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CHAPTER IL

Carathéodory measure.

§ 1. Preliminary remarks. In the preceding chapter, we
supposed given a priori a certain class of sets, together with a meas-
ure defined for the sets of this class. A different procedure is usually
adopted in theories dealing with special measures. We then begin
by determining, as an outer ieasure, a non-negative function
of a set, defined for all sets of the space considered, and it is only
a posteriori that we determine a class of measurable sets for which
the given outer measure is additive.

An abstract form of these theories, possessing both beauty
and generality, is due to C. Carathéodory [I]. The account that
we give of it in this chapter, is based on that of H. Hahn [1, Chap. VI],
in which the results of Carathéodory are formulated for arb-
itrary metrical spaces. This account will be preceded by two §§
deseribing the notions that are fundamental in general metrical
spaces.

§ 2. Metrical space. A space M is metrical if to each pair
a and b of its points there corresponds a non-negative number ¢(«, b),
called distance of the points ¢ and b, that satisfies the following
conditions: (i) o(a, b)=0 is equivalent to a=">, (ii) ¢(a, b)=0¢(d, a),
(iii) o(a, b) +o(b,c)=>0(a,c). In this chapter, we shall suppose
that a metrical space M is fixed, and that all sets of points that
arise, are located in M.

The notation that we shall use, is as follows. A point a is limit
of a sequence !a,) of points in M, and we write a=Llm a,, if

lim o(a, a,)="0. Every sequence possessing a limit point is said to
n
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be convergent. Given a set M, the upper bound of the numbers ¢ (a, b)
subject to aeM and beM is wlled  déameter of M and iy denotied
by 6(M). The set M is bounded if 0(M) is finite. For a class M
of sets, the upper bound of the numbers S(M) subject to M «M
is denoted by A(M) and called characteristic number of M.
By the distance o(a, A) of a point a and a set A, we moean the lower
bound of the numbers ¢(a, #) subject to wed, and by the distance
o (4, B) of two sets A and B, the lower bound of the numbers ¢(x, y)
for zeA and yeB.

We call neighbourhood of a point @ with radius » =0, or open
sphere S(a; r) of centre a and radius 7, the set of all points @ such
that o(a, #) <<r. The set of all points @ such Ghat ¢ (a, w)=Zr iy
called closed sphere of centre a and radius v, and is denoted by S(a; 7).

A point a is termed point of accumulation of a sot 4, if evoery
neighbourhood of a containg infinitely many points of A. The seb
A’ of all points of accumulation of A iy termed derived set of A.
The seti A+ A’, that we denote by A, is termed dlosure of A, It A==,
the set A iy said to be closed. Thc points of a set, other than ity
points of accumulation, are termed dsolated. A seti is isolated, it all
its points are isolated. We call perfect, any closed set not containing
isolated points.

A point a of a set 4 is said to be an internal point of A, if there
exists a neighbourhood of a contained in 4. The set of all the internal
points of a set 4 is called interior of A and denoted by A". The set
A—A° is termed boundary of A. It A==A4°, the set A iy said
to be open. Two sets 4 and B are called non-overlapping, it
A.B°=B.A°=0.

The class of all open sets will be denoted by ® and that of
all closed sets by §. In accordance with the convention adopted
in § 2 of Chap. I, p. 5, open and closed sets will also be termed
gets (®) and sets (§) respectively. We see at once that the com-
plement of any set (®) is a set (§) and vice-versa.

The sum of a finite number or of an infinity of open sebs, a
well as the common part of a finite number of such HM)H, is always
an open set. Any common part of a finite number, or of an infinity,
of closed sets, and also any sum of a finite number of such solis,
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are closed sets. Nevertheless, the sets (§.) and (®;) (cf. Chap. I, § 2,
p. 3) do not in general coincide with the sets () and (®), although
every set () is clearly a set (§.) and, at the same time, a set (®;);
for, if F' is a closed set and G, denotes the set of the points z such
that o(z, F)<1/n, we have F=I1@,, where &, are open. The cor-

responding result for the sets (®) is obtained by passing to the
complementary sets. Moreover, it follows that any set expressible
as the common part of a set (§) and a set (®) is both a set (§,) and
a set (®s).

We shall denote by B, the smallest additive class that includes
all closed sets (cf. Chap. I, Th. 4.2). This class, clearly, includes also
all sets (®s) and (F.). The sets (B) are also termed measurable (B)
(in accordance with Chap.I, §4, p. 7). They are known as Borel sets.

We shall also give a few “relative” definitions having re-
ference to a set M. The common part of M with any closed set
is closed in M; we see at once that, for a set PC M to be closed
in M, it is necessary and sufficient that P=M- P, i. e. that the
set P contains all its points of accumulation belonging to M. Sim-
ilarly, any set expressible as the common part of M and an open
set is termed open in M.

