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CHAPTER XL

Riemann’s theory of trigonometrical series.

11.1. In the previous chapters we have, almost exclusively,
considered the behaviour of Fourier series. Now we shall prove

a number of theorems concerning the properties of trigonometrical
series

(1) Lta,+ ;_‘j] (@ cos nx + b, sin nx)

with coefficients tending to 0, but otherwise quite arbitrary. The
fundamental results in this field are due to Riemann, and these
results, with their subsequent extensions, constitute what is now
called the Riemann theory of trigonometrical series. The chief
results of the Riemann theory concern the problems of uniqueness
and of localization for trigonometrical series.

In what follows we shall suppose, unless otherwise stated,

that the coefficients of the trigonometrical series considered tend
to 0.

11.41. The Cantor-Lebesgue theorem. In the sequel
we shall frequently use the following notation:

La, = Ay(x), ancosnx-+ basinnx = An(x),
b, oS X — @nsinnx = By(x), n>0,
An(x) = pn cos (nx + o), Where op = @+ by, paz 0.

The following theorem is called the Cantor-Iebesgue theorem:

(i) If An(x) tends to 0, as n—cs, for every x belonging to
a set E of positive measure, then an—0, by~ 0.
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A

For, if p» does not tend to 0, there exisls a sequence n<n,<..
of indices, and an ¢ >0 such that p,,>¢, k=1,2,.. From this,
and the relation p,cos (nx+a,) >0, we obtain that cos (r; X~+p,)+0
and, a fortiori, cos*(mxx +a,,) >0 for x ¢ E. The terms of the
last sequence do not exceed 1, and so, by Lebesgue’s theorem on
the integration of bounded sequences, the expression

(1) [ cost(mx+an)dx'=4 [ dx+ [ cos2 (e x+ay)ds
E E .E

tends to 0. Since the numbers L /cos 2mpx dx, l/‘sin 2m x dx
are Fourier coefficients of the characteristic function of E,
they tend to 0, and the right-hand side of the equation (1)
tends to §|E|>0. This contradiction proves the theorem. As
corollaries we obtain the following propositions, the second of
which contains the first as a special case. '

(i) If the series 11.1(1) converges in a set E of positive meas-
ure, then a,- 0, b,— 0.

(iii) If the series 11.1(1) is' summable (Gh), k>—1, ina
set E of positive measure, then a, = 0(n*), by=o0(n*),

To prove (iii), we observe that Qnn~*cos nx + b, n—* sin nx -0
for x € £ (§ 313) and apply (i). From (iii) and Theorem 2.221 we
infer that, in the general case, the method (C, k), k<< 1, is too
weak to sum Fourier-Denjoy series.

11.12. A generalization of the previous theorem. Given
any sequence of real numbers &y, %, ..., and & number —1 <g <y,
we shall denote by E, the set of points in the interval (0, 2%)
for which cos(nx+ a,) > 8 We have |E,|=2x9, where the.

positive number 0 is equal to (arccos f)/z, and so |E,| depends
on § only.

For any infinite sequence n<n,<.., and fixed B, the product
E =En Ep, .. is of measure 0. Clearly we may omit as many
factors in the product as we please, since this only extends FE.
In the first place, we observe that, if S is any finite system of
intervals, then |SE, +8[S| as n- co. Now let § < 8, <1, m;=n,,
and suppose that we have already defined m,, m,, ..., mu_,. It
Si—1= Ep, En, ... Em,_;» we can find a number M > my_; belonging

to {n;} and such that l Sk Em)?i < 0] Se—1|. Hence, putting
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St = Em, Em, - Emyy, we have 'S;' < 2z87. Therefore  Em, Em,... =0
and, a fortiori, |E|=0.

Sets such as the set £ which we have just considered, will
be called H-sets!). Every F-set is defined by the sequences
My Ny wee s %,y Ony oo (the second of which we may denote by 2,2, ...
simply) and the number 3. If np=3% 2,=0, k=1,2,..., and

= —1, we obtain Cantor’s ternary set constructed on (0, 2:)'. ]

We shall say that a set is a H_-set if it is a sum of a {inite
or enumerable sequence of fI-sets. Since every f-set is closed
and of measure 0, it is non-dense. Therefore seis of type H,
are of the first category and of measure 0.

We shall require the following lemma.

If {ox) is an arbitrary sequence of real numbers and n, <<n,<<..
an arbitrary sequence of integers, then, except perhaps fo;r x belong-
ing to a set E of type H,, we have lim| cos(nzX + %)= 1.

If 0<y<1 and if |cos(msx+ =) <7y, then, & foriiori
cos (nx % + 2x) > — 1. Let G denote the set of x such that
|cos (rex—+22)| Ly for 2>i. From what we have just said 1tvfollovsi§)that
G (C FfN, where F{ is an H-set. Therefore G =G+ G +..
isl contained in an F/_-set, and the same i—itrue for the' set
E=GU4-GW+G0-+..., outside which we have lim | cos({zkx—l— a5} =1.

Now we are in a position to prove the following theorem
due to Steinhaus.

Except perhaps in a set E of measure 0 and of type H,,

T . ; e 3 g R
lim | a, cos nx + b,sinnx| = lim Va,+ ba ).
n—os n—yeo

Let Au(x) = pacos (nx + a,), and let {n:} be a sequence such
that lim pn, = lim go. If E is the set E of the lemma, then out-

side E we have B
Tim | Ax(x) | > lim | Any(%) | = lim pn, = Jim pa,

i. e [im|Au(x)|>>1im p.. Since the inverse inequality is satisfied
for every x, the theorem follows.

. . 1].
1y These sets were introduced by Raj chman [ )
’; Steinhaus [8] proved that |E|=0; that E is of type H_ was

shown by Rajchman [1}.
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It is plain that the Cantor-Lebesgue theorem is a consequence
of Steinhaus’s. Since f7-sets are of the first category, we obtain,
in particular, that, if A.(x) tends to 0 in a set of the second cate-
gory, then a, -0, b, »~071).

11.2. Riemann’s theorems on the formal integration
of trigonometrical series?. Given the series 11.1(1) with
an, b, ~ 0, consider the function

S @, cos nx + b, sin nx
M F=ae - 3 st sty
n=1 ~

The series on the right, which is obtained by integrating 11.1(1)
formally twice, converges absolutely and uniformly, and so F(x)
is continuous. It will be readily seen that

F (x -+ 2h)+ F(x — 2h) — 2F (x)
2 = o .

nh -

The numerator of the ratio on the left will be denoted by
A*F(x,2k). The upper and lower limits of indetermination of
A2F (x, )/, as h~0, will be denoted by D?F(x) and D?*F (x)
respectively. The common value of D?F(x) and D?F(x), if it
exists, will be denoted by D’F(x) and called the generalized
second derivative of F at the point x. If D?F(x,) exists and is
finite, we shall say that the series 11.1(1) is, at the point x,,

summable by Riemann’s method of summation, or summable R, to
the value D? F(x). : :

At ZA”(X)(sinn/zr-
n=1

W) If 11.1(1), where Qny bn 0, converges at a point x to
sum S, it is also summable R to the same sum.

