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CHAPTER VII

Functions of generalized bounded variation.

§ 1. Introduction. The definition adopted in Chap. I (§10)
as starting point of our exposition of the Lebesgue integral, con-
nects the latter with the conception of definite integral due to Leibniz,
Cauchy and Riemann (cf. Chap.I, §1 and Chap. VI, §1). On ac-
count of the results of §7, Chap. IV, we may, however, also regard
the Lebesgue integral as a special modification of that of Newton
(cf. Chap. VI, §1) and define it as follows:

(L) A function of a real variable f is integrable if there exists
a function F such that (i) F'(z)=f(x) ot almost all points © and
(i) F is absolutely continuous.

The function F (then uniquely determined apart from an ad-
ditive constant) is the indefinite integral of the function f.

A definition of integral is usually called descriptive when it is based
on differential properties of the indefinite integral and therefore connected with
the Newtonian notion of primitive; this is the case of the definition (L) of the
Lebesgue integral. In the note of F. Riesz [9] the reader will find an elementary
and elegant account of the fundamental properties of the Lebesgue integral based
on a descriptive definition differing slightly from the one given above (an ac-
count based directly on the definition (L) is given in the first edition of this book).

By contrast to the descriptive definitions, we call constructive the
definitions of integral which are based on the conception of definite integral
of Leibniz-Canchy, i.e. on approximation by the usual finite sums. Thus for
instance, the classical definition given by H. Lebesgue [1] in his Thesis may
be regarded as constructive (the reader will find a very suggestive explanation
of this definition in the note by H. Lebesgue [8]); cf. also the definitions of
Lebesgue integral given in the following memoirs: W. H. Young [3], T. H. Hil-
debrandt [1], F. Riesz [1] and A. Denjoy [7;8].

As is readily seen, the definition (L) constitutes a modification

of that of the integral of Newton, in two directions: firstly, a gen-
eralization which enables us to disregard sets of measure zero
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in the fundamental relation F'(z)=j(z); and secondly, an essential
restriction, which excludes all but the absolutely continuous
functions from the domain of continuous primitive functions con-
gidered. Some such restriction is, in fact, indispensable, unless we
give up the principle of unicity for the integral: to see thisit is enough
to consider, for instance, singular functions which are continuous
and not constant; and whose derivatives vanish almost everywhere
(cf. Chap. ITI; § 13, p. 101).

But although the condition (ii) cannot be wholly removed
from the definition (L), it is possible to replace it by much weaker
conditions, and the corresponding generalizations of the notion of
absolute continuity give rise to extensions of the Lebesgue integral,
known as the integrals 2, and 2 of Denjoy. : C

‘We shall treat in this Chapter two generalizations of absolutely
continuous functions: the functions which are generalized abso-
lutely continuous in the restricted sense or ACG,, and
those which are generalized absolutely continuous in the
wide sense or ACG. If, in the definition (L), we replace the con-
dition (ii) by the conditions that the function F is ACG, or ACG
respectively, we obtain the descriptive definitions of the integrals @,
and 9. It must be added however that the second of these defini-
tions requires a simultaneous generalization of the notion of deriv-
ative, to which is assigned the name of approximate derivative
(or asymptotic derivative) and which corresponds to approximate
continuity (vide Chap. IV, §10). A function which is ACG (unlike
those which are absolutely continuous or which are ACG,) may in
fact fail, at each point of a.set of positive measure, to be derivable
in the ordinary sense, and yet be almost everywhere derivable in
the approximate sense. Therefore, in order to obtain the definition
of the integral 2 from the definition (L), it is necessary not only to
?nodj;fy the condition (ii) as explained above, but also to replace
in the condition (i) the ordinary by the approximate derivative.

: The integrals 2, and 2 will be studied in the next chapter; the preliminary
discussion of their definitions just given, it intended to emphasize the important
part played by the generalizations of the notion of absolute continuity, which are
treated in this chapter. The results of which an account is given in the following §§
are fassentiaﬂy due to Denjoy, Lusin and Khintchine. The first definitiona of
the integral 2, was given in notes dating from 1912 by A. Denjoy [2;3] who
employed the constructive method based on a transfinite process (vide Ch’:;p VIIT
§ 5). These notes at once attracted the attention of N. Lusin [2] who orirrlinutmi
the  descriptive theory of this; integral. Finally, A. Khintchine [1; Lﬁ2] mId
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{§2]

A. Denjoy [4] defined, independently and almost at the same time, the process
of integration P as a generalization of the integral @, A systematic account
of these researches may be found in the memoir of A. Denjoy [6].

As shown by W. H. Young [6] the generalization of the Denjoy inte-
grals can be carried still further if we give up, partially at least, the continuity
of the indefinite integral. For subsequent researches in this direction, vide J.C.Bur-
kill [5;6;7], J. Ridder[6;7], M. D. Kennedy and 8. Pollard [1], 8.Ver-
blunsky[l], and J. Marcinkiewicz and A. Zygmund [1].

Except in a few general definitions in §3, we shall consider
in. this chapter only functions of a real variable. As therefore we
shall be employing in R, notions established in the preceding chapters
for arbitrary spaces R, it will be convenient to add a few com-
plementary definitions.

We shall say that a point « is a right-hand point of accumulation
for a linear set FE, if each interval [a, a+h], where h>0, contains
an infinity of points of E. A point of F which is not a right-hand
point of accumulation for the set F is termed isolated on the right
of this set. The definitions of left-hand. points of accumulation and
of points solated on the left are obtained by symmetry. ‘

Similarly, for each linear set B, in addition to the demnsities
defined in § 10, Chap. IV, we define at each point « four unilateral
densities: two outer right-hand, upper and lower, and two outer left-
hand, upper and lower, densities of E. We shall understand by these
four numbers the values of four corresponding Dini derivates of
the measure-function (cf. Chap. IV, § 6) of E at the point x. If at
a point x, two of these densities on the same side (right or left) are
equal to 1, the point « is termed wnilateral (right- or left-hand ) point
of outer demsity for the set E. The term “outer” is omitted from
these expressions if the set E is measurable. L :

Finally, we shall extend the notation of linear interval and
denote, for each point a of R;, by (—oo,a), (—oo,al; (a, +0)
and [a, +oo) the half-lines z<a, £<{a, & >a and s=>a respectively.

#§ 2. A theorem of Lusin. While discussing the significance
of the condition (ii) in the definition (L) of an integral, we remarked
that a continuous function which is almost everywhere derivable
is by no means determined (apart from the additive constant) when
we are given its derivative almost everywhere. It is, however, of
greater interest that, for a function f, the property of being almost
everywhere the derivative of a continuous function, itself represents -
no restriction at all, except, of course, in so far as it implies that
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the function f is measurable and almost everywhere finite (this last
assertion follows, for instance, from the corollaries to Theorem 10.1,
p. 236). We shall prove this result, which is due to N. Lusin [I;4]
(¢f. also E. W. Hobson [II, p. 284]), by means of two lemmas.

(2.1) Lemana. If ¢ is o function swmmable on am interval [a,b], there
ewists, for each €0, a continuous ﬂmctwn @ such that (i) G'(z)=g(x)
almost everywhere on [a, b], (i) G(a)=G(b)=0, and (iii) |G(z)|<e
at every point x of [a, b]n.

Proof. Let H(z) be the indefinite integral of g(z). We insert
in [a,b] a finite sequence of points a=ar<<a<T..<la,=0b such
that the oscillation of H is less than & on each of the intervals
[@i, @] where 4=0, 1, ..., n—1. Let F (cf. (13.4), Chap. ITIL, p. 101)
be a function which is continuous and singular on [a, b], monotone
on each interval [a;, a:41] and coincides with the function H at the
end-points of these intervals. Writing @G=H —F, we ghall have
(1) ¢(z)=H'(z)—F"(z)=H'(x)=g(x) at almost all the points & of
[a, ], (i) G(a)=G(b)=0, and finally (iii) |G(2)=|H (»)—F ()| < e
on each interval [a; ai1], and therefore on the whole interval [a, b].