Any set of the form M-S(a; r), where aeM and r>0, is called
portion of M. Tf every portion of M contains points of a set 4,
i. e. if AD) M, the set 4 is said to be everywhere dense in M. If a set B
is not everywhére dense in any portion of M, i. e. if no portion
of M is contained in B, the set B is said to be non-dense in M. In
other words, a set B is non-dense in M, if, and only if, each portion
of M contains a portion in which there are no points of B. It fol-
lows at once that the sum of a finite number of sets non-dense in
the set M is itself non-dense in M. The sets expressible as sums
of a finite or enumerably infinite number of sets non-dense in M
are termed (according to R. Baire [1]) sets of the first category in M,
and the sets not so expressible ave termed sets of the second category
in M. In all these terms, the expression “in M is omitted when
M coincides with the whole space; thus, by “non-dense sets”,
we mean sets whose closures contain no sphere and by ‘“sets of
the first category”, enumerable sums of such sets.

A set M is called separable, if it contains an enumerable
subset everywhere dense in M.
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§ 3. Continuous and semi-continuous functions. If f(w)
is a funection of a point, defined on & set A containing the point o
we shall denote by Mu(f; ¢; ) and mu(f; a; ), respectively, the
upper and lower bounds of the values assumed by f(#) on the por-
tion A-S(a; 7) of the set 4. When » tends to 0, these two bounds
converge monotonely towards two limits (finite or infinite) which
we shall call respectively mawimum and minimum of the function
f(z) on the set A at the point a, and denote by Ma(f; a) and my(f; a).
Their - difference 04(f; @)= M4(f; ) —my4(f; @) will be called oseil-
lation of f(x) on A at a. We clearly have

(3.1) m(f; a) << f(

If fa)=myu(f; a), the function f(w) iv said to be lower semi-
continuous on the set A at the point a; similarly, if f(a)==Mu(f; a),
the function f(z) is upper semi-continuous on A @ w. If both con-
ditions hold together, and if f(x) is finite at the point o, i. e. if
mau(f; a)=Mu(f; @)oo, the function f{w) is termed continuons on A
at the point a. Functions having the appropriate property at all
points of the set 4, will be termed simply lower semi-continuous,
or upper semi-continuous, or comtinwous, on 4. In all these termy
and symbols, we usually omit all reference to .4, when the latter
is an open set (in particular, the whole space), or when 4 is kept
fixed, in which case the omission causes no ambiguity.

a) S<Ma(f; a) for every point ae A.

From these definitions we conclude at once that, if f(x) is
upper semi-continuous, the function —jf(x) is lower semi-continuous,
and vice-versa; and further, that, if two functions ave upper (or
lower) semi-continuous, so is their sum (supposing, of course, that
the functions to be added do not assume at any point infinite values
of opposite signs).

(3.2) Theorem. For every function f(x) defined on a set A, the
set of the points of A at which f(x) is not continuous on A, is the com-
mon part of the set A with a set (Fs).

‘ Proof. Let us denote by F, the set of the p()in.ts w of 4 at
which either f(z)=xo00, or o4(f;@)==1/n. The set F = 3, con-

sists of all the points of 4 at which the function f(w) is 11()11 ¢on-
tinuous. Now it is easy to see that each of the sobs B, ig elosed in 4,
i. e. that F,=A4-F,. Therefore F is the common part of A and Lh(*
set 3’1’,,, which is a set ().
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(3.83) Theorem. For a function of a point f(x) to be upper [lower]
semi-continuous on a set A, it is necessary and sufficient that, for
each number a, the set

(3.4) Elzed; f(z) 2= a] [EBzed; f(a) < al]

be closed in A, i.e. expressible as the common part of A with a set (F).

Proof. We need only consider the case -of upper semi-contin-
uous functions, as the other case follows by change of sign.

Let f(x) be a funection upper semi-continuous on 4, a an ar-
bitrary number, and x,¢.4 a point of accumulation of the set (3.4).
For each >0, the sphere S(x,; ) then contains points of that set,
and this requires Ma(f; zy; 7)22a and so Ma(f; #y)=a. Since by
hypothesis M4(f; #,) = f(%,), we derive f(z,) = a, so that x, belongs
to the set (3.4). This set is thus closed in 4.

Suppose, conversely, that the set (3.4) is closed in A for each a.
Sinee the relation Mu(f; ) = f(#) is evident for any # at which
f(@) = + oo, let », be a point at which f(z)) <<+ oo, and a any
number greater than f(z,). The set (3.4) is closed in 4 and does not
contain x, and so, for a sufficiently small value 7, of 7, contains
no point of the sphere S(y; 7). Thus M(f; 2,) <SMa(f; 25 7e)<<a for
every number & > f(x,), and hence M4(f; %,) << f(x,), which, by (3.1),
requires My (f; @) = (2,)- v

An immediate consequence of Theorem 3.3 (c¢f. Chap. I, § 7,
particularly p. 13) is the following

(3.5)  Theorem. Every function semi-continuous on o Set (B) 4s
measurable (B) on this set. More generally, if % is any additive
class of sets including all closed sets (and so all sets measurable (B)),
every function semi-continuous on a set (X) is measurable (X) on
this set.