It is sufficient to show that 42F (x, 2/,)/4h} tends to s for
every sequence {#;} of positive numbers tending to 0. Let us put
Agt At An=5,, (sin? )/ B2 = (k). ‘Applying Abel’s transformation,
we see that the right-hand side of (2), for 4 = hi, is equal to

oo

(3 2 5 {u (nh)) — u ((n + 1) b}

n=0

) Young [14].

* Riemann [1]. Proposition (i) of this section is a épecial case of
Theorem 10.42, but we prefer not to use that result.
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Here we have a linear transformation of the sequence s, S,
and, to prove that (3) tends to s, it is sufficient to show that
the Toeplitz eonditions of § 3.1 are satisfied. Conditions (i} and
(if) are obviously satisfied. To verify (iii) we observe that

oo {n+1)71. £

@ Niu@h)—u((n+1) Yy < E& / Iu‘(t), dr :f w'(t)  dt,
n=1 . =0 nhy u

and that the last integral is finite.

Theorem (i) may be generalized as follows.

(i'"Y If the series 11.1(1) has partial sums s,(x) bounded at x,
and if §(x) =lim s5,(x), s(x)=lim $,(x), then the numbers D*F (x)
and 53—F (x) are both contained in the interval (8 — kZ, §-+ kg),
where 2s=§(x)+5(x), 28 =5(x)—s(x), and k is an absolute
constant. -

This follows from § 3.101, if for 2 we take the upper bound,
for all {&;}, of the sums on the left of (4).

(i) If a, and b, tend to 0, then

F (x + 2h) + F (x — 2h) — 2F (x) S

sin? nh
=Ah+ 3T
4}1 n=1

nth

) 0

as B~ 0.

It is again sufficient to prove (5) for any sequence {4} of
positive numbers tending to 0. The series in (5) is a linear trar’ls—
formation of the sequence A,- 0, and so it is sufficient to verify
Toeplitz’s conditions (i) and (iii) (condition (ii) need not be tested).
The first of them is obviously satisfied. To prove (iii) we observe that

o

©) b+ 3 sin?nhk;

oy < (N 4 1) b+ 1/ N
n=1 H*1;

neNp 120N

% nhd - 1
)

If we put N=[1/4]+1, then 1/ <N<1/hi—+ 1_ and the right-
hand side of (6) is less than 4 for |/ < 1. This completes the
proof.

It is plain that () is satisfied uniformly in x. . .

The relation (9) is satisfied at every point X, irrespectively
of the convergence or divergence of the series 11..1(1). If. Q(x)
is the sum of an arbitrary trigonometrical series with coefficients
o (n~?), then 4G (x,2h)/4k~0 for every x, and k- 0; for G may
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be considered as the function F corresponding to a trigonome-
trical series with coefficients tending to 0.

1f for a function F(x) we have 4*F (x,,%)/h~ 0, then F will
be said to be smooth at the point X, For, writing 4*F (x,, h)/h
in the form {F (x, + k) — F (xo)}/h — {F (%) — F (xo — )} /R, we see
that F cannot have an angular point at x,: if the right-hand and
the left-hand derivatives at x, exist, they must be equal.

11.21. Fatou’s theorems. Instead of the function F(x)
defined by 11.2,1), we may consider the function
= qg,sinnx — b,cosnx

- ™
@ Le=tart2 .

obtained from 11.1(1) by a single integration. Then

L(x+]z)—L(x——h)=A + ;A ) (sinnh).
9% et nh

The trouble is that, in the general case, the series in (1)
need not converge everywhere, even if 11.1(1) converges for every x
(a simple example is provided by the series S (sin nx)/log 1), and
this makes the function L (x) much less convenient in applications.

It L (x) exists in a neighbourhood of a point x, and if the
ratio {L (x,+ k) — L (x, — k)}/2k tends to a limit s as 2~0, we
shall say that the series 11.1(1) is summable by Lebesgue’s me-
thod of summation, or summable L, to the value s, at the point x,.

(i) If a, and b, are o (1/n), a necessary and sufficient condi-
tion that the series 11.1(1) should converge, at a point x, to sum S,
is that it should be summable L to s1).

In view of the conditions imposed upon @, and &, F(x)
exists for every x. Let s,(x) = A4,+ 4, + ...+ As, N =/[1/A]; then

Lx+h—Lx—h _

Sy =
@ i sin nk N - in nh
=§_,‘An( —1)+ Y A E=prQ
n=1 tzh n=N+1 ﬂ/l

The terms of Q are o(n=2k~"), and so Q=0 (N-1h~')=0(1). Since

) Fatou [1]. In this proposition, as well as in (ii) below, the number
s may be infinite.
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(sine) u—1=0@)=0() for 'u, < 1, the terms of P are h-o(1),
and P=o0(Nh)=o0(1). Therefore P+ Q= 0 (1), and, in fact, uni-
formly in x, and the theorem follows. ,

By the Riesz-Fischer theorem, trigonometrical series with
coefficients o(1;n) are Fourier series.

(ii) [f an and b, are o(1 n), and if 11.1(1) is the Fourier series
of a function f such that f(x)-+s as x-x,-+0, then the series
converges at the point x, to the valne s.

(i) If a. and b, are o(1'n) and if 11.1(1) is Z [f], where f
is continuous in an interval a < x < b, then the series converges
uniformly in that interval.

To prove (ii) we observe that, at the point x,, the function
L (x) has a right-hand derivative equal to s. Since L(x) is a
smooth function (§ 11.2), the left-hand derivative at x, exists and
is also equal to s. Hence {L(x,+4)—L(x,— )} 2k -5, and so
by (i), Salx)—S. ﬂ ’

To prove (iii) we notice that, if 240, then {L(x+A)—L(x)\ %
tends to f(x), uniformly in the interval () a < x <{a+1(b— é).
Since A°L (x, )k -0 uniformly in x (§ 11.2), we obtain that
{L(x)—=L(x—N)}/h~f(x), and so also {L(x+h)—L(x—h)\2h-f(x),
uniformly in /. Similarly we prove the last relation in ’the'remaining
part of (a,b), und it is suffieient to observe that the lefi-hand
side of (2) tends to 0 uniformly in x.

11.3. Uniqueness of trigonometrical series. In previous
chaplers we have learnt to associate with every integrable and
periodic function f{x) a special trigonometrical series —the Fourier
series of f(x) — which, as we have shown, represents f(x) in
various ways. It is natural to inguire whether functions can be
represented by trigonometrical series other than Fourier series.
This problem has many aspects, according to the sense which
we assign to the word ‘represent’. The problem of the converg-
ence, or summability, in wmean was discussed in Chapter 1IV.
In this paragraph we shall consider the representation of functions
by meauns of trigonometrical series which are everywhere convergent.
The following results are fundamental for the theory of trigono-
metrical series.

