

Py = — mypy, ... (6)

Denoting the relative velocities of the points of the system by
Wy, Wy, ..., We obtain

Py =—mypy,

t N i
Lgnt:fpltwldt_i;"fpztwgdt—%“...,
to to

whence according to (6)
|3

Lgnt = fPo(m1W1 + maw, + ...) di.

i
The relative velocity w, of the centre of mass is equal to zero because
we have assumed that the centre S of the total mass m is always at the
origin of ‘the moving system O'(z', ¥, 2'). Therefore m;w; + m,ws -+
+ ... = mw, = 0, whence according to the last formula I{, = 0. Hence
by (5)
B, — B = Ly (7)

Hence: the increase in kinetic energy in relative motion with respect to
the centre of mass is equal to the work in relative motion of the acting forces.

Example I. A system of material points moves in a gravitational
force field. Let the centre of mass S be the origin of the coordinate system
(#', 9, ') moving with an advancing motion. Assume that the z'-axis
is vertical and has a downward sense.

Since the weights of the separate points have the direction of the
#'-axis, then (just as in the absolute system, p. 212) the work of the
weights in relative motion is equal to the work done by the total weight
whose initial point is at the centre of mass. As the center of mass is at rest
relative to the system (2, /', 2’), for by hypothesis it is constantly at the
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origin of this system, the work of the weights in relative motion is zero.
Therefore the increase in kinetic energy in relative motion is equal
to the work of the remaining forces (excluding the weights) which act on
the points of the system.

In particular, if the weights are the only forces acting on the points of
the system, then the kinetic energy of this system in relative motion is
constant.

Let us suppose, e. g., that at the moment £=0 we have released
freely a material point of mass m,, and after 7' seconds, another point of
mass m,. After the time ¢ > 7' the velocities of the points m; and m, are:

v, = gt and v, = g(t—1T). ’ (8)
The velocity of the centre of mass v, is obtained from the equation
MWy + Me¥y = (Mg + M) V.
Therefore v, = (m,w; + mqw,) / (M, + ms). The relative velocities of the
points m, and m, are w, = v; — v, and w, = v,—v; hence w; =
= My —y) [ (my + my), and wy = my(vy — v1) [ (my + my), from which
by (8) wy = mygT | (my + my), and wy, = — mygT [ (my + m,).
The kinetic energy in relative motion is therefore
E, = tmuwi = + Imw? = mmyg?T? | 2(my -+ m,) = const.

We see then that the kinetic energy in relative motion with respect
to the centre of mass is constant.

Example 2. Two points 4 and B of masses m; and m,, connected by
a massless inextensible string, move in a vertical plane in such a way that
the point 4 must remain constantly on the horizontal axis z and the
point B on the vertical axis z.

Let us denote the length of the string by ! and the coordinates of the
points 4, B by z, z (Fig. 143). The point 4 is acted upon by the reaction.
R, perpendicular to the z-axis (we assume that there is no friction), the
weight Q,, and the reaction P, of the string; the
point B is acted upon by the reaction R, perpen-
dicular to the z-axis, the weight Q,, and the
reaction P, of the string.-

Of these forces, the following do no work:
the reactions R;, R,, and the weight Q,, be-
cause these forces are perpendicular to the path.
The forces P; and P, also do no work, since P, =
= —P, and furthermore the distance between
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the points 4, B is constant (p. 208). Only the weight Q, therefore does
work.

Suppose that at the time #, = 0 the points 4, B had the coordinates
%y, 2o and a zero velocity. The kinetic energy at the instant ¢ is

E = jmz? + Imga2
" The work of the force Q, is equal to mag(z — 2,) if the z-axis is given
a downward sense. Therefore by the principle of equivalence of work and
kinetic energy ) o
Jmw® 4 mt = maglz— 7). (®)
Denote by ¢ the angle which the string makes with the z-axis at the
time ¢, and by @, the angle at the time £, = 0. We then have:
x=1lcosp, z=Iging, z,=1sing,
whence
x = —lp sing, 2 = lp cosg. (10)
Hence according to (9)
32, sin’ + m, cos’p) = mygl(sin ¢ — sin go). (11)

"From the above equation we can, knowing ¢, calculate ¢, and then
from equations (10) determine the velocities ' and y-. Knowing ¢, we can
also determine the reactions Ry, R,, P, P,. Assume for simplicity’s
sake that m, = m, = m, and ¢, = 0. We obtain from (11)

