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CHAPTER V.

Area of a surface z= F(x, y).

§ 1. Preliminary remarks. We saw (cf. Chap. IV, §8) that
the Lebesgue theory enables us to solve completely the elementary
problems concerning the length of a curved line and the expression
of this length by an. integral. However, similar problems concerning
curved surfaces involve difficulties of a mueh more serious kind.
Certain classical treatises on the differential and integral caleulus,
even in the second half of the XIX-th century, contain an inaccurate
definition of the area of a surface. By analogy with the definition
of length of a curve, the authors attempted to define the area of
a surface as the limit of the areas of polyhedra inscribed in the
surface and tending to it. H. A. Sehwarz [I, p. 309] (cf. also
M. Fréchet [3]) was the first to remark that such a limit may
not exist and that it is possible to choose a sequence of inseribed
polyhedra whose areas tend to amy number not less than the
actual area of the surface. About the same time Peano and Her-
mite subjected the old definition to similar eriticisms and proposed
new definitions based on quite different ideas. It was H. Lebesgue
who first returned in his Thesis [1] to the old method, in & modified
form that may be roughly described as follows: the area of a surface
is the lower limit of the areas of polyhedra tending uniformly to
the surface in question (without, however, being necessarily in-
scribed in the latter).

Nevertheless, in the more general case in which the surface
is given parametrically, this definition requires various additional
notions and considerations (¢f. T. Radd [I; 1; 4]) and the results
obtained are far from being as complete as those available
for curves. The difficulties that arise belong to Geometry and
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Topology rather than to the Theory of functions of a real vari-
able. (For the special case in which the functions =X (u,v),
y=Y (u, v) and #=2(u, v) which define the surface parametrically
fulfil the Lipsehitz condition wide T. Radd [4] and F. Radema-
cher [4]).

We shall therefore restrict ourselves to the case of continuous
surfaces of the form z=F(x, y). The most elegant and the most
complete results concerning these surfaces are due to L. Tonelli
[5; 6;7]; they will be givenin § 8 and are the principal object of this
chapter.

Tonelli’s theory is based on the definition of area proposed by Lebosgue.
As regards the modern work on area of surfaces based on other definitions, we
should mention: W. H. Young [4], J. C. Burkill [3], 8. Banach [5], A. Kol-
mogorotff (3] and J. Schauder [1].

T. Radd [1, pp. 154—169; 2] has developed further the
methods of Tonelli by means of older ideas due to de Geicze
and with the help of certain funetionals introduced by the latter.
The principal result of Rado (vide Theorem 7.3), applications of which
will be discussed below, enables us to define the area of a surface
as the limit of certain simple expressions, whereas the Lebesgue
definition only enables us to obtain it as a lower limit. An-
other expression is due to L. C. Young (vide below § 8) and
constitutes a direct generalization of the classical formula for the
area of a surface.

Except where the contrary is expressly stated, the reagoning
of this chapter will be formulated for functions of two real variables.

The extension to spaces of any number of dimensions offers no
difficulty.

§ 2. Area of a surface. By a continuous surface on a plane
interval I,, we shall mean any equation of the form e=F(x, y)
where F is a continuous function on 1, ’

A continuous surface #=P(2, y) on an interval I, is termed
polyhedron if there exists g decomposition of I, into a finite
numper of non-overlapping triangles Ty, Ty, ..., Ty such that the
function P is linear on each of thege triangles, i. e. such that
Pz, y)=a:2+by+ ¢ for (z, y)e T;, where t=1,2, ..., % and a; b, ¢
are constant coefficients. We shall call, respectively, faces mui fu’(w-
tices of the polyhedron =P (g, ¥), the parts and the points of the

H
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graph (cf. Chap. III, §10) of the function P, which correspond to
the triangles T, and to the vertices of the I The sum of the areas
of the faces in the sense of elementary Geometry, i.e. the number

ST (@451 = [ [ [P jewp+ (8P [aye+11 dudy, will be called
i ' ‘I()

elementary area of the polyhedron z=P(z, y) on I, and denoted
by S¢(P; Io)-

Given any continuous surface z=F(z,y) on an interval I,, we
shall term its area on I, and denote by S(F;I,), the lower limit of
the elementary areas of polyhedra tending uniformly to this sur-
face, i.e. the lower bound of all the numbers s for each of which
there exists, given any ¢>0, a polyhedron z=P(x, y) on I, such
that 10 [Pz, y)—F(a,y)l<e at every point (2, y)el, and
20 8y(P; y) <8

We might verily here that for polyhedra the elementary area agrees with
the area according to the general definition just given. As, however, this is an
easy consequence of the theorems given further on (wide p. 181), a special proof
is unnecessary at this point. It should be remarked that, in accordance with the
definition adopted, the area of a surface may be either finite or infinite.

The following theorem is an immediate consequence of the
definition.

(2.1) Theorem. For any sequence of continuous functions {Fn}
which converges wniformly on an interval Iy to a function F, we have
lim inf S(F,; 1,) =S 1,).

n

§ 3. The Burkill integral. Instead of treating the theory
of area of surfaces by itself, it is more convenient to associate it
with certain differential properties of functions of an interval. How-
ever, the functions of an interval oceurring in the theory of area
are not in general additive, and in consequence we shall have
to complete in some minor points the theory of functions of an
interval, developed in the two preceding chapters.

