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CHAPTER I
"THEORY OF VECTORS
I. OPERATIONS ON VECTORS

§ I. Preliminary definitions. Magnitudes which can be characterized
by means of one real number are called scalars. Examples of scalars are:
mags, work, kinetic energy, ete.

A vector is a line segment in which the initial point is distinguished
from the terminal point. Points are classified as zero vectors.

Magnitudes such as velocity, acceleration and force can be repre-
sented by means of vectors. A vector will be denoted by bold face type,
for example a; a vector whose origin is 4 and terminus is B will be
denoted by AB (Fig.1). Ina drawing an arrow serves to mark the terminus
of a vector. The origin of a vector is also called a point of application.

By the lengih or absolute value of the vector 4B is meant the length of
the line segment 4B and it is denoted by |4 B].

Two vectors having the same direction (i. e. parallel vectors) can have
the same or opposite senses (Fig. 2).

B —a_ R
———— a R
AB a b asb
a=b
7 )
Fig. 1. Fig. 2. Fig. 3. Fig. 4.

The vectors a and b having equal lengths, directions and senses are
said to be equal (Fig. 3) and we write
a =b.
Two vectors having equal lengths and directions but opposite senses

are called opposite vectors. The vector opposite to a is denoted by —a
(Fig. 11).


Yakuza


2 ’ CHAPTER I — Theory of vectors

The straight line on which. a vector lies is called the position of the
vector. o .
Equal vectors a and b having the same position (i. e. lying on the
same line) are termed equipollent (Fig. 4):
a=b.

Two zero vectors are considered to be equal and equipollent.

Equal vectors will often be denoted by one and the same lettor
(whenever there is no likelihood of committing an error).

The projection of the vector a on a line (or plane) is the vector whose
initial and terminal points are the projections of the corresponding points
of a.

Suppose that there iz given in space a coordinate system O(z, y, 2)
which is either rectangular or oblique. Rotate the z-axis about O in the
' zy-plane through an angle < n
so that the positive side of the
z-axis falls on the positive side
of the y-axis. If to an observer
situated on the same side of
the xy-plane as the positive
gide of the z-axis, the rotation is
clockwise, then the coordinate
system O(z, ¥, 2) is said to be {¢ft-handed and in the contrary case right-
handed. '

In this book we shall consistently use o left-handed rectangular system
(i. e. as in Fig. 5, and not as in Fig. 6). ‘ '

z P4

x

Fig. 5. Fig. 6.

We say that the system of vectors (a, b, ), not parallel to the same
plane, has a left (or right) semse, if upon passing the z,y and z axes
through an arbitrary point O parallel to and in the same direction as the
vectors a, b, ¢, we obtain a left-handed (or right-handed) system.

§ 2. Components of a yector. Let a represent an arbitrary vector and
@’ its projection on & given z-axis.

The component of the vector a with respect to the x-axis, which we shall
denote by a,, is a number defined in the following way: a, = |a'| if a’ has
the same direction as the z-axis, but @, = — |a’| in the contrary case.
We obviously have ‘

o

@y = |a| cos «, (1)

where « denotes the angle between the vector a and the z-axis (Tig. 8).
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Suppose that a rectangular coordinate system (z,y,2) is given.
Denoting the components of a with respect to the coordinate axes by
@z, @y, @,, and the angles which the vector makes with the axes by «, B, v
(Fig. 7), we obtain by (1):

;= |a] cos &, a, = |a| cos B, a, = |a] cos y. (I)

. Therefore: equal vectors have equal components with respect to the coor-
dinate axes.
By the identity cos?x -+ c0s?f - cos?y = 1 well-known from ana-
lytic geometry and by (I)

la| = Va2 + af 1 o, (I
COS x = @, [ |a|, cos f = a, | [a]v, cos y = a, [ |al. (IT1)

From equations (II) and (III) it follows that the components of
a vector define its length, direction and sense.

Hence, two vectors a and b having correspondingly equal components
with réspect to a rectangular coordinate system (i. e. for which a, = b,,
ay = by, 0, =1>,) are equal.

If the vector a lies in the zy-plane (Fig. 8), then

a; = |a| cos x, a, = |a| sin «, (xv)
la] = Va2 + ay, cos & = a,/|a], sinx =a, / la]. (V)

Often (when an error is pre-
cluded) the projections of the vec-
tor a on the coordinate axes are
also termed the components a,,
Ty, @.

It is easy to show that if the
Fig. 8. points 4 and 4" have coordinates

%y, 2 and 2,9y, 2 respectively,

then the vector @ = AA’ has components: a, = &’ — 2, @, = y' — g,
and @, =z’ — 2.

§ 3. Sum and difference of vectors. Every vector which can be obtain-
ed in the following manner is said to be the sum of the vectors a and b.
From an arbitrary point O we draw a vector equal to a and from the
terminal point of this vector a second vector equal to b; the vector whose
initial point is O and whose terminal point is the terminal point of the
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.second %ector we call the sum of the vectors a and b (Fig. 9) and we denote
it by
a--b.

For opposite vectors (Fig. 11) we therefore obtain in particular
a4 (—a)=20.

The sum of several vectors, for example a + b -+ ¢, is obtaix}ed by
forming the sum b + ¢ and then adding the result to the vector a (Fig. 10).

Vectors obey the commutative
and associative laws of addition.
Hence:

a--b=>b-a,
Fig. 10. (@ + b)4-c=a- (b~ c).

From these laws it follows that the sum of any number of vectors
remains unaltered if the order of the terms is changed, or if several are
enclosed by a parenthesis. For example:

a—{—b—|—c+d+e=a+c+e;{—b—{—d=
= (a+¢)+ e+ (b+d).

The difference a— b is defined as the sum a 4 (— b). Therefore from
the definition

a—b=a+ (—b)

Figurés 12 and 13 show how to determine the difference.

_a b
a a-b
-a o
-—
b
Fig. 11. Fig. 12. Fig. 13.

Since
(@—b)+b=a+ (—b)+b=aq,

it follows that the difference added to the subtrahend gives as a result the
minuend.

§ 4. Product of a vector by a number. The product of a vector a by a
number m is defined as the vector which has the same direction as a, a
length |m| times that of a, and a sense agreeing with or opposite to that
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ofa, depending on whether m > 0 or m <C 0. The product of a by m is de-
noted by

ma.
If m = 0 or @ = 0, then ma = 0.
We evidently have (Fig. 14 for m = 2):

A (—m)a=—ma.
Hence it follows that

(— 1) a=-—da.
' For a product it is easy to demonstrate the distributive law for multi-
plication with respect to addition and the associative law:
m(a + b) = ma +mb, (m+ p)a=ma+ pa, m(pa)= (mp)a,
where m and p denote numbers (Figs 15 and 16).

