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By substituting (21) in (20) we obtain in terms of the new coordinates
71, vy the equation 7i%(y; + o sing) = riw sing —b, whence

rip; = —b, (22)
and by substituting (21) in equation (19) we get
2 + r2p;2 + 2riyio sing 4 riw? sin?p = — gr2 |l +a,

from which after neglecting the term r3w? sin%p as being very small and
applying equation (22), we obtain

r i’ = —gri L+ a4 (28)
where a; = @ + 2bw sin ¢ = const.

Tt is easy to verify that (22) and (23) are the equations of the motion
whose equations in terms of the coordinates %y, ¥, 2, are:

zy=—gx; [l yi=—gh/l (24)
Indeed, this is the form which equations (16) assume for w = 0.
Hence, introducing polar coordinates, we obtain, ag is seen from equations
(19) and (20) for & = 0, equations (22) and (23).
Equations (24) represent the motion of 2 point under the influence of
a force P whose projections are:

P, =—gmz I, P, =-—gmy,/ l. (25)

This is an elastic force, i. e. one directed constantly towards the origin

of the coordinate system and directly proportional to the distance of the

point from the origin of the system. On p. 112 we showed that motion

under the influence of an elastic force takes place along an ellipse. Hence

a material point will execute a motion in the system (xy, ,, #,) along an

ellipse. Because this system also revolves about the z-axis with anangular

velocity w sing, the axis' of this ellipse will revolve with an angular
velocity w sin ¢ from east to south. The period of revolution is

T = 2r | wsing.
Since one revolution of the earth lasts 24 hours it follows that, 27/ 0w =

= 24 h, whence T' = 24 /sing h. For ¢ = 45° we get 7' = 34 h.

il‘his phenomenon was first confirmed experimentally by L, Foucault; it
constitutes a proof of the earth’s rotation about its axis. :
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CHAPTER IV

GEOMETRY OF MASSES

I. SYSTEMS OF POINTS

§ |. Statical moments. Statical moment of a point. Let us consider
an arbitrary plane IT. It divides space into two parts; we can consider
one of these parts as positive, and the other as negative. Let A denote
a certain material point and d its distance from the plane II. We shall
write ¢ = -+ d or ¢ = — d, depending on whether A lies in the positive or
negative part of space.

Denoting the mass of the point 4 by m, we shall call the expression
‘ M, =mo
the statical moment of the material point A with respect to the plane IT1.

The statical moment of a point can therefore be a positive or nega-
tive number or zero (it is zero for every point 4 lying in the plane IT).

Tf we choose one of the coordinate planes zy, 2z, 2%, a8 the plane I7,
then we shall consider as the positive part of space that part in which is
found the positive part of the axis perpendicular to the chosen coordinate
plane. If the point A of mass m has the coordinates z, ¥, 2, then by the

. preceding convention we have:

sz:.mz, Mvzszl,' Mzm:-my:

where M ,,, M,,, M,, denote the corresponding statical moments of the
point A with respect to the zy, yz and zx planes.

Statical moment of a system of points. A collection of material points
is called a system of points, and the sum of the statical moments of its
separate points is called the (i total) statical moment of the system of points.

1f the statical moments with respect to the plane IT of the material
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points of masses my, my, ..., M, are myoy, M0y, .« oy Myly, Tespectively,
then the total statical moment of the system of these points will be

n
My =m0y + Mmyoy + ... + M0y = Dm0,
=1

If the material points of a given system of points have the coor-
dinates @, Yy, 2, g Yo, 2a; ---» Ty Yny 2, Tespectively, then the total
statical moments of this system of points with respect to the correspond-
ing coordinate planes are expressed by the formulae:

k1]

M:c«y = M42y + MoRo —f-— e —-]— Mp2, == z’m'iz'h
d==
7

M, =myz; + mezy + ... + muz, = zmiwi,
1=l

n
+ MpYn = zmzyt

=1

Statical moments are also called moments of first order.

Moo =myyy + myyy + ...

§2. Centre of mass. Let there be given a system U of material

POID'FS ml(xla Y zl): ’mz(xz: Yo, zz), R mn(xm Yns zn)' Let‘ us consider
a point § whose coordinates are:

— M+ myy + ... + mz, y _ Ma¥s + meys + ... - my,
Myt my+ . +m, 70 my+my+ ... +m,

Zo _ Mty + Mgz, + ...+ M2y (I
my+my, + ...+ m,

' The point § is called the centre of mass or the centre of gravity of the
given system of points U.

Ty

The sum of the masses of the individual points (appearing in the

denominators of the fractions (I)) will be called the total mass of the system
of points.

Although we have defined the centre of mass with the aid of a coordi-
nate system, we shall show that the Pposition of the centre of mass does not
depend on the coordinate system, but only on the masses

and their mutual distribution. This follows
theorem:

of the points
easily from the following

 Theorem I. The statical moment of & system of points with respect to -

an arbitrary plane is equal to the statical moment of the total mass placed at
the centre of gravity.
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Proof. Let II be an arbitrary plane whose normal equation has the
form

reos o +ycosf +zcosy—p=0.

Let us take as positive that one of the two parts of space for which
x c0s & + 9 ¢os f + z cosy — p > 0, whenthe coordinates of an arbitrary
point of this part are substituted for z, y, and z. Hence, if A(z, y, z) is an
arbitrary point of space, then, since the distance of the point 4 from the
plane. IT is expressed by the formula

d = |z cos & + ycos f + z cos y — pl,
according to our convention we can put
0= 2008 x4 ycosf +zcosy —p.

The statical moment of the point 4 of mass m with respect to the
plane I7 is therefore

Mﬂzmcr:mxcosoc—i—mycosﬁ-}—'mzcosy—mp. (1)

Let there be given a system of material points m(%y, ¥1, 21)s « - -, Men(Tn,
Yns Zn)- By (1) the statical moment of this system of points with respect
to the plane IT will be

M = (myz; OS  + myYy, €O f + my2; COS Y — MmyP) + ..
o (Myx, COS & - MY, €08 B + My2, COS Y — MyP);
thus
M= (m@, + my@y + ... + max,) cO8x + (Myyy + ... + MaYn) cOSP +
(M2 + - A Mzg) COSY — (g + -+ M) P (2)

Putting m, + mg + ... + m, = m, we have by (I):
My = Y MTyy, MYy = > MY, Meg = Smz, i =1,2,...,n, (II)
whence by (2) ‘
M ; = max, c0s & + my, cos f + mz, oSy — mp. (3)

Since the right hand side of equation (3) represents by (1) the
statical moment of the mass m placed at the centre of gravity S having
coordinates %, 7/, 2o, the theorem has been proved.

Tn order to show now that the centre of mass of the system of points
does not depend on the choice of the coordinate system, let us suppose
that another point S’ possesses, in addition to point 8, the property of
the centre of gravity S described in the theorem. We shall prove that
this is impossible. .
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With this end in view, let us pass through the point § an arbitrary
plane IT not passing through §'. Therefore

M,=mo and M= md, (4)

where ¢ and ¢ denote the corresponding distances (positive or negative)
of the points S and §' from the plane II. From (4) it follows that ¢ = o',
But ¢ — 0, since IT passes through S. Therefore o’ would also have to
be equal to zero, which is impossible, because 8" does not liein the plane IT.

We see, therefore, that the position of the centre of mass of a system
of points is independent of the coordinate system.

Centre of mass of two systems of points. Let a system U be composed
of the material points

n " ”" " ”"

? 7 7 1 ’ ’ ’ ! " " 14
My (%1, Y1, 21)s My, Yop Z2:)s -+ Ma(y, Y15 21), My (%gs Y, Zg), -
The centre of mass S of the system of points my, my, ..
definition the coordinates:
2y = (miw) + mgwy 4 .. [m, Yo = (mayy + mayh .. [,
2o = (myz; + Mgy + ...) [ 7, (5)
where m’ = m; + mg, - ... On the other hand, for the centre of mass .S of
the entire system U, there will be

r ot ’ li " on " on
(mizy + mexe + ...) + (Mymy + Moz + ...)

(my 4+ mg+ ...) + (m1 4 mg + ...)