A. Zygmund, Trigonometrical Series. 18
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@ Ka trigonometrical Series converges everywhere to 0, the
series wanishes identically, i. e. all. the coefficients are equal to 0.

(i) If two trigonometrical series converge to the same sum
in the interval (0,2x), the series are identical, i. e. corresponding
coefficients in the two series are equal.

(iii) If a trigonometrical series converges in the interval (0, 2=)
to an integrable function f (x), the series is & /1.

Of these theorems, (ii) follows from (i), and the latter is,
in turn, a consequence of (iil). Theorem (i) is due to Cantor;
(iii) was established, in the case of f bounded and integrable in
the Riemann sense, by Du Bois-Reymond, and in the general
case by de la Vallée Poussin ).

The most important step in the proof of (iii) will have been
achieved when we have shown that the function F(x) defined by
11.2(1) satisfies an equation

=y
(1) F=[dy[f@®ydt+Ax+B, (4 B constants)

i. e. that the formal integration of the series 11.1(1) corresponds
to the integration of f(x). For let Fi(x)= F(x)—1Y,a, x% itis
clear that the series 11.2(1) without the quadratic term is & [F].
The function F,(x) is a second integral and, as may be seen from
11.2(1), a periodic function. Let us put 2¢; = a, — ib, and write
Z[F,] in the complex form. Integrating by parts twice and
observing that F,(x) and Fi(x) are periodic, we have, for n~0,

2% n
c 1 r . 1 7 .
-l = / Fie i dy=——— / Fle—inrdx =
n 2z 2z n?;
2z piH
1 1 . 1 .
=—— [If—talemde=—— [feineax,
2= n*y 2zn?
2
. 1 s
1. e. Cp = — fe iny o x.
273

) Cantor [1], Du Bois-Reymond [3], de la Vallée-Poussin [3];
Denjoy [4] showed that, with a suitable definition of an integral, more
general that that of Lebesgue, every trigonometrical series convergent to a
finite sum is a Fourier series.

{11.31] Uniqueness of trigonometrical series. 275

To find the same formula for ¢, =14, it is sufficient to observe
that the function Fi(x)=F'(x)—1a,x is periodie, and so the
integral of Fi(x) = F'(x) —%a,=f(x)—1La, over the interval
(0, 2=) is equal to 0.

11.31. We shall now prove a number of lemmas, which give
a little more than we actually require.

(i) If a continuous function F(x), a<x<b, satisfies the
inequality D* F (x) 2> 0, except perhaps at an enumerable set E,
where however F is smooth, then F is convex,

It is sufficient to consider the case D?F>>0 for, if we put
Fu(x)=F(x)+x%n, then D*F.(x)>0, Fyx)—F(x), and the limit of a
sequence of convex functions is convex. If F(x) were not convex, there
would exist two points ¢ and B, and a linear function {(x)=mx+4n,
such that p (x) = F (x) — [(x) would vanish for x =2, x =5, and
would assume positive values somewhere in (=, 3). It is important
to observe that, if we replace m by m,, where m,>m and m, —m
is sufficiently small, we shall still have the same situation. Let x,
be a point in (z, B) where p(x) attains its maximum; hence
A% (x,, ) <0 for & positive and sufficiently small. It follows that

' D (x,) = D? F(x,) <0, which contradicts our hypothesis, and

so proves the lemma, unless x; € E.

Suppose now that x, belongs to E, and divide the inequality
Azp(xmh):P(xo+h)_(’(xu)+9(xo_h)”‘9(xg} <0 by A->+0.
The function p(x) is smooth at x,, and so, taking into account that
p (X +m) —p(x) <0, px,—h) —p(x) <0 for 7 small enough,
we obtain that the right-hand and the left-hand derivatives of
o (x) at x, exist and are equal to 0, i. e. p'(x,) = F'(x,) —m = 0;
in particular F'(x,) exists. Therefore if, instead of m, we take
a number m, > m sufficiently near to m, and such that m, =% F'(§)
for every &eFE, the point x, does not belong to E, and in this
case the lemma has already been established.

(i) If a function F(x), a<<x<b, has a continuous derivative
F'(x) and if, at a point x,, all the derivates of F'(x) are contained
between m and M, then m < D* F (x,) << D? F(x) <M

By the mean-value theorem, the ratio 4°F(x,,%)/h* is equal to
[F(x, + k) — F (x, — &,)]/2h;, 0<h, <h; and since the last ratio
is the arithmetic mean of the expressions [F(x, L ;) — F(x)l/Ay,
it is contained between m and M.
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(i) Let f(x), a <x < b, be an integrable function, f(x) the
indefinite integral of f(x), and >0 an arbitrary number. Then
there exist two functions 9 (x) and § (x) such that (a) | fi(x) — @ (x)|<e,
LA — b (x)| <e, (b) at every point where f(x) 7+ oo all the
derivates of  exceed f(X), and at every point where f(x) 7= —co
all the derivates of o (x) are less than I (x).

For the proof we refer the reader to any of the standard
treatises on the Lebesgue integral?).

(iv) Let f(x), a<x<bh, be an integrable function, finite
except perhaps at an enumerable set E. Let F(x), ‘f,’:<\ x << b, be a
continwous function such that D*F (%) < f(x) < D*F(x), except
perhaps in E, where however F is smooth. Then Fis of the form 11.3(1).

Let =n(x) and $.(x) be a pair of functions ¢ and ¢ from (iii)
corresponding to e=1/n, n= 1,2,.. Let J[g; a,x] denote the
integral of any function g (t) over (a,x). Let fix)=J[f; a, x],
Py = T Lot @y ). @ulx) = J [ @, 6], V%) = T[4 @ x]. From (ii)
it follows that D? ¥(x) > f(x) > D* F(x), D? @,(x) < f(x) < D?*F(x)

for x € E. From this, and from the obvious inequalities
D? ¥y < DUy — F)+ D*F, D*®y> DX@u—F)+ D' F,

we obtain DM Y5(x) — F(x)} > 0 and D¥H®Pu(x) — F(x)} <0, i e.
D?{F(x) — @ulx)} > 0, for x ¢ E. Using (i), we see that ¥, —F and
F — @, are convex functions. Since g,(x) - (%), dn(x) - fi(x), and
50 Dulx)=fu(x), Vulx)~>folx) as n—>=c, we obtain that f.(x) — F (x)
and F(x)—f.(x) are convex functions. Hence F(x)— fo(x) is a linear
function and the lemma follows. Incidentally, in view of (ii), the
result shows that D*® F(x) = D* F(x) = f(x) almost everywhere.