Hp? = gsing. (12)
Differentiating with respect to f, we get lp'gp* = go- cos p, whence
gr=gcoseg/lL (13)

Denoting the acceleration of the point A by p,;, we obtain
mip; =Ry + Q1 + Py (14)
Forming the projection on the z-axis and putting P = |P,| = [Py,

we get
mx = — P cos ¢. (15)
Since in virtue of (10)

k a2 = — lp* sinp — lp? cos @, (16)

from equations (15) and (16) we can obtain P, knowing ¢, because ¢ and
¢ can be calculated from equations (12) and (13). We get

P = 3mg sin . (17)
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Forming the projection on the z-axis, we get from (14) B, + mg +
-+ Psing = 0, or
R, = —mg — Psin ¢, (18)
where R, denotes the projections of the force R, on the z-axis.
Similarly, for the point B we have mp, = R, + P; - Q.. Forming the

projection on the z-axis and observing that P, = — P,;, we obtain the
equation R, + P cosg = 0, whence
R, = —Pcosg. (19)

Formulae (17)—
the angle ¢.

(19) determine the dependence of the reactions on

Examgple 3. Two material points 4, and 4, of masses m; and m,,
connected by a massless inextensible string passing through a fixed point
0, move without friction in a horizontal plane passing through O. In this
plane select a coordinate system (z, z) whose origin is at O (see Fig. 140).
Since the directions of the forces Py, P,, with which the string acts on
the points 4, and 4,, constantly pass through O, the points 4, and 4,
will move with a central motion with centre at O.

Put r, = 04, and r, = 04,; let ¢,, @, denote the angles between the
z-axis and the segments OA4; and 04,. The areal velocities of the points
A, and A, are equal to }r2p; and %rip;, respectively. Since the areal
velocities in a central motion are constant (p. 86), it follows that

g =i, 13p5 = Ca, (20)
where ¢, and c, are certain constants.

On p. 209 we proved that the total work of the forces P, and P, is
zero. Therefore the kinetic energy of the system of points 4; and A4, has
a constant value. Denoting the magnitudes of the velocities of the points
A4, and A, by v, and v,, we obtain }m;v? + Imuw} = ¢, whence

myi + mywi = h, ' (21)
where ¢ and kb = 2¢ are constants. But ((3), p. 47) ‘
i =ri* + ripi? end 03 =r3® + rigs?;
hence by (20), expressing ¢; and @; in terms of 7, and r,, we obtain
v} =12+ ¢} /r} and v} = r3* + c2 [ 7%, from which by (21)

myri® + myrs? + myct / 1} 4 myh [ 15 = h. (22)
Denote the length of the string by I. Then r, - r, = [ therefore
7y =1 —r,, whence

ry = — 1. (23)
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Substituting in (22), we obtain
(my + my) 1% + myct [ 15 + mycs [ (I — r,)* = h. (24)

The differential equation (24) determines r, as a function of the
time ¢. From equations (23) and (20) we obtain r,, ¢, ¢, In order to
determine the reactions P,, Py, let us note that if p, denotes the accelera-
tion of the point 4,, then m,p, = P;. Form the projection on the direction
of O4,. Denoting the projections of p, and P; on 04, by p,, and P, we get

mp,, = P. (25)
By (II), p. 47, we have p,, = r;' — r,p;®. Hence according to (20)
Py =1y — i /1] (26)
In order to determine r;, let us differentiate equation (24). We get
ril(my + mg) ri” —mued [ ] 4 moc3 [ (1 —1)°] = 0. (27)
If r{ == 0, then in virtue of (25)—(27)
MMy

cs e
— =1 28
My + My [(l — ) T 1‘?] (28)

From formula (28) we can obtain the reaction P knowing only 7.
Knowing P, we know Py and P, because |Py| = |P,|.

P=

§ 6. Problem of two bodies. Let two material points of masses M and
m attract each other according to Newton’s law with a force of magnitude

P =EKmM |

where r denotes the distance of these points. On p. 106 we examined the
motion of the point m under the assumption that the point M is motion-
less. We proved that Kepler’s law obtain in this case. Now we shall not
assume that the point M is motionless, but that both points are uncon-
strained. Therefore under the influence of their mutual attraction, both
points m and M will move. Obviously, their centre of mass will be at rest
or in uniform straight line motion, because according to the law of action
and reaction the sum of the forces acting on the points m and M is equal
to zero. We can therefore place the origin of the inertial frame at the centre
of gravity of both points.