From the above laws follow the usual algebraic rules of addition and
multiplication.

2a
—a
2a
mia+b)
Fig. 14. Fig. 15. Fig. 16.

Division of a vector by a number (different from zero) is defined as
multiplication by the reciprocal of that number. Therefore:

a 1

—=-—a.

m m

§ 5. Components of a sum and product. It is easy to show that the
projection (on a line or plane) of a sum of vectors is equal to the sum of the
projections of these vectors (Fig. 17). Hence:

Proj (a 4 b) = Proj a -+ Proj b.

Similarly, the projection of a product of a vector by a number is equal
to the product of the projection of the vector by this number (Fig. 18).
Therefore:
Proj (ma) = m Proj a.

If the vector a has components a,, a,, a,, and the vector b compo-
nents b, by, b,, then the vector s = a + b has components s, = a, + b.,
8y =ay, + by, s, = a, -+ b,.
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This follows from the theorem on the projection of & sum’ of vectors.

Similarly, from the theorem on the projection of the product of
a vector by a number, it follows that the vector ¢ = ma hag components

Cp = My, Cy = MUy, Cp = M,
ma
a ]
E
| Gy = By~ 8by — 2¢4,

o' ma’ dll == 5(!.1/ — Bb” - 201/’
Fig. 18. ) d, = ba, — 3b, — 2¢,.

For example, if d = 5a —
—3b — 2¢, then:

§ 6. Resolution of a vector. The sum of the vectors a and b having
a common origin, but not lying on the same line, represents the diagonal
of a parallelogram with these vectors as sides. Similarly, the sum of the
three vectors a, b, ¢ having a common origin, but not lying in the same
plane, represents the diagonal of a parallelepiped having these vectors as
edges.

The resolution of a given vector into the sum of two or three vectors
having given directions is based on the preceding theorems.

Let us suppose that a vector s and two non-parallel lines 7 and m
lying in a certain plane parallel to s are given. If we want to represent the
vector s as a sum of two vectors a and b parallel to [ and m, then let us
form a parallelogram whose sides are parallel to  and m, and whose diago-

- pal is s. For this purpose we draw lines from the initial and terminal points
of the vector s parallel to 7 and m. The sides of the parallelogram obtained
will determine the vectors a and b (Fig. 19).

Tt is easy to see that such a resolution is possible in only one way.

Similarly, if a vector s and three lines I, m, n not parallel to the same
plane are given and we want to represent s as the sum of the three vectors
a, b, c parallel to I, m, n, then we form a parallelepiped with edges parallel
to I, m, n whose diagonal is s. We therefore draw lines I', m/, n’ from the
initial point O of the vector s parallel to [, m, n; then from the terminal
point of s we draw a line parallel to z to the point of intersection G of this
line with the plane formed by I, m'; finally from the point G we draw
parallels to ! and m. The points of intersection of these lines with I’ and m'
are the end points of the vectors a and b whose initial point is O. Vector ¢
is equal to- the veetor joining point & with the end of vector s (Fig. 20).

Only one such resolution is:possible, since there exists only one
parallelepiped having edges parallel to I, m, n, and a diagonal s.
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A particular case of such a resolution is the representation of a vector
by means of unit vectors. We denote the projections of the vector a on the
axes of the system (z, ¥, 2) by @', a”, a”. We obviously have (Fig. 21):

a=ada 4 a" 4+ a".

n Z
aﬂ
c 1
1
: ¢ Ik L a
7 . -~
b 5 a’] i a! o X
¢ A v
y
Fig. 19. Fig. 20. Fig. 2L

On the coordinate axes let us select vectors i, j, k of unit. iength
agreeing in direction with the corresponding axes. From the definition of
Qg By, @, (§ 2, P. 2) it follows that
a’ = a,i, a4’ =a,j, a" = ak.

Therefore '
a= a;i + a,j + a.k. @O

The vectors i, j, k are called unit vectors. Formula (I) expresses
the vector a in terms of components and unit vectors.

§ 7. Scalar product. The scalar product of the
two vectors @ and b forming an angle ¢ (Fig. 22)
is defined as the number |aj|b| cos ¢.

We denote the scalar product by a-b or ab. Projeb
Therefore

IS

AN -
N
Q

. Fig. 22.
a - b = |a||b| cos g. I ‘

The scalar product is zero not only when a = 0 or b = 0, but also
when a | b, because then ¢ = z/2 and hence cos ¢ = 0. However, if
a == 0 and b == 0, then the scalar product can be positive or negative
depending on whether ¢ is acute or obtuse.

The scalar product is commutative because we have
b - a = |b||a| cos ¢ = |a||b| cos p = a - b.

The expression |b| cos ¢ represents the projection of the vector b on
the axis determined by the vector a and agreeing with it in direction. This
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projection is called the projection of b on the direction of a and is denoted by
Proj,b. Therefore ‘

Proj,b = |b| cos p, Proj,a == |a]| cos ¢.
Hence by (I)
a - b = |a| Proj,b = |b| Proj,a. (1

Therefore: the scalar product is equal to the product of the length of one
vector by the projection of the other on the direction of the first.

Distributive law. From the definition of a scalar product we have
| (a + b) - ¢ = |c| Proj {a + b).
Since the Proj.(a + b) = Proj.a + Proj.b, it follows that
(a + b) - ¢ = |¢| Proj.a + || Proj b.

But |¢| Proj.a=a-c and |¢| Projb = b - ¢, therefore

(@a+b)y-c=a-c+b-c (XI)
Proceeding similarly, we obtain
(@a—b)-c=da-c—b-c (ITT)

Hence the distributive law with respect to multiplication holds for
suns and differences. From these result the usual laws of multiplying
sums by sums.

For example:
(,,_|_b).(c+d)=(a+b)-c—i—(a—|—b)-d=:
=a-¢c+b-ct+a.-d+b.d.
Associative law. Let m denote any number. Then (ma).b =
= |b| - Proj,(ma) = mb Proj,a, whence (ma)-b — m(a - b).
Now let m and n denote numbers. By the preceding formula
(ma) - (nb) = ma - (nb) = mn(a - b), hence
(ma) - (nb) = (mn)(a - b). (Iv)
From these follow the usual laws of multiplying a polynomial by
& polynomial.
For example: A
. (2a—3b)-5c——-100-c—~15b-c,
(4a—2b) - (3¢ + d) = 12a - c—6b - ¢ + 4a-d— 2b . d.
Square of a vector. The scalar product a - a is denoted by a®. Since
a* = |a| - |a] cos 0, then a = |a|* and therefore a — Ve
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Hence we obtain:

(a+ b= (a+b)-(@+ b) = a* + 2a-b + b,
(a——b)2=(a—b)»(a—-b):az-—2a-b+b2, V)
(@ +b)-(a—b)=a— b2,
The first two formulae can be written in the following form:

|a =+ b[* = [al* + 2|a][b] cos ¢ + [BJ2,

la —b[? = |a* — 2|a||b] cos ¢ + |bJ2. (VI)

These formulae express the so-called #heorem of Carnot known from
trigonometry.

