NOTE IL

The Lebesgue integral in abstract spaces

by
Stefan Banach.

Introduction.

In this note we intend to establish some general theorems
concerning the Lebesgue integral in abstract spaces. This subject
has been discussed by several authors (for the references see this
volume, pp 4, 88, 116, 156 and 157). Our considerations differ from
those of other writers in that they are not based on the notion
of measure.

Let us fix a set of arbitrary elements H as an abstract space.
We shall denote real functions (i.e. functions which admit real
values) defined in H by (), y(t), 2(¢),... where teH, or simply by
By ¥y%,y.... A set £ of real functions defined in H will be called linear
if any linear combination, with constant coefficients, of two ele-
ments of £, also belongs to 2.

Let £ be a linear set of functions defined in H. A functional I
defined in £ is termed additive if for any pair of elements x and y
of £ and any real number «, we have F(r+y)=F(x)+F(y) and
F(az)=a-F(x). The functional F is non-negative if F(x)>=0 for any
non-negative function xeg.

We say that a functional F defined in € is a Lebesque integral
(£-integral) in € if the following conditions are satisfied:

A) The set £ is linear;

B) the functional F is additive and non-negative;

C) if 10 {2} CL and M e®, 20 |z,(t)| << M () for n=1,2,... and
te H, and 3°lim z,(t)=z(t) for te H, then z¢ H and lim Flay)=F(2);

n n
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D) if 268, F(2)=0 and |y (5)<e(1)
F(y)=0;

B) it 10 {&,)C8Q, 2n(t) <y (t) for n=1,2,.., 20 lim 2ult) =2 (1)

for te H, then yef and

n
The Lebesgue integrals considered in this note will moreover
satisty the condition: :
R) If z¢8, then |¢|¢Q.

In Part 1, a condition is established under which an additive
and non-negative functional defined in a linear set of functions G,
may be extended to an L-integral on a certain set £ containing .
The f-integral and the set ¢ will be explicitly defined.

In Part 1T we admit that H is a metrical and compact space.
We congider an £-integral defined in sets containing all functions
which are bounded and measurable in the Borel sense. It is shown
that each £-integral of this kind is determined by the values which it
admits for continuous functions. Conversely, any additive and non-
negative functional defined for all continuous functions may be
extended as an £integral to the class of functions measurable (B).
We thus obtain the most general £-integral defined for all functions
bounded and measurable (B). '

In Part III we deal with an analogous problem supposing
that H is the unit sphere of the Hilbert space. In particular, the
integral of a continuous function is expressed by explicit formulae.

for te I, and 3°lim P (2,)< oo, then 2z and lim F(z)=F(2).
x [

I Abstract sets.
§ 1. We shall employ the following notations:
1. w>y if x(t)=y(t) for every te H; in particular 23>0 means
that #(t)>0 for te H;

2. |ol=l|a(t)| is the modulus of x(f) in the ordinary sense;
3. max (x,y)=4%(@+y+z—yl), min (z,y)=}@+y——y);

4. lim w,=2 means that lim z,(¢t)=(t) for t¢ H; the relations

n n

Lim sup @y=w, lim inf ,=x are defined similarly;
n n

b, &=}(e+a), @=i@@—z]) (ct. Chap. I, p. 13).
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§ 2. For the rest of Part T of this note we shall fix a set € of
rea] functions defined in H, and a functional f(z) defined for x¢ €,
subject to the following conditions:

(i) The set € is linear;

(i) if e, then |2/eC;

(ii,) the functional f is additive;

(ii,) the functional f is non-negative;

(i) if 10 {#)CE and MeC, 2° || <M for mn=1,2,..,
and 3° h'inm,,-——o, then liI]l:n]‘(wn)=0.

It follows immediately from the conditions (i) that for any pair
of elements # and y of €, max (z,y), min (,y), & and ¢ also be-
long to €. It follows further that the condition (ii) is equivalent to
the following condition: ‘

(iis) If 1° {z)CE and meC,
and 3° liminfz,>0, then liminff(x,)=0.

2 g,=m for n=1L12,..