(2.2) Lenvma. If g is a function which is summable on an interval
J=[a,b] and if P is a closed set in J, there exists for each >0 a con-
tinuous function G such that (i) @'(z)=g(») at almost all the points x
of J—P, (ii) G(@)=0 and & (2)=0 at all the points = of P and
(i) @ ( m+h1 &|hf for every @ of P and every h.

Proof. Let us represent the open set J°—P as the sum of 4 se-
quence {Ix=(az, bx)}r=1,2,.. of non-overlapping open intervalg, and in-
sert in each interval I, an mcreasmg sequence of points {af)},_
infinite in both directions and tending to ay or by aceording as i——oo
or i-»-+4oco, Let us further denote, for each k=1, 2, .., and
i=0, £1, £2,..,, by &0 the smaller of the numbers ¢ (a(’)~a lc—Hz{
and &-(b, —-a('+1>) /(k—}—[z]) Lemma 2.1 enables us to detcrmme in
each open interval I a continuous funection G such that Gi(z)=g(»)
almost everywhere on I, G(af)=0 for i=0,+1, 4+2 ... and
6 (@)<sl when a0 <aw<< al .. If we now write @(z)= ’G,,(’ @) for
welp and %k=1,2,..., and G( #)=0 elsewhere on R,, we see at once
that the functlon G is continuous and fu]i'ﬂs the required conditions
(i), (11) and (iii). ‘

icm

U——

[§2] A theorem of Lusin. 217

(2.3) Lusin’s Theorem. If f is a function which is measurable and
almost everywhere finite on an interval J=[a,b], there always exists
a continuous function F such that F'(x)=f(z) almost everywhere on J.

Proof. We shall define by induction a sequence of continuous
functions {@,lr=o,1,.., €ach of these functions being almost everywhere
derivable, and a sequence of closed sets {Pajn=,1,.. in J, such that,

writing Q=2 P; and F,=) G4, the following conditions will be
F=0 k=0
satisfied for n=1,2, ...

(a) Fula)=f(z) for zeq,,
(b) Gu(z)=0 for wxe@Q
e) |Ga(z+R)|<<|H|/2"
@ 1 —@,<1i/n.

n—1

for every wzeQ, , and every h,

For this purpose, we choose Gy(x)=0 identically and P,=0,
and we suppose that for n=0,1,...,7 the closed sets P, and the
continuous functions G, almost everywhere derivable, have been
defined so as to satisfy the conditions (a), (b), (¢) and (d) for each
n< r. Since the funetion f is measurable and almost everywhere
finite, and since the function ¥, is almost everywhere derivable,
we can determine a measurable subset E, of J—@, such that

(2.4) |/ —@Q,—E,|<1/(r+1),

and such that the derivative F.(z) exists at each point z of the
set B, and is bounded, together with the function f(x), on this set.
Hence by Lemma 2.2, we can determine a continuous function Gr.i,
almost everywhere derivable, in such a manner that (i) Gru(2)=
=f(z)~—F () at almosta]lpomts of BE.CJ—Q,, (i) Gri1(w)=Gr1a(2)=0
at a]l pomts of @, and (iif) |Grsa( as—}-h)l<|h|/2‘”rl for every ze@,
and every h.
Now it follows from the first of these conditions and from (2.4),
that there exists a closed set P.y1(C E, such that:

(2.5) |J—Q—P, . |<l/(r+1), (2.8) Gra(@)=flw)—F:(x) for mePris,

and we easily verify, on account of ( 2!6), (if), (iii) and (2.5), that the
conditions (a), (b), (¢) and (d), still remain valid for n=r-41.
Let us now write: : '

(2.7) F(x) :11;31 Fuz)= %’Gk(m), (2.8) Q=h‘:an =%’Pk.
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In view of the condition (¢), the series occurring in. (2.7) con-
verges uniformly, and the function F is therefore continuous. Let x,

be any point of Q. Then for every sufficiently large integer n we

have 2,¢@Qn and since
- Flogkh)=F(@,) _ Fumo+h)=TFule) |
h T h

o G(mo -+ h) — Cilazy)
h !

h==n--1
we find, on account of the conditions (a), (b) and (c), that

F<w0+h;i —F (%) —Flay)

lim sup

< 1/211,
h>0

and so, that F'(x,)=f(z,). Now it follows from the condition (d)
that |J—Q|=0; we therefore have F'(x)=f(x) at almost all the
points = of J, and this completes the proof.

Theorem 2.3 remains valid for any space Lim:

If { is a measurable function which is almost everywhere finite in a space R,
there exists an additive continuous function of an interval I such that IV(x)= f(x)
almost everywhére in- Bm.

The proof is almost the same as that of Theorem 2.3. We may also, in the
foregoing statement, replace the ordinary derivative I'(x) by the strong de-
rivative (vide Chap. IV, § 2, p. 106), .but the proof is then more elaborate.

It may be remarked further that Lusin’s theorem in the form (2.8), is
obvious if the function f is summable; for f is then almost everywhere the derivative
of its indefinite integral. But this is no longer so when we wish to determine
a funetion F with a strong derivative almost everywhere equal to f (cf. Chap. IV,
p. 132). Nevertheless, it can he shown that given in a space Bm any summable
function of a point f, there always exists an addilive continuous function of an inter-
val, of bounded variation, F, such that Fy(z)=f(x) almost everywhere in Rum.

Lusin’s method is applicable in several other arguments. It has been used,
for instance, by J. Marcinkiewicz [1], to derive the theorem:

There evists o continuous function of a real variable F' which has the following
property: with each measurable function f, almost everywhere finile, there can be
associated a sequence of positive numbers {hn) tending to-0 such that

at almost all the poinis .

§ 3. Approximate limits and derivatives. Given any
funetlpnF deﬁned in the neighbourhood of a point 2, of a space R,
we shall call approzimate upper limit of F at ®, the lower bound

of all the numbers y (+oco included) for which the set E[F(x)> y]

has x, as a point of dispersion (cf. Chap. IV, §10). Siﬁlilnr]y, the
approzimate lower limit of the function F at the point a, is the
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upper bound of the numbers y for which the set E[F (x)<<y] has z,

as a point of dispersion. These two approximate limits of F' at x, are
called also extreme approximate limits and denoted by Limsup ap F(x)

X,

and lim inf ap F(z) respectively. When they are equal, their com-
XX,

mon value is termed approximate limit of F at x, and denoted by

lim ap F(a).

o Tt is easily seen that if E is a measurable set for which z, is

a point of density, then, in the preceding definitions of extreme
approximate limits, the sets E[F(w)>y] and ]?[F(m)<y] may

be replaced by the sets E[F(z)>y; zeE] and 133[F(3:)<y; xeH]
respectively. Hence -

(3.1) Theorem. If two functions coincide on a measurable set H,
their approximate extreme limits coincide at almost all points of H,
and in fact at every point of demsity of E.

We see further that if z, is a point of density for o measurable
set E and if the limit of F(x) exists as x tends to x, on E, then this
limit is at the same time the approxvimate .limit of F af the point .
Therefore, if a function F is approximately continuous (cf. Chap. IV,
p. 131) at a point x, we must have F(z,)=1lm ap F(z).

X—pXy
If , is a point of density for a mesasurable set ¥ and if, further,
the function F is measurable on E, it is easily seen that the ap-
proximate upper limit of F' at z, is the lower bound of the -num-
bers y for which the set E[F(2)<y; reE] has z, as a point of
density. It ‘follows, by the definition of approximate lower limit,

that with the same hypotheses on the set B and on ‘ﬂ%e function ‘F, in
order that 1=1im ap F(x), it is necessary and sufficient that for each
XXy . . i
e>0 the set B[l—e< F(z)<<l+& zeE] should have the point xz, as
a point of density.
Let us remark finally that the following inequalities hold be-
tween approximate and ordinary extreme Jimits:

(3.2) liminf F(r) <<liminf ap F (z) << lim sup ap F'(2) SHim sup F(2);

‘. X, XX
XX R X=Xy 0

and hence the approximate limit exists and is equal to the ordinary
limit, wherever the latter exists.
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In order to understand better the meaning of the definitions of ap-
proximate limits, it may be remarked that the definitions of the ordinary
limits are expressible in a very similar form. Thus the upper limit of F(x) at z,
may be defined as the lower bound of all the numbers y for which @, is not a point
of accumulation for the set E [F (x)>y]. The inequality (3.2) then becomes obvious.