§ 4. Carathéodory measure. A function of a set I'(X),
defined and non-negative for all sets of the space M, will be called
outer measure in the sense of Carathéodory, if it fulfills the fol-
lowing conditions:

(Cy) X))y I'(Y) whenever XCY,
(Cy) rEx)<3rx) for each sequence X} of sets,
(Cy) 'xX+¥Y)=I'X)+ I'(Y) whenever ¢(X, ¥)> 0.
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It should be noted that of these three conditions, the last one, only, hag
a metrical character. Now in this § as well as in the §§ 5 and 6, we shall use
only properties (C'y) and () of the Carathéodory measure, Hoeneo all the pe.
gults of these §§ remain valid in a perfectly arbitravy abstracl space.

In order to simplify the wording, we shall suppose, in the
rest of this chapter, except in § 8 which iy concerned with certain
special measures, that an outer Carathéodory measure I'(X) ig
uniquely determined in the space considered.

A set B will be termed smeasurable with respect to the given
outer measure I'(X), if the relation I'(P-+Q)) = I'(P)--1(@) holds
for every pair of gets P and @ confiained, respectively, in the sot B
and in its complement CH; or, what amounts to the same, if
I'X)=I'(X-E)+I'(X-CE) holds for every seti AL By condition ((})
this lagt relation may he replaced by the inequality 17(X) 2=
=TI(X.B)+I'(X-CRE).

The class of all the sets that are measurable with respeet to I
will be denoted by £, We see at once that this clasy includes all
the sets X for which I'(X)==0 (in particular, it includes fhe cmpty
set). Moreover it is clear that complements of sels (£7) are also
sets (8r).

The main object of this §is to establish the additivity of
the class 87 (in the sense of Chap. 1, §4) and to prove that the
function I'(X) is a measure (€;) in the sonse of Chap. I, § 9.
This result will constitute Theorems 4.1 and 4.7,

(4.1) Theorem. If 8 isthe sum of a sequence (X}, 1,9, ... of sebs (8p)

7o two of which have common points, the sel 8 is again o set (L) and
, : ,

I'8) = 5’1 (Xn); more generally, for each sot @

(4.2) I'(@)=3T(Q-X,) + I'(Q - 0Y).

Proof. Let 8= 3 A,, We begin by proving inductively that

n=1
all the sets S, are measurable with respect to I', and that, for each b
and for every set @,

(4:3) re=2x

n=x1

F@-X,) 4+ 1'Q - U8y,

Suppose indeed, that S, is a set (8) and that the inequality (4.3)
holds for every set @, when k=p. Sinee X, is, by hypothesis,
a set (8r) and §,-X,41= 0, we then have
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I'@)=TI(@Q Xp) + I'(Q-CX,py) =
== F(Q‘-Xp-i-i) + I’ Q cXp+l‘Sp) + 11(@ GX])-H c8 )

=1'(Q-Xpt1) + I'(@-8p) + L'(@Q-C8py1) = " P(Q X))+ 1'(Q-CSp)

and this is (4.3) for k=p + 1. In view of condition (C,), p. 43,
it follows further that I'(Q)Z=I(Q-Sp+1)+ I(Q@-CSpty1), which
proves that Sp4q is a set (2r).

Combining the inequality (4.3), thus established, with the in-
equality I'(Q-CS,) = I'(@-C8), we obtain, by making k— oo, the
inequality T(Q)/a I'Q-X,)+1I'(Q-C8), and from this (4.2)

follows on account Il;f condition (C,).
Finally, the same condition enables us to derive from (4.2)
that I'(Q) = I'(Q-8)+1'(Q-C8), and this shows that §is a set (2r)

and completes the proof.
(4.4) The difference of two sets (Lr) is itself a set (8r).

Proof. Let Xe8r and Ye8pr, and let P and @ be any two
sets such that PC X — Y and QCC(X —Y). Write ;=@ Y
and Q,= Q. -CY. Making successive use of the three pairs of in-
clusions @, CY¥, @,CCY; PCX, @,CC(X—Y)-CYCCX; and
Q.CY, P+Q,CCY, we find T'(P)+T(Q=I"(P)+I'(Q)+T (@)=
=T'(P+Q,)+1I'(Q,)=I"(P+Q), which shows that X—7Y is a set (8r).

(4.5)

Lemma.

Theorem. Lr is an additive class of sets in the space M.