§ 8. We shall establish the following

Theorem 1. If the set € and the functional f satisfy the con-
ditions (i) and (ii), then there ewists am L-imtegral F, defined in a set 8
containing G, such that F(z)=f(x) whenever xeC; moreover, this
integral satisfies the condition R).

The proof will result from several lemmas.

§4. We denote by 2* the set of all functionals z(t) defined
in H for each of which there exist two sequences {z,)CGE, {y.;CCE
such that

(1) liminfz,2z2=limsup y,.

It is easily seen that the et 2* is linear and that GCL*.

Given a function zef* we shall term wpper L-integral of z
the lower bound of all (finite or infinite) numbers ¢ for each of which
there exist a function meE and a sequence of functions {xz, be-
longing to € such that x,>2m for n=1,2,..., liminfx,>z and

. n o

g=lminf f(xz,).

The definition of the lower £-integral is amnalogous to that of
the upper f-integral. The upper and lower £-integrals of a function

2e8% will be denoted by p(z) and ¢(2) respectively. We obviously
bave ¢(z)=—p(—2).
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§9. The sequence {f(x,)} in the above definition of the upper
Lintegral, may obviously be supposed convergent (to afinite limit
or o0). Ifurther, it {2,jCE, meC, 220, w,>m for n=1,2,... and

lim inf @222, then lim#,=0 and consequently, by the condition
n

(iiy), §2, H,l.n [(gn)==0. Hence, if =ze8*, 20 and P (2)<P<-+ o0,

there always ewists @ sequence of non-negative functions {m,) belonging
to € such that iminfw,>z and f(z,)<P for n=1,3,...
n

Lenuma 1. For any function xe€ we have p(x)=f(z).

Proof. Writing «,=x and m=x, we have

(1) liminfw,zze  and  w,2m  for n=12,..,

n
whence p(r)=5f(x). On the other hand, if 2, ... and m are
any functions which belong to € and satisty the relations (1), then

liminf (,— )20 and @,—x>m—2 for n=1,2,.... It follows from

(iiy), § 2, that liminff(e,—2)>0, ie. liminff(z,)>f(»). Thus
n n

plx)=f(x), and finally p(x)=F(»).

Lemma 2. If 2,e8%, 2,68 and if, moreover, p(z)<-oo,
P(Ra)<-20, then p(2i-+25)<p(2)+p(2s).

Prootf. Let P, and P, be arbitrary numbers such that p (z)<P;
and p(zy)<P, There exist two sequences {2, 1 O\ of functions
belonging to ¢ and two functions m;eE and m,eC such that
lim int mf,j’}zj and lim f(mf,j))<Pj for j=1,2 and such that 2 >m;

n n

pe 1 2
Therefore, writing z,=z\ + % and
. Con-

for j=1,% and »n=12,...
Mm=m,+my, we have liminfz,>2z+2, and z,>m for n=1,2,...
1

sequently p (2,4 2,) <UHMF (i) = lim f (2$) +1im f (#1") < P, + P,, Whence
P(2y42,) <p(21) + P (22):
Lemma 3. For any function 2e8*, we have p(2)=q(2).
Proof. Since q(z)=—p(—=2) (cf. § 4), the inequality p(z)?q(z")
is obvious if one of the numbers p(z) or p(—=z) i8 +o0; while, if

P(2)<--oo and p(—g)<+oo, it follows immediately from Lemma 2.
1% .
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Lemma 4., If zeS, then also p(&)<<+oo and

=p(2)+p (@)

Proof. Given an arbitrary finite number P>p(2), there exist
o function me@ and a sequence lx, of functions belonging to €
such that z,>m for n=1,2 11mmf Znze and hmf (n)<<P. Note

P (2)<+00,
p(?)

that g.>m, and consequently f(w,, )<F( m,l)—f(m) for n=1,2,.
whence p(z )<hm1nff (&n)< 400, Again
P>lim f( r,,)>11m1nff fv,,)4~11mmf f

and therefore p(z)>p(2)+p(g); whence, in virtue of Lemma 2,
p(2) = p(2)+ p(2)-

Finally, we mention two propositions which are directly obvious:

=0 (8)+p (),

Lemma 5. If 2,e8%, 2,e X" and 2,2y, then p(z)<p(2y); 0
particular, if ze8* and 2=0, then p(2)=0.