Analytic representation of a scalar product. Let i, j, k denote unit
vectors (p. 7). From the definition of a scalar product we obtain:

P=jt=f =1, Pi-j=ik=j-k=0. (2)

Representing a and b in the form a = a,i + a,j+ a,k, b= b,i +
=+ byj + b,k (p. 7), we can write a - b in the form

a-b= (a’mi + @yj + ak) - (bm' + bilj -+ bzk)
Performing the indicated multiplication and using formulae (2) we
get

a-b=uaypb,+ ab, - a,b,. (VII)

The above formula enables one to find the scalar product of two
vectors when their components are known.

If a and b are perpendicular to each other, then a - b = 0 and there-
fore

ab, + ab, + ab, = 0. (VIII)
Conversely; ifa.b = 0,thena and b are perpendicular to each other
provided they are different from zero. Therefore formula (VIII) repre-

sents the condition of perpendicularity of the vectors a and b (different
from zero). ‘

§ 8. Vector product. The vector product of the vectors a and b is de-

- fined as the vector ¢ which satisfies the following conditions:

(1) Length. If ¢ denotes the angle between the vectors a and b, then
|e| = |a]|b] sin . @
(2) Direction. The vector ¢ is perpendicular to the vectors a and b.

Hence if the vectors a and b radiate from the same point, then the
vector c is perpendicular to the plane containing a and b (Fig. 23).
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(3) Sense. The sense of the system of vectors (a, b, c) agrees with
that of the chosen coordinate system, i. e. the system is left-handed.
We denote the vector product by

a X b,
From (I) it follows that |c| is zero, if and only if

a=0orb=0o0r p=0o0r ¢=um.

Therefore: the vector product is zero, if and only
if one of its factors is zero, or if the factors are parallel
to each other.

Conditions (1) and (2) are obviously dropped if the vector product is
zero. In particular we have ‘

Fig. 23.

axa==0. (IX)

Remark. The absolute value of the vector product is |a||b] sin ¢ (for-
mula (I)). This expression represents the areaof a parallelogram constructed
on vectors correspondingly equal to the vectors a and b and radiating from
one point (Fig. 23).

Change of order of factors. If the order of the factors is altered, then
we get the product

b X a.

The product a X b has (by the definition of a vector product) the

same length and direction as b X a but an opposite sense. Hence
bXxa=—(axb) (11I)

Therefore: o change in the order of the factors changes the sign before the

vector product.

Associative law. On the basis of the definition of a vector product it is
easy to demonstrate the following relations (where m and » denote num-
bers):

m(a X b) = (ma) X b= a x (mb), @)
(ma) X (nb) = (mn)(q X b). \%

For example:

3a X b=3(a X b), 2a X 3b= 6(a X b).

Distributive law with. respect to-a sum. The following formulae hold
for vector products:

cxX(@+b)=cxXatecxb (@a+b)xec=axct+bxec (VI

icm
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We shall now derive the first formula. We can obviously suppose that
a, b and c have a common origin 0.

For the time being let us assume that |e| = 1. Pass aplane /T through
O perpendicular to c. Let

s=a-+4b (1)

and denote the projections of a, b, s on the plane IT byd', b', s’ (Fig. 24).
We obviously have

s'=a 4 b. - (2)
Let @ denote the angle between ¢ and a. Therefore la’] = |a| sin ¢ =

= |a||¢| sin @, since we assumed that |c| = 1. Hence
la'| = |e al a.nd.simi]a,rly |b'| = |e x b, Is'] = e X s|. (3)

Now rotate a’, b’, s’ through 90° in the plane IT about O from left to
right with respect to a person whose feet are at the origin and whose head
is at the terminus of c. We thus obtain a”, b”, s”. By (2)

s” —_ all + bll’ (4:)

la"| =[a|, [b"]=|b"], [s"]=]s]. (5)

The vector a” is perpendicular to a and c; the sense of the system of
vectors (c, a, @”) is left-handed. Moreover, since |a”| = |¢ X a| by (3) and

(5), it follows a” = ¢ X a and similarly
b" =¢c X b, s" = ¢ X s. Therefore in
virtue of (4) and (1) we obtain

cX(a+b)=cxa-+tcxb.

We obtained the above relation
by assuming that |¢| = 1. We shall now
prove it for the general case. Let h be
a unit vector agreeing in direction
with ¢. Then

Fig. 24.

|h| =1 and c == |c|h, (6)
whence according to the associative law
¢ X (a+b) = |[c]h X (a + b) = [¢|[{h x (a + b)}. (7)

But from the formula proved on the assumption that || = 1, and
from the associative law we have in succession:

le|[{h X @ + h X b} = |c|(h X @) + |¢|(h X b) =
= {[¢|h) X a + (|¢|h) % b,
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whence by (6) and (7) we obtain in all generality:
cX(@a+by=cxa+cxXb
The second of the relations (VI) we can obtain from the first by
applying formula (III) as follows
(@4 b) xc=—1fcx(@at+hb}=—{cxatexb}=
=-—(cXa—(cxb)=axc+bXec
From (VI) follows easily
(@+b)X(ct+d=axct+axd+bxc+bxd (VII)

For example:

" (2a — 8b) X (5c + 2d) = 10a X ¢ + 4a X d — 156b X ¢ — 6b X d,
(@a+b) X (@—b)y=axa—axb++bxa—bxXb=—2aXHb,
(8a 4+ 2b) X (5a — 2b) = — 16a X b,

Components of a vector product. Denoting unit vectors by i, j, k we
have:

ixi=jxj=kxk=0, (8)
i ixj=—(xiy=k Jxk=—(kXj=1I
kX 1=—(i x k)= ]. (9)

Setting
a=a,+ a,j+ ak, b=1>b,i-+b,j+ bk,
we obtain
a X b= (a,j+ a,j + ak) X (b,i + b,j -+ bk).
Performing the multii?lication and using (8) and (9) we get:
ax b= (ab,—ab,)i+ (ab,—ab,) j+ (@b, — a,bs) k.
For ¢ = a X b we therefore have

Cp = ayb,— ab,, ¢, =ab,—ab,, c,=ab,—ab,.

(VIII)

§ 9. Product of several vectors. 1° Let us first consider the product
a-(b X c). Setting r = b X ¢, we obtain

a-(bxc)y=a-r=ayg,+ ayr, + ar,.
Since 7, = b,6, — b,¢, etc.,
a- (b X €)= ayb,c,—b,c,) + a,(b,05 — by;) + @y(baC, — cby).