We shall begin with some subsidiary definitions. To simplify
the wording we shall understand in the sequel by subdivision of
a figure R, any finite system of non-overlapping intervals Iy, I, ..., I,
such that Ry=2>1, Given any funection of an interval U and given

I;

It .
a finite system of intervals 3={I,}, we shall write, for brevity, U(3)
in place of Y U(I,). In particular therefore, T:(3) will denote the
K

4
sum of the areas of the intervals belonging to the system J.
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We call upper and lower integral in the sense of Burkill of
a function of an interval U(I) over a figure I, and we denote by
/T U and /‘U respectively, the upper and the lower limit of
A R, N
the numbers U(J) for arbitrary subdivisions 3 of R, whose charac-
teristic numbers 4(3) tend to zero (cf. Chap. IL, p. 40). When
these integrals are equal, their common value is called the Burkill
definite integral (or simply the infegral) of the function U over R,
and is denoted by / U. If this integral exists and is finite, the func-

Rll
tion U is said to be integrable on I, (in the sense of Burkill). It the
function U is integrable on every figure R (in the whole plane or
in a figure R,) its integral / U considered as a function of the tigure
R

R is called indefinite integral of U (in the whole plane or on ).

(8.1) Theorem 1° If U is a function of on interval and Ry, R,
are non-overlapping figures, we have

(3.2) Joz[v+[v mi [v<[U+[U,
R-+R, R, R, RFR, R, Ry

provided that both integrals of U over B +R, are finite.

20 Any function of am interval U which is integrable on o
figure R, is equally so on every figure RC Ry and dts indefinite
integral on R, is an additive function of a figure.

Proof. Part 1° of the theorem is a direct consequence of the
definition of the Burkill integrals, and part 20 follows at once from
the formulae (3.2) when we subtract the second of these formulae
from the first,

If U is a function of an interval on a figure R, we shall call
variation of U on R at @ set D the upper limit of |U(J)| as 4(F)— 0,
Where- J denotes any finite system of non-overlapping intervals
i:ontamed In R and possessing common points with D. The follow-
ing analogue of Theorem 4.1, Chap. III, may be noted.

(3.3) Theorem. Given on a figure Ry a function of an interval U

such that [|U|<4-oco, there can be at most an enumerable infinity of
R, i

0
straight lines D, which are parallel to the coordinate axes and at
which the variation of U on Ry is not zero.
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In fact, the number of straight lines which are parallel to the
axis of @ or of y, and at which the variation of U on R, exceeds
a positive number &, cannot be greater than 2e~!. / |U| < 4 oo,

Ry

(3.4) Lemma. Given a function of an interval U integrable on
a figure Ry, there ewists, for each ¢>0, an 1 >0 such that for every
system J={Iy, Ly, ..., Iy} of non-overlapping intervals situated in Rq,
the inequality A(J)<n tmplies the inequality

(3.5) | 2 [IT(I/e)—l.I/'U], <e.

Proof. Let >0 be a number such that, for every subdivision
T of Ry, A(T)<<y implies [U(T)—[ U] <ef2, and let J={I,, T ..., I}

R" : . .
be any finite system of non-overlapping intervals situated in K,
o i
such that 4(3) < 9. Let R,=RFy> > I, By Theorem 3.1, the function
=1

U is integrable on F,. It follows that there exists a subdivision 3,
of R, such that .
(3.6) AB)<n and 'U(S““f/ Ul <ef2.
Now 343, clearly constitutes a subdivision of R, such that
A(S+3,) <n. Wetherefore have IU(3-|-31)—_/ U|<e/2, and we need
Hll
only subtract the second of the relations (3.6) from it to obtain (3.5).
If R, is a fixed figure, then to any »>0 there corresponds
a positive integer p such that every interval IC R, may be S1_1b-
divided in p subintervals of diameter less than 7. Hence applying
Lemma 3.4, we obtain at once the following

(3.7) Theorem. If a function of an interval U(.I) which ?S m
tegrable on a figure R,, is continuous, then the same s true of its in-
defimite integral B(R)=l/ U.

n

(3.8) Theorem. If U is a funclion of an 'mtfm{al g)h@'gh is m
tegrable on a figure R, and if B is s indefinite 'mtegml, t/;gﬂ
B(a,y)=U(x,y) and B(x,y)=U(s,y) at almosi all points (@,y%e 0;

In particular therefore, if one of the functions U and B is wdmc')s
everywhere derivable in Ry, the same is tmm of the other and the deriv-
atives of U end of B arc almost cverywhere equal.
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Proof. Suppose that the set of the points (x, ¥) at which
Uz, y) > B(z, y) has positive measure. We could then determine
a set BEC R, of positive outer measure and a number a> 0, such
that U(x, y)—B(®, y) > a at each point (#,y) of B. Therefore, on
account of Vitali’s Covering Theorem (Chap. IV, Theorem 3.1),
we could determine in R,, for any 5> 0, a finite system of non-
overlapping intervals 3={Ixji=1.2,...» such that 4(3)<y, L(3)>|H|2,
and Uz)—B(I) > a-ly for k=1,2,...,n Now it follows from
the last two relations that U(3)— B(3) > a-|E|/2, which contradicts
Lemma 3.4, Hence, U(z,y)<<B(,y) almost everywhere in R,.
In the same way we prove that the opposite inequality holds also
almost everywhere in R, and this completes the proof.

(3.9) Theorem. Buppose that U is a continuous function of an
wnterval on a figure Ry and that (i) / '( Ul<4-oo and (ii) U{I)<U(G)
By
for every interval IC Ry and every subdivision & of 1. Then the fune-

tion U is integrable on R,

Proof. Given a number &> 0, let T={J}1,..,, be a sub-
division of R, such that

U(@)>[U—s.

R,

(3.10)

Let us denote by Dy, Dy, ..., D, the sides of the intervals (T) which
do not belong to the boundary of R, By Theorem 3.3 it may
be assumed, in view of the continuity of the function U and of
condition (ii), that the variation of U on R, vanishes at each side D,
It follows that there exists an 5> 0 such that, given any finite
system © of non-overlapping intervals situated in R, and having
points in common with the sides D;, the inequality 4(6) <y im-
plies |U(G)|<<e. We can clearly assume that # does not exceed
the length of any side of the intervals (T).

