CHAPTER XIIL

Fourier’s integrals.

12.1. Fourier’s single integral. Given a function J(x),
— oo < x < oo, consider the expression

oo

| ro

sin u;'()_g

(1) Sm(x) = Sm(x; f) = "'—x _

L o> 0.

-0 dt,

This integral exists if |f(£)|/(1-|¢]) is integrable over
(—o9, o), and so in particular if fe L (— oo, oo), or, using Hélder’s
inequality, if fe L"(— oo, o0), r>1. It is an important fact that,

it f(x) satisfies conditions ensuring the convergence of Fourier
series, then S,(x)~f(x) as o - oc. This result is known as Fourier's

representation of a function by means of a single integral, and

is a consequence of the results established in Chapter II and of
the following theorem:

Let us fix an arbitrary interval J, = (a, a4 2%), and let fi(x)
be the function of period 2=, which is equal to f(x) in J,. We sup-
pose that (f (x)|/(1+ ' x)el (— oo, o2).  Let s,(x) = Su(x; f,) be the
partial sums of Z[f,|. Then, for x belonging to any interval J,

interior to J,, the difference S,(x)— Stw)(X) tends uniformly to O as
©-ocl), '

12.11. We base the proof of the theorem on a number of lemmas. First

of all, it is sufficient to consider, instead of Sy — S[u] the difference S,— s;

w]?
where s: are the modified partial sums (§ 2.3). To fix ideas, we assume that
a=0, and write J,, J}, fo(x) instead of I I Fo(50).

") See Hobson [3], Pringsheim [2].
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) Ifg @) eL(ab), =< a<lb< o=, then ; =~/ gt e dt 50 as e
a
Transforming the variable of integration we may plainly suppose that
0<La<b< 2x. Putting g (#)=20 outside (g, b), and applying the device of § 2.21,

ax

we obtain, for w large enough, 2;7(91\"/‘/ (g —g(t-F+=/w) di>0.
h)

() If g () =S (D) h(t), where fe L(a,b), and h(t), a<t<b, is a uniformly
bounded and uniformly continuous function depending on a parameter x, then

o0 uniformly in x.
)

Suppose that 0 <e=<{a << 2z —:z, and put F () =0 ountside (g, b). Let
h () be equal to O for t<Ce and £ >2=—¢, and be linear for :<Cf<a,
bl\<t<2:—s. The new fanction #,(f) is uniformly bounded and uniformly
continuous and, since

‘[~1 FO—F(tmjo) [dE>0,  Max | h) — ho(t+=w) |0,
6 y X

the integral majorizing 2 | Tw | tends uniformly to 0 as w—+=. It is plain that
the result holds if k(t) depends on more than one parameter.

(iii) Under the conditions of Theorem 12.1, tize‘ difference Sw(x)—-S[m](x)
tends uniformly to O for xeJ}. For, if [w]=n, o —n=u, then
s T 9ginYu (x —1)

W S, W—Sm=R"——r0— [

—oc

e gy

To show that the last integral tends uniformly to 0., we break it up
into two integrals P and Q, where P is extended over some mterva} (— A4, A),
and Q over (—ss, —A)-+(4,°0). If A is large enqugh, t.hen ‘,Q;<JI‘4E for
xeJ). Since the function £, ,(f)=2sin Lulx—)/(x—1) Is u‘mformlvy. continuous
and uniformly bounded for 0<{u<{1 and xeJ{, an application of (ii) shows that
[P|>0, i. e. | P+ Q|< = for w>>wy This proves the lemma.

A moments consideration shows that Theorem 12.1 is a consequence of
(iii) and of the following lemma:

(@) Let f(x)=f'(x)+f"(x), where f'x)=f(x) for xeJo, f'(x)=0 for xeJs.
Then 3,= S,(x;f') — s,(x;10) =0, Sy(x;f") >0 as n o=, uniformly in xeJj.