The above formula can be written in the form

icm
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a, a, a,
a-(bxec)=|b, b, b,|. ey
Ce Cy G 1
From well-known properties of determinants it follows easily
ﬂ-(b){c):b-(cxa)::c-(a)(b)_ (II)

Suppose that the vectors a, b, ¢ have their initial points at the origin
of the coordinate system. From analytic geometry it is known that the

volume V of a parallelepiped having edges a, b, c, is 1/6 of the determi-
nant (I). Hence ¥ = {a - (b X ¢).

Therefore: the necessary and sufficient condition that the vectors a, b c
(having a common origin) be in the same plane is that V = 0, or that
a-(bxc)=0. ‘

However, if we do not assume that a, b, ¢, have a common origin,
then — as is quite evident — the conditiona - (b X ¢) = 0 4s the necessary
and sufficient condition that the vectors a, b, ¢ be parallel to the same plane.

2° Let us now consider the product @ X (b X c). Let us denote this
product by u and set r = b X ¢. Then

Ug = Qyfy — @1y = ay(bocy — byCs) — Qy(boCe — baty)-
Adding and subtracting a,b,c, we obtain
Uy = by(@eC, + GyCy + 0,C;) — Co(@zbe + aby + ad,);

hence wu, = by(a-¢) —c,(a-b) and similarly u, = b,(a - ¢)— c,(a - b),
u, = b,(a - ¢)—c,(a - b). Therefore

aXxX(bxXxc)y=b-(a-c)—c-(a-b). (III)

‘3° From (I), (II) and (III) follow the relations:
(@axb)-(cxdy=(a-c) (b-d)—(a-d) (b-c), (Iv)
(@x b) X (e xd)y=bla-(cXxd]—alb-(cxd)] ~ (V)

§ 10. Vector functions. If to each number ¢ in the interval (¢, ")
there corresponds a vector w, then we say that a vector function is defined
in the interval (¢, #") and we write

w = F(t). 1)

The components w,, w,, w, are also functions (i. e. scalar functions)
of the variable ¢. Therefore:

we = 1(0), w,=olt), w,=p(b). e
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The three preceding functions define the vector function (1) proci-
sely.
Limit. The vector function (1) is said to have the limit w, as tends
to t,, and we write )
lim F(2) = w,,

ity
when .
lim f(t) = wo, s Lm @(t) = Wo,4» and lim y(f) = wo,z-
t

ety —to t~>tg

Continuity. The vector function (1) is continuous at by, if im F(¢) = wy,

ity

where w, = F(iy).
The following relations obviously hold:
lim f(£) = f{te), lim ¢(t) = @(ts), Lm (i) = w(h)-
t=>to tto 1y

The functions f, ¢, v are therefore continuous at ¢ = #,. Conversely,
if f, @, v are continuous at ¥, then w = F(f) ‘is also continuous at f,. -

Derivative. Let A¢ denote the increment of the variablet, and Aw tho
corresponding increment of the vector w. Then w + Aw = F(¢ + A4t),and
Aw = F(t + At) — F(t), whence .

Aw _ F(t + At) — F(t)
At At :

The limit lim %*is called the derivative of the function F(f) at the
At—+0

point . 4
We denote the derivative by H‘;’ w’ or F'(t).

Since Aw has components

Aw, = f(t + At) — (@), Adw, = @(t + 4t) — ¢(t),
‘ Aw, = y(t + At) —y(t),
it follows that
‘ wy = f'(8), w,=¢'(t), w,=y

Higher ordered derivatives are defined in the usual manner: the

second derivative as the derivative of the first derivative, the third deri-

vative as the derivative of the second derivative etc. We denote higher
ordered derivatives by

d2w  d3w

" v
'd—tz‘, 'a‘.tT, o OT W, W, ete.

iom
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It is easy to show that

o w=10), w = g'(), w] = y"() ete.
If the functions w = F(t) and v = &(z)
following relations obtain:

dw-+v) dw  dv

possess derivatives, then the

& —atw M
d(mw) dw . : :
G =mg (where m is a number), (IT)

dw-v) dw dv
& @ 't (IIT)
diw X v) dw dv '

We shall demonstrate for instance relation (ITT). We have A(w - v) =
= (w -+ Aw) - (v -+ Av) — w - v; hence

Aw-v) Aw Av Av
& m YTVt A

whence, upon passing to the limit we obtain (III).

Vector functions of many variables. We can also consider vector
functions of many variables. For instance, the vector function

w=F(§,7, )
is a function of the three variables £, 7, . The projections of w are then
defined by certain functions ‘
e =&, &), wy=g(&n, 0), w.=1wp(&n, L)

The limit, continuity and partial derivatives of vector functions’of
several variables can easily be given by analogy with the case for one
variable.

§ 11. Moment of a vector. Moment of a vector with respect to a point.
. Let us suppose that a vector 4B and a point O

are given. The moment of the vector AB with - TMomoAB
respect to the point O is defined as the vector M
satisfying the following conditions: , Q<
< N
| A

(1) |M| is equal to twice the area of the tri-
angle OAB or

0 “«\W \

M| = |[4B| - b, Fig. 25.
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where & denotes the distance of the point O from 4.B.

(2) The direction of the vector M is perpendicular to the plane
passing through O and AB.

(8) The system of vectors (AB, 04, M) has a sense agreoing with
that of the coordinate system, i. e. a left sense.

We shall denote the moment of a vector AB with respect to the point
O by the symbol .

: Mom,4B.

The moment is zero only in the case when AB = 0 or when the
prolongation of the vector AB passes through O. If the moment is zero
then conditions (2) and (3) are dropped. .

For equipollent vectors we can establish the following

Theorem I. Equipollent vectors have equal moments with respect to the
same point. ' ,

Proof. By hypothesis AB = A'B’. Thercfore AB and A’F’ are equal
and lie on the same line. It is easy to verify that the moments of both vec-
tors with respect to O have the same direction and sense. They also have
the same length because triangles OAB and 0A'B’ have equal areas
(equal bases and a common altitude). Hence Mom,4B == Mom,4"B’,
q.e. d.

Moment as a vector product. Let us consider the vector product
AB x OA. Let us note that the preceding product has the same direction
and sense as the Mom,AB. We also have |[4B x 04| = |Mom,4B|
because the absolute value of the vector is equal to the area of the
parallelogram OABC (Fig. 25) and hence to twice the area of the tri-
angle ABC. Therefore

Mom,AB = AB x 0A.
Had we taken the equipollent vector 4’B’ instead of the vector AB,
then we would have
Mom,AB’ = A'B’ x OA".
By the preceding theorem
Mom,AB = A'B’ x 04" = AB x OA.