Lemma 6. If ze8*, then p(Ae)=
number 4.

§6. We shall now denote by £ the set of all functions ze¥*
for which p(z)=g¢(e)F=o0. The following proposition is an immediate
consequence of Lemmas 2 and 6:

Ap(2) for any non-negative

Lemma 7. If 2e% and z,e8, then (A2, + Ae2,) el and
P (A2 Ao2e)==A D (2))+ Ao D (2,) for amy pair of finite numbers 2, and. A,

Lemma 8. 1If zeQ, then [z]e8.

Proof. Since |¢|=é—g, it is enough to prove that 2e% and
gzeQ. To this end, let us remark that, in virtue of Lemma 4,
p(d)<+oo, p(g)>—oco and p(e)=p(&)+p(); by symmetry,
g(z)>—o0, q(#)<+oo and ¢(e)=g(#)-+q(g). Since, by hypothesis,
p(e)=g(2), it follows that [p(2)—q(é)]+I[p(z)—q(z)]=0, and so
by Lemma3, p(2)=¢(#)F oo and p(g)=g(g)=Foo.

Lemma 9. If z is the limit of a non-decreasing sequence {2y
of functions belonging to & and hmp(z,,)<—|—oo then z¢8 and
p(2)=Ump ().

Proof. We can clearly assume (by subtracting, if necessary,
the function z; from all functions of the sequence {z,}) that z;=0.
Writing w,=2n11—%, for n=1,2,..., we shall now follow an argu-
ment similar to that of Theorem 12.3, Chap. I. First, we have 2222,
and p(z.)=q(z,) for every n, and so0

1) ¢(2)=Hm ¢(zn) = Hm p (2,).
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To establish the opposite inequality, let ¢ be an arbitrary
positive integer and let us associate (ef. the remark at the begin-
ning of § 5) with each function w, a sequence \mfl " jr=12,... 0lnon-negative
functions belonging to € such that

(2)  limint 50 =, and (8)  Flan)<plwa)+ef2".

Let us write y,== ~W, . The functions y, clearly belong to € and,

by (2), we 1mve 11m inf y]/\’u =g,

On the other hand, in virtue

of (3), we lind f(y,) <Z‘p DT EeSp(e,,)te<<limp(z)+ ¢ for
k= 1,2... Therefore,m 1 p(z) < hmkinf fy,) < lign %(zk) +e& and
gince ¢ iy an arbitrary positive number, this combined with (1) gives
ng(z)ws(/(z)mlilznp(zk)<-|—oo, which completes the proof.
Lemvma 10, If M e and (2.} is a sequence of functions belonging

to & such that |2|<<M for n=1,2,..., then, puiting g_hmmfmz and
Iz:hmsupw,, we have gel, hel, a'n(]

ply )<11m 1nfp(z,,)<11m sup p(zn)<p(R).

"~ Consequently, if the sequence |z, s convergent (md ~=liinzn,
then p(z )———hmp(z,,)

Proof. The lemma corresponds to Theorem]" 11, Chap. I,
and its proof is analogous to that of the latter. Let us write, for
each 1mir of integers 1 and j=t¢, gij:min (8 ;4 13-y %;). The se-
quence {g, /, o, il is non-increasing, and consequently the sequence
{IM— !’z/r/:;,,, et 15 non-decreasing. Let gi—hm gy Since the fune-
tions ¢, clearly belong to £, it follows from Lemma 9 that
M—g,e8 and p(M —yg,)= limp( I—g) i.e g,el and p(g)= hmp(gq)
Hence, applying again Lemma 9 to the non-decreasing ﬁequence 9.
which converges to g, we obtain gef and

P (g):hl’n P (-qi) g]imiinfp (Zi).

By symmetry we have the analogous result for » and the
proof is complete.

We shall conclude this § by mentioning the following lemma
which is an immediate consequence of Lemma 5: .