Let z,, 4y, 2, be the coordinates of the point M, and s, ¥s, 2, those
of the point m. Newton’s equations of motion for the points M and m will
have the form:

EKmM x,—a, Kmﬂfy2
T e T e

KMM zz

, My =

_‘?/1 — %
r M 7 (1)
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. EmM a:z——-xl m ..___KMM Yo%
MmPz =TT TE T Y2 = 72 ro
’
. EmMz,— 2 (1
Mm2e = -———73—— —*7—

Since the centre of gravity of the system M, m is at the origin of
the coordinate system, M, + mzy; =0, My, + my, =0, and Mz, +

4 maz, = 0, whence &, =—Mz/m, Y= — My, |m, and z,=
= — Mz, [ m. Therefore:
M M —I— m
Ty — Ty = — ;n'*—mxl: Ya— Y= — yl)
Mim @)
Z—=——
Hence y
+m
r = V(-’”z— )2+ (Yo — Y1) + (B2 — 2)? = m 71 (3)

where 7, = Vx% -+ y“{ -+ 2= denotes the distance of the point M from the

centre of gravity. Substituting in equations (1) the expressions from

formulae (2) and (3), we obtain:
Km*M o

May — — —ZM M B e
(M + myr] n

EmdM .y,
(M + m)? ¥ T
. Km*M 2 4)
2y = — —_———
(M 4+ m)ri "1
Comparing these equations with equations (I), p. 106, we see that the
motion of the point M is such as if this point were attracted by a motion-
less mass m® [ (M -+ m)? situated at the origin of the system.

Therefore: if two points M and m atiract each other according to
Newton’s law, then each one of them, for example M, moves relative to the
centre of gravity (of both poinis) 8o as if a motionless mass m® | (M -+ m)* were
situated at the cenire of gravity and attracted the point M according to
Newton’s law.

Hence the investigation of a motion relative to the centre of mass of
two points is reduced to the case considered on p. 106.

It follows from this that both points move along a conic at whose
focus is found the centre of gravity of these points. The paths of both
points are therefore plane paths.

Let us still examine the motion of the point m relative to the point M.
Let us place at M the origin of the coordinate system (2, %, 2’) which
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moves together with M with an advancing motion. Denoting the coordin-
ates of m with respect to this coordinate system by &, %, £, we obtain

f=2—x, n=y—y, C(=z—2. (5)

Multiplying equations (1) by m [ M and subtracting from (1) we get

in virtue of (5)

. KMi+mme KM
mev = — EM A m)m ¢ (6)
LA

Comparing equations (6) with equations (I), p. 106, we see that the
point m moves relative to the point M so as if M were motionless and its
mass were increased by the mass of the point m.

Therefore: if two points M and m aitract each other according to
Newton’s law, then the relative motion of m with respect to M is such as if M
were motionless and its mass were increased by the mass of the point m.

In this case also, the investigation of the motion of one material
point relative to another is therefore reduced to the case considered on
p. 106.

Let us assume that the relative motion of the point m takes place
along an ellipse of major axis 2a, and let the time required to complete one
revolution be 7'. By (10), p. 108, we obtain a3 | T? = K(M + m) | 47%. We
see, therefore, that in relative motion the ratio a®/7? depends on the
masses of both bodies. Since we are investigating the motions of the
planets relative to the sun, assuming that M denotes the mass of the sun
and m the mass of the planet, we see that Kepler’s third law (p. 87), which
refers to the relative motion of a planet with respect to the sun, #s not
exact. For another planet (using a corresponding notation)

o} | T? = K(M + m,) [ 4n2, (7)
whence
a?/T* M+m l1+4+m/M )
ag/T%mM+m1nl+m1/M

In the solar system the ratio m | M is expressed in the thousandths
and therefore the last fraction differs little from one. Accurate observa-
tions of planetary motions reveal these deviations from Kepler’s third
law. :

Two celestial bodies which rotate about each other (far away from other
bodies) are called double stars. Assuming that double stars attract each other
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according to Newton’s law, we can apply o them the conclusions obtained in this §.
Observations confirm these conclusions and at the same time the law of universal
gravitation from which these conclusions were drawn.