Let #,(f) be a function of period 2=, equal to 1/(x——.-t) — (}tg%(x,_t)'
for 0 <t < 2. Sinece M [k, (t-+1) — A, (t); 0, 2=] » 0 with v, uniformly in xe J/, an

an

/' F@ ) e ™ dt 0

einx

argument similar to that of § 2501 shows that3, =3

ke

uniformly in x €Jy. On the other hand, S,(x;f")=U,V,, where U, is equal to
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Ry e /j(r) S dt and V, is a similar integral formed for the interval
o X

(— ,0). To show that | U,|4|V,| >0, we proceed as in the proof of (iii).

This completes the proof of Theorem 12.1.

12.12. Theorem 12.1 holds if f(£) is integrable over any finite interval and
if, morecver, f(t)/t tends to 0 as t->—toe and is of bounded variation in the neigh-

bourhood of t= 1t o=1).

This last condition means that there is a number B>>0 such that f is
of bounded variation in (— e, — B) and in (B,s). Without loss of generality
we may assume that f(f)/f tends monotonically to 0 as t—+—ee, |t]| > B, for
every f satisfying the conditions of the theorem is a sum of two functions
satisfying this more stringent condition.

The proof of the theorem runs close to that of Theorem 121, and we
need not repeat the whole argument. The proof of the latter theorem was
based on Lemmas (iii) and (iv) of § 12.11. Those lemmas hold under new con-
ditions, but in the proofs we must now apply the second mean-value theorem.
For example, to prove Lemma 12.11(iii), we break up the right-hand side
of 12.11(1) into three integrals extended over (—-°=, — A), (— A, 4), and (4, )
respectively. The last of them is equal to the limit, for A’ — s, of the expres-
sion

x
n %/ 1t {1+ }[Sluw(fmx)——smn(f—x)] dt.
=4

Applying the second mean-value theorem to the factors f(¢)// and 1/(f— x),
and observing that f(f)jt—>0 as t-res, we see that (1) tends to 0 as Ao,
A’ o<, This shows that the integral over (4,=) exists and that it tends to 0
as A - e, uniformly in xeJ, and w_>1. The reader will have no difficulty in
completing the proof.

12.2. Fourier’s repeated integral. Suppose that |f ()]
is integrable over (— oc, oc). Then the right-hand side of 12.1(1)
is equal to
1 17,7
- ]f(t)dt / cos s(x—z‘)a’s-—:_[ds [ 7ty cos s (x — 1) dt,
(L L) —oa

the inversion of the order of integration being clearly justified.
Hence S,(x) is a partial integral of the infinite integral

'y Pringsheim [2]. The condition that f(#)/t—»0 with 1/ is neces-
sary, for, if e. g. F(f) = ¢, the integral 12.1(1) diverges.
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;= oo
@) - = s [f(t)coss(x—t)dt_
T —oo
3) = / (as cos 5x -+ bs sin sx) ds = / csei% (s,
where
17 1
@) a=— f Ftycosstat, b,== [f(@)sinstat,
- 1 .
®) = / f(t) et df =1 (as— iby),

The expressions ds, b, cs are analogous to Fourier coefficients;
but s is a continuous variable and we obtain a trigonometrical
integral of the form (3) instead of a trigonometrical series. Given
a function f(f), — oo <t <o, such that the integrals (4) have
a meaning, we may consider the integral (3) or, what is the same
thing, the integral (2), and ask in what sense does it represent
f(x). The integral (2) is called Fourier's repeated integral. Tt is
plam that if we have (1) for every o, then the partlal integrals

S,(x) of (2) are given by the formula 12.1(1), i. e. the problem
reduces to that of representing the function by means of Fourier’s
single integral, a problem which, in the most important cases, is
settled by Theorems 12.1 and 12.2. The formula (1), however, is
true only under certain conditions bearing on the behaviour of
f(® not at individual points but in the whole interval (— oo, =0);
more precisely, in the neighbourhood of #= 1 oc. This causes
the range of application of Fourier’s repeated integral to be more
restricted than that of Fourier’s single integral?). The formula (1) is
certainly true when |f| € L (— oo, o), and so, in view of Theorem
12.1, we have: If |f|el(—o9, =), then S,(x;f)— Sp)(%;fa) » 0,
uniformly in x € Ji, where S,(x) denotes the partial integral of (2),
and fa, Jo, and Jb, have the same meaning as before.