. has by

0

H]

whence by (5)

_ mBo+ (mimy + mawg + ..
m' + (m'{-}-mg + ..
Similar formulae are obtained for y, and z,. Formula (6) represents

the z-coordinate of the centre of mass of the system that is obtained from

the given system U, if a part of it, namely the points of masses my, mg, ...,
is replaced by a single material point of mass m’ = m; + mg + ... placed
at the centre of mass of this part. Therefore, we have obtained

(6)

Lo

Theorem 2. The centre of mass of a system of points is not altered if
a part of it is replaced by a material point having a mass equal to the mass of
~ this part and placed at centre of its mass.

Hence if we have in particular two systems of points U’ and U" of
total masses m' and m" and with centres of gravity S’ and S, then we
obtain the centre of mass of the system U’ + U" by determining the cen-
tre of mass of the system of two material points having masses m’ and m”
placed at the points §' and §”, respectively. This is so because the
systems U’ and U” can be considered as parts of the system U’ 4 U".
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Plane system of points. A system of material points is said to be
a planesystem if all points of the systemlie in one plane. Selecting this plane
as the xy-plane (which is possible for us to do since the centre of mass is
independent of the choice of the coordinate system), we shall have for the
points of the system z; = 0,2, = 0, ..., 2, = 0, whenee by formulae (I),
p. 152, we get 2, = 0.

The centre of gravity of a plane system therefore lies in the plane of
the system.

The statical moment of a plane system with respect to an arbitrary
line 7 lying in the plane of the system is defined by the expression

n
M; =m0, (N
=1

where |o,| is the distance of the point of mass m, from 7, and the sign of o,
depends on whether m; is situated in the positive or negative parts of the
plane into which this planeis divided by theline I. We see from this that the
statical moment of a plane system with respect to the line [ is the statical
moment of this system with respect to a plane perpendicular to the plane
of the system and intersecting it along the line . Hence, in particular, the
moments with respect to the  and y axes are expressed by the formulae:

M, = Zmy;, M, = Zmgzx;. (8)

Linear system of points. If the points of a system lie on one line I,
then the centre of mass of the system also lies on this line, because
choosing the line [ as the z-axis, we have y; = 0, ¥, =0, ... and z; = 0,
2, = 0, ..., whence by formulae (I), p. 152, we get 7, = 0, 2, = 0. The
centre of mass will therefore also lie on the z-axis.

Centre of mass of two points. Let the material points of masses m,
and m, be at a distance d from each other. The centre of mass obviously
lies on a line joining these points. Let us place at m, the origin of the
z-axis, and pass its positive part through m,. The points m; and m, will
therefore have the coordinates #, = 0 and z, = d, respectively, and the
centre of mass the coordinate

Zy = mad [ (my + M) (9)

Since 0 < z, < d, the centre of mass lies between the points. Denot-

ing the distances of the centre of mass from the points m, and m, by d,

and d,, respectively, we obtain d, = z, = md /(m; + my) and dy=
=d—d, = md | (m; + m,), whence

dy 1 dy = my 1 my. (10)
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Hence we have the following

Theorem 3. The centre of mass of & two point system lies between the
points of the system and divides the line segment joining these points in the
inverse ratio to their masses. .

Making use of theorem 2, p. 154, we can determine the centre of mass

of a finite system of points Ay, Ay As, ... of masses my, My, My, ... (Fig.
106) in the following manner: we determine at first

m, the centre of mass S; of the system of points 4,

and A,; next we determine the centre of mass S,
of the system of two points consisting of the point
m, S M, of mass m, + m,, situated at S, and of the point
A, of mass m,; continuing in this manner, we obtain
the centre of mass of the entire given system.
Symmetric systems of points. A point O (line
. 1, plane IT) is called a centre (line, plane) of sym-
metry of the system of malerial points, if to each point m; there exists in
the system a point having the same mass m;, placed symmetrically
with respect to point O (line I, plane I7). ‘
If the centre of symmetry is the origin of the coordinate system
(Fig. 107), then along with each point m;(%;, ¥i, 2:) the system of points
includes the point #m,(—a;, —y;, —=2,). If the plane of symmetry is the
xy-plane (Fig. 108), then along with each point m;(x;, ¥s, 2:) the system

Fig. 106.

z M-, ¥, 2) ‘
FT).(X,-,X,Z,—) mi( XY z) S m(X,-,)’n z)
1 1"/ ) y &
=X, Yz mi(x, yi,-Z)
Fig. 107. Fig. 108. Fig. 109.

includes the point m,(x;, ¥;, —2;). If the axis of symmetry is the z-axis
(Fig. 109), then along with each'point m.(z;, ¥;, 2;) the system includes the
point m(—x;, —Yy, 24)-

It is easy to show that the centre of symmetry is always the centre of
mass.

For by theorem 3, the centre of mass of a pair of symmetric
points lies at the centre of symmetry. Hence by theorem 2, p. 154, we can
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replace such a pair by a material point situated at the centre of symmetry.
Doing this with every pair, we come to the conclusion that the centre of
symmetry is the centre of mass of the entire system.

Similarly, the centre of mass lies on a line of symmetry (and on a plane
of symmetry).

Because for these same reasons the centre of a pair of symmetric
points lies on a line (and on a plane) of symmetry.

§ 3. Moments of second order. Moment of inertia. Let there be given
a material point 4 of mass m and a certain plane I7. Let r denote the
distance of the point 4 from the plane I7. The expression

I = m (1)
is called the moment of inertia of the point 4 with respect to the plane I7.
If we denote by r the distance of the material point 4 from a certain line I
(or from a certain point 0), then (1) will be the moment of inertia of the
point 4 with respect to the line I (or with respect to the point 0).

The total moment of inertia of a system of points is defined as the sum
of the moments of inertia of the separate points of this system.

Product of inertia. Let there be given two mutually perpendicular
planes 17, and I7,. Put ¢, = + d;, where d, denotes the distance of the
material point 4 from I7,, and the sign depends on whether the point is in

- the positive or negative of the two parts into which the plane 77, divides

space. We define o, with respect to the plane I7, similarly. The expression
D = mo,0, (2)
is called the product of inertia of the material point 4 with respect to the
planes I7, and IT,.
The fotal product of inertia of a system of points 4;, 4,, ... with
respect to the planes I7, and I7, is defined as the sum of the products of
inertia of the separate points. Hence

D = Zmotded, < (3)
where m;, o, 6§ denote respectively the mass of the point 4; and its
distances from the planes I7; and IT, (preceded by proper signs).

Moments of inertia and products of inertia are called moments of second
order.
Radius of gyration. Let I denote the total moment of inertia of
a system of points U with respect to a plane /7 (line I, point 0). The
number
k= )T]m, where m=my+ ms-+ ... (4)
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is called the radius of gyration of the system of points U with respect to
the plane I7 (line I, point 0). In virtue of (4)
I = mk?. (8)
Therefore: the radius of gyration k is the distance at which the total mass
of a system has a moment of inertia equal to the total moment of inertia of the
system. i
Concentrated mass. Let » be an arbitrary positive number. The mass
of a system concentrated at a distance r with respect to a plane (line or
point) is defined by the number
m, =1 | (6)
Therefore I = m,r2. Hence: the moment of inertia of a system with
respect to a plane (line, point) is equal to the moment of inertia of its concen-
trated mass m, situated at o distance r from this plane (line, point).
The moments of second order of the system of points

ml(xlx Y1 z1): mz(xz: Yas zz): sy m'n(xm Yns zn)
with respect to a plane, axis and the origin of a coordinate system are

expressed by means of the following formulae:
The moments of inertia with respect to the planes xzy, yz and xz:

n n . n
Im-y = Zﬂ%iz?, 1,” = Zm,-:l:?, sz =5 Zﬂziy?_ (7)
. i=1 =1 =1
The moments of inertia with respect to the z, y, and z axes:

n n Y n o o
I = Smyy? +2), I, = Smyai + 2), I = Sma(ai + 95).  (8)
iz1 =1 i=1

The moments of inertia with respect to the origin O of a coordinate
system:

I, = Smiat + o + ). (9

=1
The products of inertia with respect to the pairs of planes xy and 2z,
zy and yz, as well as 2z and 2y:

n

n 7
D, = Z‘miyizi: D,= thxizn D, = Z7niwiy1" (10)
i=1 i=1

i=1

From formulae (7)—(10) the following relations can be easily derived:
L=l +Ioe Ii=1Ioy+ 1y Io=1In+ 1

I,,= %[In: +1,—1] I,,= ‘%‘[Iv +I,—1,], I, = %[Im + I, — 1.}

Io=%{1m+10+1z] :Imu +Ivz +sz.
Ia:Im+Iwz=Iv+Imz:I¢+Imu-
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Moments of inertia with respect to parallel lines. Knowing the
moments of inertia of a system of points of total mass m with respect to
lines passing through one point e. g. through the origin of the coordinate
system, we can easily determine the moment of inertia of this system of
points with respect to an arbitrary line in space by making use of the
following theorem:

If a line I passing through the cenire of mass of a system of points is
parallel to the line U, then

Iy = I, + md, ()
where d denotes the distance between | and U, whereas I, and I  denote the
moments of inertia with respect to these lines.