Therefore: if A’ is an arbitrary point of the line on which the vector AB

lies, then L
Mom,4B = AB x 04’

Theorem 2. If two equal vectors have equal moments with respect to

a point, then they are equipollent.
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Proof. By hypothesis AB = A'B’ and Mom,4B = Mom,4'B’.
Therefore AB X 04 = A'B’ x OA’, hence AB x OA — AB X 04’
and therefore 4B x (04 — 04’) = 0. Moreover, since 04 — 04’ =
= A'4, it follows

AB x A4 = 0.
But AB X A'A = Mom 4. AB; hence
MODIA/_ATB = Q.

It follows from this that the e point 4’ lies on the prolong&tlon of the
vector AB. Since, in addition, 4B is parallel to A’B’, then vectors 4B and
A'F' lie on the same line.

Moment of a sum of vectors having a common origin. Let us assume
that AB and AC (both having initial points at A) are given. Let 4D be
their sum. We have

Mon,4D = 4D x 04 — (4F + i) x 0Z; HompAB
consequently Mo AC A B
Mom,AD — 4B x 04 + AC x 04, o] b
and therefore MomOAD
Mom,4D = Mom,4B + Mom,AC. Fig. 26.

We obtain a similar formula for the sum of several vectors. Hence:
the sum of the moments of several vectors having a common origin is equal
to the moment of their sum hawving the same origin.

Components of a moment. The position of a vector a is defined if ist

projections and the coordinates z, y, z of an arbitrary point A4 of the hne I
on which the vector a lies are given.

Let @y, g, 2, be the coordinates of the point 0. We have
Mom,a = a x OA.

The projections of the vector 04 are z — z,, Y — Yo 2 — 2Zg. Henoe
denoting the moment with respect to 0 byM we obtain:

Mo = ay(z—20) — afy —yo), M, = a(®— 2g) — 4(z — 2,),

M, = ayfy — yo) — ay(x — a). @

If, in particular, the origin of the coordinate system is O, then
%y =0, gy = 0, 2, = 0, and therefore

) :
W
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M, =ap—ay, M,= ax—az, M, == azy — a,x. (I1)

Suppose that a = a’. Then, denoting the moments of the vectors
with respect to an arbitrary point by M and M’, we have a = a’, M = M’
or , ,

Gy = @, a,=a, My=M, M,=M, M,=M,.

Conversely, if the above relations hold, then.a = a’, M = M’ and
therefore by theorem 2, p. 16, the vectors a and a’ are equipollent.

Therefore: the projections of the vector a and the projections of the mo-
ment M with respect to an arbitrary point determine the length, direction,
sense, and position of a.

!
ay = Oy,

Moment of a vector with respect to a line. Let the vector a and the
line I be given. Through an arbitrary point O on the line I pass a plane IT
perpendicular to I. Form the projection a’ of the vector a on the plane II.

The moment of the vector a’ with respect to O is called as the mo-
ment.of the vector a with respect to [ and it is denoted by the symbol

Mom,a.
Obvmusly Mom;a does not depend on the choice of point O.

Moma is zero only in the following
cases:

1° when a =0,

2° when a || 1, because then a’ = 0,

3° when a produced cuts I, because
then a’ produced passes through O.

If 4 denotes the distance of a from [ and
o the angle between a and [, then it is easy to show that

Fig. 217.

(I11)

Let us choose the line [ as the z-axis and the plane IT as the xy-plane.
Let M = Mom,a and L = Mom,a. Since a’ has the projections a, = a,,
@, = @y, @, = 0, then L, = 0, L, = 0 and L, = a,y — a,x, where z, y, 2
are the coordinates of the initial point of a. We then see that M, = L,

Therefore: Mom,a is the projection on the line U of the moment of the
vector a with respect to an arbitrary point of this line.

|Mom,a| = dla| sing. .
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II. SYSTEMS OF VECTORS

§ 12. Total moment of a system of vectors. Let

a; gy ooy dp

be a given system of vectors. Let us denote the sum of the system (i. e. the
sum of the vectors of the system) by s. Thus
s=a +a+ ... +a,
Choose an arbitrary point O.

The total moment or briefly the moment of the system with respect to O
is defined as the sum of the moments of the separate vectors with respect
to 0. We shall denote it by

M

”
We therefore have

M, = Mom,a, + Mom_a, + ... + Mom,a,,.
The total moment we sometimes also denote by
- dz).

Let us select another point O, ey
We have

M, = Mom,a, + Mom,a, + ... + Mom,a,

Mom,(a,, a, ..

Since Momya, = a; X O'A,, where A4, is the
uutlal point of a, ete., it follows that

My=a, x 04 +a;x O4, + ...
But 0’4, = 0’0 + OA, etc. hence
My = a; X (00 + 04,) + a, x (00 + O4,) +
After performing the multiplication we obtain:
My=(a; X 00+ a, X 00 + ...) + (a, X 04, + a5 x Od,+...). (1)

Buta, x 00 +a,x 00 +...=(a,+ay+...) x 00 =s x 0°0.
The sum enclosed in the second parenthesis of (1) represents the
moment of the system with respect to O. Therefore

My =s x 00 + M,. ey

The product s X Q'O is the moment with respect to O’ of the sum of
the system of vectors with initial point at O.
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Hence: if we change the point with respect to which‘we find the total
moment of the system, then this moment changes by the ’)1:&077167’14(‘, of the sum of
the system whose initial point is at the.old point taken with respect to the new
potnt. . '
The following corollaries are consequences of the preceding theorem;:

1. If the sum of the system is zero, then the total moment s constant (i. e.
it does not depend on the point with respect to which it is determined).

Because if s = 0, then s X 0’0 = 0, and hence My = M,.

2. If the total moments with respect to three non-collinear points are
equal, then the sum of the system of vectors is zero.

For let us assume that the total moments with respect to the non-
collinear points O, 0’, 0" are equal. Then M, =M, = M,., whence
s X 00 = 0 and s X 0”0 = 0. Hence, if s = 0, then ¢ || 00" and s || 0”0,
which is impossible when 0, 0’, 0", are non-collinear.

3. If the point with respect to which the total moment is determined is
moved along a line parallel to the sum of the system, then the moment does not
undergo a change.

For if s | 0’0, then s X 0’0 = 0 and hence M, = M,.

4. The scalar product of the total moment by the sum of the system is
constant (i. e. it is independent of the point with respect to which it is
determined).

For let us multiply both sides of (I) scalarly bys. We obtains - M, =
=5s-(s X 00)+s-M, but s x 0’0 | s; therefore s (s X 0'0) = 0,
whence

s-M,=s-M,

The scalar product of the total moment by the sum is called the para-
meter of the system.

5. T'he projection of the moment on the direction of the sum is constant in
magnitude (under the assumption that the sum is different from zero).