) The range of validity of Fourier’s repeated mtegral can be consider-
ably extended if we suppose that the integrals (4) are summable in some
sense, e. g. summable (C, %) (§ 12.3). We shall not consider this problem
here.
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12,21, * The last theorem holds if f(t) is integrable over any finite interval,
tends to 0 with 1/f, and is of bounded wvariation in the neighbourhood of t = oe,

Assuming, as we may, that f(¢) tends monotonically to 0 as - 4o,
{t| > B>0, by means of the second mean-value theorem we verify that the
inner integral on the right of 12.2(1) converges for every s> (but not neces-
sarily for s =0), and that the convergence is uniform over any range

0<8<{s<Cw. Hence

1 1 ujd ?‘}t (x—1) dt= 1 /D;(t)giwdtw-l_ ﬁf(t)ii.n_aﬁjt_)dt

();—_\/ s'/ (t) cos s (x—t1) = P . - .
g —oe —oo —-oc

We will show that the second integral on the right tends to 0 with 4. For
the proof we break up the integral over (—-=o =) into three integrals, extended
over (— =,—A), (—A4, A), and (4, ) respectively. Since the integral of (sin u)/u
over any finite interval is bounded, an application of the second mean-value
theorem shows that, if A > B is large enough, the first and the third of the
three integrals are numerically less than a given £>> 0. Since, for fixed A4, the se-
cond integral tends to 0 with &, the last integral on the right of (1) is less than
3z in absolute value for & small enough, i.e.ittends to 0. 7Thence we obtain 12.2(1)
{and so also the theorem), where however the outer integral on the right is an improper
g @1
integral : / = lim /

That this is essential, and that g(s) =f f@® coss(x—1)dt,
R

5 oo
considered as a function of s, may be non-integrable (in the Lebesgue sense),
in the neighbourhood of $=0, may be seen from the following example.
There is a sequence &;.24as>>..-> 0 such that the sum of the series T a, cos ns
is not integrable in the neighbourhood of s=0 (§ 5.121). Let x =0, f (¥ =a,
for n—4<<t<n+4% n=1,2.., f()=0 for 0<{t<Y, f(—1B)=F(t). Then
sg(s)/dsints =T a,cosns, and g(s) is not integrable in the neighbourhood of
§ =0 (see also § 5.7.4).

This result shows that, under the Kypotheses of the theorem stated at the

beginning of the section, the outer integral in Fourier's repeated integral must be
w

understood in the sense lim / .
W—res g
550

12.3. Summability of integrals. So far we applied summability to
series only, but a similar theory can be constructed for integrals. We start
with the following lemma.

Let 5 (x) and §(x) be two functions defined for x>0 and integrable over
any finite interval (0, a); suppose that $ (x)>0 for x>0 and let ® (x) and ¥(x)
denote respectively the integrals of ¢(t) and ¥ (f) over the interval 0, x). Then, if
¥ (x) > o and o (x4 (x) > 5§ as x— o, we have P (x)]¥ (x) > s.

For s=0 the lemma was established in § 1.71. If we apply that

result to the funetions ¢, (x) = v (x) — s (x), and ;(x) =4 (x), we obtain the
general result.