Lemma 11. If z¢8, 220 and p(z)=0, then any funetion »
such that || <z belongs to € and for any such funetion & we have p(x)=0.
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§7. Let F(z)=p(x) for xel The lemmas of the preceding
sections show that the set € and the functional F(z) satisfy the
theorem stated in §3. Theorem 1 is thus proved.

It is easily seen that if an f-integral F; defined in a linear
set & D& satisfies the condition f(x) =F () for xeC, then
F(x)=F,(x) for all ze8. Consequently the functional f determines
completely an £-integral in the set L.

II. Metrical compact sets.

§ 8. Let now H be a complete and compact metrical space.
We shall specify € as the set of functions continuous in H.

The set € satisfies evidently the conditions (i), § 2. It may
be shown that any additive and non-negative functional f defined
in € satisfies the condition (iig) 1).

Theorem 1 permits to define a Lebesgue integral F(z) for all
functions  belonging to a certain set £DC, in such a manner that
the condition R), p. 321, is satisfied and that F(z)=f(z) for zeC.

Evidently, every function x(t) which is constant on H belongs
to €. It follows by condition C), p. 320, that every bounded function
meagurable in the sense of Borel belongs to €. '

We have thus proved the following

Theorem 2. Every additive and non-negative functional, defined
for all functions which are continuous in a complete compact space H,
may by extended to an L-integral defined in a certain linear set (con-
taining oll bounded functions measurable in the sense of Borel) so
that the condition R) be satisfied.

The values of this f-integral for functions bounded and meas-
urable (B) are, of course, determined by the given functional /.
Hence the most general f-integral defined for this class of functions
may be obtained by choosing an arbitrary additive non-negative
functional defined for all functions which are continuous in H and

by extending this functional by means of the method described in
Part I of this note.

] ') A functional of this kind is necessarily linear. Every linear funetional
defined in € satisfies the condition (ii;). See S. Banach [I,p.224]
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Any linear functional f(x) defined in the set B is the difference
of two additive non-negative functionals f,(z) and fol@) (cf. S. Ba-
nach[I, p. 217]). Extending these functionals by means of Theorem 1
over two sets, £, and £, say, respectively, we see that it is possible
to extend the functional f(z) over the linear set 8=f,-2, This set
will contain all bounded functions measurable (B). The extended ad-
ditive functional F(z) evidently satisfies the conditions C) and R),
p. 321, and is non-negative.

IIl. The Hilbert space.

$§9. We shall now understand by H the unit sphere of
the Hilbert space, i.e. the set of all sequences {#)} for which

(o]

2971, The distance of two points t={9) and ¢'={9}} is defined
= L Wiy ’

as usually, by the formula

(=]

o (") =[ 2 (B—97?T*.

With regard to this definition of distance the space H is
not compact and therefore we cannot apply Theorem 2 directly.

Let €, be the set of functions x=wx(t)=ax(d, Jy,...) which are
continuous in A and whose values depend only on the first n co-
ordinates . ©;, so that z(d, Day...)=2(D1, Py ..0y0ny 0,0,...) for any
t={’f)1}' e H. Glearly (EnC(gn_H.

It is easily seen that the set G = €, satisfies the conditions

n=1

(i), § 2. Any functional f defined in ¢ for which the conditions (ii)
hold may be extended to an f-integral defined in a certain set 8
containing €.

Lemma 12. The set € contains all bounded functions mesurable
(B) defined in H.

Proof. Let x be a bounded continuous function defined in H.
For any point t=(&1,02..,0,...) and any positive in.teger 7, We
Write @a(l)=2 (81, .oyDa 0,0;...). Bvidently z,eG and limz,=z. If
M is the upper bound of |z(t) for teH, then |za|< M. Since the
constant function z= M certainly belongs to €, it follows from the
condition C), p. 320, that xe&.
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Consequently every bounded and continuous function belongs
to & and by the condition C) the same is true of any bounded func-
tion measurable (B).

Lemma 13. Every additive and non-negative functional f(z)
defined in G satisfies the condition (iig), § 2.