For functions of a real variable, in addition to the approximate
limits defined above, and which in this case we call bilateral, we
introduce also four wunilateral approximate limits. The approximate
upper right-hand limit of a function F' at a point #, is the lower bound
of the numbers ¥ for which the set F[F( ) >y @>x] has z, as

a point of dispersion. This limit is written ]1mx§ug‘ ap F(z). The
three other approximate extreme unilateral limits are defined
and denoted similarly.

These generalizations of the notion of limit lead very naturally
to parallel generalizations of derivates. Thus, given a finite func-
tion of a veal variable F, we define at each point z; the approximate
right-hand upper derivate Fi(w,) and lower derivate Fi(z,), the
approxzimate left-hand wupper derivate Fop(my) and lower derivate
Fo(my), and the approvimate bilateral wpper derivate Fay(z,) and
lower derivate Fap(x,), as the corresponding approximate extreme
limits of the ratio [F(z)—F (2,)]/(s—w,) a8 z—>x, When all these
derivates are equal (or, what comes to the same, when Fap(2g)=Fap(2,)),
their common value is called approzimate derivative of F at m,
and is ‘denoted by Fap(ax,); if further, this derivative is finite, the
function F' is said to be approwimately derivable at wx,.

For some further generalizations, such as “preponderant derivates”
(“nombres dérivés prépondérants”), and for a deeper study of the prop-
erties of approximate derivates, the reader should consult A. Denjoy [6]
and A. Khintehine [5].

The properties of bilateral approximate limits, discussed
above, can be taken over, with the obvious formal modifications,
S0 a8 to apply to unilateral approximate limits. In particular,
Theorem 3.1 may be completed as follows:

(3.3) Thgorem. If two functions of a real variable coincide on a mea-
surable set B, their approxvimate extreme limits and their approximate
derivates coincide respectively at almost all points of E, and in fact
at every point of density of E.

Also, if a function F is measurable on a set B, we have F Fop()=1(x)

at almost aZZ the points x of H at which the fuowtwn I has a derivative
with respect to the set K.
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§ 4. Functions VB and VBG. We shall denote by V(F; E),
and call weak variation of a finite function F(x) on a set E, the upper
bound of the numbers Y|F(b;)—F(a:)| where {[a;b]} is any se-

quence of non-overlapping intervals whose end-points belong to E.
If V(I; E)<<4oo, the function F is said to be of bounded variation
in the wide sense on the set B, or, simply, of bounded variation on E,
or VB on E.

In the special case in which the set E is a closed interval, we clearly have
V(F; B)=W (¥; E), i.e. the weak variation of the function F on E then coincides
with its absolute variation in the sense of Chap. III, §13.

The definition of functions of bounded variation in the wide sense on a set
thus constitutes a generalization (for functions of a real variable) of that of func-
tions of bounded variation on an interval. If B is a linear figure formed of
disconnected intervals we only get the inequality V(F; E)=W(F;E), but
it is easy to see that even then the relation W (F; E)<—i—oo alwavs 1mphes

V(F; B)<+-co.

Plainly, every function which is VB-on a. set E s bounded
on E and is VB on each subset of H. Again, any function B which is
continuous on a set B and VB on a set A(C E everywhere dense in E
(cf. Chap. IT, § 2) is VB on the whole set K (for then V (F; B)=V (F; 4)).
Finally, if # and G are two functions which are bounded on a set ¥
and M denotes the upper bound of the absolute values of these
functions on E, we have V(aF+bG; E)<a|-V(F; E)+|b]-V(G; E) for
each pair of constants ¢ and b, and V(F-G; B)< M-[V(F; E)4-V(G; B)]
(¢f. Chap. ITII, p. 97). Hence every linear combination, with constant
coefficients, of two functions which are VB on a set, and the pro-
duct of the two functions, are themselves VB on this set.

A function F(x) is said to be of generalized bounded variation
in the wide sense on a set E, or simply, of generalized bounded variation
on E, or again, for short, VBG on E, if F is the sum of a finite
or enumerable sequence of sets on each of which F(z) is VB:
From what has just been proved for functions which are VB we
see at once that every linear combination of two functions which are
VBG on a set, and the product of the two functions, are themselves VBG
on this set.

(4.1) Lemma. In order that a function F be bounded and mnon-
decreasing [of bounded wariation] on a set E, it is mecessary and
sufficient that F coincide on E with a function which is bounded
and mnon-decreasing [of bounded variation] on the whole straight
line R,.
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Proof. Let us denote for each z, by E the set of the points
of E which belong to the interval (—oo,#]. We shall consider two
cases separately.

10 The function F is bounded and non-decreasing
on E. For each z, let G(z) denote the upper bound of the function
F on the set E), or else the lower bound of the function F on E,
according as Fuy =0 or Ew=0. The function & thus defined is evid-
ently bounded and non-decreasing on the whole straight line R,
and coincides with the funetion # on E.

20 The function F is VB on K. For each point =, let
V(z)=V(F; By) it By=0, and V(z)=0 if Byuy=0. We see at once
that the function V(z) is monotone and bounded on the whole
straight line R, and that V(x)—F (2) is non-decreasing and bounded
on E. Hence, by what has just been proved in 19, there exists a func-
tion @ (z) which is bounded and non-decreasing on B; and which
coincides on K with V (z) —F (z). We have therefore I'(x)=V (x) —G(x)
for every weE, and since the function V(z)—G(z), as difference
of two bounded monotone functions, is clearly of bounded variation
on X,, this completes the. proof.

(4.2) Theorem. Let F be a function which is measurable on o set B
and which is VB on a set By (CH. Then (i) F is approvimately deriv-
able at almost all points of K, and (i) there exists a measurable
set By such that ByC E,C E and that F is VB on B,

Proof. By Lemma 4.1, there exists a function G which coin-
cides with F on the set F; and which is of bounded variation on
the whole straight line R,. Let X, be the set of the points z of E
at which F(z)=G(x). Then since F is, by hypothesis, measurable
on FE, the set E, must be measurable. Moreover, as E.CE,CE,
the function F is, with @, of bounded variation on E,, and by
Lebesgue’s Theorem 5.4, Chap. IV, and Theorem 3.3, the finite
approximate derivative Fuy ()= (2) exists at almost all the points
x of E,.

Theorem 4.2 leads at once to the following theorem, which

for_the'Denjoy integral takes the place of Lebesgue’s Theorem on
derivability of functions of bounded variation:

(4.3) Theorem of Denjoy-Khintchine, - A function which 1is
measuf'a,ble and VBG on a set is approximately derivable at almost
all points of this set.
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Finally, if we make use of Theorem 9.1, Chap. IV, and
Lemma 4.1, we may complete Theorem 4.2 as follows:

(4.4) Theorem. A function F which is VB on a set B, is derivable
with respect to the set B at almost all points of B. Moreover, if N de-
notes the set of the points at which the derivative Fg(x) (finite or in-
finite) does not exist, then the graph of the function F on N is of length
zero and consequently the set of the values taken by F on N is of meas-
ure zero; in symbols A[B(F; N)\=|F[N]|=0.

F:or an extension of Theorem 4.3 to functions of two variables, wide
V. G. Celidze [1].

§ 5. Functions AC and ACG. A finite function F will be
termed absolutely continuous in the wide sense on a set B, or absolutely
continuous on K, or simply AC on F, if given any >0 there exists
an #>0 such that for every sequence of non-overlapping intervals
{[ar, br]} whose end-points belong to E, the inequality Y (by—az) <7
implies %’F(bk) —F ()| <e. k

A function F will be termed generalized absolutely continuous
function in the wide sense on a set E, or generalized absolutely con-
tinuous function on B, or finally ACG on E, if F is continuous on E
and if F is the sum of a finite or enumerable sequence of sets &,
on each of which F is AC.