(v) If F(x) is convex in an interval (a, b), then D? F(x) exists
for almost every x and is integrable over any interval (a—+c«, b—¢),
e > 0.

Since F(x) is the indefinite integral of a non-decreasing
function £ (x) (§ 4.141), we have

F(x-+h)+ F(x—h)—2F (x) _
h

"
1) LB rn—t@—oa

1) Seee. g. de la Vallée Poussin, /ntégrales de Lebesgue, Saks,
Théorie de lintégrale.
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By Lebesgue’s classical theorem, {'(x) exists almost everywhere
and is integrable over (@ + ¢, b —<). At every point x where 3'(x)
exists, we have S(x+ ) —s(x— 1) =2t I (x)+ o (f), and so the
right-hand side of (1) tends to I'(x). This proves the lemma.

11.32. We are now in a position to prove Theorem 11.3 (iii),
and even the following more general result, in which the upper
and lower sums of a series with partial sums s, mean the
numbers lim s, and lim s, respectively.

If the upper sum f*(x) and the lower sum f,(x) of the series 11.1(1).
where a0, b0, are both integrable, and finite outside an enumerable set
E of points, the series is Z[f], where f(x)=D*F (x) (or f(x)= D F (x))
and F is given by 11.3(1). N

For from Theorem 11.2(i") it follows that D?F(x) and D* F(x)
are both integrable, and are finite for x € E. The funetion F is
smooth (§ 11.2(ii)); hence, if we put f(x)=D?F(x), the conditions
of the last lemma but one of § 11.31 are satisfied, F is of the form
11.3(1), and this, as we know, proves the theorem.

The following remark, which, requires no proof, will be useful
later: If the conditions of the last theorem are satisfied in an interval
(a, b), the function F(x) satisfies the equation 11.3(1) for a<lx<(b.

The proof of Theorem 11.3(iii) which we have given is not
very simple; it is therefore of interest to observe that Theorem 11.333),
which is very important in itselt, is much easier. For, under the
hypothesis of that theorem, the function F(x) satisfies the condition
D F(x)=0, and so, using Lemma 11.31(i) in its simplest form
(D? F = D*F=D?F=0), we obtain that the functions F and —F
are convex; hence F is a linear function Ax+ B. The equation

=0

6)) Y, a x?— Ax — B — (D: anCOSﬂxj—‘bnginnx
1 J o

=1 il2

holds for all x, and so, making x-cc and observing that the sum
on the left represents a bounded function, we obtain A=0, g,=0.
Now the left-hand side of (1) is a trigonometrical series converging
uniformly to 0; hence B=a,=b,=a,=..=0 and the theorem
follows.
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11.33. Theorem 11.32 may be generalized as follows:

If f.(x) and f*(x) are finite outside an enumerable set E, and
if f(x) > g (x), where g (x) is integrable (in particular, if f(x) is
integrable), the series is a Fourier series.

In this paragraph we shall only prove the theorem in the
special case f,(x) = f*(x)=f(x)*). The general result is a corollary
of a theorem which we shall prove in § 11.6.

Let gy, g %1 @, be functions which have a similar meaning
{o that in the proof of Theorem 9.31(iv), but correspond to the func-
tion g. It follows that, outside E, DNF— D) > D*F—D*®, =
=D*F—D*®, > f—g>0. Thus F— @, is convex, and, making
oo, we obtain that F— g, is also convex. Hence DX(F—g,)=f—g
exists almost everywhere and is integrable over any finite interval
(§ 11.81(v)). Thence we deduce that f is integrable, and the theorem
considered follows from Theorem 11.32.

11.4. The principle of localization. It was proved in
§ 2.5 that the behaviour of €[f] at a point x, depends only on
the values of f in an arbitrarily small neighbourhood of x,. This
is a special case of the following more general theorem, due to
Riemann, which involves arbitrary trigonometrical series with
coefficients tending to 0: The behaviour of the series 11.1(1) at a
point x, depends only on the wvalues of the function F (x), defined
by 11.2(1), in an arbitrarily small neighbourhood of x,. More precisely:

Let F(x) and F,(x) be the functions F corresponding to two
trigonometrical series; if Fy(x)=F,(x) in an interval (x,— &, X, €),
or, more generally, if F(x)—Fy(x) is equal to a linear function in
(x,— &, X,-+¢), Lhe series considered are equiconvergent at the point x,.

If two integrable functions f,(x) and f,(x) are equal in an
interval (x, —¢, x,+¢), then, since Fourier series may be integrated
term by term, the functions F, and F,, corresponding to E[f,] and
Z[f.], differ by a linear function in (x, —e¢, x; +¢); this shows
that the principle of localization for Fourier series is actually a
special case of the theorem just stated.

) This result has been obtained by Banach (as a generalization of
an earlier result of Steinhaus [2] for the case g(x)=0) but never published.
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11.41. Rajechman’s theory of formal multiplication of
trigonometrical series. A new approach to problems of loca-
lization is due to Rajchman, who developed the theory of formal
multiplication of trigonometrical series with coefficients tending
to 0%). Not only does this theory enable us to obtain Riemann’s
results, but it can also be applied to problems where Riemann’s
classical method would not work.

We shall write trigonometrical series in the complex form

(§ 1.48). Given two trigonometrical series

® @ _Ej cn 8™, b) wf Tne",
we shall call the series

(2) n;an et where C, —jifp*{ﬂ_},,

their formal product, provided that the series defining Cnconverge. This
is certainly the case if the first of the series (1) has coefficients tending
to 0 and the second converges absolutely. We shall assume for simpli-
city that the series considered are real, i. e. that ¢ =Cny {—n="17n-
It is plain that also C_,= G

We require the following lemms, in which we suppose, as an
exception to this ruale, that ¢, and v, are arbitrary complex numbers.

If ca0 as notoo, and if T 1a| converges, then Co= > €ptnp

p=—o=
tends to 0 as n - oo,
For let M = Max |c,|; then, as n—~-+ >3,

[n2] o
Cal <M 3 {tnp +Max p X Tap| <
p=—te png2 p=ind+1

<M Y i +Maxig, X 1 0.
g==n--{n2] pn2 =t
f
As regards the case n—>—2>, we observe that C_n= Z CpYm—p

p:—-be
where ¢, = ¢_p. Ip = T—p- N '
If ¢, and 7. depend on a parameter, and the conditions imposed
upon ¢, and 1. are satisfied uniformly, then C,~0 uniformly.

1 Rajchman [2], [8], Zygmund [11]. In the last paper a discussion
of the case of coefficients not tending to 0 is given.
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11.42. We shall say that the series 11.41(1b) is rapidly
convergent to sum s, if the series converges to s and if, moreover,
Lo+ T4 Ta..<co, where [=|Ya|+|7nt1]+... We certainly have
rapid convergence if, for example, 7,=0{n"3), n>0. The following
theorem is fundamental for the whole theory.

