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CHAPTER I

The integral in an abstract space.

§ 1. Introduction. Apart from funections having as argument
a, variable number, or system of # numbers (point in n-dimensional
space), we shall diseuss in this book functions for which the inde-
pendent variable is a set of points. Functions of this kind have
occurred already in classical Analysis, in several important particular
cases. But they only began to be studied in their full generality
during the growth of the Theory of Sets, and in close relation to
the parts of Analysis directly based on that theory.

If we are, for instance, given a function f(zx) integrable on every
interval, then by associating with each interval I the value of the
integral of f(z) over I, we obtain a function F(I) that is a function
of an interval. Similarly, by taking multiple integrals of functions
f(@;, @y, ..., @;) of m variables, we are led to consider functions of
more general sets lying in spaces of several dimensions, the argu-
ment I of our function F(I) being now replaced by any set for which
the integral of our given function f(iy, &, ..., @,) is defined.

We dwell on these examples in order to emphasize the natural
connection between the notion of integral (in any sense) and that
of function of a set. Needless to say, there are many other examples
of functions of a set. Thus in elementary geometry, we have for
instance, the length of a segment or the area of a polygon. The
class of values of the argument of these two functions (the length
and the area) is in the first case, the class of segments and in the
second, that of polygons. The problem of extending ‘these clagses
gave birth to the general theories of measure, in which the notions
of length, area, and volume, defined in elementary geometry for
a restricted number of figures, are now extended to sets of points
S Saks, Theory of the Integral. 1
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of much greater diversity. Tt is, nevertheless, remarkable that thege
reseavrches arose far less from problems of Geomebry than from
their connection with problems of Analysis, above all with the
tendency to generalize, and to render more precise, the notion of
‘definite integral. This connection has oceasionally found expression
even in the terminology. Thus du Bois-Reymond called integrable
the sets that to-day are said to be of measure zero in the Jordan sense,

The theories of measure have, in the course of their development,
been modified in accordance with the changing requirements of the
Theory of Functions. In our account, the most important part will
be played by the theory of H. Lebesgue.

Lebesgue’s theory of measure has made it possible to dis-
tinguish in Euclidean spaces a vast class of sets, called measurable,
in which measure has the property of complete additivity — by this
we mean that the measure of the sum of a sequence, even infinite,
of measurable sets, no two of which have points in common, is equal
to the sum of the measures of these sets. The importance of this
class of sets is due to the fact that it ineludes, in particular, (with
their classical measures), all fhe sets of points occurring in problems
of classical Analysis, and further, that the fundamental operations
applied to measurable sets lead always to measurable sets.

It is nevertheless to be observed that the ground was prepared
for Lebesgue’s theory of measurve by earlier theories associated
with the names of Cantor, Stolz, Harnack, du Bois-Reymond,
Peano, Jordan, Borel, and others. These earlier theories have,
however, to-day little more than historical value. They, 100, were
suitable instruments for studying and generalizing the notion of
integral understood in the classical sense of Riemann, but their
results in this direction have heen largely artificial and acecidental.
It is only Lebesgue’s theory of measure that makes a decisive step
in the development of the notion of integral. This is the more re-
markable in that the definition of Lebesgue apparently requires
only a very small modification of a formal kind in the definition
of integral due to Riemann.

To fix the ideas, let us consider a bounded function Fla, )
of two variables, or what comes to the same thing, a bounded func-
tion of a variable point defined on & square I(,. In order to deter-
mine its Riemann integral, or more precisely, its lower Riemann-
Darboux integral over K, we proceed as follows. We divide the
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square A, into an arbitrary finite number of non-overlapping
rectangles K, R,, ..., &, and we form the sum

n
Ny (Ry)
=1

€1.1)

where v; denotes the lower bound of the function f on B;, and m{R;)
denotes the area of R;. The upper bound of all sums of this form i3,
by definition, the lower Riemann-Darboux integral of the function f
over K, We define similarly the upper integral of j over K, If
these two extreme integrals are equal, their common value is called
the definite Riemann integral of the function f over A, and the
function f is said to be integrable in the Riemann sense over K,,.

The extension of measure to all sets measurable in the Lebesgue
sense, has rendered necessary a modification of the process of Rie-
mann-Darboux, it being natural to consider sums of the form (1.1)
for which {R}i— s, .., . I8 a subdivision of the square K, into a finite
number of arbitrary measurable sets, not necessarily either rectangles
or elementary geometrical figures. Accordingly, m(R;) is to be un-
derstood to mean the measure of R;. The v; retain their former
meaning, i. e. represent the lower bounds of f on the corresponding
sets R;. We might call the upper bound of the sums (1.1) interpreted
in this way the lower Lebesgue integral of the function f over K,
But actually, this process is of practical importance only for a class
of functions, called measurable, and for these the number obtained
as the upper bound of the sums (1.1) is called simply the definite
Lebesgue integral of f over K,. What is important, is that the funec-
tions which are measurable in the sense of Lebesgue, and whose
definition is closely related to that of the measurable sets, form
a very general class. This class includes, in particular, all the func-
tions integrable in the Riemann sense.

Apart from this, the method of Lebesgue is not only more
general, but even, from a certain point of view, simpler than that
of Riemann-Darboux. For, it dispenses with the simultaneous
introduction of two extreme integrals, the lower and the upper.
Thanks to this, Lebesgue’s method lends itself to an immediate
extension to unbounded functions, at any rate to certain classes
of the latter, for instance, to all measurable functions of constant
sign (¢f. below § 10). Finally, the Lebesgue integral renders it per-
missible to integrate term by term sequences and series of functions
in certain general cases where passages to the limit under the in-
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tegral sign were not allowed by the earlier methods of integration.
The reason for this is to be found in the complete additivity of Le-
besgue measure. The fundamental theorems of Liebesgue (cf. below
§12) stating the precise circumstances under which term by term
integration is permissible, are justly regarded by Ch. J. dela Vallée
Poussin [I, p. 44] as one of the finest results of the theory.

Lebesgue’s theory of measure has, in its turn, led naturally
to further important generalizations. Instead of starting with area,
or volume, of figures, we may imagine a mass distributed in the
Tuclidean space under consideration, and associate with each set
as its measure, (ibts ‘‘weight’” according to Ch. J. de la Vallée
Poussin [T, Chap.VI; 1]), the amount of mass distributed on the set.
This, again, leads to a generalization of the integral, parallel to
Lebesgue’s, known as the Lebesgue-Stielfijes integral. In order
to present a unified account of the latter, we shall consider in this
chapter an additive class of measurable sets given a priori in an
arbitrary abstract space. We shall suppose further, that in Ghis
class, a completely additive measure is determined for the mea-
surable sets. These hypotheses determine completely a corresponding
method of integration in the Lebesgue sense. All the essential prop-
erties of the ordinary Lebesgue integral, except at most those im-
plying the process of derivation, remain valid for this abstract integral.
From this point of view, in a more or less general form, the Lebesgue
integral has been studied by a number of authors, among whom
we may mention J. Radon [1], P. J. Daniell [2], O. Nikodym [2]
and B. Jessen [1]. For further generalizations (of a somewhat
different kind) see also.A. Kolmogoroff [1], S. Bochuer [1],
G. Fichtenholz and L. Kantorovitech [1], and M. Gowu-
rin [1].

§ 2. Terminology and notation. Given two sets 4 and B,
we write A(C B when the set 4 is a subset of the set B, i. e. when
every element of A is an element of B. When we have both AC B
and B 4, i. e. when the sets A and B consist of the same ele-
ments, we write A = B. Again, a ¢4 means that « is an element
of the set 4 (belongs to A). By the empty set, we mean the set without
any element; we denote it by 0. A set A4 is enumerable if there exists
an jnfinite sequence of distinct elements a,, ay, ..., @y, ... consisting
of all the elements of the set A. ’
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Given a class A of sets, we call sum of the sets belonging to
this class, the set of all the objects each of which is an element of
at leagt one get belonging to the class A. We call product, or common
part, of the sets belonging to the class U, the set of all the objects
that belong at the same time to all the sets of this class. We call
difference of two sets 4 and B, and we denote by 4 — B, the set
of-all the objects that belong to A without belonging to B.

Given a sequence of sets {4,} — a finite sequence 4,, 4,,..., 4,,
or an infinite sequence .4;, 4,,...,4,, .. — we denote the sum by

34, by ;Ai, or by A, + A,+ ...+ 4,, in the finite case, and by

S4;, by YA, or by A+ A,+...+ 4.+ in the infinite case.

=1

éimilarly, merely replacing the sign 3 by If, we have the expres-
gion for the product of a sequence of sets. If the sequence {4} is
infinite, we call upper limit of this sequence, the set of all the ele-
ments ¢ such that aeA4, holds for an infinity of values of the index n.
The set of all the elements a belonging to all the sets 4, from some
(in general depending on a) onwards, we call lower limit of the se-
quence (4,. The upper and lower limits of the sequence A =12,
we denote by lim sup 4, and lim inf 4, respectively. We have

(2.1) liminfd,=> [[ 4.C[] Y A.=limsup 4,.

k=1 n="k k=1 n=k
If lim sup 4,=liminf 4,, the sequence {4} is said to be convergent;

its upf)er and 1owel;' limits are then called simply limit and denoted
by Lim 4,.

If, for a sequence {4} of sets, we have A, 4,4+, for each n,
the sequence {4,} is said to be ascending, or mon-decreasing; if, for
each n, we have A,.1(C A, the sequence {4, is said to be descending
or non-increasing. Ascending and descending sequences are called
monotone. We see directly that every monotone sequence is con-
vergent, and that we have lim 4,=2>4, for every ascending se-

n n
quence {4,}, and lim 4,=IT 4, for every descending sequence {4.}.