These definitions generalize that of functions absolutely con-
tinuous on a linear interval (cf. Chap. IIT, §§ 12, 13) and allow us
to generalize certain fundamental properties of the latter. We see
at once, by the arguments of the preceding §, that every linear combina-
tion of two functions which are AC [ACG] on a bounded set, and the
product of such functions, are themselves AC [ACG] on this set. Further,
every function which is AC on a bounded set E is VB on E. In fact, if 7
is such. a function, there exists an #,>0 such that V(¥F; E-I)<1 for
each interval I of length <%, It follows that F is bounded on E.
Let M be the upper bound of the absolute values of ¥ on E, and
let J be an interval containing E; then, J is the sum of a finite num-
ber of non-overlapping intervals Jy,Js,...,J, each of which is of
length <1, and we find V(¥ E)<%’V(F; B-J)+2p M<{+ oo,

It follows at once that any function which is ACG on a set ¥
(bounded or unbounded) is VBG on F, and therefore, by the theorem
of Denjoy-Khintchine given in the preceding §, every funciion
which is ACG on a measurable set is approximately dérivable ot
almost all points of this set.
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Nevertheless we can construct an example of a function which is ACG
on an interval and which is not derivable in the ordinary sense at the points
of a set of positive measure.

For this purpose, let I denote a bounded, perfect, non-dense set of
positive measure, with the bounds « and b. Let I={a,D] and let {I = =0, bn]l
be the sequence of the intervals contiguous to I. We denote further by ¢, the
length of the largest subinterval of [a, b] which does not overlap the first n in.
tervals I, Iy, ..., I, of this sequence. Plainly
(5.1) Hm |I|=0 and 1i£n ¢,=0.

n

Now let ¢, denote for each n=1, 9, ..., the centre of the interval I, and
let F be the function defined on the interval I by the following conditions:
1° F(z)=0 for z e H; 20 F(c,)=|I,|+eo, for n=1,2,...; 8° the function F is linear
in each of the intervals [a,,¢,] and [c,, b,] where n=1, 2,.... Thus defined, the
function F is contintious on I by (5.1) and is AC on H and on each I,; since
I=H+§]L,, it follows that F is ACG on I.

We shall show that F is not derivable at any point @e F. In fact, since F
vanishes on H, we have
(5.2) ) Fa) <0<F(x) for cvery well.
If therefore a point @, is a left-hand end-point of an I,, there can.be no demva,twe
F'(x,) since it is clear that F (mo)_F+(w0) >0 and therefore, by (5.2), that
F(w@#lﬂ(w@. Similarly, F(zo)<0F(w,) if @, is a right-hand end-point of an
interval I,. = - : : : :

" If, on the other hand, wye H, xy+a, and x,+b, for n=1,2,..., denote by i,
the suffix of that interval of the system I, I,, ..., I, which is nearest to x,. Then
]im'i =400 and 0<|6;—m| <|I;,|+e,, and so, by the definition of F(x), we have
F(cm) —F (mo)=|L;,| +o01,2 L1, |40, > |e,—,. Since hm ¢, =%, it follows that either
F(mn)>1 or F(x,)<—1, which by (5.2), proves that F is not derivable at my

Let us remark, in conclusion, that a function F which is con-
tinuous on a set B and which is AC on a subset of B everywhere dense
m E, is AC on the whole set E.

S6. Lusin’s condition (N). A finite function F is said to
fulfil the condition (N) on a set B, if |[F[H])|=0 for every set HC E
of measure zero (for the notation cf. Chap.III, p.100). Clearly,
a function which fulfils the condition (N) on each of the sets of a finite
or enwmerable sequence, also fulfils this condition on the sum of these sets.

The - condition - (N) was introduced by N. Lusin [I, p. 109], who
was the first to recognize the importance of this condition in the theory of the
integral. It is easy to see that in the domain of continuous functions the con-
dition (N) is necessary and sufficient in order that the function should transform
every measurable set into a measurable set (cf. H. Rademacher[1] and . Hahn
(L, p. 586]). Among the more recent researches devoted to the condition (N} and to

other similar conditions (cf., below, Chap. IX) the reader gshould consult above
all N. Bary [3].
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(6.1) Theorem. A function which is ACG on a set necessarily fulfils
the condition (N) on this set.

Proof. Since each set on which a funcmon is ACG is the sum
of a sequence of sets on which the function is AQ, it will suffice
to prove that |[F[H]=0 whenever H is a set of measure zero and F
a function AC on H.

For this purpose, let ¢ be any positive number. We denote,
for brevity, by M(E) and m(E) respectively the upper and lower
bounds of F on F, when E is any subset of H, and we write
M (E)=m(E)=0in the case in which F==0. Since the function F is AC
on H, there exists a number %> 0 such that %][M(H-Ik)—m(HJk)]<a

for every sequence of non-overlapping intervals {I,} which sat-

zero, we can determine a sequence of non-overlapping intervals
{Ix} which satisfies this last condition and which covers, at the same
time, the whole set E. Therefore, since | F[H-1;]|<< M(H-1)—m(H-I;)
for each k, it follows that |F[H]<Ce. Hence, ¢ being arbitrary,
| B[ H]|=0.

It follows from Theorem 7.8 (1°), Chap. IV, that every func-
tion which is absolutely continuous on an interval and whose deriv-
ative is almost everywhere non-negative, is monotone non-decreasing.
‘With the help of Theorem 6.1, this result can be extended to funections
which are ACG and we have:

(6.2) Theorem. Every function F (z) which is ACG on an interval I
and for which we have almost everywhere in this interval Fa,p( )=0,
or more generally, F'(x)>0, is monotone non- decreasing.

In particular therefore, if the approwimate derivative of a func-
tion which is ACG on an interval vanishes almost everywhere on this
interval, then the function is a constant.

Proof. Let ¢ be any positive number and let @G (z)=F (z)-+ .
The function G is then ACG on the interval I (together with the
function F), and moreover, we have G (x )“F+(w)—|—8>e>0 at
almost all the points = of I. Hence, denoting by H the set of the
points @ at which G (2)<C0, we bave |H|=0, and this implies, by
Theorem 6.1, that |G[H]]-0 Thus the set G[H] cannot contain
any non-degenerate interval, and by Theorem 7.1, Chap. VI, the
function G (x)=F(x)+ ex is non-decreasing on I. It follows at once,
by making e—0, that the function F is itself non-decreasing.
S. Saks, Theory of the Integral. 15
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. If we analyze the preceding proof, we notice that the hypothesis of
generalized absolute continuity of F(») has been used only to show that
every function of the form F(»)+ e, where > 0, fulfils the condition (N), It ig
remarkable that the condition (N) need not remain satisfied when we add a
linear function to a function fulfilling the condition, even when this last
function is restricted to be continuous (vide S. Mazurkiewicz [1]). For

this reason it is not enough to suppose in the preceding proof that the funetion -

F(x) merely fulfils the condition (N).

Nevertheless, Theorem 6.2 itiself does remain true for arbitrary funetions
which fulfil the condition (N). The theorems which will be proved in Chap. IX, §7,
include a more general result, namely that every continuous function which fulfils
the condition (N) and whose derivative is mon-negative at almost all the points at
which it exists, is monotone non-decreasing.

‘We shall show (vide, below, Theorem 6.8) that for continuous
functions of generalized bounded variation on closed sets, the con-
verse of Theorem 6.1 is true, i.e. that in this case the condition
(N) is equivalent to generalized absolute continuity. Similarly, for
continuous functions of bounded wvariation the condition (N) ig
equivalent to absolute continuity in the ordinary sense.

‘We shall begin with a lemma which will also prove useful
elsewhere.

(6.3) Lemma, If, for a finite function F, the inequalities F"F(m) M
and F~(x)—M, where M is a finite non-negative number, hold at
each point x of a set- D, then |F[D]<<M-|D|.