This being so, consider an arbitrary subdivision §={I,, I,, ..., I}
of R, sueh that 4(3)<<z. By numbering the intervals of S sllimbly,
we may evidently suppose that I, 1I,,... yI, are those having
pomts. m common with the gides D;, while the remaining intervals
of 3 (if any) have none. Finally, let us agree to write U ( J 1O Ly)=0

ki P g
when J,OI,=0. ‘Then ’,;;:U(L’)'<8 and | ZU(Ji’(i)I/r)‘ <e, 80

=1 k=1
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that, by (3.10) and by condition (ii) of the theorem, we have

v f]1 L” q
[U—e<T@SUQ) —2UI+2) JUIiO L) <U(3)+2e. Tt
o _ = ==
follows that /'U<‘/ U3¢, and so, that /'U—;/'U,

Ry ?\_{) I;(, I'.?(,

In connection with this §, vide J. C. Burkill [2;3;4], R. C. Young [2]
and F. Riesz [6;7].

§ 4. Bounded variation and absolute continuity for
functions of two variables. Given a function F(z, y) contin-
unous on an interval I==[ay, by; @y by], let us denote for any value x
subject to @, <<o<<h, by W(F; @ ay b,) the absolute variation
of the function F'(», y) with respect to the variable y on the interval
[, by], and for any value y subject to a,<y<Shy, by Wo(F;y;5 @y, by)
that of the function F(x,y) with respect to @ on [ay, b]. Denoting
by Jy and J, respectively the linear intervals [ay,b] and [a,, b,]
we shall also write W,(J5w;d,) for W (x5 ay,b,) and Wy(F;y;d,)
for Wy(F; y; a, by).

By continuity of the function F, the non-negative expressions
W, (F; w; Jy) and W,(F; y; J;) are, as is easily seen, lower semi-

continuous functions of the variables  and y respectively. When
b,

by
the integraly / "Wl(F;m;J o) and / 'WQ(F; ¥; J1)dy are both finite,
ay s
the function I' is said to be of bounded variotion on I in the Tonelli
sense. It follows at once that any function of bounded vari-
ation of two variables @,y is ol bounded variation with respect
to @ for almost every value of y and with respect to y for almost
every value of .

A continuous funection F(z,y) will be termed absolutely con-
tinwous on an interval I=[a,, by;asb,] in the Tonelli sense, if
it is of bounded variation on I and moreover, absolutely continuous
with respect to o for almost every value of y in [a,, b,], and absolute-
ly continuous with respect to y for almost every value of  in [ay, b;].

We say that a function F(x, y) fulfils the Lipschitz condition on I,
if there exists a finite constant N such that (F(m’,y’)—F(m”,y")|<
<N-(&'—a"|+ y'—y"|) for every pair of points (2,y’) and
(w"yy'") of I.

Any function which fulfils the Lipschitz condition on an
interval 1 is evidently absolutely continuous on I. In particular
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polyhedra and also functions of two variables with continuous
partial derivatives, are always absolutely continuous functions.

A function F which is continuous and of bounded variation
[absolutely continuous, or subject to the Lipschitz condition] on an
interval I,=[a,,by; as,b,] can easily be continued, even so as to
be periodic, over the whole plane in such a manner as to remain
continuous and of bounded variation [absolutely continuous, or
subject to the Lipschitz condition] on every interval. In fact, de-
noting by I; one of the intervals congruent to I, with a common
side parallel to the axis of @, let us continue the function F from
the interval I, on to the interval I, by symmetry relative to the
common. side of these intervals. Let us further continue similarly
the function F from the interval I,+1; on to an interval I, con-
gruent to I,~+1; which has with the latter a common side parallel
to the axis of y. The function F is then defined on the interval
Iy+I,+1, whose sides are respectively of lengths 2-(b,—a,) and
2+(by—a,). Writing u=2-(b;—a,) and v=2-(b,—a,), and continuing
the function F from the interval I,+I,+I, on to the rest of the
plane by the periodicity condition F(x+u, y)=F (i, y+ 0)=F(z, ),
we see easily that the continuation obtained for the function
has the properties required.

Besides the definition of Tonelli several other definitions have been given
of conditions under which a function of two variables is said to be of bounded
variation. For a discussion of these definitions see . R. Adams and

J. A. Clarkson [1;2]. Throughout this chapter, use is made of Tonelli’s
concept only.

We shall subsequently make use of the following theorem
concerning the partial derivates of any continuous funetion:

(1) Theorem. @Given a continuous function F(x,y), its partial
Dini derivates, F{,Fy, F¥ Fy and Fi, F;, F5L S, are fune-
tions measurable (B).

Proof. It will suffice to prove this for any one of these deriv-
ates, say Fi.

Given an arbitrary real number a, consider the set

B=1 [F} (@,y) <a,
)

and fienote py E, the set of all the points (x, %) such that for every h
the inequality 0<<h<{1/n implies [F(z-+ hy y)—F (, y)]/ h << a—1/m.
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We find that E=2'E, and, since by continuity of the function ¥
n .

each of the sets B, is closed, F is a set (§,), so that the derivate F;
is a funection meagurable (B).

Theorem 4.1 may be compared with Theorems 4.2 and 4.3 of Chap. IV
concerning measurahility of the derivates of functions of one real variable. Never-
theless it is to be remarked that contrary to what oceurs for functions of one
variable, the partial Dini derivates of a function measurable (3) need not in
general be measurable (3), although they are still measurable (€) (the proof of
this requires, however, the theory of analytic sets; vide . Hausdorff [IL, p. 274],
M. Neubauer [1] and A. E. Currier [1]). On the other hand, a function of two
variables may be measurable (£) without its partial Dini derivates being so.

§ 3. The expressions of de Gedeze. We shall make
correspond to any function I (x, ) which is continuous on an interval
I=[ay by; as, by], the following expressions introduced by Z. de
Gedcze [1] into the theory of areas of surfaces:

b by
Gy (F; )= [ |F (2, b)) —F (@, ay)|dw, Gl D= [17 (b, y)—F (a, 9)| dy,

2 2 9,172
G(F; I)={Gy(F; I)T+[Go F'; I)] +II.