(i) Suppose that c,~0 and that the series 11.41(1b) converges
rapidly to O for x belonging to a set E. Then the product 11.41(2)
converges uniformly to 0 in the set E.

Let Ri{x) denote the sum of the terms fy,e™ with # > k.
If xpeE, 2>0, then |R_x(x))|=!Rer1(%)| < Tsy1, and so the
o
series Y  Ru(x,)| is uniformly convergent in E. Now

—e

m m oo
Smlxy) = S Cr e'm%e = E eino E Cpin—p=
n=—in n=—m p=—-oce

oo m
_— E Cp eipxo 2 "i'lz——p ez(n—p)xu —_
p=—co n=—m
= Y, erx. B (%) — Mo ipxy
< tp —m—p\ KXo < Lpe m—p41(%o).
p:-‘&: p:—-cc

Applying the lemma of the last section (with cper*e and Ru—y(x,)
instead of ¢, and 7,-,) we see that S,(x,) tends uniformly to 0
for x, € E, m »=~c. This proves (i).

The reader will observe that the above theorem remains
true even if the coefficients ¢, and 7, of the series 11.41(1) depend
themselves on the variable x, provided that the formal product
is defined by 11.41(2). This is not surprising since proposition (i),
as well as (ii) below, are nothing but theorems on the Laurent
multiplication of arbitrary series?!).

(i) If ¢~ 0, and if the series 11.41(1b) converges rapidly to
sum ) (x), the series

M(x) X cqeins

n=r—oa

are uniformly equiconvergent in the interval 0, 2=),

Z Cn einx (L’ld

=-—oc

) ') Similar theorems can be established for other rules of multiplication,
in particular for Cauchy’s rule.
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Let us write 7, = To— 2 (%), tn =7 for n =0, and consider
the formal product X C, e of the series Sc,e™ and Yneint In view
of (i) and the additional remark, the formal product converges to 0
ul:iformly in the interval (0,2z), and it is sufficient 1o notice that
Con= Cq — k(%) Cp.

Now we shall state a number of corollaries which, although
very simple, have important applications.

(@) If A(x)5=0, a recessary and sufficient condition that
11.41(2) should converge at the point x,, is that 11.41(1a) should
converge there.

Let A be any Toeplitz method of summation (§ 8.1). Observing
that, if £ Cj efrn converges to (0, it is summable ¥ to 0, we obtain:

(b) If %(x,)==0, a necessary and sufficient condition that
11.41(2) should be summable N at the point x, is that 11.41(a) should
be summable N at that point. If the sum of the latier series is s,
the sum of the former is 1(x,)-s.

(¢) If the series 11.41(a) is uniformly convergent, or summable
N, over a set &, so is the series 11.41(2). The converse is also true
if LX) >e>0 for xedl.

Proposition (b) may be completed by considering limits of
indetermination. Restricting ourselves to the case of ordinary
convergence (the reader will have no difficulty in stating the
general result) we have:

(d) If the upper and lower sums of 11.41(1a) at the point x, are
s and s respectively, the upper and lower sums of 11.41(2) are k{x,) s

and % (xp)-s if %(x,)>0, and 1 (x))-s and k(x)'s if k(x)<O0.

11.43. Now we shall prove certain theorems about the series
conjugate to formal products. It will be recalled that the series
conjugate to 11.41(1a) may be obtained from the latter by replacing
€2 bY Cntn, where g, = —isignn (§ 1.13).

(i) Under the hypotheses of Theorem 11.42(i), the series conjug-
ate to the formal product converges uniformly over E.

(i) Under the hypotheses of Theorem 11.42(il), the series

oo £

(1) a) E Crtn einx  and b) 7.()6)”:? Cp Ep €175 (s,, = ——-isign ﬂ)

n=—-—occ

are uniformly equiconvergent in the wider sense.
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Let Su(x) denote the partial sums of the series (1a). Writing

¢y = cne%, and similarly defining C; and 7, we have

m m oo oo m
ey : Y
Sm(xo) = E g Ch = 2 En Z C;’J ’I';z—p = 2 C}; 2, ’(;z_p €, =
He=—m ne=—m  p=—oco pr=-—o0 Ne—=—1m
oo m
= E C}E ('l"rl—-p =1 Ln~p) =
!]‘_’-—DQ n=
=—i Y p{Ri (%) — Rups1(%,) — Rom—p() + R—p(x,)}
p::—‘ba

and, in view of Lemma 11.41, if x,e £ and m-co, the last expres-

sion tends uniformly to —i 2 ¢, {Ri_p(%,) +R—p(%,)}. This proves (i).

To prove (ii) we use thep same device as in the case of Theorem
11.42(ii). We consider the formal product X C,ei"* of the series
Ycpe* and Svn,e". The coefficients Cy depend on x, but if we
define the series ‘conjugate’ to the product as ¢, C, €%, the latter
series will, as the proof of (i) shows, be uniformly convergent,
Since Cp =c, — X (%) {s, the theorem is established.

The following is one of the corollaries of (ii):

(a) If the series D, cpe,ei™* is uniformly summable N over a
N==——oo
set &, so is (1a). The converse is also true if [A(x)| > >0 over &.

A characteristic feature of the theorems on formal multipli-
cation which we have proved is that we suppose next to nothing
about one of the factors, whereas upon the second we impose
rather stringent conditions. However, if the first series is a Fourier
series, the conditions imposed upon the second series may be
relaxed slightly. The reader will observe that Theorems 2.58 and
2.531 may be considered as theorems on the formal multiplication
of trigonometrical series in the case when the first factor is a
Fourier series.

We shall now give a number of applications of the theory
of formal multiplication.

. 11.44. As a first application we shall show that, given an
arbitrary closed set E (C (0, 2x), there is a trigonometrical series

with coefficients tending to 0 which converges in E and diverges
outside E1).

% Rajchman [2]. It is plain that, if E contains one of the points
0,2z, it must contain the other.
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We start with the fact that there is a trigonomelrical series

oc

1 Fa+ .; (an cos nx -+ b, sin nx) (@n >0, by~ 0)

which diverges everywhere (§ 8.5). Let % (x) be a function, with
Fourier coefficients O(#—?), which is equal to 0 in £ and different
from 0 elsewhere!). The formal product of (1) by 2 [#] gives the
required example, for, in view of Theorems 11.42, this product
converges to 0 in E and diverges outside E.

Since, in view of Theorem 11.43(i), the series conjugate to
the product considered converges in E, we obtain at once: for
every closed set E situated on the circumference of the unit circle
there is a power series with coefficients tending to O which converges
in E and diverges in the remaining points of the circumference®).