§ 7. Problem of n bodies. Let » material points attract each other
mutually with forces acting according to Newton’s law of universal
gravitation (p. 89). The so-called problem of n bodies is concerned with the
investigation of motions in such a system of points.

This problem is important for astronomy. The sun and planets form such
a system if we neglect the influence of the fixed stars which is very small because of

their remoteness from the solar system.
The problem of two bodies with which we were concerned in § 6 is a particular

case of the problem of n bodies.

The problem of 7 bodies is not solved in all generality. Even in the
case of three bodies there are many questions still unanswered. By means
of the theory of perturbations, however, we can determine the motions of the
golar system with the desired accuracy.

In the problem of = bodies we have to deal only with internal forces.
Therefore from the theorem on the centre of mass (p. 196), it follows that
the centre of mass of a system is at rest or in uniform straight line motion.
We can therefore choose the origin of the inertial system of coordinates
at the centre of mass. With respect to such a chosen system of coordi-
nates the momentum of the system of n points will be constantly zero
(p. 195).

From the theorem concerning angular momentum (p. 202), it follows
that the angular momentum of a system of points is constant. Hence the
plane passing through the centre of mass and perpendicular to the angular
momentum does not change its position.

In the case of the solar system the centre of mass lies in the sun (on account
of the great mass of the sun as compared with the remaining planets).

The plane passing through the centre of mass of the solar system and perpen-
dicular to the angular momentum was called the invariable plane by Laplace.

This plane does not change its position in space relative to the inertial system

of coordinates whose origin is in the sun. According to calculations carried out by
Laplace, the invariable plane forms an angle ¢ = 1.7689° with the ecliptic.

Problem of three bodies. Let there be given
three material points 4,, 4,, 4, of masses m,,
m,y, My (Fig. 144). Denote the force with which
m; attracts m; by P,; let w,; be the force with

“which a unit of mass situated at 4, attracts
a unit of mass situated at 4,. According to New-
ton’s law we therefore have
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) Py = mm;w . (1)

From the law of action and reaction it follows that P, = -—P;;
hence '

Wij = — Wy, (2)

Denote the acceleration of the. point m; in an inertial system of
coordinates by p;. Then mp; = Py, + Py = mymow, -+ m mawy,, whence

‘ Py = MaWyp + MgWy5. (3)
Similarly '
. P2 = MWy + MW (4)
By (3) and (4), and because that in view of (2), w3 = —wy,
W,y = — W3, We obtain: ‘ :
Pa—P1 = (Mg + my) Way + My(Wes + Wgy). (5)

The difference p, — p, represents the relative acceleration of the
point 4, with respect to A,, i. e. the acceleration of 4, relative to the
coordinate system, whose originis 4,, moving with an advancing motion.
Put p = p, — p;. From equation (5) we get

Maop = My(My + My) Wy - MaMy(Was + Way). (6)

The right side of equation (6) represents the relative force of the
point 4, in motion relative to 4.

The first one of its terms, i. e. my(m, + m,) Wy, represents the relative
force which would act on the point A4, if there were no third point 4, (i. e.
if there were mg = 0). This force would have (in agreement with the
theorem given on p. 223) a direction towards 4, and would be such as
if the mass of 4, were increased by the mass of 4,.

The second term of the sum, i. e. mmq(Wyy + Wa,), is called the force
of perturbation; it is due to the action of the point 4.

Example I. Let m1 denote the mass of the earth, m, the mass of the
moon and mg the mass of the sun.

Approximately, the mass of the sun is § - 10° times the mass of the
earth, the distance of the earth from the sun is 400 times the distance of
the earth from the moon, and finally the mass of the moon is g5 of the
mass of the earth. Hence: :

my =} - 10%m,;, my=wsmy, A ds= 4004,4,. (7)
From the triangle 4,4 A5 we obtain '
3904,4, < 4,4, < 4014,4,. (8)
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Because of the great distance of the sun from the earth and the moon
(as compared with the distance of the moon from the earth), wy; and wy,
will differ little from each other in magnitude and direction and they will
have opposite senses. The absolute value of the sum wy; - wy, is therefore
small. Making use of (7) and (8), it can be shown that

MgMg|Way £ Wiy | <1.5.10-2 (9)
mo(my + M)Wy =
We see by (6), therefore, that the force of perturbation due to the
sun is small, and we can neglect it in the first approximation.
Hence: In the first approximation the relative motion of the moon with
respect to the earth is obtained by neglecting the attraction of the sun.
An approximate investigation of the relative motion in the given case
is therefore reduced to the problem of two hodies. This also refers to other
planets having satellites.