) Cf Tomelli, Serie trigonometriche, p. 418.

icm

[12.8] Sammability of integrals. 311
We write @y(x) = ¢ (x), and denote by Py(x), k=1,2,..., the integral of
®,_,(t) over 0 <t x. Similarly we define ¥,(x). It is plain that, if
ch(x)/‘Fk(x) —§ as x—>es, then @)(x)/¥(x)->s for [ > k. Suppose that c(x)=1;
then ¥,(x) = x®/kl We shall say that s is the (C, k) limit of 3(x) as x>
and write (C, k) o (x) = s, if @p(x) Ex® s, i e if

X
1) kx—F / (x—tfF o dt>s as  x>es
b

Now we may take (1) as the definition of the (C, k) limit for every £2>0,
integral or fractional. By the (C,0) limit of the function 7(x) as x> ==, We
mean the ordinary limit. Since ¢ is integrable over any finite interval (0, a), the
left-hand side of (1) exists for almost every x (this follows from the resalts
of § 2.11) and is itself integrable over (0,a). If 7(#) is bounded over any
finite interval—a most frequent case in applications—the left-band side of (1)
exists everywhere.

() If 2 >»0, >0, and if (C, ay e (%) s, then (Coa—3) 5 (x) > 5.

We assume that «>-0. In the argument we shall require the formula

1 rere,

T a1y BT g ==
@) ju“ (A —wfdu =

0

a proof of which will be found in most text-books of Analysis ). Let us
denote the left-hand side of (1) by k@,’z(x);’xk. We begin by proving that

X
I (a+9) B-1 4
@, ()= - [y (x— 1) dt.
®) T @ a[ :

For the integral on the right of (3) is equal to
X

x f £ o o
f(x —pPt dtf@ ) (¢ —u)* Vdu = /u () du {f(x— A ¢ — dt}v.
0 0 0 u

Thence, transforming the variables in the inner integral on the right, and
using (2), we obtain (3).
= o
Now, if (C,a)g{x)—>s, then @’;(t):st“/u—{—s(t)f , where =(t) >0 as t—>==.
Sinee I' (k1) =+ (2), we obtain from (3)

X

- R 51
(4) (=49 (Z);_._B(x)[xa'”“ =s-Cx ¥ / O x—t T dt,
’ 0

where C denotes a constant. Let ¢>0 be an arbitrarily small number and
let |e(®) | <= for £2> X Breaking up the last integral into two, extended

1) The formula (2). can also be obtained from‘3.11(3)' and the relation

A ~ 0P (@ 1)
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over (0, x;) and (xp, x) respectively, the reader will have no difficulty in prov-
ing that the right-hand side of (4) tends to s. This completes the proof of
the theorem for @ >0 !). The case «==0 is still simpler.

In the foregoing discussion we supposed that x — e but-a similar
theory may be developed in the case of x tending to any other limit. For
example, the (C, &) limit of ¢ (x) for x>0 may also be defined by (1), with
the difference that in that formula x now tends to --0.

Given an integral J= /f(t) dt, we shall say that it is summable (C, &),

0

X
to the value s, if we have (1) with o (¥) = / F() dt, i. e. it
i

X
(5) x / (x— t)kf ®dt—>s as X > oo,
6 Lt

This definition presupposes that f(x) is integrable over any finite interval.
The left-hand side of (5) exists then for almost every X, even if #>>-—1. In
view of (i), summability (C,z) implies summability (C,a+8), u >0, >0, to the
Same value?),

Given an arbitrary series (I/)uy-F1,4-..., let U =uy++uy + ... u,, and let
Uxy=U, for n<Cx<n+1, n=0.1,... If, for x— o, the (C, &) limit of U (x)
exists and is equal to s, we shall say that the series U is summable by
M. Riesz’s method of order z, or summable (R, =), to sum s. M. Riesz has shown
that the methods (R,o) and (C,2) are equivaleni 8), i. e., if a series is summable
by one of these methods, it is summable by the other to the same sum. The proof
of the general result is rather complicated, but the special case « =1, which
is of independent importance, is fairly easy and may be left to the reader as
an exercise.