Proof. Let ¢ be any positive number. Let D, denote for each
positive integer » the set of the points # of D for which we have
F (1) —F(2)<(M +¢) [t —a| whenever [t—az|<1/n. The sets D, evid-
ently constitute an ascending sequence and we see easily that
D hmD

. Wlth each D, we can associate a sequence of intervals {15} ...
which covers D, and fulfils the condition

(6.4) JII<IDi +-e,

and in whmh further, no 1(") hag length greater than 1/n. By defini-
tion of D,y we therefore have, for every pair @,x, of points of
D,-I, the inequality |F(z,) —F(ml | <M )y —ay| << (M + )-8,
80 that |F[D, If"| < (M +e) I In view of the inequality (6.4)
it therefore follows that, for every N,

[P0l S S|P [Dw I < (M +-¢) v[z("l M+e)-(| D] +£);

and, by making first n—oo and then &0, we derive |F[D]| <MD"
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(6.5) Theorem. If a function F is derivable at every point of & meas-
urable set D, then

(6.6) FIDY< [ 1F'(2) dz

b
Proof. We may clearly assume that the set D is bounded.
Given any >0, let D, denote, for each positive integer #, the set
of the points we D, at which (n—1)e<C/F'(z) <n-e. We then have,
by the preceding lemma,

IFIDIS

nll< ns i< / |F()| dw+e- | D),

and hence, ¢ being arbitrary, the inequality (6.6).

The formula (6.6) remains true when we replace in it the derivative #'(z)
by any Dini derivate, provided however that we restrict the latter to be finite
in D. The proof then becomes rather more elaborate and requires certain general
theorems on derivates which will be established later (vide Chap. IX, §4).

(6.7) Theorem. In order thet a function F(x) which is continuous
and VB on a bounded closed set B, be AC on E, it is necessary and
sufficient that F(x) fulfil the condition (N) on this set.

Proof. In view of Theorem 6.1, it remains to be shown that
the condition is sufficient.

Suppose then that F fulfils the condition (N) on E. Let a,
and b, be the bounds of E, and let G denote the function which
coincides with F at the points of % and is linear in. the intervals con-
tiguous to E. The function G is evidently continuous and of bound-
ed variation, and fulfils the condition (N) on the whole interval
[, o).

Given any subinterval I=[a,b] of [a,b,], let us denote by D
the set of the points of I, at which the function @ is derivable, and
write H=1I—D. Plainly |H|=0, and therefore also |G[H]=0.

On the other hand, since the interval with the end-points &(a)
and G(b) is contained in G[I], we have by Theorem 6.5

b
|6(0) — G {a)| <|G[D]| + |6 [H])| = |6 D] < [ 1¢'(®)] da.

Since this inequality is valid for every subinterval I=[a,b]
of [ag, b,] and since by Theorem 7.4, Chap. IV, the derivative G'(z)
is summable on [a,b,], it follows that the function G'is AC on [ay, byl
and therefore that F is AC on the set E, where F and @ coincide.

15*
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It is easy to see that the same argument leads to a more general theorem;
in order that a continuous function F which is continuous on an interval I, be ab-
solutely continuous on this interval, it is necessary and sufficient 'H'mt I fulfil the
condition (N) on I, and that its derivative exist almost everywhere on Iy and be sum-
mable on I, This theorem will again be generalized in Chap. IX, §7.

(6.8) Theorem. In order that a function F which is continuous
and VBG on a closed set B be ACG on E, it is necessary and sufficient
that F fulfil the condition (N) on this set.

Proof. In view of Theorem 6.1, we need only prove the con-
dition (N) sufficient. Now, since F is VBG on the set H, this set
is expressible as the sum of a sequence of bounded sets {#,} such
that the function F is VB on each E,. By continuity of I on the
closed set E, we may suppose (c¢f. §4, p. 221) that each set K, is
closed. Since further F fulfils the condition (N) on H, it follows
from Theorem 6.7 that the function F' is AC on each F,, and there-
fore ACG on E.

§ 7. Functions VB4 and VBG,. We shall denote by V,(F; E)
and term strong variation of a finite function F on a set H, the
upper bound of the sums }>O(F;I;) where {I;} is any sequence of

k

" non-overlapping intervals whose end-points belong to B (in accord-
ance with Chap. ITT, p. 60, O(F;I;) denotes the oscillation of F
on the interval Iz). If V (F, E)<(+ oo, the function F' will be said
to be of bounded variation in the restricted sense on the set H, or
VB, on E.

Following the order of the definitions of § 4, we shall say
further that a finite function is of generalized bounded variation in
the restricted sense, or simply, is VBG,, on a set B, if ¥ is the sum
of a finite or enumerable sequence of sets on each of which the
function is VB,.

In the special case in which the set F is a closed interval, we
clearly have V. (F;E)=V(F;E)=W(F;E). It is easy to see that
we always have V(F;E)XV,(F;EB); so that every function which
is VB, on a set, is VB on this set, and consequently, every fumction
which is VBG, on a set, is VBG on this set. We next observe (by
using trivial inequalities for the VB, case, and thence passing on
to the VBG, case) that every linear combination, with constant coef-
ficients, of two functions which are VB, [VBG,], and also the product
of two such functions, are themselves VB, [VBG,].
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Let us observe that, for a function, the property of being VB, VBG, AC,
or ACG, on a set B depends solely on the hehaviour of the function on E; whereas
the property of being VB, or VBGy on E depends on the behaviour of the fune-
tion on the whole of an interval containing the set E. In other words, of two
functions which coincide on a set F, one may he VB4 or VBG, on F and the
other not. The same remark applies to the property of heing AC, or ACG, with
which we shall be concerned in the next §.

We have remarked in § 4, p. 221, that a function which is
continuous on a set F and which is VB on an everywhere dense
subset of H, is necessarily VB on E. A similar result is true for func-
tions which are VB,, the assumption of continuity of the given
function being now superfluous. We have in fact:

(7.1) Theorem. BEvery finite function F which is VB, on a bounded

set E is equally so on the closure B of this set.

Pro _of. Let o and b denote the bounds of F and therefore
also of E._Let a=ay< o <..<a,=b be any finite sequence of
points of &; we write I=[a,b] and Ip=[az1, @] for k=1,2,...,n.

- 'We shall say that an interval I, is of the first class if it contains

points of F, and otherwise of the second class. The intervals I,
and I, are clearly of the first class, and we see easily that, if an
interval I is of the second class, then both the adjacent intervals
Iy and Ipyy are certainly of the first class.

Let us denote by I1=14,<i;<<..<i=n the suffizes of the
intervals I, of the first class and by j,<j;<<...<js those of the
second. With each interval Iih of the first class we associate a point
bhEIih‘E and we write Jp=[bp—1,bs] for h=1,2,..,7. It is easy
to see that

2OF; I; ) SO(F; 1)+ O(F; 1) +2- L O(F; J))

and

r

2O0(F; 1; ) <)20(F; J)-

h=0 =1

Hence, 2/ O(F; ;)< S}EO(F;JII)-F?O(F; D<B[V(F; BEH-O(F; 1],

h=1
and therefore V,(F; E)<<3-[V,(F; E)-O(F; I)]<<+ >o. This completes
the proof.
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(1.2) Theorem. If a function F' is VBG, on a set B, then I' is
derivable at almost all points of this set; and further if N denotes the
set of the points x of B at which the function has no derivative, finite
or infinite, then |[F[N]=A{B(F;N)}=0.

Proof. We may clearly suppose that the set ¥ is bounded
and that the function F is VB, on FE. Moreover, by Theorem 7.1,
we may suppose that the set F is closed.

Let therefore @ and b denote the bounds of F on the left and
on the right, and {I,}n=1s,.. the sequence of the intervals contiguous
to E. Writing m, and M, respectively for the lower and upper
bounds of F on I, we define two functions m(z) and M(x) on
[a,b] making m(z)=m, and M (x)=M, for xeI; where n=1,2,...,
and m(z)=M (z)=F (z) for ¢ B. The two functions m(x) and M (x)
thus defined are plainly of bounded variation on the whole interval
[a,b] and coincide with F(z) on the set E. Therefore, denoting
by N, the set of the points xe¢F at which either one at least
of the (finite or infinite) derivatives M’(x) and m'(x) does not
exist, or both exist without being equal, we find by Theorem 9.1,
Chap. IV, that

(7.3) [F[No) = |4{B(F; Ny)j|=0.