Example 2. Let A4, be the centre of the earth, 4, a point on the sur-
face of the earth and A, the centre of the moon. Let m,, m,, and m, denote
the masses of the earth, the point 4, and the moon, respectively. Assume
that the points 4., 4,, and 4,, are collinear.

The vectors wy; and wy, have opposite senses.

Wiy W, W, If A,lies between A, and A4,, then |wyy| > |wyy

4, 4 4, (Fig. 145a), and hence w,; + wy, has the sense of

Wy If 4, lies between 4; and 4, (Fig. 145b), then

, w, [Was| < |wyy|, and hence wy, + wy, has the sense of

4, FA, e 4,  wy. In both cases the force of perturbation of
1g. .

the moon mymg(wy, + wy,) is directed vertically
upwards with respect to the earth. The action of
this force explaines the tides.

Example 3. Let m, denote the mass of some planet, m, the mass of
its satellite, a the mean distance of the planet from its satellite and 7'
the time of one revolution of the satellite about the planet in relative

motion (with respect to the planet). In virtue of (7), p. 223, we have
a® | T% = K(my + my) | 4n2. (10)

If my, my, a’, and 7" denote the corresponding magnitudes for another
planet and its satellite, then analogous to (10)

@ | T = K+ m) | da. ()
By (10) and (11), (my + my,) [ (m] -+ mj) = a®T"2 | o'3T2, Neglecting
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the masses of the satellites m, and m;, because they are usually small as
compared with the masses of the planets, we get

my [ my = a¥T"2 [ o'*T", (12)

Therefore: the ratto of the masses of two planets can be obtained from
the observation of the motions of their satellites.

Remark. We can also assume that m; denotes the mass of the sun,
mg = my, @’ the mean distance of the planet from the sun, and 7" its
period. Under these assumptions formula (12) represents the ratio of the
mass of the given planet (possessing a satellite) to the mass of the sun.

§ 8. Motion of bodies of variable mass. Let us now investigate the
motion of & body whose mass changes because particles leave the body
(or new ones join it) during motion.

An example is that of a moving waggon into which sand is being poured (or
from which sand is running out). A rocket is another example. When the fuel within

a rocket burns, gases are expelled which propel the rocket. The mass of the rocket
diminishes, therefore, by the mass of the escaping gases.

u@ wm

Fig. 146.

Let us assume that a body consists of
a great number of small particles which
can be considered as material points. De-
note by m the mass of the body, by v the
velocity of its centre of mass § at the time ¢,
and by m + 4m and v + Av the mass and
velocity of the centre S at the time ¢ 4 A¢.
Finally, let P denote the sum of the forces acting on the body at the
time t (Fig. 146).

The mass of the particles leaving the body during the interval Af is
(— 4m); let u and u -+ Au denote the velocities (at the times ¢ and
t + At) of the centre of mass S” of the particles leaving the body.

Let us consider the system U of all the particles of which the body is
composed at the time £. The momentum of this system at the time £ is
H = mv, and at the time ¢ 4+ At it will be H' = (m + Am)(v + Av) +
t 4 (— Am)(u - Au). Hence the increase in the momentum is

H —H =m Av — Am(u 4 Au—v) + Am Av.
Dividing by At and passing to the limit, we obtain

dH _ dv_dm (1
Eﬁmﬁ‘ﬁw v). {1
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Since the derivative of the momentum is equal to the sum of all the
acting forces (p. 196), dH / di = P. Therefore from (1)

mve —m:(u—v) =P. (2)

The above equation can be Wriﬁen in the form mv- - m'v = mu +
+ P, whence ,
d(mv) / dt = m'u - P. (3)

Formulae (2) and (3) apply equally to the case when new particles
join the body. In equations (2) and (3) the vector u represents the velocity
of the centre of mass §” of the particles leaving or joining the body.

Substituting u — v = w in equation (2), we obtain
mys —m'w =P, (4)

The vector w represents the relative velocity of the centre of mass of
the particles leaving the body with respect to the centre of mass of the
body.

Example. The motion of a rocket. Denote the mass of a rocket by m,
its velocity by v, the relative velocity (with respect to the rocket) of the
gases escaping from the rocket by w (Fig. 147), and the sum of the ex-
ternal forces acting on the body (such as gravity, the resistance of the
air, etc.) by P. With this notation formula (4) obtains.