For by corollary 4 and the definition of a scalar product we have
Is| Proj,M, = |s| Proj,M,, whence

Proj,M, = ProjM,.

§ 13. Parameter. We shall presently determine the pa.ra,moter

(i. e. the scalar product of the total moment by the sum) for certain

systems appearing frequently in mechanics.

A central system is one in which the prolongations of the separate
vectors all pass through a fixed point O called the centre (Fig. 29).
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The moment of the system with respect to the centre is zero, because

the moment of each vector is zero. Therefore the parameter is zero.
Hence: the parameter of a central system is zero.

A plane system is one in which every vector lies in the same plane I
(Fig. 30). ’

o .M “l § fh/b
o/,_{_ /L/ /\ / ,lﬂ// OV/Z

Fig. 29. Fig. 30. Fig. 31. Fig. 32.

The total moment of the system with respect to an arbitrary point O
in the plane I7 is perpendicularto7, because the moments of the individual
vectors with respect to O are perpendicular to I7. Since the sum lies in the
plane II, then the sum is perpendicular to the total moment. It follows
that the parameter is zero. ‘

Therefore: the parameter of a plane system is zero.

A paralle] system is one in which all the vectors are parallel (Fig. 31).

- If the sum s is zero, then the parameter is obviously zero. Let us
assume then, that s 4= 0. Let O be an arbitrary point. The moments of the
separate vectors with respect to O lie in the plane perpendicular to the
vectors of the system and passing through O. Therefore the total moment
also lies in the plane I7. Since s | I, then s is perpendicular to the total
moment and consequently the parameter is zero. '

Hence: the parameter of a plane system is zero.

Let us now assume that vectors a and b are skew (i. e. do not lie in the
same plane). Let O be the initial point of the vector b (Fig. 32).

The moment M of the system (a, b) with respect to O is obviously
equal to Mom,a. The parameter K =M.s=M.(a+-b)=M.a -+
+ M - b. But M = Mom a is perpendicular to the plane IT which passes
through O and the vector a. Since a lies in I7 and b does not, the moment
M is perpendicular to a, but not to b, and consequently from the last
equality K =M .b == 0.

Therefore: the parameter of a system consisting of two skew vectors s
different from zero.

§ 4. Equipollent systems. Two systems of vectors (a,, a,, ...) and
(a1, ag, ...) ate said to.be equipollent if they have equal sums and equal
total moments with respect to every point.


Yakuza


22 CHAPTER I — Theory of vectors
If we have a system (a) consisting of only one vector a and a systom
(a') consistirig of only one vector a’, then — a8 follows from theorem 2,
p. 16 — the necessary and sufficient condition that systems. (a) and (a.’) be
equipollent is that a = a’. Therefore, in this case, the notion of equipol-
lence of systems coincides with the notion of equipollence of vectors.

In the general case we have the following theorems:

1. If two systems have equal sums and equal total moments with respect
to a certain point, then these systems are equipollent.

This follows from formula (I), p. 19. Forif the moments with respect
to the point O are equal and the sums are equal, then the moments with

" respect to every point O’ will be equal, since in replacing point O by O’

they undergo equal changes in both systems.

2. If two systems have equal moments with respect to three non-collinear
points, then these systems are equipollent.

Because if we denote the points with respect to which the total mo-
ments of both systems are equal by Oy, 0,, Oy and the sums of these
systems by s and s', then from fromula (I), p. 19, we shall obtain
s X 0,0,=5s" x 0,0; and s X 0,0, = s’ X 0,0, whence

(s—s) X 0,0, =0 and (s—s') X 0,0, = 0.

Weres —s' == 0, then we should haves —s’ | 0,0,ands — s’ || 0,0,
which is impossible because Oy, 0,, O, are non-collinear. Hence s — s” == 0,
or s = s, whence, by the preceding theorem, the equipollence of the
systems follows. -

That equipollent systems have equal parameters is an immediate con-
sequence of the definition of a parameter.

The converse of this statement is obviously false.

Systems equipollent to zero. If the sum of a system is zero, then —
as we know — the total moment is constant. If the sum of the system is
zero and the total moment is zero, then the system is said to be a system

— equapollent to zero.

A system equipollent to zero is equipollent to a zero vector.

In order to ascertain whether a system is equipollent to zero it is
sufficient to ses whether its sum and moment with respect to some arbi-
trary point are equal to zero.

It follows easily from theorem 2, p. 20, that a system is equipollent to
zero if the total moment with respect to three non-collinear points is zero.

System of three vectors equipollent to zero. If & system comsisting of

three vectors is equipollent to zero, then the prolongations of these vectors pass
through one point (or the vectors are parallel). '

icm

[§16] Reduction of a system of vectors 23

Let us suppose that the system of vectors a, b, c is equipollent to zero.
The total moment with respect to A (the initial point of a) is therefore
zero, whence Mom b + Mom ,c = 0, and hence Mom b = — Mom 4c.
From this it follows that the vectors b and c lie in the plane IT passing
through A4. Since a + b -+ ¢ = 0, then a = — b —¢, and therefore a
also lies in the plane I7. Let O denote the point of intersection of a and b.
Since the total moment of the system with respect to O is reduced to the
moment of the vector ¢ with respect to 0, Mom, = 0 and hence ¢
also passes through O. Finally, if a || b, then a | ¢ also, because ¢ =
= —a—b (Fig. 29).

§ 15. Vector couple. A wvector couple is a system consisting of two
parallel vectors @ and —a oppositely directed and of equal length.

Since the sum of a vector couple is zero, ’
‘ : M
/AW

the moment of the couple is constant. Com-
Fig. 33,

puting it with respect to the initial point of q,
we see that the moment of the vector a is
zero, but the moment of the vector —a is
perpendicular to the plane of the couple
and equal in magnitude to the area of the
parallelogram constructed on the vectors forming the couple.

Therefore: the moment of a couple is perpendicular to the plane of the
couple and in magnitude equal to the area of the parallelogram construcied on
the vectors of the couple.

If the vectors of the couple lie on the same straight line, then ob-
viously the moment is zero. ‘

If % denotes the distance between vectors @ and —a and M the mo-
ment of the couple, then

' M| = |a| - &. (1)

Corresponding to a given vector M there can always be found

a couple whose moment is equal to M. On the plane perpendicular to M it

is sufficient to select a parallelogram whose area is equal to |M|. The

opposite sides, suitably directed, form the sought for couple. Clearly, the
problem can be solved in an infinite number of ways.

Two couples whose moments are equal form an equipollent system.
Hence, if a couple is arbitrarily translated or rotated in the plane of the
couple, then an equipollent couple is obtained.

§ 16. Reduction of a system of vectors. Let a system S consisting of
the vectors ay, a,, ..., a, be given. We shall consider the problem of
determining the simplest system equipollent to S.