On the other hand, m(z)=F (x)= M (2) at every point & of F, while
m(2)< F ()M (z) on the whole interval [a,b]. It follows that
the derivative F'(x)=m'(x)=M'(x) exists at each point 2 of B,
except at most those of the set N, which is subject to the rela-
tion (7.3). Finally, since the functions m(z) and M(z) are deriv-
able almost everywhere on the interval [a,b], the function F

must be derivable at almost all points of B, and this completes
the proof.

.Theorem 7.2 (for continuous functions and in a slightly less complete form)
was first proved by Denjoy and by Lusin, independently. It plays in the theory
of the Denjoy-Perron integral (vide, below, Chap. VIII) a part similar to that of
Lebesgu.e’s Theorem (Chap.IV, §5) in the theory of the Lebesgue integral. A cor-
responding part is played in the theory of the Denjoy-Khintchine integral by
Theorem 4.3. But the latter is stated in terms of approximate derivation (ef.
the example of p. 224) whereas Theorem 7.2, which requires no modification

O.f the notion of derivative, is, for functions of a real variable, a direct generaliza-
tion of Lebesgue’s Theorem. -
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§ 8. Functions AC, and ACGy. A finite function F is said
to be absolutely continuous in the restricted sense on a bounded set F,
or to be AC, on E, if F is bounded on an interval containing £ and
if to each &> 0 there corresponds an >0 such that, for every finite
sequence of non-overlapping intervals {I;} whose end-points belong
to E, the inequality %’lIkKn implies 7;E‘O(F;Ik)<,s.

A function will be termed generaliced absolutely continuous on
a set B, or ACG, on E, if the function is continuous on X and if
the set E is expressible as the sum of a sequence of bounded sets
on each of which the function is AC,.

In the case in which the set  is an interval, the class of funec-
tions AC, on E coincides with that of the functions which are ab-
solutely continuous on E in the ordinary sense. Every function
which is AC, on an arbitrary set ¥ is AC on E, and every function
which is ACG, on E is ACG on E. On the other hand, any function
which is AC, on a bounded set is VB, on this set, and therefore, any
Function which is ACG, on a set is VBG, on this set. To see this,
let ¥ be AC, on a bounded set E. We can then determine a positive
number 7, such that V.(#;E-I)<<1 for every interval I of length
less than 7, Let J be the smallest interval containing F, let M be
the upper bound of |F(x)] on J, and suppose J expressed as the
sum of a finite number of non-overlapping intervals Jy,do...,dp
each of length less than 7z, We shall then have

p
V. (F; E) <k§V*(F; E-Jy)+ 2Mp <M +1)-p <Hoo,

and this shows that the function F is VB, on E.

Thus a funection which is AC, on a bounded set ¥ is both AC
and VB, on this set, and similarly a function which is ACG, on E
is both ACG and VBG, on E. The converse also is true, provided
that the set E is restricted to be closed (vide, below, Theorem 8.8).
Instead of giving a special proof of this result, we shall establish
some more general theorems about the relations between the notions

VB, AC, VB,, AC,, VBG, ACG, VBG, and ACG,.

(8.1) Lemma. Let E denote a bounded closed set, {Jx} the sequence
of the intervals contiguous to B, and I, the smallest interval containing B.
Then, for any function F which is finite on I, we have

(8.2) O(F; 1) < V(T B) +2- JOF; J)-
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Proof. Let M,m and M, m, be the bounds (upper, lower)
of F, on E and on I, respectively. Let M, be any finite number
less than M,, and x, a point of I, such that Mo<CF(x,). If we have
x,e B, this inequality implies Mo<XM, while if x, belongs to an
interval, J, say, of the sequence {Jil, Mo<< M+O(¥F;Jy). Hence

(8.3) My< M+§0(F;Jk),
and similarly
(8.4) My =M ——}IJO(F;Jk).

On subtracting (8.4) from (8.3), we obtain, since M—m<<V(F;E),
the relation (8.2). '

(8.5) Theorem. In order that o fumction F which is VB [AC]
on a bounded closed set B, be VB, [AC,] on E, it is necessary and suf-
ficient that the series of its oscillations on the intervals comtiguous
to B be convergent.

Proof. The necessity of these conditions is obvious (cf.
above p. 231); we have therefore only to prove them sufficient.

Let then {J;} denote the sequence of the intervals contiguous
to B, and suppose that

(5.6) S0 (F; 7)<+ oo.

We shall consider the two cases separately:

1° The function F is VB on B, i.e. V(F; B) <+ co. Then
by Lemma 8.1, we have for every sequence {I.} of non-overlapping
intervals whose end-points belong to B, ‘

ZO(F;IH)<ZV(F;E-IH)+2~§0(F;J,¢)<V(F;E)+z-ZO(F;J,J.
n } n . k

It follows by (8.6) that V,(F; E)<+4 oo, i. e. that the function F
is VB, on E.

- 2° The function F is AC on E. Then, given any &> 0,
there exists a number %> 0 such that, for every sequence of non-
overlapping intervals {I,} whose end-points belong to E, the in-
equality %’]In|<n implies Y'V(F; E-I,) <<e/2. Now by (8.6), there
exists a positive integer %, "such that

(8.7) 2IO(F;J5) < efd.
k=kyt1
Denote by 7, the smallest of the ky+1 numbers , [, |y, ..., |4,

and let {I,} be any sequence of non-overlapping intervals with end-
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points in FE, thewsum of whose lengths is less than Mo None
of these intervals I, can contain one of the first %, intervals of the
sequence {Jn}, and it fg]lows from (8.7) and from Lemma 8.1, that
DOF; 1)< gv (F; B-1,)+¢/2<e. Therefore the function F is AC,

on E, and this_completes the proof.

(8.8) Theorem. In order that o function F be AC, [ACG,] on a bound-
ed closed set B, it is necessary and sufficient that F be both VB, and
AC [VBG, and ACG] on E.

Proof. The necessity of these conditions is obvious, so that
we have only to prove them. sufficient. o

Now, if the function F is both VB, and AC on B, it follows
at once from Theorem 8.5 that F is AC, on E. If on the other hand,
F is VBG, and ACG on E, we can express the set F as the sum of
a sequence of sets {E,} on each of which F is both VB, and AC.
Since F' is ACG, and so continuous, on the set , which is by hypo-
thesis closed, F is AC on the closure Z, of each E,. Similarly, by
Theorem 7.1, F is VB, on each E, Therefore by what has just been
proved, F' is AC, on each of the sets Z, and so, ACG, on the set E.

Theorem 8.8 ceases to hold if we remove the restriction that the set F is
closed. Let E be the set of irrational points, and {@p}pmt,,... the sequence of ra-
tional points, of the interval [0, 1]; and let F(z)=0 for ze#, and F(a,)=1/2"
for n=1,2,.... The function F thus defined is evidently VB, and AC on E. To
show that I" is not ACy, nor even ACGy, on E, suppose that the set F is the sum
of a sequence of sets {#,} on each of which F is AC. By Baire’s Theorem (Chap. IT,
Theorem 9.2), one at least of the sets B, would be everywhere dense in a (non-
degenerate) subinterval of [0, 1]. But this is plainly impossible, since every sub-
interval of [0, 1] contains, in its interior, points of discontinuity of the function F.

§ 9. Definitions of Denjoy-Lusin. The definitions which
we have adopted in this chapter for the classes of functions VBG,
ACG, VBG, and ACG, are based on the ideas of A. Khintchine [3].
Rather different definitions were given by N. Lusin [I] and
A. Denjoy [6], which are equivalent to those of Khintchine when
we restrict ourselves to continuous functions. We give them here,
in the form of necessary and sufficient conditions, in the following
theorem.

(9.1) Theorem. In order that a function which s continuous on
a closed set E, be VBG [VBG,, ACG, ACG,] on E, it is necessary
and sufficient that every closed subset of E contain a portion on which
the function is VB [VB,, AC, AC,].
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Proof. We shall deal only with the VBG case, the proof for
the other three cases being quite similar.