Fig. 147.

Let us suppose at first that the rocket moves in a horizontal plane
along a straight line which we shall select as the z-axis, giving it a sense
agreeing with the direction of the rocket. Put v = |v| and w = |w].
Assume that P = 0 (and- hence that the force of gravity is balanced by
the reaction of the plane; the resistance of the air and friction are ne-
glected). Since v and w have opposite senses, by (4) mv 4+ mw =0,

whence

v=—""u (%)

The relative velocity w of the escaping gases can be considered as
eonstant. Integrating equation (5), we obtain
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v=—wlnm -+ e. (6)

Assume that m = my and v == 0 at = 0. Then according to equation

(6), 0 = —wlnm, + ¢, and hence ¢ = w Inm,. Therefore by (6)
— My

v=wln s (7)

v/ w

whence my | m = ¢ or

m = mye ¥,

(8)

Let us suppose that the rocket attained a velocity » = 100 km/h =
= 27 m/sec. We can assume that w = 1000 m/sec is the velocity of the
escaping gas. Therefore by (8) m = me %" = 0.973m,, whence m,—
—m = 0.03m,.

Hence in order to realize a velocity of 100 km/h, it is necessary to
burn an amount of fuel equal to 39/ of the mass of the rocket.

Let the rocket now move vertically upwards. Assume that the z-axis
is directed vertically upwards and let us retain the previous notation. We

obtain from (4) (neglecting ‘air resistance) mv: + m'w = — myg, whence
m
v=—w_-—g. (9)

Integrating (9) and assuming v = 0 and m = m, at { =0 we ob-
tain as previously

v=w1n-—,”ﬁ—gt. (10)

m

In order that the rocket may not fall back to earth and that it
may penetrate interplanetary space it would be necessary to give it
a velocity v > 12 km/sec (p. 110). From equation (10) we obtain

m
< wln =,
= m

whence ¢2/% < m, [ m or me?!® < my, and therefore
my— m > m(e’" —1).
Putting » = 12 km/sec and w = 1000 m/sec = 1 km/sec, we get
' my — m = 160000 m.

In this inequality m denotes the mass of the rocket after attaining
a velocity » = 12 km/sec, and m,— m the mass of the propelling fuel
burned. If we assume that m = 1 kg, then mo— m = 160000 kg.

Tt is therefore necessary te burn 160000 kg of fuel in order that 1 kg
of mass excape into space.
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Hence in order to make an interplanetary journey in a rocket having together
with its passengers a mass of one ton, it would be necessary to take along 160000
tons of fuel — which is obviously impossible. This shows that at the present state of

technical sciences such a journey cannot be made. The matter would be pushed'

forward if w (the velocity of theescaping gases), which to-day is close to 2000 m/sec,
could be markedly increased.
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CHAPTER VIY)
STATICS OF A RIGID BODY
I FREE BODY

§ I. Rigid body. A material body which despite the action of forces
does not sustain any deformations (i. e. in which the mutual distances of
the points of the body do not undergo & change) is called a rigid body.

Rigid bodies are not found in nature, since every body becomes deformed more
or less under the influence of the action of forces. However, if some body under the
influence of forces experiences only small deformations not exceeding a certain limit,
then we can take as a model of such a body a rigid body, and the conclusions that
we ghall draw will bé approximately in agreement with experience (provided the
forces are not large). From this arises the great importance of the theory of arigid
body for praetical applications.

We shall consider in turn statics, kinematics and dynamics of a rigid
body.

In the theory of a rigid body we shall meet, in addition to rigid ma-
terial solids, rigid material surfaces and lines (p. 168) as models of bodies
in which one or two dimensions are small in comparison with those
remaining. Examples of such bodies are plates, rods, wires, etc.

Rigid systems of material points. It often proves useful to look
upon & rigid body as a collection (system) of a large number of
material points. We assume then, that the material points act on each
other with certain forces which ensure that the system of points is rigid,
i. e. that the mutual distances of its points do not undergo a change. These
forces are called internal forces.

We assume that Newton’s law of action and reaction (p. 173)
applies to internal forces, i. e. that two points act on each other with

1) For ;,he understanding of this chapter the information included in chapters
I and ITI (from p. 69 to 75) and the theorems on centre of gravity in chapter
IV,81, 2, 6, 7 and 8, are sufficient. :
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