Finally, given" a cla,ss“ ¢ of sets, we shall often call the sets
belonging to €, for short, sets (). The class of the sets which
are the sums of sequences of sets (€) will be denoted by €. The
class of the sets which are the products of such sequences will
be denoted by G; (see F. Hausdorff [II, p. 83)).
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b

will be fixed and called space. The elements of Y will be called points,
If 4 is any set contained in X the set .X— 4 will bo called com-
plement of A with respect to .X; the expression “with respect to X7
will, however, generally be omitted, since sets outside the space X
will not be considered. The complement of & set A will be denoted
by CA. We evidently have, for every pair of sets 4 wnd B,

(8.1) Ad—B=4.0B,
and for every sequence {X,; of sets
IIx,=020%,, X, =C010X,,

(3.2) ! ’
liml;smp X,=0C limlinf CX,, liminf &, = Clim sup CX,.
(] n " )

In the space X" we shall consider functions of a set, and funciions
of a point. The values of these functions will always be real numbers,
finite or infinite. A function will be called finite, when it assumes
only finite values.

. To avoid misunderstanding, let us agree that when infinite func-
t}ons are subjected to the elementary operations of addition, subtrac-
tion etc., we make the following conventions: a-( 4 o0)=( 4 oo0)+a=+co
for Gk F 00 (+ 00)(—00) = (—00)+(+00) = (400) — (- o0)=0;
@ (Fo0)=(4oc)  a=+4o00 and @+ (too)=(+o0)- a=TF oo, according
a8 a>0 or a<0; 0-(foo)=(+00)-0=0; af(4o0)=0; a/d=-o,

We call characteristic function ¢, (x) of a set K, the function
(of & point) equal to 1 at all points of the set, and to 0 everyvwhere
else. The following theorem is obvious: ) '

(8.3) If B=X B, and Br-By=0 whenever ik, then c, ()= ¢, ().
no

n
n
i v ]
If }E{,, s a monolone sequence of sets, the sequence of their
characieristic functions is also monotone, non-decreasing  or non-in-

ereasing according as the sequence |E,) is ascending or deseending.

I [ 7] .
If \E,,., is any sequence of sets, A and B denoting its upper
and lower limits respectively, we have '

¢, (z)=limsupec, (z), and
“n

n

¢y(@) =liminf ¢, ();
n “n
20 'thazt, m order that a sequence of sets B, converge to o set K,
: . N . . ¢ ‘ !
'b.tl.S ;wcessary and  sufficient that the sequence of their  character
istic functi { ! ] j S
10n8 \ch."(w), converge to the function 16, (2)1.

§ 3. Abstract space .X. In the rest of this chapter, w set X
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[§4] Additive classes of sets.
A funetion assuming only & finite number of different values
on a set K is called a simple function on E. If vy, vy,..., 0y ave all
the distinet values of a simple function flx) on a set E, the
funetion f(x) may on K be written in the form

j(w)zl'u,,,cE](:E) where E=EB,+Ey+...+E; and Ei-E=0 for iZj.
=1 kR

The function f given by this formula over the set £ will be denoted
by (g, By 0y Byj oeei Cuy B
Vallée

The notion of characteristic function is due to Ch. J. de la

Poussin [1] and [I, p. 7).

§ 4. Additive classes of sets. A class X of sets in the space .X
will be called additive if (i) the empty set belongs to ¥, (ii) when
a set X belongs to ¥ so does its complement C€X, and (iii) the
sum of a sequence [X,} of sets selected from the class X, belongs
also to the class *X.

The classes of sets, additive according to this definition, ave sometimes
termed completely additive. We get the definition of a class of sets additive in
the weak semse if we veplace the condition (ifi) of the preceding definition
by the following: (iii-bis) the sum of two sets belonging to % also belonys to X.

The sets of an additive class ¥ will be called sets measurable (X),
or, in accordance with the definition given in § 2 (p. 5), simply
sets (%). We see at once that, on account of the conditions (i) and (ii),
the space .Y, as complement of the empty set, belongs to every
additive class of sets. Making use of the relations (2.1), (3.1), and (3.2),
we obtain immediately the following:

(4£.1) Theorem. If X is an additive class of sets, the sum, the
product, and the two limits, upper and lower, of every sequence of sets
measurable (%), and the difference of two sets measurable (%), are also
measurable (X).

In later chapters we shall consider certain additive classes of
sets that present themselves naturally to us, in connection with
the theory of measure, in metrical or in Euclidean spaces. In the
abstract space .X, about which we have made practically no hypo-
thesis, we can only mention a few trivial examples of additive
classes of sets, such as the class of all sets in .Y, or the class of all
finite or enumerable sets and their complements. Let us still mention
one further general theorem:
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(4.2) Theorein. Qien any class M of sets in X, there ewists
always o smallest additive class of sets containing M, i. e. an
additive class Ny DM contained in every other additive class that
containsg M.

For let 9N, be the product of all the additive clagses that con-
tain M. Suech clagses evidently exist, one such class being the clasg
of all sets in X. We see at once that the class 9N, thus defined hasg
the required properties.

§ 5. Additive functions of a set. In the rest of thiy chapter
we suppose that a definite additive class X of sets i3 fimved in the space X,
In accordance with this hypothesis, we may often omit the symbol &
in our statements, without causing any ambiguiby.

A function of a set, O(X), will be called additive function of
a set (X) on o set B, if (1) B is a set (%), (ii) the funetion @(X)
is defined and finite for each set X (C B measurable (¥), and if
(i) P(TX,)= I 0(X,) for every sequence {X,} of sets (%X) con-

n n

tained in ¥ and such that X;. X,=0 whenever i +k. For simplicity,
we shall speak of an ‘“additive function” instead of an “additive
function of a set (%)’ whenever there is no mistaking the meaning.
An additive function of a set (X) will be called monotone on I
_if its values for the subsets (X) of K are of constant sign. A non-
negative function #(X) additive and monotone, will also be termed
non-decreasing, on accounti of the fact that, for each pair of sely
A and B measurable (%), the inequality AC B implies @ (B) =
= 0(4) + O(B—A) = D(4). For the same reason, non-positive
monotone funetions will be termed non-increasing.

(5.1)
(5.2)

Theorem. If O(z) is an additive function on a set H, lhen

®(lim X,) =lim ¢(X,)

n n

for every monotone sequence \X,} of sets (%) contained in H. If @¢(X)
18 o non-negative monotone function, then

(6.3) O(liminf X, )< liminf @ (X,) end O(limsup X,)=lim sup @ (X,)

an n n

for every sequence (X, of sets (¥) in B,
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Proof. Let {X,},—12... bea sequence of sets (X) contained in H.

If (X, is an ascending monotone sequence, then

h'lln 'X" = _'_\le" = Xl + _‘.‘ (Xn—‘r-l— Xn)g

I n=1

and consequently, @(X) being an additive funetion on E,
Glim X,) = B(Ty) + 3 (X — X,) =
n =1
n—1
=lim[®(X,) +1»§i D( Xy — Xp)] =lim O(X,).

If (X, is a descending sequence, the sequence {F — X,} is
ascending, and, by the result already proved,

@ (B)— (lim X,)= O [lim( B—X,)] =lim & (F—X,) =0 (E)—lim&(X,),

from which (5.2) follows at once.
Finally, if {X,} is any sequence, but @(X) is a non-negative
monotone function, we put

(5.4) Y“=ﬁXk for m=1,2, ..
k=n

The sets Y, are measurable (¥X) on account of (4£.1), and form an
agcending sequence. We therefore have, by the part of our theorem
proved already,

(5.5) @ (limY,)=lim @ (Y,).
Now, it follows from (5.4) that ¥, X, and so, O(¥.) << O(X.),
for each n. On the other hand, liminfX,=lim ¥, and therefore

the first of the relations (5.3) is an immediate consequence of (5.5).
We establish similarly (or, if preferred, by changing X, to E— X.)
the second of these relations, and this completes the proof of the
theorem.

Every function of a set #(X), additive on a set ¥, can easily
be extonded to the whole space X. In fact, if we write, for instance,
O,(X)= B(X-E) for every set X measurable (%), we see at once
that @,(X) is a function additive on the whole space X} that co-
incides with @(X) for measurable subsets of E and vanishes for
measurable sets containing no points of B. We shall call the fune-
tion ®,(X), thus defined, the eztension of @(X) from the set F to
the gpace X.
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§ 6. The variations of an additive funetion. The upper
and lower bounds of the values that a function of a set @(.X), ad-
ditive on a set ¥ agsumes for the measurable subsets of this set K,
will be called upper variation and lower variation of the function @
over B, and denoted by W(®; B) and W(D; E) respectively. Since
every additive function vanishes for the empty set, we evidently
have W(0; B)<<0<SW(0; E). The number 'W(lb; B) - |W(D; B)|
will be called absolute variation of the function ¢ on ¥ ,x.n(l (lmmt.ml
by W(®; E).

(6.1) Theorem. If P(X) is an additive function on o set I,
variations over E are always finite.

its

Proof Suppo&e ’rha,t W((T) B)= »l— co, We shall show firstly

of sefs (%) such that

......