10 The condition is necessary. Let F be a function which
is continuous and VBG on E. We can then express the set I as
the sum of a sequence of sets {En} on each of which the function I
is VB and, by continuity of F, the sets K, may be supposed. closed.
Then by Baire’s Theorem (Chap. IT, §9), every closed subset of I
has a portion P contained wholly in one of the sets . The func-
tion F, which is VB on each K, is thus certainly VB on P.

20 The condition is sufficient. Suppose that I is a continuous
function on E and that every closed subset of I contains a portion
on which F is VB. Let {1} be the sequence of all the open intervals
I with rational end-points such that ' is VBG on B-I. Let Q=2/E-I,

n
and H=FE—@. Plainly F is VBG on @ and we need only prove
that the set H is empty.

Suppose therefore that H--0. Since H is clearly a closed set,
there exists, by hypothesis, an open interval J such that H-J =0
and that the function ¥ is VB on H-J. We may evidently assume
that the end-points of J are rational. Therefore, the function F,
which is VBG on the set @, is also VBG on the set E-JC H-J +Q.
This requires J to belong to the sequence of intervals {I,} and we
have a contradiction, since the set H, by definition, has no points
in common with any of the intervals I,.

Theorem 9.1 shows in particular that every continuous function which
is VBG on an interval I is at the same time VB on some subinterval of I. It fol-
lows that for every continuous function which is VBG on an interval I, there
exists an everywhere dense system of subintervals on each of which the function

is almost everywhere derivable, although this function may, as shown in §5,
have no derivative at the points of a set of positive measure.

§ 10. Criteria for the classes of functions VBGy, ACGy,
VBG and ACG. A series of theorems enabling us to distinguish
certain types of functions of generalized bounded variation and cer-

tain types of generalized absolutely continuous functions, are due
to A. Denjoy [6].

(10.1) Theorem. If F(x) is a function which fulfils at all points
of a set, except at wmost those of om enwumerable subset, one of the
mequalities

(10.2) F(z)<4oo or F(2)>—oo,

then the function F(z) is VBG, on this set.
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Proof. It is enough to show that the set E of the points at

which we have, say, F(aa) -+ oo, is the sum of an enumerable in-
finity of sets on each of which F is VB,.

For any positive integer n, let B, denote the set of the points
of E such that for every t,
(10.3)  0<fp—alK<l/n  implies [F(1)—F(2)])(t —z)<n.

Further, for each integer i, let B} denote the part of E, sit-
uated in the interval [i/n, (4-+1)/n], and afl, b, the lower and
upper bounds of those of the K., which are not empty. We have

o oo

clearly EMZEH——Z 2 B

n=1 n=1 j=—oco0
Let now Fu(z)=F(x)—ne. For every point xeH, and for
every point ¢ W}nch fu].flls the first of the inequalities (10.3), we
then have [Fu(t) —Fu(2)]/(t—z)<<0. In particular, given any pair
of points @, 2z, (Whele o <<a,) of E,, we obtain

(10.4) Fo(an) 2 Fol) 2 Faly) = Falbr),

and for every ¢ such that »<{t<Cw, we find that Fo(@;) 2 Fn(t) 22 Fa(2s).
This last relation implies that, for every interval I=[e,] whose
end-points belong to the set Ei, we have O(Fn;I)=Fq(a)—Fa(f),

and therefore by (10.4), for every sequence {I;=[e;f;]} of such
intervals (which do not overlap),

;’ O(F; Ij)=JZ (B () —Fal )] < Fu Gi)—Fn(b5).-

The function F,(x), and therefore also the function ¥ (z)=Fi(x)+ne,
is thus VB, on every set E. and this completes the proof.

(10.5) Theorem. If F(xz) is a function which fulfils at all points
of a set B, except, perhaps, ot those of an enumerable set, one at least
of the conditions

(10.6) —oo< FH(@)<F'(@)<+4oo or —oo<lF (2)<F (0)<+oo,

then the set E is the sum of an at most enumerable infinity of sets
on each of which the function F is AC,.

If, therefore, we are given further that F(x) is continuous on E,
then F(z) is ACG, on I.
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Proof. It is enough to show that if at every point z of a set 4
the two extreme right-hand derivates F*(z) and _lf’*'(w) are finite,
then A is expressible as the sum of an at most enumerable infinity
of sets on each of which the function I is AC,.

Let A, denote, for each positive integer n, the set of the points
zed such that, for every i,

(10.7)  0<t—z<<1fn implies |F(0)—F (2)|<<n (i—a);

and, for each integer 4, let Al denote the common part of 4, and

(=]

0 o0 )
of the interval [i/n, (i--1)/n]. Plainly A=234,=2 D 4.

n==1 n=1 j==~-00

Now, if I=[x,,u,] is any interval whose end-points belong to

4}, we have, for every tel, the inequality 0<(t—a,<C1/n, and so,'

on account of (10.7), |F(t) —F (a,)|<<n-(t—xy)<<m-I|. This gives us

O(F;I)<2n-|I]; and therefore for any finite sequence {I; of such

intervals, Z O(F;I)<<2n-)/|Ij. It follows that the function F
J i

is AC, on each of the sets AL, and this completes the proof.

Theorem 10.5 shows, in particular, that every function which is continuous
and everywhere derivable (even only unilaterally) is ACGy. Nevertheless as we
saw in Chap. VI, p. 187, such a function need not be absolutely continuous,

In view of Theorem 7.2, we may state also thefollowing corollary of Theo-
rems 10.1 and 10.5: A function F whick fulfils at each point of « set B one at least
of the inequalities (10.2) or (10.6), is derivable at almost all points of B. In part-
icular therefore, the set of the points at which o function has (on one side at least )
its derivative infinite, is of measure zero. These statements will be generalized
in Chap. IX, §4. )

) Theorems 10.1 and 10.5 contain sufficient conditions in order that a func-
tion be VBGy or ACGy, but these conditions are clearly not necess ary. Never-
theless, by employing the notion of derivates relative to a function (cf. Chap. IV
p. 108), it is easy to establish conditions similar to those of the preceding theoremsi

the conditions being this time both sufficient and nec
- 685aTy. s
by A. J. Ward [3]: ary. Thus, as shown

o In order that o finite function F be VBGy on a set B, it is necessary and suf-
ficient that there exist o bounded inereasing function U such that the extreme deriv-

ates of F with 1 espect to U are F'Z’)Hfte at each POy t ’
e int of B ex 2
’ Cept, per ha,ps, those 0}

it ﬂi: izn (;It'fier ;) ’estabhsh the neces.sity of the condition, let us suppose first
et the bolom?d dIS VB4 on E. In view of Theorem 7.1 we may assume that
Do se s Lo ed and clo§ed. Let [a, b] be the smallest interval containing B,

» for each point & of the interval [a,b], let V,(z) and V o(#) denote the strong
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variations of F (cf. §7) on the parts of £ contained in the intervals [a, 2] and
[, b] respectively. Finally for each x of [a, D], let T (x)=T(x)—V y(x)+ 2. The
function V thus defined is increasing and finite on [a, b], and can therefore be
continued as a bounded increasing function on the whole straight line R,. We
see ab once that throughout the set E, except at most at the points ¢ and b, the
derivates of the function F with respect to 7 are finite and indeed cannot ex-
ceed in absolute value the number 1. .

Suppose now given any function F which is VBGy on . The set ¥ is then
expressible as the sum of a sequence {En} of sets on each of which the function
F is VB,. Consequently, by what has just been proved, there exists for each n
a bounded increasing function ¥ with respect to which the function F possesses
finite derivates at each point of the set En except at most at the bounds of
this set. Therefore, denoting by Mn the upper bound of |Fa(x)| and writing
U(w)=2, Valx) /2" Mn, we see at once that the function U thus defined is in-
creasing" and bounded and that at each point of E, except perhaps those of an
enumerable set, the function I' possesses finite derivates with respect to U.