Since, under the hypothesis of Theorem 12,1, the (C,1) limit of the difference
Sm(x) — 8p,1(¥) exists and is equal to 0, and since Fourier series are summable
{C,1) almost everywhere, we obtain:

Under the hvpothesis of Theorem 121, the (C,1) limit of S, () exists al-
most everywhere and is equal to f(x). In particular, this limit exists and is équal
o L{flx+4-0)Fflx—0)] at every point of simple discontinuity of f. It exists
uniformly over any finite interval at all points of which f is continuous.

In the same way we may complete Theorems 12,12 and 12.2. If we
assume M. Riesz's equivalence theorem in its general form, we may replace
summability (C.1) by (C,8), 8>>0. All these results can however be obtained
independently of M. Riesz’s theorem, by an argument similar to that of § 3.3 9).

1) The result holds for § = o
?) The result holds for o> —1.
3 A prool will be found in Hobsoun’s Theory of Functions, 2, p. 90.

‘) See e.g. Hobson, loc. cit. p. 737.
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12.4. Fourier transforms ), Changing the definition 12.2(5)
slightly, we shall write

yazm

m F)=—= [f(x)edx,

where f(x) is now a complex function. When f(x) is represented
by Fourier’s repeated integral 12.2(2), we have

@ f@ = [Fewa,

the integral on the right being defined as lim / The function

F(y) is called the Fourier transform of f(x)’.
x if fe L (—o>, o). We shall now prove that

Q) If [ (%) e L¥(— oo, ~), the integral in (1) converges, in a
certain sense, to a function F( ) e L¥—oe,x).  The function F
satisfies (2) and the relation

—

It exists for every

®) JIFEdy= [ 15 2ax.

Let S denote the set of step-functions f(x) which vanish for | x|
large. If f €S, we define F by the formula (1); in all other cases
we shall define F indirectly. We begin by proving (3) for fe S.
Then, for o >0,

¢ oo oo -
(4) _/ ; F(,V) }3 dy :‘—é]i / d)’ /f(.?C) e—ixy dx /f(x') oIty ! —
—wo z -/
= 21,.. / /~f (x)]?(x’) dx ax' ‘/Q ng'(x"—x) dy =

® 2 x— % )

where S, is defined by 12.1(1). The above transformations are
perfectly legitimate since the integrals are infinite in appearance

!) The results of this section are due to Plancherel [1], [2]; see also
F. Riesz [9]. Interesting generalizations will be found in Watson [1].
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only. Now observe that, in the case considered, S,(x;f) is uni-

formly bounded in X and ©, and tends to f—(x) as o - oo, except, per-
haps, at a finite number of points. It is sufficient to consider the case
when f is the characteristic function of an interval. But then the
result follows (independently of the more difficult Theorem 12.1)

o

from the formula / &in 7
0

integrals of the last integral are bounded. Comparing' the
extreme terms of (4), and making @ » oo, we obtain the equation (3),
by Lebesgue’s theorem on the integration of beunded sequences.

The formula (1) defines an additive operation F=T{f]. This
operation is actually defined for functions f belonging to a set S,
which is everywhere dense in the space L*(— o¢, o0)1). Hence, in
view of the formula (3), valid for fe S, and the remarks of
§ 9.227), the operation T|[f] may be extended, by continuity, to
the whole space L*(— oo, o2), and this extension is unique. This
operation is of type (2,2) and its modulus is equal to 1. This means
that, for every fe L*(— oo, o0), we have (3) with ‘=’ replaced by
‘’. To prove that eguality actually occurs, let fel2 f,eS,
n=1,2,..., W[ f=fa]+03), Fo=T[fs]. Since M,[F—F,] <[ f—f]~0,
Minkowski’s inequality gives: W,[f,]- My[f], M[F,] ~ My[F]. This
and the equations Mo[fu] = M,[Fa] imply My[f] = M,[F], i. e. (3).