Proof. Let us choose the centre S of the e
mass of the system of points through which
the line [ passes as the origin of the coordinate
system, the line [ as the z-axis, and the plane

Alx yz)

S
passed through the parallel lines I and I’ as q
the ay-plane (Fig. 110). Denoting by rand - 7
respectively the distances of an arbitrary Y Fig. 110.

point A(x, y, z) from the straight lines I and
U, we have r"* =22 4 (d —y)2 and 2 =22+ 32 whence r'2 =2
-+ d* — 2dy, and hence

n n
Ij = Smr® = Sm[r + d* — 2dy,] =
Fan' i
n n

n n
= Jmyr} + 4 Sm;—2d Ymy; = I, + md® — 2d Smy,.
1 1 i=1 i=1

1=

i=
7
But >'my; = my, = 0, since the centre S of the mass of the system of
=1

points lies at the origin of the system of coordinates. Therefore I, =
= I, + md? q.e.d.

From formula (I) it follows that if all lines parallel to a line having
a certain given direction are taken into consideration, then the moment of
inertia will be the least with respect to that line which passes through the
centre of mass. It is equally obvious that if lines I and I” are parallel, then
denoting by 4, and d, the distances of the centre of mass from theselines,
we shall have

I, —md? = I, — md3, (11)

because by (I) both sides of the equality are equal to I;, where 7 is a line
parallel to I’ and " and passing through the centre of mass.
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From formula (11) we have
Iy = I, + m(dg — d3). (IT)

This formula enables one to compute the moment of inertia of a
system of points with respect to an arbitrary line in space, if the mo-
ments of inertia of this system with respect to every line passing through
one point and the position of the centre of mass of the system are known.

Products of inertia with respect to parallel planes. For products
of inertia we can prove a theorem similar to the theorem on mowments of
inertia (p. 159).

Let the planes IT,, IT, be perpendicular to each other and pass through
the centre of mass m of a given system of material points. Let us select

arbitrary planes IT;, IT, parallel to the planes

IT,, IT,, respectively. Let o; denote the di-

A stance between the planes ITy, I7;, preceded
12' by a + or — sign depending on whether the

' plane I7; lies in the positive or negative part
of space into which the plane I7; divides space.
S % Let us define o, for the pair of planes IT,, IT,
/ analogously. Finally, let us denote the pro-
Fig. 111. ducts of inertia of the given system with res-

pect to the pairs of planes I1;, I7, and IT,, IT,

by D and D’. We then have a formula which is analogous to (I), namely:

D' = D + mo,0,. (I1IT)

Remark. Let us note that the product mo,0, denotes the product of
inertia with respect to the pair of planes IT,, IT, of the total mass m of
the system placed anywhere on the intersection of the pair of planes IT;
and IT;.

Proof of formula (III). Let us choose the origin of the coordinate
system (z, y, 2) at the centre § of the total mass m of the given system of
points (Fig. 111). As the wx-axis we shall take the intersection of the
planes I7, and IT,, and we select these planes as the axy and xz planes,
respectively. s

Analogously, we select a second system of coordinates (z', ¢/, 2’) for
the pair of planes II7, IT,, taking as the origin an arbitrary point P lying
on the line of intersection of the planes I7; and IT,,.

) Let us denote the coordinates of the point P with respect to the
coordinate system (z, y, 2) by &, 7, £. Obviously 9 = o, and ¢ = o;. Let

%, Y,z be the coordinates of an arbitrary point A with respect to the
L}
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coordinate system (z, y, z), and a', %', 2’ the coordinates of this point A
with respect to the coordinate system (', 9/, 2'). Then:

¥=x—& y=y—n, F=2—1"L (12)
Since
D' = Emzy;, D = Zmzy,, (13)
it follows by (11) that
D" = Emy(z; — O)(y: —n) = Imyfeys + In— Lys —nzl = (14)

= Zmgzy; + {n Zm; — { Tmgy; — n Tmg;.

But Xm.y; = my, = 0, and Zmz; = mz, = 0, because by hypothesis
the centre S of mass m of the given system of points lies at the origin of
the system (z, ¥, 2). Therefore, by (13) and (14), D' = D - mln, and since
{ = 0,, and 7 = 0,, we obtain finally D’ = D -+ mo,0,, q. e. d.

§ 4. Ellipsoid of inertia. Principal axes of inertia. Let O(x, y, 2z) be
an arbitrary rectangular coordinate system with origin at 0. We shall
prove that it is possible to determine the moments of inertia with respect
to an arbitrary line [ passing through O, if
the moments of inertia with respect to the
axes and the products of inertia with respect
to the planes of this coordinate system are
known. ,

Let the line ! form the angles «, §, ¥ with
the axes of the coordinate system O(z,y, 2)
(Fig. 112). Let us select an arbitrary point
A(z, y, 2) and let P be the projection of the
point A on the line . Therefore AP = r is the distance of the point 4 from
the line 1. Let us put

Fig 112.

OA:@:VQ:*—{—yZ—l-zﬁ. (1)
Denoting by ¢ the angle between the line 04 and the line [, we obtain
AP =r = gsing. ' 2)

Since
OP = x cosx + y cosff + z cosy,

as is known from analytic geometry, and because OP = p cosp, we
obtain
cos @ = (x cos & + y cos f 4z cosy) [ @-
By (2) 72 = g?sin%p = %1 — cosp); hence
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e g [l _ (weosw 4 g/cozsﬁ + zcosy)z] _
\ 4
= g2 — [z cosx + y cos f - z cos y 3,
whence by (1),
7 = 2?[1 — cos?«] + y*1 — cos?f] + 2*[1 — cosy] —
— 2y cos & 008 B — 2xz co8 o €08y — 2z cos f cos .

Since cos?x -+ cos?B - cos?y = 1, substituting 1 — cos?x = cos?f |-
-+ cos?y, ete. we obtain

72 = (y® + 2%) cos?x + (22 + 2%) cos?f -+ (2 + y?) costy —
— 2y cos & cos f — 22z cos « cosy — 2yz cos f cos y.

Denoting by m; the mass and by 7; the distance of the point 4, of
a given system of points 4., 4,, ... from the line I, we obtain for the
moment of inertia I; of this system of points with respect to the line ] the
formula

_ I, = Imy? =
= costoe Tmyfy} + 23) + costh Imya} -+ 23) + costy Smyaf + y) —
— 2 cos x cos f Tmay; — 2 cos «x cosy Tmxz; — 2 cos f cosy - Tmy 2,
whence
I, = I, cos? + I, cos?f + I, costy — (I)
— 2D, cos« cos f — 2D, cos x cosy — 2D, cos f cos .

From formula (T) we can determine the moment of inertia of 'a system
of material points with respect to the line 7, if we know I,, I, I,, D, D,,

D, as well as the angles which the line [ forms with the axes of the coordi-
nate system.

. Retaining the previous notation, let us denote the length of the
radius of gyration of a given system of points with respect to I by k,.
Therefore (p. 157)

k= I, [m. (3)
Let us assume that I; # 0 for every line | passing through O. This
assumption is equivalent to the assumption that the material points of the

given system do not lie on one and the same line passing through 0. Since
I, # 0, it follows by (3) that also &; == 0.

On ea,e}} line , let us cut off segments 0Q and 0Q’ (Fig. 113) whose
lengths are inversely proportional to the radius of gyration k;, i. e.

0Q=0Q =a |k =ad/m[I, (4)

- equation we shall determine cos «, cos f, cos y
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where a is an arbitrary positive constant independent of the line I. De-
noting the coordinates of the point @ by z, y, 2, we have:

x=talm I cosx, y= 4 alm [T cosp,
z = iaVE?,—/TIGOSy.