(6.2)  E,CE,y for n>1; W(P; E,)=c0; |O(H,)=n—1.
For let us choose FE;= K and suppose the sets H, for n=1,2, ..,k
defined so as to satisfy the conditions (6.2). By the second of these

conditions with n="1, there exists a measurable set 4 C 1, such that

(6.3) |B(A)| = DE)| + k.
If W(@;A)=0c0, we have only to choose B, =4 in order to
satisfy the conditions (6.2) for n=1Fk--1. If, on the other hand,

W(&; A) is finite, we must have W((D;E,,.——A)z—i—oo, arcl, by (6.3),

|P(Er—A) = |P(4)|—|P(BW)| =k, so that the conditions (6.2)
will be satisfied for 91—A+1, if we choose W, ==Ul,—.A. The

sequence {E,| is thus obtained by induction.
Now, on account of Theorem 5.1 and of the third of the con-
ditions (6.2), we should have the equality (/)(lim,E )= hm([)(]u,) oo,

and since every additive function of a set is, bV doﬁmbmn finite,
this is evidently impossible. Q. . D.

It follows from the theorem just proved that every funetion
O(X) additive on a set E is not only finite for the subsets (%)
of B, but also bounded; in fact, the values it assumes nre bounded
in. modulus by the finite number W(&; g).
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Theorem 6.1 can be further completed as follows:
(6.4) Theorein. For every function F(X) additive on a set E,

the variations W(®;X), W(D;X) and W( D;X) are also additive
functions of a set (X) on E, and we have, for every measurable set
XCE

(6.5) B(X) = W(P; X) + W(P; X).

Proof. To fix the ideas, consider the funetion 2,(X y=W(@; X).
Since this function is finite by Theorem 6.1, we have to show
that for every sequence (X, of measurable sets contained in E,
and such that X;-.X,=0 whenever ik,

(66) QI(E X") =30 (Xn)-

For this purpose, let us observe that for every measurable set X XX,

n

we have ¢X)=3P(X-X,)<K2L,(X,), and hence
(6.7) 0,(3X,) < 2 9,(X,).

On the other hand, denoting generally by ¥, any measurable seb
variable in X,, we have Qﬂé’X,,); O0(2Y,)=230(Y,), and

-X )/ - ““](Xn)

n

therefore also £2;(X Combining this with (6.7) we
n

get the equality (6.6).

Finally, to establish (6.3), we observe that for every measurable
subset ¥ of X we have ¢(Y)=0(X)— P (X—Y)<P(X)—W(P; X),
andsoW(P; X)<D(X)—W(®; X). Similarly W(P; X)=0(X)—W(P; X).
These two inequalities give together the equality (6.5), and the
proof of Theorem 6.4 is complete.

It follows from this theorem that every function of a set O(X)
additive on a set E is, on E, the difference of two non-negative
additive functions. The formula (6.5) expresses, in fact, ¢(X) as
the sum of two variations of @(X), of which the one is non-negative
and the other non-positive; this particular decomposition of an
additive funetion of a set will be termed the Jordan decomposition.
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We can now complete Theorem 5.1 as follows:

(6.8) Theoveur. If @(X) 48 additive on a set H, we have
O(lim X,)=lm O(X,) for every convergent sequence (X, of sets (%)
I

n
contained in H.

In fact, making use of the Jordan decomposition, we may
restrict ourselves to non-negative functions @(X), and for these
Theorem 6.8 follows at once from the second part of Theorem £.1.

§ 7. Measurable functions. Given an arbitrary condition,
or property, (V) of a point x, let us denote generally by R[(V)]

the set of all the points ¢ of the space considered that rEult'i'\ll this
condition, or have this property. Thus, for instance, if f(z) denotes
a function of a point defined on a set B and o is a real number,
the symbol

(7.1) BloeE; fx) > a)
denotes the set of the points » of X at which f(z)> a.

A function of a point, f(z), defined on a set B, will be termed
measurable (X), or simply function (%), if the set E, and the set (7.1)
for each finite a, are measurable (X). It is easy to see that

(1.2) In order that a function f(x) be measurable on o measurable
set B, it suffices that the set (7.1) should be so for all walues of a be-
longing to an arbitrary everywhere dense set R of real numbers (the
same holds with the set (7.1) replaced by the set BzeB; f(x)>a)).

In fact, for every real a, the set R contains a decreasing
sequence of numbers {r,} converging to . We therefore have

%J{m e B; f(w)>a]=_§1E[weE_;f(w) >r,] and, each term of the sum

on the right being measurable by hypothesis, the same holds for
the sum itself (cf. Theorem 4.1).

Bvery function f(x) measurable on a set B, can be continued
in various ways, so as to become a measurable function on the
whole space X. For definiteness, we shall understand by tho ew-
tenston of the function f(z) from the set B to the spaco X, the fune-
tion fo(») equal to f(z) on F and to 0 everywhore olse. For brovity,
we shall often deal only with functions measurable on tha whola
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space X, but it is easy to see that all the theorems and the
reasonings of this, and of the succeeding, § could be taken relative
to an arbitrary set (%).

The equations
B{/(a) <a]=OB[(a) > ],
Bf(0) <a] = OE [f(2) > a],
Blf(a) <+o0]= 3 Blj(a) <n],
B[f(0)=-+o0]=CB[f(a) <-oo], B[/(@) = —os] = OB [f(a) > —ec]

Bif(o)=a] =[] B|f(o)>a— 1]
B{f(s)=a]=B[{(z)>a]- Blf(e) <d],

B[/(a) > — o] = ¥ Blf(w) >—u],

n=1.

show that for every measurable function f(z) and for every number a,
the left hand sides are measurable sets. Conversely, in the definition
of measurable function, we may replace the set (7.1) by any one
of the sets B[f(z)=a], E[f(z)<<a] or E[f(x) <a]; this follows ab

once from the identity

) et 1
Bl/(0)>a) = S B[fe1=o+% | = 0B 1@ <a1= 0T B[fta) <at]

To any function f(z) on a set E, we attach two ifunctions f(m)
and f(z) on E, called, respectively, the non-negative part and the
non-positive part of f(x) and defined as follows:

@) =f@) or 0 H@)=0 or
fle) =Ffax) or 0 fl) <0 or

We see at once, that in order that a function be measurable on a set E,
it is mecessary amd sufficient that its two parts, the non-negative and
the monm-positive, be measurable.

Returning now to the notions of characteristic function, and
simple function introduced in § 3, we have the theorem:

flz) <0,
(@) = 0.

according as
according as

(7.3) Theorem, In order that a set E be measurable (%), it is ne-
cessary and sufficient that its characteristic fumction be measurable.
More generally, in order that, on a set B, a simple funcion f(x) be
measurable (%), it is necessary and sufficient that, for each value
of f(x), the poinis at which this value is assumed on E, should con-
stitute a measurable subset of B.

Another theorem, of great utility in applications, is the fol-
lowing:


pem


14 CHAPTER 1. The integral in an abstract space.
(7.4)  Theorem. Bvery function [w) that is measurable (%) and

non-negative on « set B, is the limit of NON-AECTeasing  sequence
of simple functions, finite, measurable and non-negattve on 1.

In fact, if we write for each positive integer n and for wel,
—1 . i—1 4
S i <@ <g
f,,(.’b‘) =I on 7 f on O

‘ no, i fle)=n,

the functions f,(#) thus defined are evidently simple and non-negative,

and, on account of Theorem 7.3, measurable on K. Further, as is

easily seen, the sequence {f,(2)} is non-decreasing. Finally limf,(@)=f(»)
i

1Ciss27 0,

for every wek; for, if f(x) <l-k-oo0, we have, as soon ag n oxcoeds
the value of f(x), the inequalities O-Zf(w)— fu(w) << 1/2%,  while,
if f(x)=-+oo, we have f,(@)=mn for m=1,2, .. and so
lim f,(w) = -+ 00 = }(x).

i

§ 8. Elementary operations on measurable functions.
We shall now show that elementary operations effected on measur-
able funetions always lead to measurable functions.

(8.1) Theorem. Given two measurable functions f(x) and g(x), the sets

Blf(z) > g@)}, Blf(z)=>gl@)] and E{f(w) = g(=)],

are measurable.

The proof follows at once from the identities

. "
- BElg(a) < —
27 @) <ol

: +eo oo "
Bife) > g = 5 ¥ 8|1 >

=—ed =1

B[f>g]=0B[y>f] and Blf=g]=B[>¢]-Bly=>/]
(8.2) Theorem. If the function f(x) is measurable, |f(w)|* is also
a measurable function.

For >0, the proof is a consequence of the identity

E[|f(@)| > a] = E[f(z) > &' “] 4 B[f(@) <—a' ],
X x X
which is valid for every «>=0, while for « <70 its loft hand side

coincides with the whole space and therefore constitutes a moun-
surable set. For « <0, the proof is similar.
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(8.3) Theoren. Every linear combination of wmeasurable functions
with constant coefficients represents a measwrable junction.

The identities

E[a.f(m)+ﬁ>a]=1«;[f(x>>“"(:"} for a>0,
Bla-f(z) + 8> a] =B ﬂw)<“;ﬂ for @<,

valid for every function f(z) and for all numbers a, «3=0, and 3,
show, in the first place, that «. f(2) + 8 is a measurable funetion,
if f(») is measurable. It follows further, from Theorem 8.1 and
from the identities:

E[ff'f+z3°g>a]zE[f>——gg+§-'] for @>0
; 3 !
E[a-f+ff-y>a]=E[f<——'a\y+%] for a<0

that if f(x) and g(z) are measurable funetions, so is « -f(z) 4 8 - g(x).

(8.4) Theorem. The product of two measurable functions f(x)
and g(x) is a measurable funetion.