It remains to prove (2), which may be writen f(x)= T*T[f],
where 7" denotes the operation we obtain from 7 by changing
the sign of y. Since the operations T and 7* are continuous in
the space L*(— oo, o0), it is sufficient to prove the relation f=TT[f]
when fe S, or, still simpler, when f is the characteristic function
of an interval (g, b). Then F(y) =i (e " — e~49)/)/2z y, and

dt=*%% and from the fact that the partial

) This is a special case of the more general and difficult Theorem 9.21(i).
An independent proof runs as follows. Let S; be the set of functions
F(x) € L¥(— ==,=<) which vanish for | x| large. S, is dense in L2(— oo, =), and so0
it is enough to show that Sis dense in S,. Let fe S,; transforming the variable
X, we may suppose that f(x) vanishes outside (0, 2%). Then there is a conti-
nuous function s(x) such that M,[f— 35 0,2z] <Y%e (§ 4.21(1)).' If s(x) is a
step-function vanishing outside (0,2), and sueh that My[s— s; 0, 2¢] < Yz, then
mkz[f— §; — oo e0] <&,

*) The Stieltjes-Lebesgue
Lebesgue integrals.

integrals considered there reduce to ordinary
)Y We write M.[g] instead of My(g; — o5, 4]
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oo

1 7 y 1 [sin(x—a)y 1 [sin(b—x)y

5) == | Fy)eWwdy=— | —— gy~ | T2 gy
(5) p/2n_;[ ly M/ Y ”/ P
i. e. the left-hand side of (5) is equal to 1 for a <<x <&, and to
0 for x < a and x > b. This completes the proof of (i), if we take
for granted the result, which will be established below, that,
wheneveér the integral defining the transform of a function ge L?

converges almost everywhere, it converges to T[g].

In the previous argument, the operation T[f| was defined
directly by (1) only when fe S; to define 7[f] for general f we
used continuity. We shall now show that, if geL*(— >0, ~) vanishes
outside some interval (—A, 4), then T[g] may still be defined by
the formula (1I). For let G (y) = T[g] and let G*(v) be the value
of the integral in (1), with f replaced by g. Let ga(x), n=1,2, ...
be a sequence of step-functions vanishing outside (— 4, 4) and
such that Mg — g.]>0. I Gu(y)= T[gns], then MW[G— G,] >0
and, a fortiori, M,JG — G,; — », ©] » 0, for every ®>0. On the
other hand, Schwarz’s inequality shows that G.(y) tends uniformly
to G'(y) over any interval, and so M,[G* — G,; — w, 0] > 0. This
and the relation IM,[G— G, —o,0] >0 show that G*(y)=G(y) for
—o<y<w, and so also for —co <y < cc.

Let fel? (— oo, o) and 0 > 0. We write

w

© Fu(3) = }»%;_fmf () et dix;

then F,(y) = T[f,], where f,(x) is equal to f(x) for |x|<<w, and
to 0 elsewhere. Since M[F, — T[f1l =M[f, —f]1-0 as v~ oo,
proposition (i) may be restated as follows:

(ii) For every f e L¥— oo, o), the integral in (1) converges in

. mean to a function F(y) e L?(— oo, ), that is My[F— F,}->0 as

w - co. The integral in (2) converges in mean to f(x), and F and
f satisfy the Parseval relation (3). '

Since M.[F — F,] -0, there exists a sequence {wz} such thz'at
ka(y)+F(y) for almost every y (§ 4.2). Therefore, if the integral in
(1) converges almost everywhere, it converges to the transform of f

It is not difficult to obtain a formula for F(y). Let @(y)

and @,(y) denote the integrals of F and F, over (0,y). By
Schwarz’s inequality, |@ (y) — @, ()| < ¥y I[F — F; 0, y] -0,
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i.e. @ (3)=1lim B,(y). Since D,(y) = == [F () *——"dx, and
woroe V2r_ 2, —ix

D'(y) = F(y) for almost every y, we obtain the first of the form-
ulae '

df 1 Fpae=1 ) df 1 Froe=1
7 F(y)=—]-—"= X)——-dx ] X)=—1—= F dyt.
(@ F= gl [fom e fo=g s [For— =)

The second formula, which corresponds to (2), may be ob-
tained similarly. .