The point @' has the coordinates —z, —y,
—2. The collection of all points @ and @’ will
form a certain surface Z. In orderto obtain its

from (5) and substitute the values obtained into
equation (I). We get

Fig. 113.

Li=1t (st + Ly + L2 — 2Dge— 2D 02 — 2Dy,
whence

Ia? + Iy? + 1.2*— 2D,yz — 2Dz — 2Dy = ¢, (6)
where ¢ = ma?. We see from this that the surface X is of the second degree.

‘We shall show that X is an ellipsoid. For this purpose it is sufficient to
prove that X is a bounded surface (i. e. that the distances of its points
from the origin of the coordinate system do not exceed & certain number).
Indeed, we have assumed that I; = 0, and hence we have I; > 0 constant-
ly. Since by formula (I) I, is a continuous function of the angles «, f, y,
the minimum of I; is also positive. Denoting this minimum by %, we have
by (3) k, = |/h [ m, whence by (4), 0@’ = 0Q < al/m [ k. Therefore the
surface = is a bounded surface. It follows from this that the surface % is an
ellipsoid, because the only bounded surface of the second degree is an
ellipsoid.

The ellipsoid = is called the ellipsoid of inertia of the given system of
points with respect to the point O.
" Since equation (6) lacks terms of the first degree, i. e. z, ¥, 2, the
point O is the centre of the ellipsoid of inertia.
Therefore: the ellipsoid of inertia of a system of material poinis with
respect to a point O has this property, that the distance of each of its points

_ from O is inversely proportional to the radius of gyration of the system with

respect to the diameter passing through this point.

The axes of the ellipsoid of inertia- with respect to the point O are
called the principal awes of inertia with respect to the point O.

The ellipsoid of inertia with respect to the centre of gravity is called
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the central ellipsoid of inertia, its axes, central axes of inertia, and the
planes passing through two axes, central planes.

Obviously, there exist infinitely many ellipsoids of inertia of a given
system with respect to one and the same point O. They depend on the
choice of the constant of proportionality. However, all these ellipsoids
nevertheless have a common centre and common directions of the
principal axes. In addition, the ratio of the principal axes is the same for
all ellipsoids. All the ellipsoids of inertia with respect to one and the same
point O are therefore similar to each other.

The radius of gyration has the greatest value with respect to the
minor axis; hence the moment of inertia has the smallest value with res-
pect to the minor axis. The converse is true with respect to the major axis.

In particular, if the ellipseid is a sphere, the point O is termed a
spherical point.

The moments of inertia with respect to every line passing through

a spherical point are the same (and conversely).

Determination of principal axes of inertia. If we take the principal
axes of inertia as the coordinate axes z, y, z, then the equation of the
ellipsoid of inertia will have the form *

Az? + By 4 C=22 = F. ‘('A7)
Comparing equations (6) and (7), we see that in this case D, = 0,
D, = 0 and D, = 0; therefore the ellipsoid of inertia will be
Too? + 1,92 1,2 = c ' (8)
Hence: the necessary and sufficient condition that the coordinate ames
be axes of inertia is that the products of inertia D,, D,, D, be equal to zero.

If the coordinate axes z, y, z are selected so that only one of them,
e. g. the z-axis, coincides with one of the principal axes of inertia, then the
equation of the ellipsoid will have the form

Ax? 4+ By? Ozt 4 Hay = F. (9

Comparing equations (6) and (9), we see that D, = 0 and D, =0.
The equation of the ellipsoid of inertia in this case will therefore be

Toa* + 1,02 +1,2°— 2D,y = ¢ (10)

_ Hence: the necessary and sufficient condition that the z-axis be prin-
cipal axis of inertia is that the products of inertia D, and D, be equal to zero.

. It is easy to formulate analogous conditions that the principal axes
of inertia be the z-axis or the y-axis.
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Let us now take the centre S of the total mass m of a given system
of material points as the origin of the coordinate system (z, ¥, z), and its
central axes as the coordinate axes z, y, 2. We obviously have

D,=0, D,=0, D,=0. (1)

Let us next take an arbitrary point O(£, 5, {) as the origin of a new
coordinate system (z', 7', 2’) whose axes are parallel to theaxes , y and 2,
respectively. By (ILI), p. 160,

Dx'=Dm+an: Dy'sz_l'_me, Dzr:Dz+mE?],'
whence by (11):
D, =mi{n, D,= még, D, = mén. (12)
Let us assume that the point O(&, %, £) lies on one of its central
planes, e. g. on the ay-plane. Therefore ¢ = 0. Hence by (12) we obtain
D, = 0 and D, = 0. It follows from this that the z’-axis is a principal
axis of inertia with respect to the point 0. Hence we have the theorem:
One of the principal axes of inertia with respect to a point lying in @
central plane is perpendicular fo this plane.
 In particular, if the point O lies on a central axis, e. g. on the z-axis, .
then 7 = 0 and { = 0, whence by (12) D, = 0, D, = 0and D,, = 0. It
follows from this that the ', y', 2’ axes are principal axes of inertia with
respect to the point 0. We therefore obtain the corollaries:
1° The principal aves of inertia with respect to @ point lying on a
central axis are parallel to the central axes.
9° The central axis is the principal axis of inertia with respect to each
of its points. .
If the given system of material points possesses an axis or a plane of
symmetry, then we can prove the following theorem:
An azis of symmetry of a system of material points is a ceniral m‘:'is;
similarly, a plane of symmetry is a central plane.

Proof. In order to prove the first part of the theorem, let us note that
the centre § of mass m of the system lies on the axis of symmetry. Let
us take S as the origin of the coordinate system (z, y, z) and the axis of
symmetry as the z-axis. Because of this the given system of material
points includes in addition to each point A; of mass m,; and coordinates
%, s, 21, another point 4] of mass equal to m; and having coordinates
—;, —Y;, 2;- We therefore have ;

D, = Z[m.yz; + mi— ¥) 2]=0, D, = Z{mze; -+ ml— z;)z;] = 0.
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Tt follows from this that the axis of symmetry 2 is at the same time
the principal axis of inertia with respect to the centre of mass S, and
therefore it is a central axis.

In order to prove the second part of the theorem, let us note that the
centre of mass S lies in the plane of symmetry. Let us take the origin of
the coordinate system at S and the z and y axes in the plane of symmetry.
Since the zy-plane is a plane of symmetry, to each point 4; of massm,
and coordinates w;, y;, 2;, there exists in our system of material points
a point’ A} of mass equal to m; and having coordinates ;, y;, —z,. We
therefore have

D, = E[myz + myi(—=z)] = 0, D, = Z[mxz, + Mm@y (—2;)] = 0.

Tt follows from this that the z-axis is a central axis, and hence the
plane of symmetry zy, being perpendicular to the central axis 2, isa central
plane.

§ 5. Second moments of a plane system. Let a system of material
points lying in a plane IT be given. Since the plane I7 is a plane of sym-
metry, by the preceding theorem it is a central plane. Therefore, at every
point of the plane II, one of the principal axes of inertia is perpendicular
to the plane I7, while the two remaining principal axes of inertia lie in the
plane I7.

If only the moments of inertia with respect to lines lying in the plane
IT are taken into account, then the considerations of §§ 3 and 4 can be
simplified.
Let us choose the given point O as the origin of the coordinate system
(, y) of the plane JI. From the point O let us draw an arbitrary line I lying
in this plane and forming an angle « with the z-axis (Fig. 114). The
moment of inertia with respect to 7 is obtained from formula (I), p. 162,
by putting f = 90° — x, and y = 90°, Consequently
* I, = I, cosx + I, sin?x — D, sin 2x. (1)
yi We shall call the product of inertia D, = Zm,x.y;
N the product of inertia with respect to the x and
/ G Yy awes.

@ On the line | let us mark off the points ¢
and @’ whose distances from O are inversely pro-
portional to the radius of gyration. The collec-
tion of such pairs of points marked off on all
lines [ which pass through O will form a curve
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which will be the intersection of the plane /T with the ellipsoid of inertia
with respect to the point O. This curve will therefore be an ellipse; we
shall call it the ellipse of inertia with respect to O.