Measurability of the product f-¢ is derived by applying Theorems
8.2 and 8.3 to the identity fg=L[(f+g)*—(f—g)?], the com-
pletion of the proof, by taking into account possible infinities
of f and ¢, being trivial.

(8.5) Theorem. Given a sequence of measurable functions {fu(w)},
the functions

upper bound j,(x), lower bound f,(x), limsupf.(x) end Liminff.(z)
are a‘{so measurable. ' ' '

The measurability of &I(x) = upper bound f.(x) follows from
the identity E[h(x) >a] = 'l: E[fn(w)>a].” For the lower bound, the

corresponding proof is derived by change of sign.

Hence, the functions h.(z)=upper bound [fii(2), fata(®), ...]
are measurable, and the same is therefore true of the function
lim sup fn () = lim hy(2) = lower bound h.(2). By changing the sign

of fa(x), we prove the same for lim inf.
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§9. Measure. A function of a sot w(X) will be called o meas-
wre (%), if it is defined and non-negative for every set (%), and if
w(EX,) = Zp(X,)

n n

for every sequence (X, of sets (%) no two of which have points
in common. The number u(X) is then termed, for every set A meu-
surable (%), the measure (u) of X. If every point of a seti ), except
at most the points belonging to a subset of B of measure (i) zero,
possesses a certain property V, we shall say that the condition V
is satisfied almost everywhere (1) in E, or, that almost cvery (u) point
of F has the property V. We ghall suppose, in the sequel of
this Chapter, that, just as the class ¥ was chosen once for all,
a measure u corresponding to this class is also kept fixed. Accordingly,
we shall often omit the symbol () in the expressions “measure
(#)”, “almost everywhere (u)”, ote. Clearly p(X)=sSu(Y) for any
pair of sets X and ¥ measurable (%) such that X C Y, and
(X)) << Tu(X,) for every sequence of meagnrable sets {4&,).
n n

A measure may algo asgume infinite values, and is therefore notin gen-
eral an additive funetion according to the definition of § 5

The results established in this chapter concerning perfectly axhitrary meas-
ures will be interpreted in the sequel for more special theories of measure, (for
ingtance, those of L.ebesgue and Carathéodory). For the present, we shall
be content mentioning a few examples.

Let us take for ¥, the class of all gets in a space .X. We oblain a trivial
example of measure (X) by writing «(X)==0 identically, (or elge p (X))
for every set X (C.X. Another example consists in choosing an element ¢ in .V
and writing u(X)=1 or u(X)=0, according ag a¢X or not. In the case of an
enumerable space X, consisting of elements @y, ey, .y @y ey, the general form
of a measure «(X) defined for all subsets X of X is u(X)=Zk,fu(X) where
{kn} is asequence of non-negative real numbers and [,(X) is e(_l{‘uu,l to 1 or O ae-
cording as ane X or not. It follows that every meagure defined for all subsets
of an enumerable gpace, and vanishing for the sets that consist of a single point,
vanishes identically. The similar problem for spaces of higher potencies is nuck
more difficult (see S. Ulam [1]). For a space of the potency of the continuumn
see also 8. Banach and C. Kuratowski [1], E.8zpilrajn [1], W. Sierpinski
{I, p. 60], W. Sierpifiski and E. Szpilrajn [1].

We shall now prove the following theorem analogous to The-
orem 5.1:

(9.1) Theorem. If (X,} is a monotone ascending sequence of
measurable sets; then hm w(X,) = ,u(hm Xu). The same holds for

monotone descmdmg sequmcee provided, howcvev, that w(X,) | oo,

8 91 Measure. 17

More generally, for every sequence | X, of measurable sets,
(9.2) a(liminf X,) <C liminf i (X,)
n n

and, if further p(EX,)== oo
(9.3) p(lim sup X)) Z=lim sap ¢ (X,),

so that, in particular, if the sequence \Xn} converges and its sum has
findte measure, im p(X,) = p(lim Xy,).
n n

Proof. For an ascending sequence |{Xnu}u—i», . the equation
lim ¢ (X)) = n(lim X,) follows at once from the relation
n n

Iim X, = E.Xn X1+ (X11+1_Xn),

n=1

and if the sequence {X,} is desceuding and u(X;)=f=00, then the
measure u(X) is an additive function on the set .Y, and consequently
the required result follows from Theorem 5.1.
In exactly the same way, if for an arbitrary sequence (X,
of measurable sets, M X, is of finite measure, the measure u(X)
n

is an additive function on this set, and the two inequalities (9.2)
and (9.3) follow from Theorem 5.1. To establish the first of these
inequalities without assuming that the sum of the sets X, bhas finite
measure, we write as in the proof of Theorem 5.1

:Yn =k[ [ XI.' .
Since the sequence is ascending, and Y,( X, for every n, we have
i (]Jm mt X)) = u(hm Y.) = hmu( ¥u)<C hm mf u(Xan).

We conclude thls Wlth an: nnporta,nt theorem due to D. Ego-
roff, concerning sequences of measurable functions (cf. D. Ego-
roff [1], and also W. Sierpinski [3], F. Riesz [2;3], H. Hahn
[I, pp. 556—8]). We shall first prove the following lemma:

(9.4) Lenuna. If E is a measurable set of finite measure (1) and
{fn(@)} is a sequence of finite measurable functions on H, con-
verging on this set to a finite measurable function f(s), there exists, for
each pair of positive numbers &, 1, « positive @ntpﬁr N and a mea-
surable subset H of B such that p(H) <7 and -

(9.5) (@) —Fflo)| e
for every m >N and every ve¢E—H.

&, Saks, Theory of the Tutegral. 2
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Proof. Let us denote generally by I, the subset of I con-
sisting of the points @ for which (9.5) holds whenever n >m. Thus
defined, the sets %, are measurable and form a monotone aseending
sequence, since for each integer m, we have

Bu= [ BloeB;|j(o) —fule) <l

nw=m-1 x

Further, since {f.(x)} converges to f(«) on the whole of K, we have
E=YE, and so, by Theorem 9.1, w(H)=lmpu(®H,), i e.
Em):Og

lim pu (E—
m

onwards, u(E—HE,)<n. We have now only to choose N ==m,
and H= I —H,,, and the lemma is proved.

and therefore, from a sufficiently large m,

(9.6) Egoroff’s Theorvem. If B is a measurable set lof finite
measure (u) and if fo(2)} i o sequence of measurable functions finite
almost everywhere on B, that converges almost everywhere on this set to a
finite measurable fumction f(x), then there ewists, for each &>,
a subset Q of E such that w(E—Q)<e and such that the converg-
ence of {fu(x)} to f(x) is uniform on Q.

Proof. By removing from E, if necessary, a set of measure (u)
zero, we may suppose that on ¥, the funetions f.(x) are everywhere
finite, and converge everywhere to f(z). By the preceding lemma,
we can associate with each integer m >0 a set H,,(C F such that
u(H,) <e/2m and an index N, such that

(9.1 |fa(®)—Ff(z)| <12 for m»>DN, and for we¢B—H,.
(E—Q) < 39’ (Ha) < S" &f2m = ¢,

m=1

and since the sequence f,(») converges uniformly to f(x) on the
set @ on account of (9.7), the theorem is proved.
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The theorem of Egoroff can be given another form (cf. N. Lusin [T, p. 20]),

and, at the same time, the hypothesis concerning finite measure of E can be
slightly relaxed.
(9.8) If E is the sum of a sequence of mensurable sels of finite measure (u) and
if {fn(x)} is a sequence of measurable functions finite almost everywhere on this set,
converging almost everywhere on B 1o a finite function, then the set E can be expressed
as the sum of a sequence of measurable sets H, By, B,, ... such that u(H)=0 and
that the sequence (fa(x)} converges wniformly on each of the sets En.

For the proof, it suffices to take the case in which the set E is itself of fin-

ite measure. With this hypothesis, we can, on account of Theorem 9.6, define
n

by induction a sequence {Er}r=1,2,... of measurable sets such that »« (F— ¥ Br) < 1/n,
=1

and that the sequence |{fn(x)} converges uniformly onthe set B/ for each?s. Choosing

H= E—].\ Er, we have n(H)=0, and the theorem is proved.
=1

As we may ohserve, the hypothesis that the set F is the sum of a sequence
of sets of finite measure, is essential for the validity of Theorem 9.8. For this pur-’
pose, let us take as a space X, the interval [0, 1], and as an additive class %,
of sets, that of all subsets of .X. Further, let us define a measure n, by writing
{to(X)=co whenever the set X%, is infinite and wy(X)=mn, if X is a finite
set and n denotes the number of its elements. The sets of measure (1,) zero then
coincide with the empty set. Finally, let {gn(x)} be an arbitrary sequence of fun-
ctions, continuous on the interval [0, 1], converging everywhere on this interval,
but not uniformly on any subinterval of [0, 1].

To ,justify our remark concerning Theorem 9.8, it suffices to show that
the interval .X;=[0,1] is not representable as the sum of a sequence {En} of
sets such that the sequence of functions {g:(x)} converges uniformly on each of
them. But if such a decomposition were fo exist, we might suppose firstly —
sinee the functions gn(x) are continuous — all the sets B. closed. Then, however,
by the theorem of Baire (ef. Chap. II, § 9) one of them at least would contain a
subinterval of [0, 1]. This gives a contradiction, since by hypothesis, the se-
quence {gn(z)} does not converge uniformly on any intérval whatsoever.