While studying the fundamental properties of these expressions,
we shall often find the following two inequalities useful:

n

(Sal+En HE" < St +apa)

=1 i i=1

12

(5.1)

for any three sequences {w}, {yi} and {2} of real numbers;

. 2 \ 2 8 2-1/2 ] s
G2 | fedt) +| [ya) + [za)] |7 <[(a+y+en)"at
for any measurable set E in a space R, and any three nON-neqgative
functions x(t), y(l) and z(t), measurable on E.

The inequality (5.1) is easily deduced by induction from t]?e
case n=2 which can be verified directly. The inequality (5..2), in
the special case in which the functions «(t), y(f), #(t) are simple;
is an obvious consequence of (5.1); and we pass at qnee to the
general case with the help of Theorems 7.4 and 12.6 of Chapter L
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(5.3) Theorem. The expressions of de Gedeze Gy(I)=Gy(F; I),
G(I)=GCo(F; I) and G(I)=G(F;I), associated with a continuous
function F(z, y), are continuous functions of the interval I and their
integrals over any interval ewist (finite or infinile); these integrals
over any interval Iy=[ay, b;; ay, by] fulfil the following relations:

. b . by
(5.4) [G=[WiFiz30,b)d0  and  [Go= [WyF;y; a,,b,)dy
I f a,

0 a 1u 2

(55) GIIS[Gy GUI)<[6 ond G(I)<[6,
Iy I I

(56) [6G:<[@<[G+[G I where i=1,2.

I, Iu I:) 1,

Proof. Given an arbitrary e> 0, let y<e be a positive number
such that, for any pair of the points (z, y) and (w,y,) in I,
(5.7) Ya—l <7

implies [F (2, y5) —F (2, y,)| <e.

‘ Let M denote the upper bound of F(z,y) on I, and consider
in I, an interval I=[a;, f;; a5, fy] such that |I|<<y#2%. We then
have either g,—a <y or fy—a,<#. In the former case, we find
G S (Br—ay) 2 M < 2Mn<<2Me, and in the latter we derive
from (5.7), )< (fy—ay) e<<(B,—ay) -6, 50 that in both cases
G(I)<(2M4b,—a,)-e. The function G4(I) is therefore continuous.
The same is of course true of Gy(I) and the continuity of these
two functions at once implies that of G(I).
' This being so, we shall show that the functions ¢, and G, are
integrable and, at the same time, we shall deduce the formulae (H."‘).i).
Let {3n) be a sequence of subdivisions of I, sueh that

li;n 4(3,)=0 and 'liI{n G1(3n)=, /‘Gl; and denote, for any positive

. 'I“
}nteger # and any fe[gl, bil, by V.(€) the sum of the absolute
Increments of the function F(£, y) on the linear intervals cut off

on the line r=¢ by the rectangles of the subdivisi
' vision §,,. y A
have, on the one hand, .. We then

(5.8)

by
@(S,)=[V (8 jor n=1,2, ..,
and on the other hand, on account of cox

. wtinuity of the funetion 7
Hm Va(&)=Wy(F; & ay, by) ¢ o

for any &e[a,, by]. Therefore, in virtue of
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Fatou’s Lemma (Chap. I, Theorem 12.10) and by (5.8), we obtain

b by

[ 6> [WilTs & ay, by) A&, Bub since 6(3)< [ Wa(F; £ a5, by) dE for

F s
_ by

every subdivision J of I,, we have also / << / W5 &; ay, by) dE.
I a

Therefore the function &, has a unique integral over I, and this

integral fulfils the first of the relations (5.4). The existence of the

integral . / G, and the validity of the second of these relations are

1()
decduced by symmetry.
Let us pass on now to the function @. We first remark that

the integral / @ clearly exists in the case in which one at least of
I

the integrals / ¢, and / @, is infinite, and is then also infinite

]() -[U
on, account of the relations
(5.9) GIYKEI) and G(I)<KG(I) for any interval L.

In the remaining case, the two integrals in question being finite,

the evident inequality G(I)<CGy(I)-+Go(I)+|I] yields
(5.10) J@<[ et [y +ITl<+o0;
I" l" ]“

and on the other hand, for every subdivision § of any interval I
the equally obvious relations

(5.11) GD<G(3)  and  G(I) S G2(3)
lead, in view of the inequality (5.1), to ’
(6.12) GI)<G(3)-

Now, continuity of the function G being already established,
the formulae (5.10) and (5.12) imply, by Theorem 3.9, that this
function has over I, a unique integral.

To complete the proof we need only remark that the formulae
(5.11) and (5.12) imply at once the formulae (5.5) and finally that
formula (5.6) follows directly from (5.9) and (5.10).

As a corollary of Theorem 5.3, and more particularly as a con-
sequence of the formulae (5.4) and (5.6), we have:
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(5.13) Theorem. Inorderthatthe function of aninterval G (I)= G (F;I),

associated with a continuous function F(x,y), be integrable on an in-

terval I, (i.e. in order that f G<}-o0), it is necessary and sufficient
Iy

that the function F(z,y) be of bounded variation on I,

§ 6. Integrals of the expressions of de Gedeze. Given
a continuous function F(w, y), we shall denote, for any interval I,
by Hy(F;I,), HyF;I,) and H(F; I,) respectively, the integrals of
the functions of an interval Gy(I)=Gy(F; I), Go(I)=Gy(F; I) and
GI)=G(F; I) over the interval I, All these integrals exist on
account of Theorem 5.3 and their importance in the theory of area
of surfaces is due to the faect that, as will be shown in the next §,
the number H (F; I,) coincides with the area of the surface z=F(x, y)
on I,