Proof. We have already remarked (p. 44) that the empty
set and that complements of sets (8r) are sets (8r). To verify the
third condition (iii) for additivity (cf. Chap. I, § 4, p. 7), let us
observe firstly that, on account of Lemma 4.4 and of the identity
X.Y=X—CY, the common part of any two sets (8r) is itself
a set (2r). This result extends by induction to common parts of
any finite number of sets (2r) and, with the help of the identity

.i;J Xi= C/ | CX;, we pass to the similar result for finite sums of
sets. I‘maJlly, if X is the sum of an infinite sequence \X,,‘,,,zl 2,

N= S]+ V( Spr1—A8,) where ;S,,=.VXk Now,
clearly, of the sets §;  and ;S,,H——Sn, no two ha{re common
points, and, moreover, by the results already proved, they all

belong to the class 8. Consequently, to ascertain that X is a set (£r),
we have only to apply Theorem 4.1. The class 8p is thus additive.

of sets (£r), we have
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Theorem 4.5 connects the considerations of this chapter with
those of the preceding one. Thus, in accordance with the conven-
tionsadopted in Chap. I, pp. Tand 16, the sets (£7) may be termed sety
measurable (8), and I'(X) may, for Xe&;, bo regarded ay o
measure associated with the class £, This class, together with
the measure I', determines further the notions of funetions
measurable (), of integral (8, /"), of additive function
of a set (8r) absolutely continuous (¥p, I"), and the other
notions defined generally in Chap. I. Since the outer measure I’
determines already the class £y, we shall omit in the sequel the
symbol representing this class, whenever the notation makes expli-
cit reference to the outer meagure; thus we shall say “function
integrable (') instead of “function integrable (£, 1) and the
integral (I") of a function f(z) over a set K will he denoted simply

by ./'f(w) dl'(z), instead of by (ﬁl')'/'f(m)dl’(:zf).

In accordance with Chap. I, § 9, the value taken by I'(X) for
a set X measurable (87) will be termed measure (I') of X; when
X is quite arbitrary, this value will be called its outer measure (1),

If B, is a subset of a set B such that I'(H— Hy) =0, then
for any function f(z) on E the meagurability (£,) of f on F i
equivalent to its measurability (&;) on K, This remark and
Theorem 11.8, Chap. I, justify the following convention:

If a function f(z) is defined only almost everywhere (I
on a set H, then, B, denoting the set of the points of # at which
flw) is defined, by measurability (L), integrabslity (1) and integral (I')
of f on the set B we shall mean those on the set W,

Let us note two further theorems.

(4.6) Theorem. Given an arbitrary set B, (i) I'(B- N X,)=31"(#-X,)

for every sequence {X,} of sets measurable (1) no two o;f fwh?,(:h hawe

common points, (il) I'(F. llm X)) _11m I(B-X,) for every ascending

sequence {X,} of sets measwabla (L ), (md this relation remains valid

for descending sequences provided, however, that I (X)) =} oo,

(il) more generally, for every sequemce |X,) of sets measurable (L)

re. 11m1an,,)<11m1an( X)), and, if further I'(l-3 X,) -} o,
n

then also I'(E-lim sup X,) > limsup I'(E-X,).
n n
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Part (i) of this theorem is contained in Theorem 4. 1, and

parts (ii) and (iii) follow easily from (i) (cf. Chap. 1, the proofs of
Theorems 5.1 and 9.1).

A part of Theorem 4.6 will be slightly further generalized. Given
a seb B, let us denote, for any set X, by It (X ) the lower bound of
the values taken by 1*(E Y) for the sets ¥ measurable (81) that
contain X.

(4.7) Theorem. Given a set B, (i) to every set X corresponds
o st X°DX measurable (8r) such that I'y(X) = I'(E- X0,
(i) I'(E-liminf X,) < I"y (lim inf X ,) <liminf1 (Xn) for every se-

quence (X} of sets, and, in particular, ]’(E’ 11m X)<I (th,,)

_lnn I'Yy(X,) for every ascending sequence \X,,,

Proof. re (i). For every positive integer n there is a set ¥, ) X,
measurable (£r), such that I'(E-Y,)<<TI'g(X)+1/n. Writing
X°=11Y,, we verify at once that the set X° has the required

properties.

re (ii). Taking (i) into account, let us associate with each set X,
a set X3 .X,, measurable () and such that I'(E-X0)=T5(X,).
The set lim inf X?,Dlim inf X, is measurable () and, we therefore

have, by 'Jﬁleorem 4.6('111'1')

Ii(limint X,) << I'(F - liminf X7) << hmmf I'(E- Xi,)..hmmﬂ (X,
n n

The second part of (ii) follows at once from the first part.

# § 5. The operation (A). We shall establish here that
measurability (2r) is an invariant of a more general operation
than those of addition and multiplieation of sets.