§ 10. Integral. If we are given in the space X an additive class
of sets & and a measure u defined for the sets of this class, we
can attach to them a process of integration for functions of a
point. In fact:

(1) If f(x) is a function (X) non-negative on a set E, we shall
understand by the definite integral (X, n) of f(x) over H the up-
per bound of the sums

n
}.\:I’Ur w(Ey),

where |Hilr=io... . is an arbitrary finite sequence of sets (X) such
that ]y__Eﬂ—E +..+E, and E;-E,=0 for ik and where
Vg, for ..M, denotes the lower bound of f(r) on E;.

(e~

7“?

%
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(ii) If f(x) is an arbitrary function measurable (%) on a sot K,
we shall say that f(») possesses a definite integral (%, ) over H, if
one at least of the non-negative functions f(2) and mf(:n) (¢f. §3)
possesses a finite integral over H according to definition (i). And,
if this condition is satisfied, we shall understand by the definite
integral (%, 1) of the function f(x) over I the differonce betwoeen
the integral of flw) and that of — J(@)
(%, p) of f(z) over E will be written (%) ‘ / . f(@) du (2). If this integral

Iy

) over I, Thoe definite integral

is finite, the function f(z) is said to be integrable (¥, w). Hor every
function f(z) possessing a definite integral over a set M, we ovi-
dently have ‘

@) [ fan =@ [fap — @ [ (—pin =
# i

I

(%) ‘/'f(ly, - (%) // du.
i W

We see at once that the two definitions (i) and (i) are e¢o m-
patible, i. e. that they give the same value of the integral to any
non-negative measurable function. Moreover:

(10.1) If g = vy, X350y Xgj e 0y X} 18 @ simple non-negative func-
tion on the set B =X, -+ X,+ ...+ X, the sets X; being measur-
able (X), then

m

/ gau --.\_ 010 (X)).

For, if {E}}j1,.., I8 an arbitrary subdivision of E into a finito
number of sets (%) without points in common, and if w; denotes
the lower bound of g(x) on Ej;, we have w;=Iv, whenever B Xy== 0.

n 111

Sy (B = 3
= =

13 m

SuwBy X) <Y oo X) = ol X)),
< zwxa.

Hence

and therefore / gd,u

i
vious, since the sets X, X,,..., X,, themselves constitute a subdivision
‘of B into a finite sequence of sets (%) on which the values of g(x)
are vy, Vy; ..., Vm respectively.

The opposite inequality is ob-
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§ 11. Fundamental properties of the integral. We shall
begin with a few lemmas concerning integration of simple functions.

As in the preceding §§, the symbols &, u ete. will often be omitted.

(11.1) Lemma. 1° For every pair of functions g(z) and h(z), simple,
non-negative, and measurable () on a set E, we have

(11.2) / [g(z) + M(2)] du(z) =

/g o) du (z) + / h(z) du (z).

20 If the function f(x) is simple, non-negative, and measurable (%)
on the set A+ B where A and B are sets (%) without common points, then

[ f@)du (@) = [f(z)dula) + [ fao)du(a).
B

A+B A

Proof. As regards 19, let

(11.3)

g =0y G1; g, o} -5 Gy G} and  h=1{hy, Hyj hy, Hy; ...;

where E=G,+...+6,=H+..4+H,.
We then have, by (10.1),

1 Uiy H m};

n m

[ To@-h@ @) =3 X (gt o (G- H) =

E

=V N u(@ H)—{—\hJ

iA ]R

(G- Hy) =
= S gun(@)+ 3 hip(H)= [ g(@) it (@) + [ hla) dp (@).
= ) E

As regards 20, if BE—A+B and f=I{fi, @ far Qs
where FE=Q,+Q,+...+Q., we have

e}y @nly

[0 anta) = ¥ fo@) = S n(4-Q) + X -l B-Q) =
2 P

= [ (@) du (@) + /f(w)du(w
A
(11.4) Lenmna. If {g.(x)) is a non-decreasing sequence of functions
that are simple, non-negative, and measurable (X) on a set B, and if,
for a function h(x), simple, mon-negative, and measurable, on H,
we have lim ¢,(x) 2= h(z) on E, then
(11.5) im [ g, (@) du (#) 2 [ B(@) dp (@),
"o E
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Proof. Let h={v, Fy; vy Ho;...; Vuy Buly whero

0<< v < 0y < oo K o= By A Wyl onn 4 He
We may suppose ;> 0, for, otherwise, wo should have
/hdy_- / hdu, and, since / guthu = / gadp, wo could replace
BBy -1y
the set F by the set B —&, on which k(x) does not v
where. Further we shall aggume firgt that v, < -+ co.
Let us choose an arbitrary positive number &< vy, and let
us denote, for each positive integer n, by ¢, the set of the points
o of B for which g.(x)> h(x)—e¢ The sets @, evidently form an
ascending sequence converging to ¥, and, by Theorem 9.1, wo have
#(Qn)—> u(E). This being so we have tiwo cages to distinguish:

(i) #(B) = co. We then can find an integer n, such that for
n>n, we have u(¥—@,) < ¢ and therefore, by Lemma 11.1,
/gudu>/gud!'>/ [M@)—¢] dn (@) ==

QII

= /hdu-—«eu Q)= /hdu_vm (B—Qu)—e1(Qn) 2> [ hdp—{v,-+u(B)]-&5
I

and, passing to the limit, making first n->oc, and then &-» 0,

we obtain the inequality (11.5).

< Vm and

anish any-

n

(i) #(B)=co. Then, since [ g.du>(v;—¢)1(Qu), We obtain
i

hm f gndp=00, so that the inequality (11.5) is evidently satisfiod.
4 co. Then by (10.1) and by what hasg
-
already been proved, lim / G it =0 p( ,,,)+ ) 7;, ()
n I

finite number v, and consequently for v = 4 co =4, also; whence,
in virtue of (10.1) the inequality (11.5) follows at once.

Suppose now v, =

for any

(11.6) Lemma. If the functions of a mnon-decreasing sequence
{g:(@)} are simple, non-negative, and measumble (%) on « set B, and if

9("1"')-—11]1!11 gn(@), then hm/ Gn(@) du (2 /g ) du ().

Proof. Let E,, B, ..,B, be an a,rbltra,ry subdivision of W
into a finite number of measurable sets, and let vy, vy .0y vy Do
the lower bounds of g(x) on these sets respectively. Tet us write
v={0y, Fy; gy By; ...; Uy B} We evidently have hm I ()= g{w) Z20(m)

on E, and hence, by Lemma 11.4 and by Theorem 10,1
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hm /‘gll dtu' 2 /“U d‘u = S}’U,‘ u (E,‘).
"k E =1
Tt follows that Lim [ g,du
L)
inequality is obvious, the proof is complete.

> / gdu, and since the opposite

‘We are now in a position to generalize Lemma 11.1 as follows:

(11.7) Theorem. The relation (11.2) holds for every pair of functions,
g(x) and h(x), non-negative and measurable (X) on the set B, and the
relation (11.3) holds for every fumction f(z) non-negative and measur-
able () on the set A+ B, where 4 and B are sets (%X) without
points in common.

Proof. By Theorem 7.4 there exist two non-decreasing se-
quences {g.(z)} and {hs(x)} of simple non-negative functions mea-
surable (%) on E, such that g(z) = limg,(x) and h(z)= lim h.(z).

Now, by Lemma 11.1 (1), we have [(g.+ ha)du= [ gadat+ [ hadp
and hence, making n— co, we obtain, on account of Lemma 11.6,
the relation (11.2). Similarly, if we approximate to f(z) on A4 B
by a non-decreasing sequence of simple non-negative functions and
make use of Lemma 11.1 (2%, we obtain the relation (11.3).

(11.8) Theorem, 1° For any function measurable (X), the integral over
a sét of measure zero is equal to zero. 20 If the functions g(z) and
h(x) measurable on o set B are almost everywhere equal on E, and
if one of the two is integrable on E, so is the other, and their integrals
over B have the same value. 3° If a funciion f(z) measurable (%)
on a set B has an integral over B different from - oo, the set of the
poinis © of B at which f(z) =+ oo has measure zero. In particular,
if the integral of f(z) over E s finite, the function f(x) is finite
almost everywhere on H.

Proof. We obtain at once part 1° of this theorem by making
successive use of the definitions (i) and (ii) of § 10.

Ag regards 2°, it is evidently sufficient to consider the case
of non-negative functions g(x) and h(z). If we denote by E; the
get of the points # of E at which g(z) = h(x), we have by hypothesis

u(E,) =0, and, on account of (1°) and of Theorem 11.7, we obtain

_/gdu: /.gdu= /.hdu = /.hd/l., as required.
7 . : i

KR, E-B,
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Finally, as regards 3° let us suppose that for a function f(x)

measurable (%) on B we have f(x) = - co onasel My I of positive
‘o o 'O o " oA » TNy
measure. We then have / fauw = / fdp =m0 (Hy) Lor every s, and
B Hy

50 /}" di = -+ oo. Consequently, the iutogral of f(w) over I, if it
exists, is positively infinite, and this completes the proof.