Yakuza


24 CHAPTER I — Theory of vectors

Let O be an arbitrary point. Denote the sum of the system 8§ by s
and the total moment with respect to O by M. Let us consider the system
R consisting of the couple (a,—a) whose moment equals M and the
vector s with initial point at 0. Systems R and § are obviously equipollent
because they have equal sums s and equal moments M with respect to 0.

Therefore: every system of vectors is equipollent to o system consisting
of a sum with initial point at an arbitrary point O and a couple whose mo-
ment is equal to the moment of the system with respect to 0.

The latter is the so-called reduction theorem. The point O is called the
centre of reduction.

The couple (a, —a) can be chosen so that the point O is the initial
point of —a. Let us replace the vectors s and —a by their sum b whoge
initial point is at O (Fig. 34). The system consisting of @ and b is obviously
equipollent to system §S.

Fig. 34. Fig. 35,

Hence: every system of vectors is equipollent to a system of two vectors
one of which has its origin af an arbitrary point.

Every system of vectors is therefore equipollent to a certain system

"composed of a vector and a couple or two vectors. Let us now congider
conditions under which a given system is equipollent to only one vector or
one couple.

Let us examine in succession cases in which the parameter is different
from zero and equal to zero.

1° Parameter different from zero. A system congisting of one
vector or one couple is a plane system and hence its parameter K = 0.
Therefore, if the parameter of the system § is different from zero, then the
system S cannot be equipollent to one vector or one couple because
equipollent systems have equal parameters.

Let us assume now that the system S whose parameter K = 0 ig
equipollent to the system R consisting of two vectors a and b. The
Pparameter R of the system is therefore also different from zero. It follows
from this that the vectors a and b cannot lie in one plane and are there-
fore skew (vide § 13, p. 21).

icm

[§16] Reduction of a system of vectors 25
Hence: if the parameter of a system is different from zero, then the
system is equipollent to a system of two skew veciors.

2° Parameter equal to zero, sum different from zero. Let us
suppose that the parameter K of the system § is zero but the sum s == 0.
Select an arbitrary point O and denote the moment of the system S with
respect to O by M. Since K = M -s = 0, then M | s. Pass a plane IT
through O and perpendicular to M (Fig. 35). On IT we can choose
a vector r equal to the vector s and such that Momr = M. The distance &
from r to O is obtained from |M| = A|r|. It is easy to see that system S is
equipollent to the vector r.

Therefore: if the parameter of a system is equal to zero but the sum is
different from zero, then the system is equipollent to one vector.
The vector r, to which the entire system S is equipollent, is called the

resultant vector or briefly the resultant of the system .

The sum is not to be confused with the resultant. The sum has only
a definite length, direction and sense; the resultant has in addition a defi-
nite position, i. e. the line on which it lies.

3° Parameter and sum equal to zero. Finally, let us assume that
the parameter as well as the sum of the system are equal to zero. From the
reduction theorem it follows that the system is equipollent to a couple.
Since the sum is zero, the total moment M is constant.

If M = 0, then the couple is the simplest system equipollent to the
given one. If M = 0, and as by the hypothesis the sum is equal to zero
then the system is equipollent to zero, i. e. to a zero vector.

Therefore: o system whose parameter and sum are equal to zero s
equipollent to o couple of vettors or to a zero vector, depending on whether
the total moment is different from zero or equal to zero.

The above results are compiled in the following table:

Parameter Sum Moment Simplest equipollent system
E+0 o _ vector and couple or two skew
vectors )
s=+=0 — resultant vector
K=0 s ==0 M=+=0 couple
|
} s=20 M=20 zero vector
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The following theorems are easy consequences of the preceding:
1. If the moment of a system with respect to @ certain point O 18 zero,
then the system has a resultant with its initial point at 0.
2. A central system has a resultant whose initial point is at the centre.

These theorems follow from the reduction theorem (p. 24) if wo take
point O (or the centre of the system) respectively, as the centre of
reduction.

3. A plane system either has a resultant or is equipollent to a couple.

4. A parallel system either has a resultant or is equipollent to a couple.

Theorems 3 and 4 are obtained at once from the table because in
both cases K is zero.

§ 17. Central axis. Wrench. Let S be a given systom having a sum
different from zero. Let us determine the geometric locus of points with
respect to which the total moment is parallel to s (or == 0).

For this purpose choose an arbitrary point O. Let M, = 04 Ve the
total moment of the system with respect to point O and OB the projection
of M, on s.

Let us now determine the point 0" with respect to which, the moment
of the sum s with initial point at O is equal to 4B. Such a point is found at
a distance d from O on a line perpendicular at O to AB and s, where d
satisfies the condition:

A d-|s| = |4B|
H ——
(00t Therefore Momys = 4B or
s x 00 = 4B,

B .
ceniral axis .

o' o Moy and hence by (I), p. 19
Mom,, s=AB My =s x 00 + M,
Q whence
Fig. 36.

M, = 4B + 04 = OB.

Therefore M, is parallel to s (or = 0, when M, | s).

Let us pass a line I through O’ parallel to the sum s. The relation
s || 0’0" holds for an arbitrary point 0" ofline I; hence s X 0707 == 0, whence
M, = M, (p. 20, corollary 3).

Therefore: the total moment with respect to an arbitrary point of 1 is
parallel to s (or = 0).

Points not on the line  do not possess the above mentioned property,
because if the moment M,, for some point 0, is parallel to s or equal to
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zero, then by theorem 5, p. 20, the Proj.M,, = Proj.M,. Hence M,, =M,
By formula (I), p. 19, it follows that s X 0’0, = 0, or that s || 0°0;.
Therefore point O lies on .

We have thus proved that the sought for geometric locus is a line
parallel to s. This line is called the central axis of the system.

Therefore the central axis of the szstem is a straight line with the
property, that the total moment with respect to an arbitrary point of
this line is parallel to the sum or equal to zero.

Hence: a system whose sum is different from zero possesses one (and
only one) central axis.

A system consisting of a vector and a couple whose moment is parallel
to the vector is called a wrench.

In particular, a vector or a couple is called a wrench.

Selecting a point on the central axis, we see by the reduction theorem,
P. 24, that the system is reduced to a wrench. If the sum of the system is
zero, then the system is reduced to a couple and hence also to a wrench.

Therefore: every system is equipollent to a certain wrench.

§ 18. Centre of parallel vectors. Let a system of parallel vectors
(a4, @y, ..., a,), whose sum is different from zero, be given. Denote a unit
vector parallel to the vectors of the system by w. The vectors ay, a,, ..., @
can be represented in the form

n
a, = aW, a,=a,W, ..., d,=Qq,W,
where by a5, a,, ..., a, we denote the lengths of a,, a,, ..., d,. Therefore
s=(a; 4+ ay,+ ... + a,) w. Since s &= 0, then @, + a -+ ... + a, = 0.