Its equation is obtained from equation (6), p. 163, by putting z = 0.
Hence the equation of the ellipse of inertia will be
T, + 1,42 — 2D, zy = ¢ (2)

If the = and y axes are chosen as the principal axes of inertia, then
the equation of the ellipse will assume the form

Io?+1,9°=c. (3)

II. SOLIDS, SURFACES AND MATERIAL LINES

§ 6. Density. If a body is not so small that it can be considered as
a material point, then, in addition to the mass of the body, we also give
the distribution of the mass in the body; for in many problems of mecha-
nics, not only a knowledge of the mass of the entire body is of great
importance, but also a knowledge of the mass of its separate parts.

Frequently it happens that the mass of a part of a body is propor-
tional to the volume. Then, denoting the mass by m, and the volume of
the body by v, we obtain as the mass per unit volume

Q = M / V. (I)
The number g is called the density of the body.

Tn this case we say that the mass of the body is distributed uniformly,
or that the body is homogeneauts, or finally, that the density is constant.
The mass of a part of a body of volume v’ is then m' = v'o. By (I)
the dimension of density is

[density] = LM. (1)
Let us pass on now to the general case, i. e. we do not assume that the
mass in a given body is distributed uniformly. Let 4 be any point of the
given body. Let us select in the body an arbitrary cube of mass 4Am and

volume Av, whose centre is the point 4. The limit

Am

im = = (IL)
Av—>0 A’U e

is called the density of the body at the point A.
In general, the density ¢ depends on the point 4. If 4 has the co-
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ordinates z, 9, 2, then g is a function of the variables 2, y, 2. We can there-
fore write o = o(%, ¥, 2). If o = const, then the mass of the body is
distributed uniformly, and we have the case of the homogeneous body
already considered.

We shall always assume that g is a continuous function.

Calculation of mass. Knowing the density at every point of a body,
we can calculate its mass as well as the mass of an arbitrary part of it.

By means of planes parallel to the xy, yz and zz planes, let us divide
the given body into small rectangular parallelepipeds (the so-called
elements of volume) and possibly into boundary pieces of irregular form.
Let us denote the volumes of successive rectangular parallelepipeds by
Avy, Av,, ... and let us select one point in each one of them whose coordi-
nates are ¥y, ¥y, 2, Ta, Yas %, - - - Tespectively. The masses of the separate
rectangular parallelepipeds are approximately o(zy, ¥y, 2,) dvy, o(,, ¥,
2y) Av,, ... Therefore the sum

0%y, Y1, 21) dvy + Q(%a Y 29) Avy + ...

represents approximately the mass of the body. Forming subdivisions
into smaller and smaller rectangular parallelepipeds whose dimension
tend to zero and passing to the limit, we obtain for the mass m of a given
body the formula '

m=[]fez,y,) (1)

where the region of integration .D extends over the entire body.

In particular, if ¢ = const, we obtain from formula (ITI) m.= gv
which agrees with formula (T). S

Formula (III) also gives the mass of an arbitrary part of the given
body if we assume that D denotes the region occupied by this part.

Material surface, material line. Sometimes one or two dimensions of
a body are small in comparison with the remaining ones. Examples of
such bodies are plates, rods, wires etc. In these cases we represent the body

as a surface or a material line and say that its mass is distributed along
a surface or along a line.

Let a mass be distributed along a surface 8, and let 4 denote an
arbitrary point on this surface. Let us denote by 4o the area of a small
part of the surface S containing the point 4 (the so-called element of

area), and by Am the mass of this part. If the dimensions of the element
tend to zero, then '
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Am
m —— =
AD'T.O Ao ¢ (IV)

is called the surface density at the point A.
In particular, if ¢ = const, then ¢ represents the mass of an element
1 cm? in area cut out from the surface S.

It can be shown (in a manner similar to that used for solids) that the
mass of the surface S is expressed by the formula

m = [ [odo, V)
S

where the region of integration S extends over the entire surface.

If o = const, and P denotes the area of the surface S, we have
m = gP, whence

o=m/P. (2)
From the above formula we obtain as the dimension of surface
density :
[surface density] = L—2M. (3)
We proceed similarly in the case of a mass distributed linearly along
a certain curve C. If 4 is a point of the curve C, then we choose an

arbitrary arc of the curve C containing the point 4. If As denctes the
length of this arc (the so-called element of length), and Am its mass, then

lim dm = p (VI)
450 As ’
is called the linear density at the poini 4.

In particular, if p = const, then g represents the mass of an arc (of
the curve C) 1 cm in length. :

The mass of the entire curve C is

m= [ods, (VII)
P

where the region of integration extends over the entire curve.

If p = const, and s denotes the length of the curve C, we have by
(VII):
m = gs, Whence g = m/s. 4 (4)
Hence, as the dimension of linear density, we obtain the formula
[linear density] = LM (5)

§ 7. Statical moments and moments of inertia. Centre of mass. The
statical moment of a body with respect to a certain plane, e. g. the zy-plane,
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is defined in the following manner. We divide the body into small rect-
angular parallelepipeds of volumes Av,, Av,, ...
irregular boundary pieces. In each rectangular parallelepiped we select
arbitrarily one point whose coordinates are z,, ¥y, 21, g, Ya, 2g, «. . respect-
ively. Let us denote the density of the body at the point g, y, 2, by
o(, y, 2). The mass of the rectangular parallelepiped Av, is approximately
(%1, Y1, 2;) - Ay if its entire mass were situated at the point xy, y,, 2,,
then the statical moment of this mass with respect to the ay-plane would
be equal to 2, - p(zy, ¥y, 21) - 4v,. We can therefore consider the sum

2y - 0(%1; Y1, 21) - Avy + 25 - 0(Tn, Yo, 20) - Ay + ...
as representing approximately the statical moment of the body with
respect to the xy-plane. It is for this reason that the limit of the above

sum, when the dimensions of the rectangular parallelepipeds tend to zero,
is called the statical moment of the body with respect to the xy-plane.

Since the limit of the above sum is the triple integral
[fJe a,
b
where the region of integration D extends over the entire body, we have
M, = fffzg dv, and similarly M,, = fffyg dv, M, = fffxg dv. (I)

We define the statical moment of surfaces and curves analogously.
Instead of triple integrals there occur double integrals over surfaces and
single integrals over curves.

In the case of a mass distributed over a surface § we obfain
Mow = [ 20 do, M. = [fye do, M. = | [v0 do, (IT)

where do is an element of area, and for a mass distributed linearly along
a curve C:

M., = [2pds,
¢

where ds is an element of arc length.

The statical moments of plane figures with respect to the x and y
axes are expressed by the formulae

Mmz = GfZ/Q ds, M‘uz = fo dS, (III)
c

,Mx-——%;fygdxdy, M, = [[xo dz dy. (b
D
For plane curves we have:
M,,,:nygds, M, = [zp ds. (2)
§

and possibly into certain
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The centre of mass of a body, surface or a material curve is defined
as the point having coordinates:

2y = M,, | m, Yo= M, [ m, 2g = M,y [ m, (Iv)

where M.y, M., M., denote the statical moments with respect to the
2y, xz, xy planes, and m is the mass of the body.
For plane figures and curves we get:

Yo= M. [ m. V)
If the density of the body ¢ = const, then
M., =¢[[fzrdy, and m = [[[dv = g,
B D

xonV/ma

whence

(VD)

Xy =

J [z do []Jyav J[Jzdv
D 3 = D » Zg = D .
v - Yo v 0 )

We see from this that z, y,, 2, do not depend on the density.

Hence: if the density is constant, then the position of the cenire of gravity
does not depend on the density.

The same relates to surfaces and curves.

It can be shown that the theorems concerning the centre of mass for
material systems of points, proved in § 2, hold also in the case of material
bodies, surfaces and curves.

Geometric solids, surfaces and curves. The statical moment of a
geometric solid is defined as the statical moment of a material body having
the form of the given solid and a density p = const; usually we suppose
that o = 1.

The centre of mass of this body (which does not depend on ) is called
the centre of gravity of the geometric solid.

In the same manner we define the statical moment and the centre of
gravity for geometric surfaces and curves.

Statical moments and centres of mass of geometric configurations are
obtained, therefore, by putting ¢ = 1 in the given formulae (I}—(V), (1}
and (2), and assuming because of this that m denotes the volume, area, or
length, depending on whether the geometric configuration is a solid,
surface, or curve.

We shall now become acquainted with a theorem which in many
cases facilitates the finding of the centre of mass. Let us cut the given
solid D by planes parallel to a certain plane II. Let us assume that the
centres of gravity of these sections lie in a certain plane o.
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Under these assumptions it can be proved that the centre of gravity
of the solid D also lies in the plane ¢.