We now generalize Lemma 11.1 (1°) and also complete The-
orem 11.7, as follows:

(11.9) Theorem of distribuwtivity of the integral. Buvery lincar
combination with constant coefficients, a-g(®) -1 b-h(w) of two fune-
tions g(x) and h(x), integrable (X, u) over a set B, is also integrable
over B, and we have

(11.10) /.(a_(/ +bh)di=a /(] dp--b '/'h, du.
I i

5 1

Proof. By Theorem 11.8 (39), tho set of the points at which
either of the functions g(x) and h(z) is infinite, has moeasure zoro,
and if we replace on this set the values of both functions by 0, wo
shall not affect the values of the integrals appearing in the relation
(11.10). We may therefore suppose that the given functions g and A
are finite on E. Further, the relations

[ bhigp =b [ hau

I A

[agap =a [gan,
B K
being obvious, we need only prove the formula (LL.10) for {ho
case a=Db=1. Finally, the set ¥ can be decomposed into four
sets on each of which the two functions ¢(2) and h(z) ave of cons-
tant sign. So that, on account of Theorem 11.7, we may assumo
that the functions ¢(x) and () are of constant sign on the wholo
set E. Now, by the same theorem, the relation

/‘ (g+h)dn = / g du - /'h(llu
7 E E

£

(11.11)

holds whenever the functions g and » are both non-nogalive or
both non-positive on B, and it only remains, therefore, 0 show
that this relation is valid when g and A have, on B, opposito Higns,
the one, g(x) say, being non-negative, thoe other, h(s), non-positive.
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This being so, let H,; and E, be the sets consisting of the points
@ of B for which we have g(x)+h(»)>=0 and g(z)+h(z) <0,
respectively. The functions g, g+h, and —h are non-negative on B,
and we therefore have, by Theorem 11.7,

/-gdu—_— /'(g—[~h) du + /l(———h) diu= /‘(g—}—h)d,u——— /'h du.

E, E, ] E, E,
Similarly

—[hau=[(—n)du= | (—g—h) du+ [gan=—[(g+h)du+ [ gau.
; ; i ; ;

Therefore, for i=1, 2, we have /.(g—}—h) du = /'gdu —]—.‘/'hdy, and

B E; E;

by Theorem 11.7 we obtain the relation (11.11).

(11.12) Theorem on absolute integrability. 1° In order that
a function f(x) measurable (X) on o set E should be integrable (%, i)
on H, it is necessary and sujfficient that its absolute value should be
so. 20 If, for a function g(x) measurable (X) on a set E, there exisis a
function h(xr), integrable (X, 1) and such that |g(z)|<<h{z) on I,
then the funetion g¢(x) also is integrable on E; in particular, every
function measurable (X) and bounded on a set E of finite measure (p)
is integrable (X, 1) on H.

Proof. As regards 1% we have by Theorem 11.7

[iflaw= [ Fan+ [ (—pan,

and integrability of |f| is therefore equivalent to that of f and that
of —f holding together, i. e. to integrability of f.

As regards 2°, we have the inequalities g(z)<{|g(®)|<<k{zx) and
— g(2) << |g(x)) << h(x) on E, and, since i(x) is, by hypothesis, inte-
grable on E, it follows that the same is true of the non-negative func-
tions ¢ and —¢, and therefore of the function g(z).
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As an immediate consequence of Theorem 1112 we have the
following theorem, known as the
(11.13) First Mean TValue Theorein. Gien, on « st H, q
function f(z) bounded and measurable (X) on B amd a function g(x)
integrable (%, 1) on B, the function f(x)- g(x) ds integrable on B
and there ewists a number y lying between the bounds of f(x) on
E, such that

(11.14) | f@)|g(@ / |9(@) | dur(x)

K

)| du(w) =

Proof. If-we denote by m and M respectively the lower and
the upper bound of f(x) on #, and make use of Theorem 11.12,

we verify successively, that the functions ( ) g ()], () gl I,
2)lg(®)| and f(x) g(») are integrable on . 'li‘urihm' woe  have
mlg(x) < f(@)-|lg@)| << Mg (x)| over B, and, therefore also,

m/')g[dyg /'j-|g|d,u<M /'}g|d‘u, and so choosing y== /'f-|,(/|(m]:[ /'[{/]du,]
(or, if the denominator vanishes, an arbitrary y hetween m and M),
we obtain the formula (11.14) with m<Cy<<M.

§ 12. Integration of sequences of functions. In this §,
we shall establish some theorems on term by term integration of
sequences and series of functions.

(12.1) Theorem. If the functions of a sequence {g,(®)} are finite and
integrable (X, 1) on a set E of finite measure, and the sequence
converges uniformly on E to a function g(z), then the function g(x)
also is integrable over E, and we have
(12.2) lim (g, (@ = [g(@) du(w).
L i
Proof. By Theorem 8.5, the function ¢(z) is measurable (%)
on E. The functions g(x)—g.(z) are therefore all measurable also,
and, further, since the sequence {g,(x)) converges uniformly o g(x)
the functions g(#)—g.(#) are all bounded, at any rate from some
value of the index » onwards. These functions are thus, by The-
orem 11.12 (2°), integrable on E, and it follows, by Theorem 11.9,
that the function g (z)={[g(x) — g.(z)] - gu(@) 18 integrable too.

Finally, denoting by &, the upper bound of |g(@) ~ g, (@) on K,
we have
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|/ g(@)dn (@ [19(@) —gu(@)] dp(@)< enre(B),
E
and this establishes the relation (12.2) since, by hypothesis, &,~—>0

and u (E) = co.

Neither the theorem thus established, nor its proof, contains,
at bottom, anything new, as compared with the similar result for
the classical processes of integration of Cauchy, or of Riemann.
‘We now pass on to the proof of theorems more closely related to
Lebesgue integration. Among these theorems, a fundamental part
is played by the following one, which is due to Lebesgue:

— /gn(w)duuo <

(12.3) T'heorem. Let f(x)= V f,,(os) be a series of non-negative functions

measurable (%) on a set E. Thfm

(12.4) =3 [ (@) dn (@)
=E

E

| #@) dn (@)

Proof. From Theorem 11.7, we derive in the first place, that

/ fdu= [Vf,l du] = / fudu for every m, and so
n=1 n==1 E
" (12.5) [fduz= 3 [ fadu.
1:;‘ n=1 3 B

To establish the opposite inequality, let us attach, in accordance
with Theorem 7.4, to each function f.(z) a non-decreasing sequence
{g,f‘ Vie1g,.. of simple functions measurable and non-negative on E,
in such a manner that ]ng(k)( #)=fn(®) for n=1, 2,... Let us write

sp(@) =
and non-negative, on ¥, and they form a non-decreasing sequence.

< f(@).

< f(z) for every m,

lz
' g¥(x). The functions sx(z) are clearly simple, measurable,
—-—1

m
Further, for each m, and for k =>m, we have jl gﬁ-k)(cc) << sx(z)
=

Making k— oo, we derive 3 fi(®)
=1
Therefore, by Lemmas 11.6 and 11.1 (1%,

< lim sx(%)
k

and so, f(m):]imsk(w).
/fdu_ lim / sydp = lim 3 \“ /gk)du <) v /'f,.d.u,

and this, combined with (12.5), gives the equality (12.4).
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Theorem 12.3 may also be stated in the following form:

Theorem on integration of monotone se-
If {fu(@)} is a mon-decreasing scquence of

lim £, (),

(12.6) Lebesgue’s
quences of functions.
non-negative functions measurable (X) on a set B, and f(x):=
then / f(@) du (2) = lim / Ful®) dye (),

Il/

wo obfain

- fui I""“f/l J‘
@)= 1.(@) + S g o),

Proof. If we write g, (2

and the functions g,(») will be non-negative and measurable on I,
go that by Theorem 12.3

. . o0 ’
/f(],/{ = / fudu + Y / Iu Ayt == lim / [fy- | Lm/ fredt.,
B ” ot [

Q. 1.
(12.7) Theorem of additivity for the integral. If {1, i o
sequence of sets measurable (%) no two of which hawve common points,

Bl
and B =2 E,, then
n

(12.8)

4/,, ldu =

for every function f(x)

possessing « definite integral (finite or infinite)
over H.

Proof. It is clearly sufficient to prove (12.8) in the case of
a function f(#) non-negative on Z. Supposing this to bo the eao,
let us write f.(a)=f(x) 1"_01 mly’,,, and f(®)==0 for well—HK,. We
then have f(z)= \ X u(®) B, and, the functions f, heing measurable
and non—negfmve, we may apply Lebesgue’s Theorem 12.3.
gives, by Theorem 11.7,

/fdu =y /f,,dM = ,\‘ //,,du - ,\’./ Fau. Q.

LR

This

. D,
n ,

If a function f(2) has a definite intogral (%, n) over a sot 1,
then f(xz) also has a definite intogral over any subset of £ moa-
surable (%). We may therefore associatio with it the funetion of
& seb (%) defined as follows:
(12.9) F(X)= [ fw) du ()

X

where  XC KW and X X,
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The latter will be called the indefinite integral (X, 1) of f(x) on H.
It follows from Theorem 12.7 that, whenever the function f(z)
is integrable (%X, #) on K, its indefinite integral is an additive func-

tion of set (X) on E.

We end this § with two simple but important theorems. The
first is known as Fatou’s lemma, and appears for the first time
(in a slightly less general form) in the classical memoir of P. Fatou
[1, p. 375] on trigonometric series. The second is due to Lebesgue
[B, in particular p. 375], and is called the theorem on term by term
integration of sequences of fumctions; cf. also Ch. J. de la Vallée
Poussin {1, p. 445—453], R. L. Jeffery [1] and T. H. Hilde-
brandt [2].