11.441. The only example which we so far know of an
everywhere divergent series is Kolmogorofi’s example consi-
dered in § 8.5. Since that example is a Fourier series, the theory
of formal multiplication was not indispensable in the argument
of the previous section, and we could use Theorem 2.53 instead.
Moreover, Kolmogoroff’s series is fairly complicated, and it is
therefore desirable to have a simpler example. Foliowing Steinhaus,
we shall show that tke series

= cos & (x — log log &)

(1) k;.; log &

diverges for every x3).
Let L = [log k], v» = log log %, and
. N}
G _ ”;l"cosk(x——'vk)’ G — " "
)= 20T logh " ksatlogk

] ]n - ('Uny ’Un-}-l)«

1) Let {(z, 2,)} be the sequence of intervals contiguous to E, and‘}et }»,i(x)
be equal to (x—e,)* (8, —x)* in (2, g, and to 0 elsewhere. It v, >0, v, <=-,
we may put »(x) =TI,k (x), for 1"'(x) exists and is coptinuous.

2} For a more complete result see Mazurkiewicz 1}

3 Steinhaus [10]. The first example of an everywhere d.ivergent
trigonometrical series with coefficients tending to 0 was‘given by Steinhaus
[9]. Other examples will be found in Hardy and Littlewood [9] {18].

See also Wiltomn [1].
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Sinee G, > l,dog (n+ 1)~ 1, we have G,> 0.9 for n>n,. The
inequality [sinz|<|u! gives
n+l,
- 1 9 9
2) 0 <L Gn— Gu(x) < —— 3 k¥ (x— v)
2 log n k=nt1
It n<<k<n+l, then v, <o < ¥ny, Hence, if x belongs to the
interval (Tn, Upw), 2 > 3, then jx — U < Unyy, — Un; applying the
mean-value theorem we obtain | x — | < l,/nlogn < 1/n, and the
right-hand side of (2) is less than (#--/[,)? /2 n*log n << 0.6 for
# > n,. Collecting the results, we see that

Gr(x) = Gn — (Gn — Gu(x)) > 0.9 — 0.6 = 0.3, x ¢ I, n>> Max (7, n,).

Since every point x belongs (mod 2z) to an infinite number of
the intervals /,, the series (1) diverges for every x.

11.45. Fatou’s theorem on power series. If the series

1 > ay 2" = F (2)
n=0
converges at a point of the unit circle, then 2, - 0. The converse
is false (the power series whose real part for z=e¢* is the series
11.441(1), diverges at every point of the unit circle), but

If 2,0, the series (1) converges at every point of the unit
circle where the function f(x) is regular. The convergence is uni-
form on every closed arc of regularity.

This theorem, due substantially to Fatou '), is a consequence
of more general results which will be established later. In view
however of its importance, we shall prove it separately. Consider-
ing the real and imaginary parts of (1) for z = ¢, we see that
the theorem will be established when we have shown that, if the
series 11.44(1) is uniformly summable A, for a < x < b, to a func-
tion g (x) which together with its first and second derivatives is
continuous, the series is uniformly convergent in every interval (a, b
interior fo (a, b).

Let » (x) be a function equal to 1 in (a', §'), equal to O out-
side (a, b), and such that 2"(x) exists and is continuous. Since

*) Fatou [1}, M. Riesz [1], [5], [6]. The part concerning uniform converg-
ence, was first stated by M. Riesz.
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the coefficients of Z [] are O (n), the formal product of 11.44(1)
by Z [¥] converges uniformly to 0 outside (g, ). By Theorem
11.42(ii), this product is uniformly summable 4 for a < x < b, to
the value % (x) g (x). Hence it is uniformly summable 4 in the
whole interval 0 < x < 2%, to a sum % (x) which has a continuous
second derivative. It follows that the produet is Z[z]; for if
an, Bn are the coefficients of the product, and = (r,x) the corres-
ponding harmonic function, then

a in

1 .
U P = — i z {r, X) sin nxdx

-~
(1

| % (r, x) cos nx dx, Eprt =
0

and, making r > 1, we see that 2, and %, are Fourier coefficients
of ©. Since 7"{(x) exists and is continuous, the numbers 2., &»
are O (n™"), and so E[z] converges uniformly. Observing that
Lx)y=1 for a' < x ¥, and applying Theorem 11.42(ii}, we see
that 11.44(1) converges uniformly over (g, &), and the theorem is
established.

The reader will notice that the condition concerning g’ was
not indispensable. We only used it as a simple test ensuring the
convergence of Z[z]. It would also be sufficient to assume
that g satisfies the Dini-Lipschitz conditicn, or is coniinucus and
of bounded variation.

11.46. Proof of the principle of localization. Let Y
be a linear method of summation. We shall say that ¥ is of type
U, if every trigonometrical series with coefficients tending to 0,
and summable ¥ to a finite and integrable function f(x}, is Z[f].
In § 11.3 we showed that ordinary convergence is of type U. It
is important to notice that the method R is also of type U; this
was implicitely proved in § 11.3, for the essence of the Riemann
method in problems of uniqueness just consists in treating con-
vergent series as series summable R. In § 11.6 we shall prove that
Abel’s method of summation is of type U.

In what follows we shall frequently consider formal produets
of trigonometrical series by the Fourier series of functions .. To avoid
repetition we shall tacitly assume that 2"(x) exists and is of
bounded variation. Then the Fourier coefficients of f are O ()
and the theorems on_formal multiplication can be applied. It will
be also convenient to suppose that, if of two functions 7 (x) and
¥ (x) one is equal to 0 in an interval (2, B), the product 79 exisis
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and is equal to O in («, f) even if the second factor is not defin-
ed in that interval.

(1) Let Y be any method of summation of type U. If, for
a<x<b, the series 11.44(1) is summable 9 to a finite and integrable
Junction f(x), then, for o' < x < ¥, the series is uniformly equicon-
wvergent with < [Mf)], where ) (x) is equal to 1 for a' < x <V,
a<a <b <b, and to 0 outside (a, b) (mod 2z). The series con-
jugate to 11.44(1), and & f], are aniformly equiconvergent in the
wider sense in the interval (a',b') ). :

To prove the first part of the theorem we observe that the
product of 11.44(1) by &[] converges to 0 outside (a, b), and is
summable ¥ to Af in (a4, b). Hence this product is summable %
in the whole interval (0, 2z) to sum A (x)f(x). This sum is in-
tegrable; hence the product is E[Af] and it remains to apply Theo-
rem 11.42(ii). To obtain the second part of the theorem we apply
Theorem 11.43(ii).

Now we are in a position to prové the Riemann principle
of localization which will be established in the following general
form (we preserve the notation of § 11.4):

(ii) Let S, and S, be two trigonometrical series with coeffi-
cients tending to 0, and let F(x) and F,(x) denote the sums of the
series S, and S, integrated formally twice, If the difference F,(x)— Fy(x)
is a linear function in an interval a < x < b, the series S, and S,
are uniformly equiconvergent in every interval (a',b') interior to

(a,b). The series conjugate to S, and S, are uniformly equiconvergent
in the wider sense in the interval (a', ") ?).