This is intuitively evident. For let us cut the solid D into thin layers
by means of planes parallel to the plane II. We can assume, as an approxi-
mation, that the centre of mass of each layer lies in the plane ¢. Therefore
the statical moment of each layer with respect to the plane ¢ is equal to
zero. It follows from this that the statical moment of the entire solid D
with respect to the plane ¢ is zero (because it is equal to the sum of the
moments of the separate layers). Hence the centre of mass of the solid D
will also lie in the plane o.

Q]

d
/
13

A rigorous proof can be carried out
in the following manner. Let us suppose
that IT is a horizontal plane, and o is a
plane having the equation

Ax + By + Cz+ E = 0. (3)

Let us denote the section of the solid
D made by a horizontal plane at the
height z by D, (Fig. 115). Let &, %, and
{ = 2z be the coordinates of the centre of
gravity S, of the section D,. Obviously & %, and ¢ are functions of z,
and by (3)

Fig. 115.

A&+ By +CL+E=o. (4)

Denoting by %y, Yo, 2o the coordinates of the centre of mass of the
solid D, we obtain from (VI)

Azy + By, + Czy + B =
=-11’—(Afofmdv+Bf1)ffydv+0fbffzdv—]—E’v). (5)

Let P, be the area of the section D,, and 2’ and 2" (where 2’ << 2") the
limits between which 2 varies. Then

=/ f de dy. (6)
Resolving the trlple integral into an iterated 1ntegra,1 we obtam

uszfdv:[dszdxdy:—-szdz, (7)

e 2

fffzdv—fzdszdxdy—fP #dz = [P, tde, (8)
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fffxdv:fdszxdxdy. (9
D 2 D, .
Since ~
f f z dz dy

represents the statical moment of the section D, with respect to the yz-
plane,

[[zdzxdy = P,
Dz
Therefore by (9)

z” » -
fl_)[fw dv:[Pzédz, and similarly [[[ydv = [P,y da. (10)
2 D 2

Hence by (6)—(10) we get

17
Azy + Byo + Czo + B = — [(4& + By + O + B) P, dz.
From formula (4) we obtain then

Azy+ Byy 4+ Czy + E = 0.

Therefore the centre of gravity of the solid D lies in the plane ¢. We
have thus proved the

Theorem. If the cenires of gravity of parallel sections of a given solid lie
in one plane, then the centre of gravity of this solid lies in this same plane.

In particular, it follows that if the centres of gravity of the sections
lie on one line, then the centre of gravity of this solid lies on this line. For
if an arbitrary plane is passed through this line, then by the theorem just
proved, the centre of gravity of the solid will lie in this plane.

Similar theorems hold for surfaces and plane figures.

Guldin’s rules. Let a given curve C' whose equation is y = f(z),
ftx) = 0 for @ £ = X b, lie in the zy-plane. Denote the length of the curve
by l. By (V) the centre of gravity is expressed by the formulae:

b b
xo=M,,/m=fxds/l, yoz—-Mm,'m——-fyds/l. (11)

The area of the surface generated by revolvmg the given curve about
the z-axis is
P =2n f y ds.

Hence by (11)
P = 2xly,. I
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A similar formula is obtained for an arbitrary curve lying above the
x-axis.

Since the centre of mass describes a circle of radius y, as the curve

revolves, 2my, denotes the circumference of this circle.

Hence: the area of a surface generated by revolving a plane curve about

~an axis lying in the plane of this curve and not cutting it, is equal to the pro-

duct of the length of the curve and the length of the path described by the centre
of gravity.

This is the so-called Guldin’s first rule.

Let us take under consideration for the same curve the region D
bounded by the curve, the z-axis, and the ordinates « = @ and & = b. Let
us denote the area of the region D by F. By (V), p. 171, the centre of gra-
vity of the region D has the coordinates:

v =M, | F = ([[odzdy) | F, yo= M| F = ([[ydxdy) | F. (1)
But
{)f?/dmdy =afbdw(fydy) = %afby2 dz.
Therefore by (12)

3
Fyy= % [y? da. (13)

- If the curve revolves about the z-axis, then the volume of the solid
generated will be
b
V=m [y*de,
a

whence by (13)
V = 2ny,F. II.

A similar formula would be obtained for an arbitrary region lying
above the az-axis.

Hence: the volume of a solid generated by revolving a plane region about
an axis lying in the plane of the region and not intersecting it, is equal to the
product of the area of the region and the length of the path traversed by the
cenlre of gravity of the region.

This is the so-called Guldin’s second rule. .
Moments of inertia and products of inertia. Proceeding as we did in

connection with statical moments, we come to the definitions of moments
of inertia for solids, surfaces, and curves.
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If o(z, y,2) denotes the density of the solid, then the moments of

inertia. with respect to the zy, yz and 2 planes are defined by the for-
mulae:

Imy”—’fi{fgzzdv, Iyzszfgm2d’v, I,zszf9y2dv’ (VII)
D D
the moments of inertia with respect to the coordinate axes:
Io=[[Joly* +#) dv, I,= [[foa?+ 2)dy,
’ y (VIII)

I, = fofg(:r:2 + 2?) dw,
and the products of inertia with respect to the coordinate planes:
Dﬂ,:fl[fgyzdv, D,=fg’fgzxdv, D, = [ [ [oxy dv. (IX)

D

In order to obtain the moments of inertia of surfaces (curves), it
is necessary to replace the triple integral by a double (single) integral
over & surface (over a curve) and to substitute do (ds) for dv in the given
formulae just as in the case of statical moments. The definitions of the
radius of gyration as well as those of a concentrated mass remain unchan-
ged. The theorems proved for systems of material points obtain here also.

§ 8. Centres of gravity of some curves, surfaces and solids. If a line,
surface, or solid has a centre of symmetry, then it is at the same time its
centre of gravity. Therefore the centre of gravity of a segment, parallelo-
gram, circle, parallelepiped, sphere and cylinder is the centre of symmetry
of these configurations.

Broken line. The centre of gravity of a broken line, e. g. ABOD, is
obtained by replacing a line segment by a material point situated at the
centre of the segment, and having a mass equal to the length of the seg-
ment. The centre of gravity of this system of points will be the centre of
gravity of the broken line 4ABCD (Fig. 1186).

Let dy, d,, d; denote the lengths of the segments AB, BC, CD, and
8;(2y, 1), SaZs, ¥s), Ss(s, ¥5) the centres of these segments. The centre
of gravity of the broken line ABCD will therefore have the coordinates
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e — dyy + Aoy + dys Yo = Ay + doys + dsys (1)
T ditdatd, T ditdatdy

The arc of a circle of radius 7, subtending a central angle of 2, has the
bisector of this angle as an axis of symmetry. Therefore the centre of
gravity of the arc lies on this bisector (Fig. 117).

In order to determine the distance of the centre of gravity § from the
centre of the circle O, we make use of Guldin’s first rule. As the arc rotates
about the diameter I, perpendicular to the bisector of the angle 2, it
describes a zone of area 2rmh (where h denotes the length of the chord
subtended by the arc). The length of the arc is s = 2r«, and that of the
path of the centre of gravity is 2z - OS. Therefore 2rnh = 4rmo - OS,
whence OS = A [ 2x. Since h = 2r sin «,

08 = rsm“

(2)

In particular, for the semicircle 20 = 7; consequently OS = 2r [z =
= 0.64r.

Triangle. Let us cut a triangle by lines parallel to one of its sides.
The centres of the segments lie on the median, and hence so does the centre
of gravity of the triangle. _

It follows from this that the centre of gravity of the triangle lies at
the point of intersection of the three medians, and hence at a distance
of one third of the corresponding altitude from each side.

= .

Trapezoid. The centres of the segments parallel to the base of a
trapezoid lie on the median, and hence so does the centre of gravity S of
the trapezoid.

In order to determine the distance y, of the centre of gravity S from
the base, let us calculate the statical moment of the trapezoid with
respect to the base. Let a denote the base, b the parallel side, & the alti-
tude and P the area of the trapezoid. The statical moment with respect to
the base is

M = Py, = Ha + b) hy,. )
Dividing the trapezocid into a parallelogram and a tria,ngle: we get
M = bh - 3h + a—Db) k- th = th¥(a + 2D). 4)
By comparing (3) and (4) we get
a -+ 2b
Yo=1%- PEwY k. (5)

From this follows the geometric construction of the centre of gravity
shown in Fig. 118. From the similarity of triangles BCS and ADS we
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get (b — o) /yo = (3b + a) / (a + b), from which we get y, in agree-
ment with formula (5).