(12.10) Theoremn (Fatow's Lemma). If if.(x)} is any sequence
of non-negative functions measurable (X) on a set E, we have

[ lim inf f,,(2) du (2) < Um inf [ /. (@) du ().
n ‘E

E

Proof. Let us write g;(x)=lowerbound [f:{a), frr1(®), fira(®), ...]
where i==1,2,.... Thus defined {g:(#)} is a non-decreasing sequence
of non-negative functions measurable on F, and converges on the
set K to lim inf f;(#). We therefore have, by Lebesgue’s Theorem 12.6,

/hmmf fi(@) du () =

E

/gl(m) du (@) << hmmf /fi(m) du(z).

i E

(12.11) Lebesgue’s Theorem on terin by term inteyration.

Let {f.(z)) be a sequence of functions measurable (¥X) on a set E,

fulfilling, for a function s(x) integrable (%) on E, the inequality

fu(2)| << s(@) for m=1, 2, ... Then

liminf [ f,de > [ limintf,dg,
n E /3‘ n

lim sup /'j,, dp << /.]imsup fndu.
n ];v if n

If, further, the sequence {f.} converges on B to a function f, the sequence
is imntegrable term by term, i. e. we have

(12.13) lim [ fodp = [ jde.

"E
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Proof. Let ¢()==liminf f,(w) and let h(®) == lim sup f, ().
We may clearly suppose s(z) < -f-o0 throughout #. Wo then derive
from Fatou’s Lemma 12.10, lim inf / (8 fu)du = / (8- ¢)du and
n I'gy ,'11
lim inf / ‘ (s—fu)dp = / '(s——};,)d,‘u, which gives al once the rola-
n iy‘ I'
tions (12.12).
Further, if lim f,(z)==f(), we derive from (12.12) the relation

lim inf / ' fnlp = / ' fdp Z= lim sup / ‘ fudie which gives the equality
n I‘vy "] 1n i':‘

(12.13).

§ 13. Absolutely continuous additive functions of a set.
The fact that the indefinite integral of & funclion integrable (%, u)
on a set B is, on H, an additive function of a sob (%), raises Ghe
problem of characterizing direetly the additive functions exprog-
sible as indefinite integrals.

It we restrict ourselves to the Lebesgue integral of functions of a real var-
iable, we may regard indefinite integrals as functions of an interval, or, what
vomes to the same thing, as functions of a real variable. Tn that case, a nocos-
sary and sufficient condition for a function to he expressible as tho indefinite
integral of a real function was given, in 1904, still by Lehesguoe [1, p. 120, foot.
note]. A little later (in 1905), G. Vitali [1] explicitly distinguishod the olags
of functions possessing the Lebesgue property by introdueing the name of “ab.
solutely continuous functions’.

The condition of Lebesgue and Vitali was later extended to Tunctions of
a set by J. Radon [1] (ef. also P. J. Daniell [2]), But Radon considerad only
additive functions of sets measurable in the Borel sense in Juelidean spacos,
and only measures determined by additive funetions of intiervals (ef. below Chap-
ter III). The final form of the condition of Lohesgue-Vitali, as given in
Theorem 14.11 below, is due to O. Nikodym [2].

An additive function of a set (¥) on a set X, will bo said to
be absolutely continuous (¥, u) on H, if the funetion vanishes
for every subset (X) of E whose measure () is zero. An additive
function P(X) of a set (%) on a set B will be termed singular (%, 1)
on B, if there exists a subset H,(" B weasurable (%), of moasure (1)
zero, such that @(X) vanishes identically on W H,, i o.
O(X)= 0 (B, X) for every subsot X of K wmeasurablo (%). The
following statements are at once obvious:
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1§ 18] Absolutely continuous additive functions of a set.
(13.1) Theorem. 1° In order that an additive function of a set (%) on a
set B should be absolutely continuous (X, u) [or should be singular]
it is mecessary and sufficient that its two variations, the upper and
the lower, should both be so. 2° Ewery linear combination, with eon-
stant coefficients, of two additive functions absolutely continuous
[or singular] on o set B is itself absolutely continuous [or singular]
on E. 3% If a sequence {D,(X)} of additive functions, absolutely
continuous [singular] on a set B, converges to an additive function
@(X) for each measurable subset X of E, then the function O(X) is
also absolutely continuous [singular]. 4° If a function of a set (%)
is additive and absolutely continuous [singular] on a set E, the
function is so on every wmeasurable subset of E. 5% If E’::_,I}_TE,,,

where 'B,}is a sequence of sets (X), and if an additive function P(X)
on B is absolutely continuous [singular] on each of the sets En., the
function is absolutely continuous [singular] on the whole set .
60 An additive function of a set camnot be both absolutely conti-
nuous and singular on a set B, without vanishing identically on E.

For sets of finite measure, it is sometimes convenient to apply
the following test for absolute continuity:

(13.2) Theorem. In order that a function O(X) additive on @ set B of
finite measure, be absolutely continuous (%, n) on B, it is necessary
and sufficient that to each €>0 there correspond am 1>0, such that
w(X)<n imply |O(X)|<e for every set X _E measurable (X).

Proof. It is evident that the condition is sufficient. To prove
it also necessary, let us suppose the function @(X) absolutely con-
tinuous in E. We may assume, replacing if necessary, 2(X) by
its absolute variation, that @(X) is a non-negative monotone func-
tion on E. This being so, let us suppose, if possible, that there
exists a sequence H,),—is. of measurable subsets of E, such that
w(Bn)<1/2" and that O(E,)>n, where 7, is a fixed positive number.
Let us write E,= lim sup E,. For every n, Wwe then have

w(Bo) < S u(Ei) < 1/2-1, and therefore u(Hy)=0. On the other

h=n

hand, by Theorem 5.1, we have @ (E,) = lim sup O(E,) 2= 1, This

is a contradiction, since O(X) is absolutely continuous, and the
proof is complete.
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(13.3) Theorvem. In order thut o function ©(X), additive on o s
B, be singular (%,u) on I, il is necessury and. sufficient that foy
each >0 there exist a set X C 10 measurable (X) and fulfilling the
two conditions w(X) e W(P; H—X)< ¢

Proof. The condition is clearly mnecessary. To prove it suf-
ficient, let us suppose that for each n there is a set X, (4 meas-
urable (%) such that u(X,)< 1/2* and W(D; —X,)<"1/2" and

X

let us write B, = lim sup X,. We then have p () << () w1 /20 1

ko
for each n, and so n(H,)==0. On the other hand, by Theorem 5.1
we have W(¥; E— E,)<_lim inf W(®; l— X,)=-0. The funetion
n

@(X) is therefore singular on K.

§ 14. The Lebesgue decomposition of an additive
function. Before proving the result announced in the proceding §,
we shall establish some auxiliary theorems. We hogin with the follow-
ing theorem due to H. Hahn [I,p. 404 (ef. also W. Sierpinski [11]):

(14.1). Theorem. If (X)) is an additive function of « set (%) on o
set B, there emists always a set P CH measurable (%), such that
W(O;P)=0=W (D; E—P), or, what comes to the same thing,
such that D(X)Z= 0 for every measurable set X C I and B(X)<Z0
for every measurable set X B — P.

Proof. For each positive integer n, wo choose o sot If, such

that @(H.) =W (0; B)—1/2", By Theorem 6.4 we thon have,

(14.2) W(0; B> —1/2"  and  W(D; H— )= 1/20.

Writing P=1iminf B, we see that B— P = lim sup (f— K,) (O <‘;( b1,
u no T

o

for every m, and therefore, by (14.2),

W(0; B—P)<< YW(0; B— Ha) < -
nem d

1

m ot

'Wh.]'.(}]l gives W(9; E — P)=0. On the other hawd, the lower var-

iation W(®; X) is a non-positive monotone function of a measurable

set X (C B, and, by Theorem 5.1 and the first inequality (14.2),

we must have the relation [W(®; P)| < lim inf [W(®; 1) - (‘), which
n

gives W(®; P) = 0 and completos the proof.
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The Tebesgue decomposition of an additive function.

[§ 14]

(14.3) Lemma. If O(X) is a non-negative additive function of «
set (X) on a set B, there exists, for each a> 0, a decomposition
of E into a sequence of measurable sets without common points,
H,E,,E,, ..., B, ... such that p(H) =0 and that

(14.4)
for every set X (C En measurable (%).

a-(n—1) w(X) < P(X) <an-p(X)

Proof. By Theorem 14.1, there exists, for each positive in-
teger m, a measurable set 4. such that @(X)—an-p(X)>=0 for
every measurable set X (C 4, and &(X)—an-u(X)<<O for every

measurable set X C E—An. Write By= %Ak. Any measurable
7]

e
k=

subset X of B, may be represented in the form X = Y X, where

k=n

X, are measurable sets, X,C 4, for k=n, n+1, .., and X;- X;=0
for i4=4; and so O(X)=Y O(Xp =2 ak- u(Xx)=an-u(X). We obtain
=1 k=n

b=
thus a descending sequence of measurable sets {B,} such that
(14.5) d(X)y=an -u(X) if X Bna, Xe%,

O X)<an-u(X) if XCE—B, Xe%,

the second relation being obvious, since E—B, is a subset of
E—A,. '

Let us now write E,=E—B,, E,=B,-1—B, for n=2,3, ..,
and H=Ilim B,. Thus defined the sets H, Ey, H, ..., Bp,... are mea-

surable and without common points, and E=H+3 E, Taking

n==1
into account the relations (14.5), we see at once that the inequality
(14.4) holds whenever X is a measurable subset of E,. Finally, H( B
for each positive integer n, and therefore, by the first of the rela~
tions (14.5), we get O(H)Z=an-u(H), which requires u(H)=0 and
completes the proof.