(6.1) Theorem. For any function F(xz,y) which is continuous and
of bounded variation, the expressions Hy(I)=Hy(F;1), Hy(I)=H,F;I)
and H(I)=H(F;I) are additive, continuous, and non-negative func-
tions of the interval I, and we have at almost all points (x,y) of the
plane

Hiz, y)=Fyla,y),  Hafm, y)=|Fi, y),
H' (&, y) = {[Filw, y) P+ [Fylw, y)P -+ 11

Proof. Additivity and continuity of the functions in question
follow at once from Theorems 3.1 and 3.7 on account of Theorem 5.3.
We have therefore only to establish the relations (6.2). Now, for
any interval I=[ay, b;; @y, b;] we have according to Theorem 5.3
and Theorem 7.4 of Chap. IV, the following relation (in which the
transformation is effected in accordance with Fubini’s Theorem 8.1,
Chap. III, rendered applicable to the partial derivates of the funec-
tion F(z, y) by Theorem 4.1):

(6.2)

b, by b .
B(I)= [ Wu(F; 05 ay bs) o= [ | [ |Byfa, y) dy | do= [ [1Fy(a, y)| dway;
a a T

whence

(6.3) Hi(®, y) = Fy(m, y)| for almost every point (z, y).

. Let. us now denote by {J,} the sequence of the linear intervals
with rational extremities. In view of Theorem 7.4, Chap. IV, we
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have for n=1, 2, ..

[Vl @30,) de=Hy(T %) 2 [ [Hiw,y)doay= [ [ [ Bz, y)dy | da,
J Jxd, J J i

and for every linear interval J,

and consequently, for each positive integer n, the inequality

Wl(F;w;J,,)Z./ Hi(x, y)dy holds at every point x, except at most
J"

those of a set B, of linear measure zero. Therefore, writing E=2E,,

we obtain the inequality W,(F;z;J) > / Hi(», y)dy, whenever J has
J

rational extremities and x lies outside the set E of linear measure
zero. If we now regard the two sides of this inequality, for a given
value of # outside the set F, as functions of the linear interval J,
we obtain by derivation with respect to this interval (on account
of Theorem 7.9, Chap. IV) for almost all y, the inequality

(6.4) |Fy(a, y)| = Hi(, y).

Therefore, since the derivatives Hi(z,y) and Fy(x,y) are meas-
urable (cf. Theorem 4.1), it follows from Fubini’s theorem (in the
form (8.6), Chap. IIT) that the set of the points (x, y) at which the
relation (6.4) is not fulfilled, is of plane measure zero. By (6.3) we
therefore have almost everywhere the first of the relations (6.2).

The proof of the second relation now follows by symmetry,
and that of the third from the remark that if we write Gy(I)=Gy(F; I),
Gy I)=0CGy(F;I) and GI)=G(F;I), we have by Theorem 3.8,

H'(s, y)=G'(z, y)={[Gi(@, )P+ (Gl y)P+1Y=
= {[Hi(, y) P+ [ Hilo, ) P+ = ([T}, ) P+ Fida, )P +1°

at almost every point (x, y) of the plane. This completes the proof.

(6.8) Theorem., In order that the function of an interval H (I)=H(F;I),
corresponding to & continuous function F(x,y) of bounded variation
on an interval Iy=[ay, by; as, by], be absolutely continuous on this
interval, it is necessary and sufficient that the function F(x,y) dtself
be absolutely continuous; and when this is the case, we have

H(Io)= [ [ Fiw, )T+ [Fylw, )] + 1" dwdy.

l(b

(6.6)
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Proof. By Theorem 5.3, absolute continuity of the function
H(I) is equivalent to absolute continuity of the functions H,(I)
and H,(I) together.

Therefore if the function H is absolutely continuous on I,
we have, by Theorem 6.1, for any interval Is=[ay, & s, by], where
o, <CE<C by, the relation

’ I
[T 05 05, by) do=Hy(Te)= [ [\Fifa, y) dwdy= [ [ [|Fi(a, ) dy ] i,
a 15 a,  a
and, taking the derivative with respect to £, we obtain for almogt
every value of z,

by
(6.7) W,(F; @3 ag, b)=[|Fy(a, )] dy.
N

Now, for any given value of @ (for which F(x, ) is of bounded
7
variation in #) the difference Wy(F; @; ay, 7)— / | (e, )] dy is a non-

ay

negative and non-decreasing function of the variable # (cf. Theo-
rem 7.4, Chap. IV). It therefore follows from (6.7) that we have
for almost every value of #, and for any »e[ay, b,],

Y
WF; @3 ag, 7)= [ | Fiyfa, )| dy,
Oy

i.e. that the function Wy(F; x; ay, #), and consequently also I (x, %),
is absolutely continuous with respect to % on [a,, by] for almost
every value of #. By the symmetry of the variables, we conclude
also that the function F (£, y) is at the same time absolutely contin-
uous with respect to & on [ay, b,] for almost every value of .
The function F, which is by hypothesis of bounded variation on I o 18
therefore absolutely continuous in the Tonelli sense on this interval.

Conversely, if the function #' is absolutely continuous on I,
we have by Theorems 7.8 and 7.9, Chap. IV, for every subinterval
I=[ay, f1; agy Bs] 0f I,, the relations:

2
B(1)= [ W\(T; 05 e, By) do= [|Fyo, y)] dr
A I

8.
HyI)=[Wy(F; y; oy, ) dy = [ [| i, y)| e dy,
ay 1

8o that the two functions of an interval H, and H,, and therefore
also H, are absolutely continuous.

icm
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Finally, since the function H is absolutely continuous, the for-
mula (6.6) is a direct consequence of the third of the relations (6.2),
the latter being valid almost everywhere on account of Theorem 6.1.