90 The condition is sufficient. Let F be a finite function having at each
point of E, except perhaps at those of an enumerable subset, finite derivates
with respect to a bounded increasing function U. For each positive integer m,
let En denote the set of the points z of E for which the inequality t—a|<1/n
implies |F(t)—F(m)|\<'n--|U(t)——U(x)1; and let each E, be expressed as the sum
of a sequence {Fh)i-2,.. of sets of diameter less than 1/n. We see easily (as in
the proof of Theorem 10.1) that the function F is VB, on each set H,, and
since the sets B plainly cover all but an enumerable subset of E, it follows at
once that the function F is VBG, on E. This completes the proof.

If we analyze the first part of the above argument, we see that if the func-

tion F is VBGy on B and moreover bounded on an interval containing the set B
in its interior, there exists an increasing bounded function U with respect to
which the function F has its derivates finite at each point of E. Moreover, if

the function F is continuous on an interval containing E in its interior, the funec-
tion U may be defined in such a way as to be itself contintous (cf. the proof
of Lemma 3.4, Chap. VIII). Finally, it can be shown that in order that a func-
tion F be ACG, on an open interval I, it is necessary and sufficient that there exist
an increasing and absolutely continuous function with respect to which the function
F has its derivates finite at every point of I. :

(10.8) Theorem. If at every point « of a set B, except perhaps at
the points of an enumerable subset, o function F fulfils any one of
the inequalities

(10.9) Fra)<4oo, Fr(@)>—co, F (2)<doo, I {2)>—00
(10.10) Fop(@) <400, Faplr) >—2,
then F is VBG on E.
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Proof. We need only consider the case of the first of the
inequalities (10.9) and that of the first of the inequalities
(10.10). It is therefore sufficient to show that each of the sets

A= E[F+( )<+4oo] and B= D[Fap(m)<—|—oo] is expressible ag

the sum of an enumerable mim_lty of sets on each of which F ig
of bounded variation.

Consider first the set A. Given any positive integer n, let A4,
denote the set of all the points ze A such that, for every i,

(10.11)  O<<t—a<<l/n dmplies F(i)—F(z)<<n-(i—ax),

and by Al, for each integer 4, the part of 4, contained in the
interval [ifm,(i-+1)/n]. Let Fi()=F (z)—nz.

For every pair @;,, of points of Ak, where 2,<<w,, we have
0<Cwy—ay<K1/n, and so, by (10.11), F(zy)—F () <<n-(29—a,), i.e.
Fo(@g)—Fo(2;) << 0. The function F.(z) is thus monotone non-in-
creasing on each set 4., and it follows that AL is expressible as the
sum of a sequence of sets -{Aﬁ;j}jzl,g,,., on each which Fp(z) is mono-
tone and bounded. The function F(x)==F(z)+ne is then plainly of
bounded variation on each of the sets A%/, and moreover we have

[==] +ccco

A= Z A=) X X4yl

n=1 n=1 1——00 j=1

Consider now the set B. From the definitions of approximate
upper limit and approximate upper derivate (cf. §3, p.220), it
follows at once that to each point xeB we can make correspond

F F(x

%—g—)— 'n] has the
point # as a point of dispersion. Therefore, denoting by B, the set
of the points ze B such that the inequality 0<Ch<C1/n implies both
the inequalities

(10.12)  [BLFE)—F(2)=0-(E—w); 0 <E<a+h<H/3
and ) ‘
(10.13) |§[F(w)~—F(§) Zn-(2—8); 2 —h <JET ]| <<h/3,

a positive integer n such that the set E’[

we have B=) Bn.. We denote further, for every integer i, by Bl
n=1

the part of B, contained in the interval [ifn, (i41)/n] and we write,

as before, Fy(z)=F(x)—nx.
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The main part of the proof consists in showing that, for every i,
the function F,(z) is monotone on B..

For this purpose, let x;,2, be any pair of points of a Bﬁ,, and
let @, <<@,. We plainly have 0<<w,—x; < 1/n, so that {by writing
g=wn, and h=wm,—z in (10.12), we obtain

|I:][F(§)——F(w1)>n-(§—w1); 0y < ET ]| << (0,—my) 3.
Similarly, from (10.13) with #=g, and h=x,—x, we derive
|1§’[Iﬂ(wz)“"lﬂ(§)>n'(%_‘§)i 1 SES 2] < (we—a1) 3.

The two inequalities thus obtained show that the interval
[#y, %,] contains a point &, such that

F(&o)—F(w) < n-(§g—my) and F(z)—F (&) < (3,—&y).

By adding these two inequalities term by term, we obtain
F(2g)—F (%) <m(23—2,), and so finally Fn(w,)—Fa(a;) <<0.

We have thus shown that the function Fn(z) is monotone de-
creasing on each B,. It follows that B}, is expressible as the sum of a se-
quence of sets {Bf;j}j=1,~a,,.. on each of which F,(z) is monotone and
bounded, and on which the function F(z)=Fi(x)+nz is therefore

oo w 4o o .
of bounded variation. Moreover, we have B=) B,=2 2 > Bi’

n=1 n=1 i=—co j=1

This completes the proof.

On account of Theorem 4.2, it follows immediately from Theorem 10.8
that any measurable function which satisfies one of the inequalities (10.9) or (10.10)
at each point of o set I, is approwimately derivable at almost all points of H. This
proposition will be generalized and completed in Chap. IX (§§ 9 and 10).

(10.14) Theorem. If two. extreme approvimate deriwvates on the
same side are finite for a function F(x) at every poimt of a set K,
except at most in an enumerable subset, then the set B is the sum of
o sequence of sets on each of which F(x) is absolutely continuous.

Consequently, if the function F(z) ds further given to be contin-
uwous on B, then F(w) is ACG on H.

Proof. It is clearly enough to show, for instance, that the
set A=E[- oo < P ) < Fi() < 4-o00] is the sum of an at most

enumerable infinity of sets on each of which F is AC.


pem


icm

240 CHAPTER VII. Functions of generalized bounded variation.

Now we can make correspond, to each point wed, a positive
integer n such that « i3 a point of dispersion for the set
E[|F(§)—F (x)|=n-(E—u)] (cf. § 3, D. 220). Hence, denoting by 4,
éhe set of the points ze A such that, for every h, the inequality
0<< h<{2/n implies
(10.15)  [BUFE—F (@) =>n-(—a); o <E<z+1]<h/4,

we have A=) A4,; and, denoting as before by Al (for each integer )
n=1

the part of 4, contained in the interval [i/n, (i4+1)/n], we obtain

A_V ZA

n=1 j=—00

Consider now any two points @, and @, of A,,, where @, <2,
and let z,=2z,—2;. '

We have, on the one hand, 0 <uz—oy=2-(2;—&;)<<2/m, 50
that by writing o=, and h=;—a, in (10.15), we obtain the
inequality )

1E[]F(E V—F ()] 2 ne (E—a); 0 << E ]| < (@g—ay) 4= (B3—a3) /2,
and a fortiori

(10.16) tE[IF E)—F ()| = (E—y); 0, << E <0< (3 —5) 2.

On the other hand, we have 0<C@y—a,—=t,—z;<<1/n, and so
by (10.13) with =2, and h=ax3—a,, we find

(10.17)  [BIF(E)—F (1) > n-(§—05); 2, < E< 1] < (33— ,) 4
The inequalities (10.16) and (10.17) show that there exists
a point & in [z, #,] such that we have at the same time
| B (Eo)—F (1) < (Eg—100) S (25— ) = 2m0 - (By—1ty),
[F (Eo)—F (22)] < m.(8g—2) - (63— 1) =2m- (2,—,),
and this requires |F(z,)—F ()] <4n-|m,—a,|. This last inequality
is thus established for every pair of points x,,z, of any one of the

sets Af,, and it follows at once that F is AC on each of the sets Af.
This completes the proof.

Theorem 10.8 shows in particular that a continuous function which is
everywhere approximately derivable, even unilaterally, is necessarily ACG.

In Chap. IX, §9, we shall give two further criteria for a function to
be ACG, or ACG.
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