The formula (2) tells us that to every f(x)e L*(— oo, o) cor-
responds a function g(y) € L3(— o0, =), whose transform is f (x)
(an analogue of the Riesz-Fischer theorem). It suffices to put
g (y) = F(—y), where F(y) is the transform of f (x).

1241, If f(x) e LA(—o0, o0), 1 <p 2, the integral in 12.4(1)
converges in mean, with index p' = p/(p—1), to a function F(y)eL”,
which satisfies the equations 12.4(7) and the -inequality

L1 Fraral” <L Foremad” )
‘}"'2:;/ P J l;/z:wjm ey x’

This is an extension to Fourier integrals of Theorem 9.1(a).
We first observe that the formula 12.4(1) defines a functional
operation F=T{[f], when feL(~cc, o) or fe LX(—oc, o). Using
the notation of § 9.22, we may say that 7 is of type (1, =) and
of type (2,2), and that M, = (2x)~", My, », = 1. Hence, by Theo-
rem 9.23, the operation may be extended, so as to become of
type (7, p'); and My, 0 < (25)—42, This gives (1), where F= Tif].

Let f, have the same meaning as in § 12.4. If fe Lp, then
fuel, and so F,=T[f,] is given by the formula 12.4(6). Since
Wl T 1= Fl < Myp, 1w D[ f— £,]-0, the integral in 12.4(1) con-
verges in mean, with index p', to a function F(y)elr. Arguing
as in § 12.4, and using Hélder’s inequality instead of Schwarz’s,
we obtain the first formula 12.4(7) (cf. also § 12.5.8).

To prove the second formula 12.4(7), observe that, if f(x) is
absolutely integrable over (— co,co), then the Fourier integral of
f may be integrated formally over any finite interval. This fol-
lows e. g. from the fact that Fourier series may be integrated

1)

) Titehmarsh [6]; see also M. Riesz [3].
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formally and Theorem 12.1. Since f e LP(—coc, o0), p > 1, the func-

tion equal to f(x) for |x|<a and to 0 elsewhere belongs to

L (— oo, o0), and so, if | x| <a,

x oo . a >0 . .

r 1 e”‘-"——lj : it 141 1 rev—1
fu)de=— — /SO eVdti dy=—= | ——— Fu(y) dy.

5/ 27:_'[0 iy lja f V2= / iy ?

Since My[F,— F]+0 as a - co, an application of Holder’s inequal-

ity shows that we may replace F.(y) by F(y) in the last in-

tegral, and the second formula 12.4(7) follows. This completes

the proof of the theorem.

/ Live—oo

12.42. The result which we obtained is, in one respect, incom-
plete. Whereas it was proved that the integral in 12.4(1) converges in
mean, with index ', the reciprocal relation 12.4(2) was established only
in the sense of the second formula 12.4(7). This result was completed
by Hille and Tamarkin [38], who showed that the integral 12.4(2)
converges in mean, with indzx p, to f(x). This theorem is sug-
gested by Theorem 7.3(i), if we observe that the funciion F(y)
is an analogue of a sequence of Fourier coefficients, and the part-
ial integrals of the integral 12.4(2) play the role of the partial sums of
a Fourier series. The proof is based on the following lemma:

If fel'(— oo, c0), r>1, the function

W @=L [LOsoml [LEXOTEZD g

pe—

0 T L t

exists for almost every x and satisfies an inequality M [g] <AL f],
where A, depends on r only?).