Select an arbitrary point O’ and denote the vectors 0'A,, O'A4,, ..
O'A, by r,ry, ..., r,, where 4,, 4,, ..
vectors ay, d,, ..., a,. Hence

.

.» 4, are the initial points of the
My =awXr +awXr+4+..4+awxr,

Qs
or A a,
Mo’ =W X Zairi. ) (1) “\r $
\“‘ ‘/,"f‘ A?

(2)

Choose a point O such that

Zar;
Xa;

r=00=
From (I), p. 19,
M, =s x 00’ + M,
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Since -
s X 00" = (Za;w) X (—r) = —w X rZa,
therefore according to (2), s X 00" = —w X Za,r,. Honco by (1) and

(8) it follows that M, = 0.

The resultant of the system therefore passes through O (theorom 1,

. 26).
! I)Jet us note that according to (2) the position of the point O does not
depend on the direction w of the vectors a;. Therefore, if the vectors a,
are turned about their points of application the resultant will again pass
through O.

The point O is called the centre of the system ay, @y, ..., a,.

If the coordinates of the initial points A, are denotod by =y, v, 2,,
those of the centre—by 2, ¥y, 2o, then selecting point O’ as the origin of the
system, we obtain by (2)

i Zay ,

Za
Xy = Za- Yo = il

Zar,
22 bt R
Ya,

(4)

§ 19. Elementary transformations of a system. Tho following trans-
formations of a system of vectors are termed elementary:

(a) adding to the system (or removing from it) two vectors equal in
magnitude, opposite in sense and lying on the same line;

(b) adding to the system (or removing from it) several vectors having
a common origin and a sum equal to zero.

Elementary transformations obviously do not change the sum or the
moment of the system. Therefore, if we apply elementary transforma-
tions to a system, we always obtain systems equipollent to it. Elementary
transformations play an important role in the theory of rigid bodies.

It is easy to show that by means of elementary transformations we
can:

L. translate the point of application of a vector to an arbitrarily chosen
point of the line on which the vector lies;

2. replace several vectors having o common origin by their sum having
the same origin;

3. replace one vector by several wectors having the same origin as the
given vector and having o sum equal to that of the given vector.

Proof. 1. Suppose that among the vectors of the given gystom there
is a vector @ whose initial point is 4.

Select an arbitrary point B of the line I on which a lies. Introduce to
the system two vectors a and —a whose initial points are at B. We have
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thus carried out elementary transformation (a). Remove now from the
system the vectors: @ (whose origin is 4) and —a. This will be elementary
transformation (b). The operations which we have carried out on the sys-
tem are equivalent to the translation of the point of application of vector a
from 4 to B (Fig. 38).

l_a _a o A

A B
Fig. 38.

Fig. 39.

2. Suppose that the point A4 is the origin of the vectors a,, a,, ..., a,,.
Add to the system two vectors whose common origin is 4: s = a, +
+ a; + ... + a,, and —s (elementary transformation (a)). Now remove
the vectors a;, ay,...,a,, —s (elementary transformation (b)). The
operations which we have performed are equivalent to the réplacement of
the vectors ay, a,, ..., a, by their sum s (Fig. 39).

3. is proved similarly.

We shall now prove the following theorems:

Theorem I. By means of elementary transformations every system of
vectors can be reduced to a system of three wvectors equipollent to the given
system.

Proof. Suppose that we have a system of vectors (ay, a,, ..., a,) whose
points of application are 4, 4,, ..., 4,, respectively. Select three non-
collinear points L, M, N in such a way that none of the points 4,, 4,, ...,
A, will lie on the plane passing through L, M, N.

Sincelines 4,L, 4, M and 4, N donot lieinthe same plane, therefore the
vector a,, can be replaced by three vectors uy, v;, w; with common origin
A, lying on A,L, A, M, A, N, while obviously a, = u, + v, + w, (Fig. 40).
The vectors uy, v;, w; can be translated along the lines on which they lie
to the points L, M, N, respectively. In this way we have replaced the
vector a, by the vectors uy, v;, w, whose points of application are at
., @, by three
vectors whose points of application are at L, M, N.

‘We now replace the vectors with origin at L by their sum u with origin
also at L. Similarly, vectors with origing at M and N are replaced by
sums v and w whose origins are M and N, respectively.

In this manner, by means of the elementary transformations, we
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have reduced the given system to a system consisting of three vectors,
g.e.d. ‘

w
U P gl " S A NM_:...,---_M
/-'_ u | ,,"/]
W Lo ke
/v P
'M /
Fig. 40. Rig. 41. Tig. 42.

Theorem 2. By means of elementary transformations o system equipol-
lent to zero can be reduced to @ zero vector.

Proof. Assume that the system (ay, a,, ..., d,) is equipollent to zero.
According to theorem 1 it can be replaced, by means of elementary trans-
formations, by a system consisting of the three vectors u, v, w with
points of application at L, M, NV, respectively. The system (u, v, w) is equi-
pollent to zero because it is equipollent tothe given system (for elementary
transformations do not alter the sum or moment).

According to the theorem on p. 22, the vectors u, v, w are either
parallel or their prolongations are concurrent at O (Fig. 41). In the
secorid case we can translate the points of application of the vectors
u, v, w to O and then remove these vectors since their sum is zero,

Assume then that u,v, w are parallel (Tig. 42). Were u -~ v = 0,
then obviously w = 0. The system would then be reduced to the couple
u, v. Since the moment is zero, the vectors u and v would lie on the same
line; since, besides u 4+ v = 0, the vectors v and v could be removed.
Therefore, let u + v == 0. Add two vectors r and —-r lying on the line LM
and having points of application at L and M, respectively. The vectors u
and r with origin at I can bereplaced by their sum u’ with its point of appli-
cation also at L. Similarly, the vectors v and —r can be replaced by their
sum v’ whose point of application is at M. The vectors u’ and v’ are not
parallel; hence the vectors u’, v’ and w can be removed as before. Thus
the system equipollent to zero has been reduced to a zero vector by
means of the 9lementary transformations, q. e. d.

Theorem 3. If two systems of vectors are equipollent, then by means of
' elementary transformations one system cam be transformed into the other.

icm
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Proof. Suppose that the system of vectors (a;, as,
of application at 4,, 4,, ..., 4, is equipollent to the systern of vectors
(by, by, ..., b,) with points of application at B, B,, ..., B,.

To the first system add the vectors b, —b, with origin at .B,, the
vectors b,, —b, with origin at B, etc. Since the vectors

ve—b,

form a system equipollent to zero, therefore by theorem 2 this system
can be removed by means of elementary transformations, i. e. replaced
by a zero vector. After the removal there remains the system (b,, by, ..., b,).

.., 4,) with. points
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