(14.6) Theorem. If E is a set (%) of finite measure (i), or,
more generally, a set expressible as the sum of a sequence of sets (%)
of finite measure, every additive function of a measurable set &(X)
on E is expressible as the sum of an absolutely continuous additive
function T(X) and a singular additive function (X) on B. Such a de-
composition of O(X) on B is unique, and the function W(X) is, on B,
3

|, Saks. Theory ol the Integral.
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the indefinite integral of a function integrable (X, p1) on B, If ®(X)
is @ non-negative monotone funclion on K, so are the corresponding
functions W(X) and G(X).

Proof. Since every ddditive function of w set iy the difference
of two non-negative functions of the same kind (cf. § 6), we may
restrict ourselves to the case of a non-negative #(X). Further, we
shall assume to begin with that the set & hag finite measure. By the

preceding lemma, there exists, for every positive integer m, a de-

composition of B into a sequence of measurable sobs =, B, B,
without common points and subject to tho c(m,dlblom

(14.7) B=H"™ 4+ B™ ...+ B+ .., ((H™Y == 0,

(14.8) 27" (n—1) p(X) < OX)< 27" m-p(X), 3f XCH", Xek.
We therefore have, for all positive integers m, n, and £,

27" (BB 22 O ) 22 (L) - e ),
and

9 o w(B B ) = (B BTy e (1) (BB,

from which it follows that (2n—%k-+1) w(BL- B )=0, and that
(k—2n+2) w(BS - B 2 0. Hence u(BY - BY")=0 whenever
either &> 2n~1, or k<2#—2.

We may therefore write

(14.9) EC B L BED L B L B0 L 0 where 1 (QU7)=<0,

This being 5o, let H=> H™+ ¥ 0. Wo write Fo(p) 2 o (m—1)

m=1 PINTES

for @ eBV"—H, n=1,2,.., and ™ (@)=0 for weH. We thus obtain
a sequence {f™(x)} of non-negative functions measurable (%) on the
set B. By (14.9) we have clearly |f®+)(p)—jfim()]<<2 ™ on B, so
that the sequence {f™(z)} converges umformly on B to a non-neg-
ative measurable function f(x).

The set H being of measure zero, we have, by (14.7) and (14.8),
for every measurable set XCE and for every positive integer m,

O(X)Z O(X-H)+2 27" (n—1) - p (X - B0) e DX - I) o [ o0 g,
and &

O(X)< DX H)+2 2-mn-p(00- Y0 = O(X - )4 [fondye -2 m.u(¥),
i
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Hence, making m—»oco, we derive @(X / AX)du(z)+-D(X-H).

This decomposition, so far established subject to the hypo-
thesis that the set F is of finite measure, extends at once to sets
expressible as the sum of an enumerable infinity of sets of finite
measure. In fact, if B= V‘A,l, where the 4, are sets (X) without

common points and of fmlte measure, then, by what we have al-

ready proved, there exists on A. & non-negative function f,(z) in-

tegrable on A, and a measurable set H,(4, having measure

zero, such that &(X-A,)=[f.du+@(X-Hy), for n=1,2, ... I we
XZ4

now write H= VH,I, and f(z)=f.(z) for xe¢4,, we obtain a measur-

able set H(_F of measure zero, and a function f(X), non-negative
and integrable on F, such that, by Theorem 12.7, for every meas-
urable set XCFE

(14.10) O(X)=Y /jdu—L Y O(X - H,) = [fdu+ O(X-H).

X'A D¢

Now, the indefinite integral vanishes for every set of measure zero,
and therefore is an absolutely continuous function; on the other
hand, we have @(X-H)=0 for every measurable set XC E—H.
Thus, since the set H has measure zero, formula (14.10) provides
a decomposition of @(X) into an absolutely continuous function
and a singular function. Finally, to establish the unicity of such
a decomposition, suppose that O(X)=¥;(X)+0,(X)=T,(X)+0,(X)
on B, the functions ¥;(X) and &,(X) being absolutely continuous, and
the functions 6,(X) and @,(X) being singular. Then T(X)—Ty(X)=
=0,(X)—0,(X) identically on E, whence by Theorem 13.1 (2°
and 69, we have T (X)=U,(X) and O, (X)=0,X), and this com-
pletes the proof of our theorem.

The expression of an additive function as the sum of an ab-
solutely continuous function and of a singular function will be termed
the Lebesgue decomposition. The singular function that appears in
it is often called the function of the singularities of the given function.
From Theorem 14.6, we derive at once

3*


pem


36 CHAPTER I. The infegral in an ahstract space.

(14.11) Theorem of Radon-Nikodym. If K is a set of finite
measure, or, more generally the sum of @ sequence of sels of finite mea-
sure (u), them, in order that an additive Junction of a set (X) on 1 be
absolutely continuous on E, it is necessary and sufficient that this
function of a set be the indefinite integral of some integrable function
of a point on B.

The hypothesis that the set 7 is the sum of an al most enumerable infin-
ity of sets of finite measure, plays an essential part in the amsertion of the theorem
of Radon-Nikodym, just as in Theorem 9.8. To see thiy, let us take again the
interval [0, 1] as our space X, and let the class %, of all subsots of [0, 1] that
are measurable in the Lebesgue sense (c¢f. helow Chap. ITI) be our fixed additive
class of sets in the space X;. A measure  will be defined hy taking i (X)-co0
for infinite sets and u (X)==n for finite sets with » elements, This being wo, the
gets (%,) of measure (1) zero coincide with the emnply seb, and therefore, svery
additive function of a set (%,) on Aj iy absolutely continnous (%, ;). In particular,
denoting by A(X) the Lebesgue measure for every sot X e %, wo see that 4(X)
is absolutely continuous (¥;,},) on X;. Wa shall show that A(X) is not an inde-
finite integral (%, ¢y) on Xy. Suppose indeed, it powssible, that

A ) = / g () dyry (x)
X
for every set X e, the function g(x) being integrable (%, /) on Xj. Since
A(X) is non-negative, we may suppose that ¢(x) is 8o too. Lot If)r-r::alﬂ[r/ @) 0]

and Bn=E[g(z)>1/n] for n=1, 2, .. We have A(.X;
X

IS /qdulw() 8o that
X1

A(E)=A(X})=1 and this requires the set I to bo non-enwmerablo. Since K-

9
,) ””,
i

the same must be true of Ky, for some positive integer . Thus

MBn) = /

kL, »

@) d gy () 2 gy (Bny) freges

which is evidently a contradiction.

. § 15. Change of measure. Any non-negative additive func-
tion »(X) of a set (¥) may clearly be regarded as a measure cor-
responding to the given additive class %¥. When such a function
#(X) is defined only on a set B, we can always continue it (ef. W, p.9)
on to the whole space. The terms measure (»), in tegral (%)
etc. are then completely determined for ull sots (%), huh, in thig

case, it is most natural to consider only the subsets of # for which
the function #(X) was originally given.

icm

37

Change of measure.

[§ 15]
(15.1) Theorem. W henever, on a set B measurable (%), we have

(15.2) w(X)= (%) [ gla)du(@) + $(X)

X
where HX) is a non-negative function, additive and singular (X, p)
on E, and where g(z) is o mon-negative function integrable (%, u)
over B, then also

(15.3) (%) / (&) dv(z / f(z) g(z) du(x
for every set X CH measm’able(%) and for every function f(x) that possesses
a definite integral (¥,v) over X. If, further, the function f(x) is integrable

(%,7) over E, the formula (15.3) expresses the Lebesgue decomposition

) + (%) [ f@) ()
X

of the indefinite integral / lfd'zv on E, corresponding to the measure u,
x

the function 6(X) = / a9 being the function of singularities (%, un)

X
of the indefinite tntegral / fdv.

Proof. We may clearly assume that f(x) is defined and non-
negative on the whole of the set E. We see at once that, for each

set ¥ (C F measurable (%), /‘cy(w)dw(w) =2(¥)= [ g(x)du(®)+H(X)=
¥ ¥

= [ ¢yle) g(o) du(@) + |

Y Y

finite function h(x) simple and. measurable (%) on a set X C E,

/ h{x) dv(x) = ./‘h(m) g(@) du(z) —}—‘/.h(m) a9(x).
X X

X

¢y(®) dd(x), and hence also that for every

(15.4)

Let now {i.()} be a non-decreasing ‘sequence of finite simple
functions measurable (¥) and non-negative on X, converging to the
given function f(x). Substituting h,(z) for i(z) in (15.4) and making
n—> oo, we obtain (15.3), on account of Lebesgue’s Theorem 12.6.
If, further, f(z) is integrable (¥,») over E, the identity just es-
tablished shows at once that the product f(») g() is integrable (X, )
over E and hence, that the indefinite integral g fgdp is absolutely

continuous (%,u) 'on E. On the other hand, the function 6(X)
vanishes on every set on which the function $(X) vanishes, and
therefore, is singular (%, ) on E together with #(X). This completes
the proof.
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The wide scope of Theorem I15.1 is due to the fact that, if
n(X) and »(X) are any two measures associated with the same clagg
% of measurable sets and we have at the same time u(H) < - oo,
and »(E) < + oo, for a set Fe%, then the measure » can be repre-
sented on F in the form (15.2), where g(«) is a function integrable
(%,u) over the set I and H(X) is a non-negative function, additive
and singular (%, «) on the same set (cf. Th. 14.6). Hence, with the
above hypotheses and notation, in order thatb / fdm e / 1y du

¥ b
should hold identically on K, it is necessary and sufficient that

the indefinite integral / ' fdv be absolutely continuous (¥, u) on K,
X
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This condition is clearly satisfied whenever the measure »(X) ig
itself abgolutely continuous (%, u).
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