Up to the present we have regarded the expression H(F; I)
as a function of an interval I. If we treat this expression as a fune-
tional depending on the function F, we obtain the following theorem,
whose geometrical interpretation will appear in § 8 when the theorem
appears to be a generalization of Theorem 2.1.

(6.8) Theorem. Given any sequence of continuous functions {F,)
which converges to a continuous function F, we have for every interval I

(6.9) lim inf H(F,; I) > H(F; I).

Proof. Denoting by J, the subdivision of I into p? equal
intervals, similar to I, we have by Theorem 5.3 for any pair of in-
tegers p and n, H(F,; I)ZG (Fy; 3p), and by Fatou’s Lemma (Chap. I,
Theorem 12.10), for every integer p, lim inf G (F,; 3,) = G(F; 3p).

We therefore have liminfH (F,.; I)Z2G(F;SJp), and this leads to

(6.9) when p—cc.

§ 7. Radd’s Theorem. Before passing to the proof of the result
of Radd, according to which the area of any surface z=F(z,y)
on an interval I is equal to H(F;I), we shall prove the following

(7.1) Theorem. If a continuous function F(x,y) has on an
interval Iy=[ay, by; ay, by] continuous partial derivatives, there exists
a sequence of polyhedra {e=P,(x, y)} inseribed in the surface z=F (z, y),
such that the sequence converges uniformly to this surface and such that

(7.2) lim Sy(Pu; Io)= [ [{Fele, y)P+[Fy(z, y)P-+1)} dedy=H (F; I).
n e jn

Proof. Let S,=4{Iln1, L2, ...y Iny2p denote the subdivision of I,
into n? equal intervals similar to Iy, and (%, Ya i), where =1, 2, ... , n?,
the lower left-hand vertex of I, ; Let us divide any interval I,;
into two right-angled triangles T,; and T,; by a diagonal, in such
a way that the vertex (@i ¥n:) is that of the right angle of T';.
Congsider for any » the polyhedron z=P,(%, y) inscribed in the surface
z=F(x,y) and corresponding to the net formed on I, by the 2n?
triangles T, ; and T, ; where i=1,2,...,n%
S. Saks. Theory of the Integral. 12
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For brevity let hn=(b,—ay)/n and k.= (by—as)/n; and let
pa denote the upper bound of the differences |F(z",y")—Fa', y')|
and |Fy(z",y")—Fy(z',y')| for all points (@'yy') and (2", y"’) of I,
such that |2"'—&'|<hn and ly"'—y'| < kn.

Now if s, and sp; denote respectively the elementary areas
of the faces of the polyhedron z=P,(x,y) which correspond to the
triangles Th,; and T’ we notice at once that the areas of the pro-
jections of the former of these faces on the planes @z and yz are
respectively equal to

%hn'[F(mn,iy ?/lz,i“{_kn)““p (%n,t5 Yn, i)lzé‘hllk}l' !'F.;J(m"vf! ?J;l.i)’
and : o
?'l?kn'LF(wn,i"}‘hn, yn,i)“F (mn,z', ?/n,z‘)[=%hn70n' |—F.v(wn. Iy yn, r)|

where @, << 1 << Zn,i 0 A0 Yn, i K Yn, i S Yy it Fne
‘We therefore have S;,i‘—“-tlz’{[p.,v(mln,i; yn,i)]z“"' [F;/(mn‘ly y;l,i)]z+ 1}1/2' IIn,l';

and so, by the inequality (5.1), p. 171,

S ’ 1 nﬂ‘ v P ’ 2 -1/ 1 P

~1S,—,' ,—""‘2'"2 {[Fx(m'n, iy yn, i)]z"[‘[Fy(wn, iy yn, 1)] +_x_}1 2' ‘In, z'J <E'V§-ﬂ'n' |IO|’
=1 i=1
Since the partial derivatives ¥y and F, are by hypothesis continuous,
it follows by making n—co that

;‘ n? , 1 ’ ) ) .
tim ', =1 [ (B, 0) P+ T, )P+ away,
—— i

and the same limit is clearly obtained for the sum of the s .
By addition, together with an appeal to Theorem 6.5, we now
derive the formula (7.2) and this completes the proof.

In what follows we shall apply the method of mean value
integrals. Given in the plane a summable function F(x,y), the

i/ni/n

sequence of functions F,(z, y)=mn2 f / Fie+u, y+o)dudv  where
00

n=1,2,..., will be called sequence of mean value integrals of the
function F(z, y). It is clear that if the function F is continuous,
(1) the sequence of its mean value integrals {Fu(w,y)} converges to F(z,y)
at every point (z,y) of the plane, and uniformly on any interval, and
(ii) the partial derivatives OF,|9x and OF,[dy exist everywhere and are

§7] Radd’s Theorem. 179

continuous. In fact, at any point (,y) a direct calculation gives
1/n

OF(m,y)dm=n? [ F (@1, y~+o)—F (@, y+o)]dv
0

and
Yn
O o(@, )|y =n? [[F(m+u, y+1/n)—Fz-t+u, y)ldu.
1]

It was T. Rado [2] who first applied in the theory of area of surfaces the
method of mean value integrals. The réle of these mean values is due to the fact
that in the case in which the given function F is continuous, the sequence of
areas of the surfaces 2=Fp(x,y) on any interval tends to the area of the surface
z=F(z, y) (vide, below, Theorem 7.3).

In the definition given above, the functions Fn are defined at each point
(=, y) a8 “mean values” of the function F over squares of which (z, y) is a vertex;
it goes without saying that we could also make use of mean values taken over
squares, or circles, having (x, y) as their centres. These mean values over circles
are used for instance in potential theory (cf. F. Riesz [4] and G. C. Evans [1]).

(7.3) Rado’s Theorem. If F(x,y) is a continuous.function and
{Falz, y)} is the sequence of mean value integrals of F(z,y), then

(7.4) H(F; 1,)=8(F; I,)=lim 8 (F,; I,)

for every imterval I.
Proof. Let {e=P,(x, y)} be a sequence of polyhedra converging
uniformly to the surface z=F(z,y), such that

(7.5) Hm So(Pn; 1o)=S8(F; I,).