Proof. We define in H a distance ot ¢) of two points
=1, Dy ...}, 1'={01, B2, ...} By

< 1| ﬁ;]
(1) o, 1) = > = AN
v ;:21 9" 1 + | 9i—9|

We easily verify that with regard to this distance the set H
is complete and compact.

Let € Dbe the set of all functions defined in H which are
continuous according to the distance defined by the formula (1).
Evidently GCG.

Let f be an additive non-negative functional defined in €.
Let 2a(t)=2(3, oy 80, 0,0,...) for xeC and t=(9,%,...)e H.

With regard to the distance (1), H is a complete and compact
space, and hence the function #(¢) ¢ € is uniformly continuous. It fol-
lows that the sequence {x,} uniformly converges to . This implies

~

the convergence of the sequence {f(x,)}!). Let f(z)= lim f(x,).

If £>0, then x,>0 for each n, and consequently ?(m);O. The
functional f(z), clearly additive, is therefore non-negative, The set H
-being compact, it follows, by what has been established in Part II,
that ] satisfies in H the condition (ii) (with € and f replaced by &
and }‘“ respectively). Since €C ¢ and ?(w): flx) for xeC, the
functional f satisfies the condition (ii;) in €.

§ 10. Now consider an additive non-negative functional f(z)
defined in €. Let f,(x) denote the functional defined in €, by the
formula

(2) fnlz) =1 () for xeG,.
We obviously have
for xe@E,.

(3) . fn(m) = le-l(m)

') Indeed if 2> 0, there exists a positive integer N such that —z&<Ca,—z, e
whenever p >N, ¢»N. Since the constant function z=1 belongs to €, we have,
for k=f(1), the inequality — ke flew ) —flr,) ke which proves the convergence

of {f(,)}.
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Conversely, it we choose any sequence {f,(z)} of additive non-
negative functionals, the functional fn being defined in €, (where
n=1,2,...) subject to the condition (3), then the formula (2) deter-
mines an additive non-negative functional f(z) in €. We thus obtain
the most general additive non-negative functional (@) defined in €
and by what has been established in the preceding §, the: mosé
general Liebesgue integral for all functions bounded and measurable (B).

The set €, may be interpreted as the set of all funetion of n
V;Lrieﬂ)l@g ;91,...,19,, which are defined and continuous in the sphere
P14 49,1 1t is known that the most general additive and non-
negative functional defined in €, may be represented by a Stjeltjes
integral. :

These general considerations will now be illustrated by the
following example.  Suppose thatf the functionals f, are given by
the formula

(4) fn(m):-:/.../:1:(1‘}1,...,3", 0,0,.) §,(3,, .0y 9,) A9, .. S,
1‘)?—{«..-{—"‘)2\(1

nTE

for we€,, where ¢, denotes a fixed non-negative function integrable
in the sphere 94 ...+82<1. The condition (3) may be written in
the form
S S E—
(]Jn(’& (Tnn»i—l (19‘1 L] l‘}n’ 9111‘—]) dﬂ‘nJrl'

Lree )=

R Jer —ry

To satisfy this condition, we may put, for instance, ¢ =1/2

1
oo e e,

(5) {pn(ﬁl’ ""911)

Let @ be-an arbitrary function bounded and continuous in H.
We write again @, =(d1, ..y 35, 0,0,...). If |2|<M, where ¥ is
a constant, then lim @,=wx, |r.|<M.
n
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Now let F be an f-integral which for functions belonging
to G coincides with the functional f subject to (2). We then have
F(z)=lim F(z,) = im fulia). If further f. is represented by the

330 Stefan Banach.

formula (4), then

F(m):limf... (200,509, 0,0,) By 3 891 09,

R
and, in particular, if ¢, is given by (),

. ‘911
hmf f 2(Fy s 0y 0,0,.00) a9 .4 =
e 1m0

19"‘—1- -‘-\9 <1

This formula defines explicitly a certain £-integral for all fune-
tions bounded and continuous in H.

The above considerations may be extended to certain spaces
of the type (B) (cf. S. Banach {1, Chap. V]), e. g the spaces Z(')
L'P with p>1.
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