We call determining system, any class of sets A={4,,n,..,n, iD
which with each finite sequence of positive integers n,, n,, ..., ny there

is associated a set A, n,..n,. The seb
(5]) _\_'7 —Anl'-A-n,.n:'---‘An.,nz,...,nk'---
Hya Hygeons By oen .

where the summation extends over all infinite sequences of indices
Ty Ny wrey Mty ooey 18 called nuclous of the determining system U and
denoted by N(). The operation leading from a determining system
to its nucleus iy often called the operation (A).
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The operation (A) was fivst defined by M. Souslin [I] in 1917, When
applied to Borel scty, iti leads to a wide clans of sols (following N. Lusin, wa eall
them analytic) and these play an important part in the theory of sels, in the
theory of real functions, and even in some problems of classical type. A systom-
atic account of the theory of these sets will he found in the treatises ol H. Haln
[I1], F. Hausdortf [II], ¢. Kuratowski [T}, N. Lusin [1I] and W. Sierpin.
ski [II]. ‘
We mentioned at the beginning of this § that the operation (A) includes those
of addition and of multiplication of sets. This remark must be understood ay follows:
IjMis a class of sels such that the nucleus of every determining sysiem. formed of sets (IN)
dtself belongs to M, then the sum and the common part of every sequence (Nt} of sels
(M) are also sets (M). In fact, writing Puq,ug, o= Ny and Qg iy, oo =2 N1 we
see at once that the nueclei of the determining systoms  {Pay,ny, . npy  and
{@n,ng, ..., mp} coincide respectively with the sum and with the common pat of

the sequence {N;}. Thus, Theorem 5.5, now to he proved, will completoe the rosalt
contained in Theorem 4.5, and in conjunction with Theorem 7.4, oxtablish moea-
surability (Cp) for analytic sets iv any metrical space (ef, N. Lousin and
W. Sierpinski [1], N. Lusin [3, pp. 26--26}, and W. Sierpinski [12; 15)).
The proof of this can be simplified if we assume regulariby of the outor meas-
ure I' (cf. §6) (see C. Kuratowsli [T, p. A8]).

With every determining system U == {d.,uy,...ap1, We shall also
associate the following sets. N7who-ofiy(U) will denote, for each
finite sequence hy, hy, ..., hy Of positive integers, the sum (5.1)
extended over all sequences, g, Mgy .., Miy ... SuCh that n =l by for
i=1,2,..,s. We see at once that the sequence (N2 (WY1,
together with every sequence {N/t/alwf(Q)}, 1y ., I8 monotone
ascending ‘and that

N'/!l, Iy vy ll”(Q[) — 111“[1 N sl o By, h (QI)‘

(5.2)  N(2) =Lim N (), 1

Further, for every sequence of positive integers hy, hay ..oy huy ooy We
shall write

th(Ql) =21 -A-nly Nhl,hz(al) m2‘-44-11,'&‘11«11“112, . . <)

neshy np gy ng Sy

Y
Nhl,hz,'...hk(m) = 2/ -A-n]‘Anl,nz‘n-‘Anl,u?‘.... Ny » . ‘e

nyEhg, ngEhyy vy gt Ity

We see directly that if the sets of the determining system U
belong to a class of sets M, the sebs Ny ny,..0,(A) belong to {ho
clags Mys.
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(6.3) Lemana. For every determining system U=|A, .. a0, and

for every sequence of positive integers Ry, Ry, ony Bizy ..
(5.4) Ny (A) « N, 1 (W) Ny, g,y ooy 1, (W) -+ o C N,

Proof. Let # be any point belonging to the left-hand side
of (5.4). We shall show firstly that a positive integer n<Ch, can
be chosen so that, for each %>2, the point 2 belongs to a set
Ap-Apgnye oot Any,ny, ..., n, for which n,=n? and n; <<h; for i=2, 3, ..., k.
Indeed, if there were no such integer n?, we could associate with
each index n < hy, a positive integer k,, such that x belongs to no
product A,,-A,l,,,.z-...~A,,,,,.2,,,4,,,k" for which n;<Ch; when =2, 3, ..., k.
Denote by p, the greatest of the numbers &, %,, ..., kx,. The point z
thus belongs to none of the sets A”I.A‘"l’"z""'A”Is"2’"'v"p, for which
n;<<h; when 4=1,2,..,p, and therefore is not contained in
their sum Ny, ny,..,n, (%). This is a contradiction since, by hypo-
thesis, # is an element of the left-hand side of (5.4).

After the index n, we can determine afresh an index n)<Chy,
so that, for each %2=3, the point # belongs to a setAn;- Any ny oo A ny,ny,...om
for which 7y =), n,=n3 and n;<h; when 7= 3, 4, ..., k. For, if
there were no such index, we could find, as previously, a positive
integer p,=>3 such that x belongs tono product Aannpnz'-"'A"p"zm"p.,
for which m,=n? and n;<Ch; when =2, 3, .., p,. And this would
contradict the definition of the index n!.