Let 11.44(1) be the difference of S, and S,. We have to
show that this series, as well as its conjugate, are uniformly
convergent over (a', §'), the sum of the former being 0. Integrating
11.41(1) twice, we obtain a function F (x)= F,(x) — F)(x) which is
linear over (g, ). Since 4* F(x, h)/h*=0 for any x interior to
(a, b), and % sufficiently small, the series 11.44(1) is summable R
to 0 for 2 <x <4, and it suffices to apply proposition (i).

As a special case we obtain the following theorem.

:) fojehman [2], Zygmund [11].
) Riemanu [1}, Rajchman [2], Neder [2], Zygmund [i1].
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(iii) Suppose that the sum F(x) of the series 11.44(1) integrated
twice satisfies an equation

1) F@=As+B+[dy [f(hdt, a<x<b,

where A and B are constants, and f(t) is a function integrable over
the interval (a,b). Let f*(x) be the function equal to f(x) in (g, b)
and to O elsewhere (mod 2x). Then the series 11.44(1) and S[f"]
are uniformly equiconvergent in every interval (a',b') interior to
(a,b). The series conjugate to 11.44(1), and Z|f*1, are uniformly equi-
convergent in the wider Sense in the interval (', D").

For the proof we notice that Fourier series may be integrated

‘term by term; hence, if F,(x) is the sum of S[f*] integrated twice,

F,(x) satisfies an equation similar to (1), and so F(x) — F(x) is
linear over (a, b).

A special case of (iii), which was already used in the proof
of (ii), deserves a separate statement:

(iv) If the sum F(x) of the series 11.44(1) integrated twice is
linear in an interval (a, b), the series 11.44(1) as well as its conju-
gate are uniformly convergent in every interval interior to (a, b),
the sum of the former series being 0.

11.47. Theorem 11.46(iii) states that, if F(x) satisfies the
equation 11.46(1), the series 11.44(1) and &[] are uniformly equicon-
vergent over (a@',0'). From this and from the fact that Fourier
series may be integrated term by term we deduce

Under the conditions of Theorem 11.46(iii), the series 11.44(1)
may be integrated formally over any interval (a', &') interior to (a, b);
the series

(C const.)

L

= a,sin nx — b, cos nx
1) tax+C+ -
= n

converges uniformly over (@', b').

It is only the second part of this theorem which needs a proof,
and the result will follow when we have shown that (1) converges
at some point interior to (@, b). To show this we observe that the
periodic‘ part of (1) is a Fourier series with coefficients o (1/n),
and so it is sufficient to apply Theorem 11.21(i).
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The theorem which we have just obtained may be slightly
generalized, viz., under the same conditions as above, the series (1)
converges uniformly, and so represents the indefinite integral of f,
in the whole interval o < x < b. This is an immediate corollary
of Theorem 11.21(iii). In particular,

If the series 11.44(1) converges in the interval a < x < b,
except perhaps at an at most enumerable set E of points, to an in-
tegrable function f(x), the series (1) converges uniformly over (a, b)
to the integral of f1).

11.482). Following Young, the series 11.44(1) is called a re-
stricted Fourier series, associated with an interval (a, #) and a fune-
tion f(x)eL(a,b), if this seriesis a formally differentiated Fourier
series of a function @ (x) which is the indefinite integral of f(x)
for a <x<bh

If 11.44(1) is a restricted Fourier series associated with an
interval (a, by and a function f(x), and if f*(x) has the same mean-
ing as in § 1148, the series 11.44(1) and Z|[f*] are uniformly
equiconvergent over any interval (a', b') Interior to (a, b). The ser-
izs conjugate fo 11.44(1) and Z[f*] are uniformly equiconvergent for
a =l x < b, but in the wider sense.

The theorem is a corollary of Theorem 11.46(iii) if we observe
that the function F(x) corresponding to 11.44(1) is of the form
11.46(1).

11.49. Riemann’s formulae. Riemann deduced his prin-
ciple of localization from an important formula which we shall
now prove, in a slightly more general form.

Let a <a <d'<<b, and let % (x) be a function equal to 1 in
(a', 8"y, vanishing outside (@, ) (mod 2z) and having Fourier coef-
ficients O (7). '

If F(x) is the sum of the series 11.44(1) integrated twice,
the sequences

2

_Da(t — x) dt

\ ’
(1) ia, -;-k}_? (ar c0s kx + by sin kx) L [F@)n ) ;t
=1 T

1) Lusin [2], Hobson [2]. it is sufficient to assume that the upper and
lower sums of the series 11.44(1) are finite for a<{x<{b, xe £, and that one
of them is integrable over (g, b).

®) Young [15], [16]; see also Hobson’s Theory of functions, 2, p. 686.
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(2) X (arsin kx — by cos kx) —
k=1

|

b Yy
[ Ee @) %ﬁ Dt — %) dt

tend uniformly to limits in the interval (a',b'). In the case of the
sequence (1) the limit is 07Y).

In this theorem, D, and D, denote the Dirichlet kernel and
the conjugate Dirichlet kernel respectively. Since the expressions
(1) and (2) depend only on the values of F(x) within the interval
(a, b), the above theorem contains the principle of localization.

To grasp the meaning of the theorem suppose that a, =0,
and denote the series 11.44(1) by S; F is then a periodic function
with coefficients o (#2). Assume for a while that the formal pro-
duct of S[F] and Z[}] has coefficients o (#—?) (which is easy to
prove but is not required for the proof of the theorem). Then F) may
be considered as the function F,(x) corresponding to a trigonametrical
series S;. Since F(x)=F,(x) in (a', #"), the series S—., converges
uniformly ‘to 0 in every interval (a'+¢, 8" —2), ¢ >0 (§ 11.46(ii)),
and it suffices to observe that (1) is the difference of the n-th
partial sums of the series S and S,. Similarly we prove the part
of the -theorem concerning the sequence (2). In other words,
Riemann’s formulae are, in a degree, consequences of the principle
of localization. The only defect of the above argument is that it
gives convergence in the interval (a'+¢, & —3%) and not in (a', b').
Although this peint is of minor importance, we shall prove our
theorem in its complete form, first for aesthetic reasons and second
since in the original paper of Riemann the interval (a/, #') reduces
to a point, and so the above argument could not be applied to
that case?®. We require the following lemma:

If Vand W are trigonometrical series, then we have the equation
(VW)= V"W +2V'W' + VW", where products are formal products
and dashes denote formal differentiation.

. For if cp, 7, C; denote the complex coefficients of V, W, VW
respectively, the 7n-th coefficient of (V W)" is

1) Riemann 1], Neder [2], Zygmund {11].
%) On the other hand, this argument imposes less stringent conditions
upon ' ~, for, as ean easily be verified, it suffices to suppose that the Fourier

coefficients of 7 are o(n—j).