Polygon. In order to determine the centre of gravity of a polygon
we break it up into triangles (trapezoids, rectangles), and then we compute
the statical moments of the separate parts with respect to the axes of the
system.

Let us denote the area of the configuration given in Fig. 119 by p.
We break it up into three rectangles having areas py, p,, and p;. Let
%1, Y1, Tgr Yp a0d @4, Y3 be the coordinates of the centres of gravity with
respect to the z and y axes. We have M, = p,y; + poys + Ds¥s, and
M, = px; + Dy, + Ps¥s; hence the centre of gravity S has the coordin-
ates

Yo=M,/p. (6)

Sector of a circle. Let us consider the sector of the circle OAB (Fig.
120). Because of symmetry the centre of gravity S of the sector lies on the
bisector of the central angle 2x. The distance OS of the centre of massfrom
the centre of the circle O is obtained by using Guldin’s second rule. The
sector OAB generates a spherical sector by revolving about the radius
0OA = r. The altitude of the segment of the spherical sector will be CA =
= 04 — 00 = r — 7 cos 2x = 2r sin®x, from which the volume of the
spherical sector » = #r2% - 2r sin’x = $r*x sin®x. The centre of gravity
will describe a cirele of radius 5, = OS - sin . The area of the sectoris 7.
Hence by Guldin’s second rule #r¥%sin’x =
= 2my, - r%x = 2n0S8 sinx - 2, whence

Lo = M‘v/ P,

ocina
08 = 2382 . (7)
3o

For a semicircle we have in particular 2x = 7,
whence

OS = 4r [ 3w = 0.42r. (8)
12 ’
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Segment of a circle. The centre of gravity S’ of a segment of a circle is
situated on the bisector of the central angle subtended by this segment.
We obtain the distance OS’ of the centre of gravity of the segment from
the centre of the circle from the formula representing the statical moment
of the sector OAB with respect to OA as the sum of the moments of the
triangle O4B and the segment of the circle. Denoting by p the area of
the sector, by p’ the area of the triangle OAB, by p" the area of the
segment, and by F the centre of mass of the triangle OAB, we obtain
p-08-sing =" -OF sinx +p" - 08’ sin . Since p=rx, p' = Jr2sin2x,
p" = p—9p and OF = §r cosw,

4 sin®x

08 = s —sman) (9)

Prism. Cylinder. The centres of gravity of sections of a prism made
by planes parallel to a base lie on a line joining the centres of gravity of
both bases. The sections made by planes parallel to one of the lateral faces
are parallelograms (or consist of several parallelograms); the centres of
gravity of these sections lie in a plane parallel to the base and passing half
way up the altitude. The discussion for the cylinder is similar.

It follows from this that the centre of gravity of a prism or a cylinder
lies halves the straight line joining the cenires of grawvity of both its bases.

Pyramid. Cone. The centres of gravity of sections parallel to the base
of a pyramid lie on a line joining the vertex with the centre of gravity of
the base. Hence the centre of gravity S of the pyramid also lies on this
line. In order to determine the height at which this centre of gravity lies
we shall calculate the statical moment of the
pyramid with respect to the plane of the base.
Selecting the plane of the base as the horizon-
tal plane, we obtain M,, = [[[z dz dy d.
The region of integration extends. over the
entire pyramid. Let us denote the altitude of
the pyramid by 2 (Fig. 121), the section
made by a horizontal plane at a height z by
D,, and the area of the section D, by P..
Resolving the triple integral into an iterated
integral we get
A

h
Mm=deszd%dy=szzdz
1] D 0

Let P denote the area of the bas;, As is known P, /P = (h—z2)? | b3,
or P, = [(1—2z) / k2P. Therefore
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: R
M,y = [2[(1 —=z) B2 P dz={sh?P.
1]
On the other hand, denoting the volume of the pyramid by » and its
centre of gravity by z,, we have

M,y =z = 2, - 3hP.
By equating both formulae for M, we obtain
2o = 1h. ' (10)
The discussion for the cone is similar.

Hence: the centre of gravity of a pyramid (cone) lies one fourth of the
way wp the straight line joining the vertex with the centre of gravity of the base.

§ 9. Moments of inertia of some curves, surfaces and solids. In this§
we shall assume that the curves, surfaces, and solids considered have a
constant density .

Segment. Let us calculate the moment of inertia of the line segment
AB of length @ with respect to the line I passing through the centre O of
this segment and inclined at an angle x to it (Fig. 122).

Let us suppose that 4B lies on the z-axis and that O is the origin of
the coordinate system. Let us subdivide the segment AB into small
segments by means of the points zy, Z,,... Set Az, = x,— xy, 42y =
= %y — &y, ebc. The moment of inertia of the seg-
ment Az, with respect to the line ! is approxima-
tely r2 Am;, where Ani; denotes the mass of theé-th
segment, and r; the distance of its left end point
from I. Since r; = @; sina, Am; = g Az, it follows
that 7% Am; = a7 p Az; sin?>x. We can say, there-
fore, that the moment of inertia I, with respect
to | is approximately Zajp Az;sin?x. Passing to the limit, we obtain

Tig. 122,

+1a
I, = [2?% sin’x dz = 13a% sin’x.

The mass m of the segment AB is m = ag. Therefore
I, = {sma? sin®x. (1)

0 is the centre of gravity of the segment 4 B; therefore the n%oment
of inertia with respect to the line I’ parallel to and lying a‘b‘ a distance
d from O is according to formula (I), p. 169, I = I, +md i e.

I, = {ym(a? sin®x + 1242). (2
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In particular, if I’ passes through the end point 4, then d = ja sin«,
whence
I, = ima? sin®x. (3)
If the lines ! and I’ are perpendicular to AB, then & = }m,and the
moments I, and I} are reduced to the moments of inertia with respect to
the points O and 4. From (1) and (3) we obtain for &« = §z:

I, = tema?, I, = }ma® (4)

Rectangle. Let us pass the # and y axes of a coordinate system
through the centre of a rectangle of sides a and b. Since these axes
are axes of symmetry, they are at the same time central axes and there-

fore b i
I, = [[a?dzdy = ¢ [dy [2* dz = T¥a’be.
D —ib  —ia

The mass of the rectangle is m = abp; hence
I,= fyma? similaly I, = 1ymb (5)
The product of inertia D, is zero, hence the central ellipse of inertia
has the equation (p. 167, (3)) I, 2% + I, 42 = ¢?, or Ygmb%? + Tyma*y? =
= ¢2, The constant ¢ is arbitrary; putting ¢ = thsma?b?2?, where 1 is
a new arbitrary constant, we obtain
(@ [ a)® + (y [ 2b) = 1. (6)

Hence: central ellipses of inertia have axes proportional to the sides of
the rectangle.

The moment of inertia with respect to the line I (Fig. 123) passing
through O and making an angle o with the z-axis is (p. 166, formula (1))
I, =1, cos?x + I, sin?x or : ‘

I, = f5m(b? cos?or + @2 sin’ex). - (7

The moments of inertia I, and I, with respect to the sides a and b of
the rectangle are I, = I, + m(3b)? and I, = I, + m(3a)?, or

I, =mb, I = jma? (8)

Square. Retaining the notation used for the rectangle, we have

: @ =b, whence I, =1, It

—= J_ <L b follows from this that the
4 /6( central ellipse of inertia is
b N R a circle. The centre of the
= square is therefore a circular

Fig. 123 point.
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Trapezoid. In order to determine the moment of inertia of a trape-
zoid with respect to the base a (Fig. 124), let us divide the trapezoid into
narrow strips parallel to the base. Let us denote the widths of these strips
by Ayy, 4ys, ..., the distances of their centres from the base by %1, ¥, ---
and the lengths of the segments passing through the centres of the strips
and parallel to the base by ry, 75, ... We can assume that the moment of
inertia of the i-th strip with respect to the side @ is approximately
Amiy;‘-', where Am; denotes the mass of the 4-th strip. The moment of
inertia I, with respect to the side @ is approximately equal to SAmyi-
But Am; = Ay;r;o. From Fig. 124 we see that (r;—b) [(a —b) = (b —
— ;) | h, whence r; = a — (a — h) y; | h. Therefore I, is approximately