Proceeding in this way, we determine an infinite sequence of
indices {n9} sueh that n?<Ch; when i=1,2,.. and sueh that
weA.,b?-Anti),ng-...-A,L(llmg,_,_,n(}{‘.... Thus 2eN (), and this completes

the proof.

Lemma 5.3 is due to W. Sierpiniski [138]. The proof contains a slightly
more precise result than is expressed by the relation (5.4) and shows that the
left-hand side of that relation. coincides with the sum (5.1), when the latter is
extended only to systems of indices my, 7y, ..., Tk, ... Testricted to satisfy
g << hyy My < hys erey My < hps e s

Let us call degenerate, a determining system {Any,ny,..,np} such that, for
some sequence {hy} of positive integers, we have Ang, ny,....ny=0 Whenever nr’hk.
Then, for this sequence {kz}, the relation of inclusion (5.4) becomes an identity
and we are led to the following theorem:

If a degenerate determining system consists of sels belonging to a class M,
its nucleus is a set (Moes). A similar theorem cannot hold for non-degenerate
systems: in fact, as shown by M. Souslin, the operation (A) applied to Borel
sets (and even to linear segments) may lead to sets that are not Borel sets (cf.
F. Hausdorff [II, p. 182—184]). ‘

S. Saks, Theory of (he Integral. 4
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(5.5) Theorenm. The nucleus of any determining system Us={A
consisting of sets measurable (Lr) is dtself measuwrable (Lp).

ey 1195000, n/,}

Proof. Let us write, for short,

N=NQ), Nopmiy = Ntttz (), ,N,,r,,,z“,_,,,k = jNul,n..,‘,...,n,',(“)[).

We have to show that, for any set X
(5.6) 'EYyZzIT'(B-N)-+ I'(E-CN).
We may assume that I'(H) <oo, since (5.6) iy evidently fulfilled
in the opposite case. .

Let us denote (as in § 4, p. 47) by I'y(X) the lower bound
of the values of I'(H-Y) for sots ¥ D.X measurable (87) and lot e
be an arbitrary positive number. Taking into account (5.2) and
Theorem 4.7, we readily define by induction a sequence of positive
integers {hi} such that I'y(N7)Z= I'(H-N)—¢/2 and

Lp(Nhphyli) Z2 T (Nl oohie 1) —g[20 for Jo==2,3, ...,

Thus the sets Noujuy,..,m, D N 112 being measurable (27) together
Wlth the -Anl,n2,..., npy

(BN, ng,.. ) 2 LH(NM s Z (B - N) — &
for each %, and therefore

]W(E) = F(E' N]l],llz, ...,llk) -}_ 'Z-’(]!]'(jNIII.Ilg,...,ll/t) }
2 T(E-N) "‘I‘ 11(E'0Nll|.llz,...,ll/,,) — &,

Now the sequence of sets {Ny,a,.., gttt 18 deseending, and
by Lemma5.3 ity limitis a subset of N. The sequence {ON Iy gl 1,2,
is thus ascending and its limit containg the set CN. Henee, making
k—oco in (5.7), we find, by Theorem 4.6(i1), the inequality
I'ByzI(B-N)4+I'(E-CN )—¢, and this implies (5.6) since ¢ is an
arbitrary positive number.

(8.7)

§6. Regular sets. A set X will be called regular (with respect
to the outer measure I'), if there exists a set 4 moasurable (81,
containing X' and such that I'(4)= I'(X). Hvery measurable sot
is evidently regular, and sois also every sot X whose outer measure (1)

is infinite, since we then have I(X)e=I'(M)e=00, It every seb’

of the space considered ig regular with respect tio the outer measure I,
this measure is itself called regular; of. H. Hahn [T, p. 432),
C. Carathéodory [1; I, p. 258].
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Denoting by I'%X) the lower bound of the values of I'(Y)
for sets ¥ DX measurable (8r), we see readily that the relation
I'(X)= I'(X) expresses a necessary and sufficient condition for
the set X to be regular. From Theorem 4.7(ii), taking for the
set K the whole space, we derive the following:

(6.1) Theorem. For any sequence | X} of reqular sets I'(lim inf X,)<C

n
Sliminf I'(X,), and, if further the sequence (X, is ascending
I'(lim X,,) = lim I'(X,).

The generality and the importance of this theorem consist in that all
outer measures I' that occur in applications satisty the condition of regularity,
and, for these measures, the last relation of Theorem 6.1 therefore holds for
every ascending sequence of sets. Nevertheless, for measures that are not them-
selves regular, the restriction concerning regularity of the sets X is essential
for the validity of Theorem 6.1 as i3 shown by an example of irregular measure
due to C. Carathéodory [II, pp. 693—696].

We may observe further that, for any fixed set E, the function of a set Fg(X )s
defined in § 4, p. 47, is always a regular outer measure, even if the given measure
I'(X) is not. Conditions (Cy) and (C,) together with that of regularity, are at once
seen to hold, and (C;) may be derived from Theorem 7.4, according to which
closed sets are measurable (2r).