Since the functions P.(z,y) are absolutely ~ontinuous, it follows
from Theorem 6.5 (cf. also § 2, p. 165) that Sy(Pn; Ly)=H(Pxs; Iy)
for every m. Consequently, since the sequences of functions {Fy}
and {P,} converge uniformly to the function F, it follows by using
successively Theorem 2.1, the formula (7.5) and Theorem 6.8, that

(7.6)  lim inf S(Fy; I,) > S(F; Io)=lim H(Py; I,) = H(F; I,).

Now if the function F is not of bounded variation on I, it
follows from Theorem 5.13 that H(F; I,)=-cc and consequently
the formula (7.4) follows at once from (7.6). We may therefore as-
sume that the function F is of bounded variation on I,, and further
(cf. § 4, p. 170) that F is continuous and of bounded variation on

each interval of the plane.
12*
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Let us agree to denote, for any set Ein the plane, by E“? the
parallel translation of E by the vector (u,v) (c(ﬁ D)Chap IIL, §11);
similarly, for a family of sets € in the plane, € will denote the
family of all the sets obtained from sets (€) by subjecting them
to this translation. For any subinterval I=[a, bj; @y bs] We then

obtain .
Gy(Fn; I) /IF"(QD, —F,(z, a‘z)ld <
a;

by 11!1 If‘/n
7’02&/-[:6/ 6/ IF($+%, bz“l"v)—F(w—l—u, a2+qj)

a;

du d'v:l de==

1/ni/n

_,n2f/G1F 1) dudw,

and a similar formula for Gz. Hence by the inequality (5.2), p. 171,
G (B 1) ={[G(Fa DT +[Gu(Fus DPHIM <
i/n1/n

<[ [(GuF
v 0

;I(u’u))]g—f—[Gz(F; I(u, 1)))]2_1__!1(11, l’)|2}~1‘/édud'u —

1/nljn

=a' [ [G(F; 1) dudv.
0 0

Denoting by J, the subdivision of I, into p? equal intervals
gimilar to I,, we obtain therefore, for every p,
1/ni/n

G(Fn; Sp) <’ [ [G(F; 4" dudo;
00

and since by Lemma 3.4, G(F; %) tends to H(F; I8*?) as p—»oo,
uniformly in % and », we obtain in the limit

1inljn

(7.7) H(Fo; I)<n / f H(F; I8 du do.
Finally the areas of the figures IS0, and LOIf? tend
to 0 with % and v and each of these figures is a sum of two intervals.
Hence sinece the expresgsion H(F; I) is by Theorem 6.1 a contin-

uous funetion of the interval I, we have 11m H(F; I§?)=H(F; L).
0, v>0
On the other hand, since the functlons Fn(m, y) have continuous

partial derivatives, we have, by Theorem 7.1, S(Fn; Io)<CH (Fy; L)
for each n. Therefore making n— oo in (7.7), we find lim  Sup S (Fn; Lo) <<
<H(F; I,),
relation (7.4).

which in conjunction with (7.6) glves the required
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§ 8. Tonelli’s Theorem. The theorem of Rado just established,
enables us to replace in all the theorems of this chapter the ex-
pression H(F; I) by the surface area S(F; I).

Thus for instance, Theorem 6.5 (formula (6.6)) expresses the
fact that the elementary area of a polyhedron coincides with its area
according to the gemeral definition of area of a surface.

Theorem 6.8 contains a generalization of Theorem 2.1; it enables

us to replace in its statement uniform convergence by ordinary
convergence: we thus obtain a theorem similar to Lemma of Fatou
(Chap. I, Theorem 12.10). It follows that the umiform convergence
of the inscribed polygons, required in the definition of area, may
be replaced by the ordinary convergence, so that the area of a contin-
uous surface z=F(z,y) is the lower limit of the areas of polyhedra
tending to this surface. Further, by Theorem 7.1, if a function F(z, y)
has continuous partial derivatives, there exists o sequence of polyhedra
inscribed in the surface ==F (z,y), tending uniformly to the latier
and having areas which converge to the areq of this surface. (For further
generalizations wvide S. Kempisty [1]. Cf. also on this subject
H. Rademacher [3], W. H. Young [5], M. Fréchet [2] and
T. Radd6é [5].) Finally, we obtain the following theorem, which
sums up the most essential considerations of this chapter:
(8.1) Tomelli’s Theorem. a) In order that a continuous surface
2=F(z,y) have & finite area on an imterval I, it is necessary and
sufficient that the fumction F(x,y) be of bounded variation on I,.

b) When this is the case, we have

s [+ (5o

the expression S(I)=8(F; I) is then an additive continuous fmwtwn
of the interval I I, and we have for almost every poimt (w,y)el,

w2

c) In order that we should have

(8.2) S(F; 1, gff[( ) (“F Z—i-l]dwdj,

it is necessary and su}‘fwwnt that the fumction F(x,y) be absolutely
continuous on Iy; and in order that this be the case it is necessary and
sufficient that the area S(F;I) be an absolutely continuous function
of the interval IC 1,
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Proof. The assertion a) follows directly from Theorem 5.13;
b) and ¢) follows from Theorems 6.1 and 6.5 on account of Theo-
rem 7.4, Chap. IV.

With regard to Theorem 8.1 vide L. Tonelli [5; 6; 7]. The necessity of con-
dition a) was estabhshed a little earlier by G. Lampariello [1].