> [a —(@a—b) %] oy? Ay,

Passing to the limit, we get

h
L= f [a— (@a—b) —3,’;] oy dy = +ye(a + 3b) B
0

Since m = }(a - b) ko,
I,=1%- @+ 3b
. a-+b
Triangle. From the last formula we obtain the moment of inertia

of a triangle with respect to the base by putting b = 0. We get

I, = tmh2 (10)
Parallelogram. Putting b = a in formula (9), we obtain the moment

of inertia of a parallelogram with respect to one of its sides:
I, = imh?. .y
Rectangular parallelepiped. Let us place the origin of the coordinate
system at the centre of a rectangular parallelepiped, so that the z,y

and z axes be parallel to the edges, whose lengths we denote by @, b, and c.
The moment of inertia with respect to the z-axis is

mh?. (9)

32 i i
I, = [[foly® + #) dzdy dz = gfd_ﬂ_v}{d_z{ifc(w%- #) dz =
= ylyabeo(t? + ).
Setting m = abcg, we obtain
I, = fem(b* + ¢*), (12)

and similarly I, = fem(a@®*+¢*), I.= T=m{a® + b?).
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The moment of inertia J, with respect to the edge a is I, = I, -
+ md?, where d = }|/B® - ¢*; hence
I, = m(b* + %), (18)

and similarly I, = dm(a® + ¢%), I, = m(a? + b2).

Circumference of a circle. The moment of inertia of the circumference
of a circle of radius r with respect to the centre O is obviously

I, = mr. (14)

In order to determine the moment of inertia with respect to a dia-
meter, let us choose O as the origin of the coordinate system (z, y). We
obviously have I, = I,. Since I, = I, + 1, then I, = 21, or I, = }I,.
From this the moment of inertia with respect to a diameter is

. = Fmrd. (15)

Circle. Because of symmetry the moments of inertia of a circle with
respect to the diameters are equal. Let us select the centre of the circle
O as the centre of the coordinate system (z, y) (Fig. 125).

' Therefore I, = I,, and since the moment of inertia with respect to
the centre I, = I, + I, then I, = 21, and I, = 41,. In order to calcu-
late I,, let us divide the circle into rings by means of

by concentric circles of radii z;, %, ... Let us put

Az; = Ty — 21, A%y = 23 —,, ... We can assume
that the moment of inertia of the i-th ring with res-

¥~ pect to O is approximately dm?, where Am, denotes
the mass of this ring. The area of a ring is approxi-
mately 2mz; Az; hence Am, = 2,0 Az;. Therefore

Fig, 125 aproximately I, = X2xx3oAw,. Passing to the limit,
we obtain
T
I, = [2na®o dx = mort. (16)
0

Since the mass of a circle m — r2mp,
I, =4mr* and I,=}me. (17)

. Surface of a sphere. The moment of inertia of a surface of a sphere
with respect to the centre is obviously

I, = mrt. (18)

I.n order to determine the moment of inertia of a sphere with respect
to a diameter, let us place the origin of the coordinate system at the centre
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of the sphere. Because of symmetry we have I, = I, = I,. Since 21, =
=1I,+ 1,4+ 1, I, = $I,. Therefore I, = 31,, whence

I, = $mr2 - (19)

Sphere. Taking the centre of the sphere as the originof the coordinate
system, we have because of symmetry as before I, = 3I,. Let us calecu-
late the moment I, by proceeding as in the case of the circle, i. e. dividing
the sphere into layers by means of concentric spheres. We obtain

I, = 3mr® and I, = $mr2. (20)

Cylinder of revolution. Let us denote the radius z
of the base by r and the altitude of the cylinder
by b (Fig. 126). Let us take the centre of the axis
of the cylinder as the origin of the coordinate
system, and the axis of the cylinder as the z-axis.

In order to calculate I,, let us proceed asin
the case of the circle, i. e. let us divide the eylinder
into layers by means of cylinders whose bases are
concentric with the base of the eylinder. We obtain

I, = {tmr2 (21)

In order to calculate I, and I,, let us cut the cylinder into slices by
means of planes parallel to the base. Let us denote the thicknesses of the
slices by Az,, Az,, ..., the coordinates of the centres of their bases by
%1, 29, .-+, and the masses of the slices by 4m;, Am,, ... The moment of
inertia of the i-th slice with respect to a line parallel to the z-axis and
passing through the centre of gravity of this slice is approximately equal
to }Am.r? (like the moment of inertia of a circle with respect to a dia-

meter). Hence the moment of inertia of a slice with respect to the z-axis is
approximately 1Amg? + Amgz;. Since Am; = r’z Az, approximately
I, = Z(3r? 4 22) rimp Az;, whence, passing to the limit, we obtain

= Az,

Fig. 126.

h
I, = f(ir? L 22) rimp dz = Yer’moh(3r® + h3).

—31h
Since the mass of the eylinder is m = r?zgh,
I, = {sm(3r* + ). (22)
On account of symmetry we obviously have I, = I,.

The moment of inertia of the cylinder with respect to the generatrix [
is I; = I, + mr% hence

10lwe

I, = smrs . (23)
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The z-axis is an axis of symmetry, and hence a central axis as well.
Because of symmetry the x and y axes are also central axes. Hence the
ellipsoid of 1nert1a has the equation [ 2? + I,3? + 1,22 = c?, whence be-
cause of (22) fym(37® + h2)(a? 4 4?) + dmr?? = ¢? and hence

(@] 72+ ([ 70+ ] VEEA+1%) = 22, (24)
where 12 is an arbitrary constant.

The ellipsoid of inertia is therefore an ellipsoid of revolution. When
7}/ = h, the ellipsoid is 4 sphere.

Cone of revolution. Let us denote the radius of
the base by  and the altitude of the cone by h. Let
us place the origin O of the coordinate system at
the vertex of the cone, and let us take the axis of the
cone as the z-axis (Fig. 127).

As an axis of symmetry it is also a central axis
of inertia, and hence by theorem 2°, p. 165, the prin-
cipal axis of inertia at the point 0. Because of sym-
metry the x and y axes are also principal axes of
inertia at the point O. :

Fig. 127.

Let us cut the cone into slices of thickness Az; be means of planes
parallel to the base. The moment of inertia of the i-th slice ‘with respect
to the z-axis is approximately Am,r2 /2 (like the moment of inertia of a
cylinder with respect to the axis), where r; denotes the radius of the lower
base of the i-th slice. Let z; denote the coordinate of the centre of the
lower base of the i-th slice; then 7; / » = 2, / », whence

r; = r2; [ h. (25)

Since Am; = rim Az;p approximately, by (25) we have
tdAmg? = 3(r | h)* moz; Az;, : (26)
whence I, = Z1(r [ h)* mozt Az, approximately. Passing to the limit, we

obtain
3

I, = [§{r|h)*mozt dz =
0

-1—157'%%9.
The mass of the cone is m = $r’mhe; hence
I, = fsmit. - (27)

In order to caleulate I, let us note that the moment of inertia of
the i-th slice with respect to a line parallel to the z-axis and passing
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through the centre of gravity of this slice is approximately }Amg}.
Therefore with respect to the z-axis it is }dma7 + Amz;. By (25) a.n.d
(26) this sum is equal to (r/ k)2 mezi(4 -+ (r [ k)2 Az; = Auwy, or I, is
approximately equal to ZAw,. Passing to the limit, we obtain

h
I, = [[k(r | b moz'(4 + (r | B)))] dz = Sor’mo(4h* + 1%) h,
1}

whence -
I, = Sym(® + 482). (28)
Obviously I, =1I,. ) _
Let ¢ denote the angle between the z-axis and the generzil.trlx.l (lying
in the az-plane). Since the z, y, z axes are principal axes of inertia at O,
by formula (I), p. 162, I, = I cos®x + I, cos?f + I, cos?y, where x, 8, ¥
denote the angles between the generatrix [ and the axes of the coordinate
system. We have & = o — ¢, 8 = iz, and y = ¢, whence
I, = I, sin?p + I, cos?p,
and hence by (27) and (28)
I, = Som[(r® 4 4A2) sin%p - 2r* cos?p]. (29)
Astang = r [ h, we get
_3m 4 6k2 2 o (30)
Ty T
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