§ 7. Borel sets. We shall show in this § that, independently
of the choice of the outer measure I', the class 2 contains all
Borel sets.

(7.1) Lemma. If Q is any set contained in an open set G, and Q.
denotes the set of the points a of Q for which o(a, CGY=1/n, then
lim 7'(Q,) = I'(Q).

’ Proof. Since the sequence {@,} is ascending and @ = lim Qny
it suffices to show that Lim I'(Q,)Z=I1'(Q). For this purpose llelzt us
write Dy=Qur1—Qu. We then have o(Dps1,@u)Z1jn(n-+1)>0,

provided that D,y;=4=0 and Q,=30. Hence, taking into account
condition (Cy), p. 43, it is readily verified by induction that

(7.2) T(Qunt1)=T (D Doy)=2T'(Day), I'(@:)=I'(2 Day1)=T(Dy_y)
=1 =1 =1 =t

for every positive integer n. Writing, for short, a,=2, I'(Dy:) and

k=n

4%
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o
b= 2, I'(Dy—1), We obtain at once, by condition (C,), p. 43,

==p1-}-1
(7.3) Q) < I'(@en) -+ by
Now two possibilities arige: either both series, > I'(Dy) and
bl

o :
N I'(Dsp—1) have finite sums, or, one at least hay its sum infinite.
k=1

In the former case a,—0 and b,—>0, so that, the required inequal-
ity I'(Q)<<lim I'(Q,) follows by making #-—»oo in (7.3); while, in
n

the latter case, the inequality is obvious, sinee by (7.2) we have
then lim I'(Q),) = co.
n

(7.4) Theorem. EHvery set measurable (B) is measurable (8,).

Proof. Since the class & iy additive and since B is the smallest
additive class including the closed sets (cf. § 2, p. 41), it iy enough to
prove that every closed set is measurable (£7), i. e., denoting any
such a set by F, that
(7.5) I'(P+Q) = I'(P) 4 I'(Q)
holds for every pair of sets PCF and @CCF. Sinco the set CF
iy open, there is, by Lemma 7.1, a sequence {@,} of sets such that
@nCQ, ¢(@u, F)Z>1/n for n=1, 2, ..., and lim I'({,) = I'(Q). Thus

n

0(Qn, P} = 0(Qu, F) > 0, and so, on account of condition ( ), . 48,
we (_1er1ve L(P+Q)Z T (P Qu) = I'(P)+ I'(Q,) for cach 7, and,
making n--> oo, we obtain (7.5).

The arguments (.)f this § depend essentially on property (Ug) of outer meas-
ure, and 011. the metrical character, of the space JI, which did not enter into
§§ 4—6. It is possible however to give to these arguments a form, independent

of cqndition (Cy), valid for certain topological spaces that are not necessarily
metrical (cf. N. Bourbaki [1]). '

' From the preceding theorem coupled with Theorem 3.5, we
derive at once the following

(_7.6) Theorem. (i) BEvery function measurable (B) on a set B
8 measurable .(5317) on B. (i) Bvery function that is semi-continuous
on & set (8r) is measurable () om this set.
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§ 8. Length of a set. We shall define in this § a class
of functions of a set that are outer Carathéodory measures and
that play an important part in a number of applications.

Let « be an arbitrary positive number. Given a set X, we
shall denote, for each £>0, by AY(X) the lower bound of the
sums Y[6(X;)]% for which {Xjip,.. is an arbitrary partition of X
into ai ;equence of sets that have diameters less than e&. When
¢—>0, the number AS?(X) tends, in a monotone non-decreasing
manner, to a unique limit (finite or infinite) which we shall denote
by A(X). The function of a set A.(X) thus defined is an outer
measure in the sense of Carathéodory. For, when >0, we clearly
have (i) AQX)<AD(Y) it XCY, (i) ADXX)<IAA(X,), it {Xa)

n n
is any sequence of sets, and (iii) AT+ 7)) = A9(X) 4+ AD(¥),
it o(X, ¥Y)>e. Making >0, (i), (i), (iii) become respectively
the three conditions (C,), (G,), (Cy), p- 43, of Carathéodory for A.(X).

‘We shall prove further that the outer measure A, (for any a>0)
is regular in the sense of §6, i. e. that every set is regular with
respect to this measure. We shall even establish a more precise
result, namely

(8.1) Theorem. For each set X there is a set He®s such that
XCH and A (H)= A (X).