According to Tonelli’s theorem, the relation of equality (8.2)
can hold for a continuous surface z=F (¥, y) only in the case in
which the function I is absolutely continuous. Nevertheless, as
proved by L. C. Young, this relation will remain valid for arbitrary
continuous surfaces, as soon as we replace on the right-hand side
the partial derivatives by ratios of finite differences and transpose
the passage to the limit outside the integral sign. In fact:

(8.3) Theorem. For any continuous surface z=F(x,y) and any
interval I, we have
2

(8.4) S(F;I,) amff{ w+a,J F(m,«.)]+

Fz, y+p)—
and in order that the function F be of bounded variation on IL,, it is
necessary and sufficient that

(65) lim sup oo f [ 1# (e, y+5)—F (@, )l dody <-+oo.

2 1/2
F(2,9) ]—{—1} dzdy;

@, 30

Proof. Let {F.} be the sequence of mean value integrals
(cf. § 7, p. 178) of the function F. Denote, for brevity, by E(z,¥; «, B)
the expression under the integral sign on the right-hand side of (8.4),
and by Ra(z,y;a, ), for each positive integer n, the expression
obtained from R(m,y; a, B) by replacing F by F.. Finally let us
write for n=1, 2,.

Ea(e,y)=lim Rnw,y; o, B)={[9Fw(, y)|OaT [0 (e, y) Oy T +1}'".

In order to establish the identity (8.4), it evidently suffices
to show that
(8.6) S(F;Iﬂ)<liminf[/R(w,y; a, B) ddy
“fr0 g
and
(8.7) S(F; I )>11msupf/R (@, 9; @, B)dady.

I
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For this purpose, let I be any interval in the interior of I,
By means of the inequality (5.2), p. 171, we easily find that

1,’1n L;n
(8.8) By (z,y; a, B)ysin? / jR(az—[—u,y—}-v; a, f)dudv,
;i

0

Now let » be a positive integer, sufficiently large in order that
(,y) eI, |u|<<l/n and pp|<<1l/n should imply (z+u,y+2)el,.
‘We then have/[R(m—!—u,J—{—v, a, /S)dmdy</fR(a,,J, a, f)dxdy and

/ / R(,y; a, f)dwdy.

Making «—>0 and ﬂ——>0 we obtain in the limit S(Fn; 1)<

<11n?] inf / / E(z,y; a, f)dxedy. This relation being thus established
@, @0

for each mterval ICI5, we may replace, on its left-hand side, I
by I,, and making still » - oo we obtain the relation (8.6).

consequently, by (3.8), f/R (2, y; a, B)dody <<

In order to prove the relation (8.7), let; us first observe
that the latter is obvious in the case in which S(F;I,)=- oo.
‘We may therefore assume that the function F(z,y) is of bounded
variation on I, and moreover (cf. § 4, p. 170) of bounded variation
on every interval in the plane and periodic with respect to each
variable. We can therefore determine an interval J,=[ay, by; s, bs]
containing I, in its interior, such that its sides b;—a; and by—a,
are the periods of F(w,y) with respect to z and y respectively.

This being so, we find easily, on account of the inequality (5.1),
p. 171, that, for any pair of positive integers n and %,

k-1

Rl g5 o )< > Ralo-+ialk, y+i6fE; afk, BJ0)
=0

By integrating the two sides of this inequality over J,, and taking
account of the periodicity of the function F, we obtain

[ [ Bal@,y; 0, B)dwidy < [ [ Ba(s, y; afk, p/k)dwdy;

o 0

and hence, passing to the limit, making first #— oo, and then n—>co,
we find by Radd’s Theorem 7.3,
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[ B, v; 0, B aody <Um | [ Bn(a, y)dwdy=1im 8 (Fs; Jo)=S(F; Io),
Jn n JLI n

and s0

(8.9) timsup [ [R(o,y; & B)dody <S(T; Jo)-

Now, by the result already established in the inequality (8.6),

we have ljminfffR(a:,y; a, f) dwdy =S (F; I) for every interval I.
o, f->0 i

It follows at once that (8.9) remains valid when we replace the
interval J, by any subinterval of J,, and in particular by the
interval I,. We thus obtain the relation (8.7).

Finally let us remark that on account of the relation (8.4),
in order that the area of the surface =z=F(x,y) on I, be finite,
it is necessary and sufficient that

30

tim sup 7 | [Pt 9)— i@, ) dwdy <too
I,

and

: Ll i |
lim sup - f [ 1@, y+p1—F (@, y) dady <-+oo.

Now this pair of relations is easily seen to be equivalent to the
relation (8.5) which therefore expresses a condition necessary and
sufficient in order that the function F should be of bounded
variation on I, This ecompletes the proof.

A statement analogous to Theorem 8.3 can be made for curves (cf. Chap. IV,
§ 8). If C is a continuous curve defined by the equations x=X (1), y=Y (t), its length
on any interval Iy=[a,b] is given by the formula

2.1/2

b 2
®10  5(0;1)=lm f {[X““Lh,z—x“)}r[y ()7 (t)“dt.

In ?a}:ticula‘r therefore, in order that a continuous functions G(t) be of bounded
variation on an interval [a, b], it is necessary and sufficient that

b
. 1
(8.11) hmzjgp Wf|G(t+h)——G(t)]dt<+oo.
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This assertion can be proved by the method of mean value integrals in a man-
ner quite similar to that we made use of in the theory of areas of surfaces z=F(z, y),
but for curves this method can be very much simplified. Let us observe further
that the relation (8.11) may be interpreted in a more general sense. In fact, given
any summable function G(t), the relation (8.11) is the necessary and sufficient
condition in order that the function G be almost everywhere on [a, b] equal to
a function of bounded variation (vide G. H. Hardy and J. E. Littlewood [1];
ef. also A. Zygmund [I, p. 106]).

Finally the relation (8.10) holds for any rectifiable curve given by the
equations z=2X (f), y=Y (t), where the functions X () and ¥ () are not necess-
arily continuous, provided however that for each # the point (X (f), ¥ (f)) lies
on the segment joining the points (X (:—), ¥ (t—)) and (X (i+), ¥ (t+)).
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