Since, in view of Holder’s inequality, the function f(£)/(t—x)
is integrable in the neighbourhood of /= oo, the first part of
the lemma follows from Theorem 7.1(i). To prove the second part,

Ttn
we put gu(x) __1 f f@)ctg 52———?— dt and consider the difference
2z n

iv —n

G = g (x) — gu(x). Then

wn
1 [ 2n
Sy = Hl-—ct
On 27:n_’[,,f() < —t g

x—1

]dt—;—

n

) M. Riesz [4].
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+ L IO g L ITO gyt
T e X — 1 T X —1
The expressions ¢, 8., and 7, tend to 0 as n-co ); hence &, - 0,
&n(x) ~ g (x), and an application of Fatou’s lemma to the inequality
Mg — =1, wn) L A, — =i, ©n] << AAMG[f] (§ 7.21) shows that
W,[g; — w, w] < AN[f] for every w>0, i. e. M[g] < AM,[f].
This completes the proof of the lemma. '

If F,(y) is given by 12.4(6), and @ >0 is any finite number, then

sin w (x

% [ra - D a.

Sinee F,(y) tends in mean, with index p’; to F(y), we may put
o = oo in the last equation, and we obtain

[ Ey) e dy =

V2r

X —

@ 7;— [Foyewdy=L [ro 2204

Applying the lemma and using the same device as in § 7.3,
we obtain that the left-hand side @.(x) of (2), satisfies the inequality
Dip[Po] < 24,M[f]. To show that Mp[Pw — f]+0 as w - oo, we
put f=f"+f", and, correspondingly, @ = @), + D}, where fleS
(§ 12.4) and M,[f"] < & then

Ml f— D] <M 1= D]+ Mg [ ']+ M D] < W[ fr—Bly] + 2A4,+1)-,
and it is sufficient to show that M,[f' — D]~ 0. We may restrict
ourselves to the case when the function f/, which we shall now
denote by f again, is the characteristic function of an interval
(a,b). Then F(y)= [ (e~%* — e~¥2)/y2zy, and the second mean-
value theorem shows that

197 )wsin By e sin y 1
Do) = —[ | —ay4 [ SRy dy} = w-’O(——)
=Ly oy sy x|
for | x| large.Since M,[Pu—f; —A4, 4] tends to 0 for any fixed 4, and
’:‘ﬁp{@w——f; —o0, — Al +My[Pw — f; A, o] is small for A large, it
Is easy to see that M,[Py—f] - 0,-and the theorem is established 3.

x—1

] ') Sinece |Lu—ectgu j< C <o for |u| <3, «, we obtain that, for fixed
X, and n large enough, |, |<<CM (£ — 7, wn)f2mn < C M| F1(2rn)—1ir 0.

_2) Hence any function fe L? (— e, =), 1 <p<.2 is the transform of a
function g el (— o=, oq).
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10.5. Miscellanecus theorems and examples.
1. 7 L
1. If f(x)el?(—eo, o), the integral —= / F(x)e ¥ dx is summable
Vom o

(C,1) for almost every y. Plancherel 2]
[Observe that f(x) is the transform of a function of the class L* (— o=, ==)].
w .
3 1 . s g
2. If f(x)el?(— e, ee), then —== / Fx)e P *dx=0(} log w), for almost
every V. 2=
[Use the method of § 10.32].

8. If f(x)el?(—-os,<), g>>2, the function
) —ixy __

1 ~ e
Vo 1O

maj be almost everywhere non-differentiable.

[Let {a,} be a sequence of real numbers such that £z, <o, T az = oo}
put f(x) =a, for "y < x|<2®+Y, n=0,1,.., and f(x) =0 elsewhere,
and apply Theorem 5.7.7. For a similar result see Titchmarsh [6]].

4. Show that Mellin's inversion formulae

|~

= cine
“D(s)=.[ i@y s =gy [ @

0 £—ioo

[

may, with suitable conditions, be deduced from the formulae 12.4(1) and 12.4(2).
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