Proof. For each positive integer n, there is a partition of X
into a sequence of sets {X{™iys,.. such that

(82) S(XM™)<1/2n for i=1,2,.., and S[6(X{)]* < Au(X)+1/n.
=1

We can evidently enclose each set X in an open set @&" such that
(8.3) (6" < (1 +1/n) 6(X").
Writing H = ﬁ § G\, we see at once that H is a set (®s) and that

n=1 i=1
X(CH. Moreover, for each n, H= Y H .G and the relations (8.2)
, =t
and (8.3) imply that 6(H-G)<1/n for 4=1,2,.. and that
ALY H) < f[a(ﬂ.ag"b]ag(1+1/n)a[Aa(X)+1/n]. Making #—> oo,

we find in the limit A.(H)<<A(X), and, since the converse in-
equality is obvious, this completes the proof.
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In Euclidean n-dimensional space I, (see Chap. LIT), the sets
whose measure (4,) is zero may be identified with those of meagure
zero in the Lebesgue sense. By analogy, in any metrical Kpace

. - " N e g e
sets whose meagure (A.) is zero are termed sety having «-dimensional
volume zero, and in particular, when e =1, 2, 3, sets of zero length

. R ,’
of zero area, of zero volume, respectively. For the same reason, sets
of finite measure (A.) are termed sets of finite «-dimensional volume
(or of finite length, finite area, finite volume, in the casey a==1, 2, 3)
In. pairtlcula'r, in Ry, i.e. on the straight line, the outer measure A,
coincides with the Lebesgue measure, and, on this account, we eall
the number A,(X), in general, outer length of X, and when X ig
a set measurable (2.,), simply, length of X, For short, we often write A
ingtead of 4,.

We have mentioned only the more elementury properties of the moeasures
Ae, those, namely, that we shall have some further oceasion 1o o, For a deeper
gtudy, the reader ghould consult I, Hausdortt |1}, Among the researches do-
voted to the 1101_31011 of length of sets in Euclidean spaces, special mention must
br's )ma(.ie of the important memoir of A. 8. Besicoviteh [1]; el also W, Siar.
pifski [1] and J. Gillis [1].

. §9. Cm{nplete space. A metrical space is termed complete,
if & sequence {a,} of its points converges whenever 1im o (@, a,)=0.

. ) . ) . my N-ye0
In any metrmzyl space, this is evidently a necessary condition for
convergence of 1.3he sequence {a,}, but, as a rule, not a sufficient
one. The following theorem concerns a cha acterigtic property of
complete spaces: o )

(9.1) Theorem. In a complete space, when (I} is o descending
sequence of closed amd non-empty seis whose diameters tend to zero, the

common part IIF, is not empty.
n

. Proof. Let a, be an arbitrarily chosen point of #,. For N =M,
Wwe have ¢(am, ¢,)<<(Fn), and hence lim ¢(@m, a,)=0. The sequence

i . .m,lz->oo
i)a,,lr Iy thus convergent. Now the limit point of this sequence cloarly
elongs to all the sets By, since a,eF,CF, whenever "2z m, and
since the sets ¥, are closed by hypothesis.

9.2 ire’ g ]
iet 3(5 f@re 8 theo em. In a complete space M ) CUCRY non-emply
8) 18 of the second, eategory om itself, i.e. if H is a set (®s)

in M and H=3SH . the omte I ,
< Hry ome at least of the sets H, iy everywhere dense
M a portion of H.

icm
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Proof. Suppose, accordingly, that H = || G, where @, are
1

n=—

open sets, and further that

(9.3) H=}H,
n=1
where H, are non-dense in H. The partial sums of the series
(9.3) are then also non-dense in H (cf. § 2, p. 41), and it is easy to
define inductively a descending sequence of portions S, of H
n

such that (1) 8, G, (ii) 8,2 Hj=0, (iii) 6(8,)<<1/n. On account
=1

n'_

of Theorem 9.1 and of (iii), the sets S, have a common point, which
by (i), belongs to all the sets &,, and so to H, while at the same
time, by (ii) it belongs to none of the H,. This contradicts (9.3)
and proves the theorem.

The case of Theorem 9.2 that occurs most frequently, is that in which H
is a closed set. For closed sets in Euclidean spaces the theorem was established
in 1899 by R. Baire [1]. To Baire, we owe also the fundamental applications
of the theorem, which have brought out the fruitfulness and the importance
of the result for modern real function theory. As regards the theorem by itself
however, it was found, almost at the same time and independently by W. F.
Osgood [1] in connection with some problems concerning functions of a complex
variable (cf. in this connection, the interestingYarticle by W. H. Young [7]).
The general form of Theorem 9.2 is due to F. Hausdorff [I, pp. 326—328; II,
pp. 138—145].

If a is a non-isolated point (cf. § 2, p. 40) of a set M, the set (a)
congisting of the single point @ is clearly non-dense in M. It there-
fore follows from Theorem 9.2 that

(9.4) Theorem. In o complete metrical space, every non-empty
set (®s) without isolated points, and in particular every perfect set,
8 non-enumerable.

More precisely, by a theorem of W. H. Young [1], every set that fulfills
the condition of Theorem 9.4 has the power of the continuum; cf. also F. Haus-
dortf [II, p. 136].
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