A. Zygmund, Trigonometrical Series. 19
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and it is enough to notice that —n*=—(n—p)*+2i(n—p)ip—p
Suppose now that 2,=0, and let S denote the series 11.44(1).
The expression (1) is the 7-th partial sum of the series

S—C'FN=S—{S[FISP} =
—(S—2'FISP) -2 [F1S D] —S[F1€" Dl

Since Z'[F]=S and S—SEN=SA—-CE)=SS[1 -1, we
obtain the equation

B8 S—&"[FN=SS[1—-2]-2 @’[F] S'[A] —S[F]1&" AL

Observing that S, 2'[F], Z[F] have coefficients tending to 0, and
&1 —12], S'[#], £"[}] have coeflicients O(n~%) and converge to 0
in (a', '), we see (§ 11.42) that S — &"[F}] converges uniformly
to 0 over (a', #'). This gives the first half of the theorem. To prove
the second half we notice that the series conjugate to each of
the products on the right of (3) converge uniformly over (d,5')
(§ 11.43), and that (2) is the n-th partial sum of the series conjug-
ate to S— Z"[FiL

Since the series 11.44(1) can be represented as a sum of two
trigonometrical series one of which consists of the constant term
1a, and the other of the remaining terms, it is sufficient to prove
the theorem in the case S =% a, Integrating by parts twice, we
see that (1) and (2) are equal to

A -

1) %_—ao—%—‘/:v‘{F(t)?.(ZJ)}”D,I(th) at, — L J{F @)@y Dut—)at

=0 Ty

respectively. Since F(f) =1/, a,¢* and {F())(¢)}"=1a, for a' <t LV,
the simplest criteria for the convergence of Fourier series and
conjugate series show that, for a'<{x<(d, the expressions (4) tend
uniformly to limits, the limit of the first being 0. This completes
the proof of the theorem. We add two remarks.

(a) We supposed that a'<<#', but the theorem and the argu-
ment are unaffected if &' =¥, provided that X (x) =2"(x) =0 at
this point. The last conditions are automatically satisfied in the
whole interval (a',0') if o' <? and the Fourier coefficients of X
are O (n73).
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(b) The first of the proofs which we have given in this
section and which elucidated the meaning of the Riemann formulae
shows in what sense the method of Rajchman is, in certain cases,
advantageous over the original method of Riemann. Let S be the
series 11.44(1). Following Rajchman, in order to remove the influence
of the behaviour of S outside (e, b), we multiply S by Z[}], where X
is a function which vanishes outside (a, b); the behaviour of SE ]
is known at every point. Riemann’s method consists in inte-
grating S twice, multiplying the resulting function F (x) by x (x),
and differentiating the product twice. That the resulting series S,
is equiconvergent with § in (a', "), is just the Riemann theorem,
and it can easily be shown that S; converges to 0 outside (g, &).
There remain two intervals, viz. (@, a') and (&', b), and Riemann’s
theorem tells us nothing about the behaviour of S, in them. Using
the theorems on formal multiplication, this behaviour can be read
from the formula (3), and we see that not only does this involve
the series S, but also &'[F], which is obtained by formal integra-
tion of S.

It must however be emphasized that the Riemann idea of
introducing the function F into problems of localization is of
faundamental importance. The method of formal multiplication com-
pletes it, but can in no way replace it.

11.5. Sets of uniqueness and sets of multiplicity.
A point-set £ (0,2%) will be called a set of uniqueness, or
U-set, if every trigonometrical series converging to O outside E
vanishes identically. In § 11.3 we showed that every enumerable
set is a U-set. If E is non-enumerable but does not contain any
perfect subset (the existence of such sets E follows from Zermelo’s
Axiom) E is also a set of type U. This follows from the fact that
the set of points where a trigonometrical series does not converge
to 0 is a Borel set and so, if it does not contain a perfect subset,
it must be at most enumerable?!); this implies that the series
vanishes identically. If £ is a set of uniqueness, every set E,(CE
is also a U-set.

A set E which is not a U-set will be called a set of multiplicity,
or M-set. If E is of type M, there is a trigonometrical series which

') See e.g. Hausdorff, Mengeniehre, p. 179 —180.
E-]
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converges to 0 outside E but does not vanish identically. Any set
E of posilive measure is an #-set. For let E,, |E||>0, be a perfect
subqet of E, and f(¢) the characteristic function of E,. The series
2 [f] converges to 0 at every point x ¢ E, and does not vanish
jdentically since its constant term is |E;|/2= > 0. It follows that
it is only the case of sets of measure 0 which requires investiga-
tion, and it is a very curious fact that among perfect sets of meas-
ure 0 there exist U-sets as well as AM-sets. Whether a given set
E, |E =0, is of type U or of type M seems to depend on the
arithmetical properties of E, and the problem of necessary and
sufficient conditions — expressed in structural terms — is not yet

solved.

11.51. H-sets are sets of uaiqueness. That there exist
perfect sets of type U was found independently by Mlle Nina Bary
and Rajchman?'). The latter showed that sets of type /, which
we considered in § 11.1 (in particular Cantor’s ternary set), are
U-sets, and this result wiil be proved here.

Let Red x=x—[x]=the non-integral part of x. We consider
a sequence {#;} of real numbers and an increasing sequence {n;}
of positive integers. We fix a number 0 <d <1 and denote by
Ex the set of points x where Red {mx(x/27)—ax} < d. If E=E|E,...E;...,
the set £ will be called an H-set, and the reader will have no
difficulty in proving, e. g. geometrically, that this definition is
equivalent to that of § 11.1. It will be convenient to place the
sets on the circumference of the unit circle. E; will then consist
of 7, equidistant arcs, each of length 2=d/n,. The complementary
set E} consists of n, intervals I(k) Ifk), o ],‘,’;) of length 2= (1 —d)/n.

Let E be the set just defined and let ,

oo
2 Ca pinx «

n=-—oco

(1)

be any trigonometrical series convergent to 0 outside E£. It is
convenient to suppose that this series is not necessarily real, i. e.
the condition ¢_,=c, need not be satisfied. Let F(x) be the function
obtained by integrating (1) formally twice. F(x) is linear in every
interval / contiguous to £, and so, if the points x, x4+-2k, x—24 belong

) Y N.Bary {1}, Rajechman [1]. Another proof, based on a different
idea, will be found in Rajehman [3]. See also Verblunsk v 334
Zygmund [12]. )
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to the same interval /, the expression Du(x) = 4° F(x, 2k)/4h> is
equal to 0. Take lz<21 (1 —d)'4, and let x, be the middle-point
of the interval /{®. Since the intervals /I are outside E, ihe
expression @Dy, (%), where v=rnz, is equal to 0, and the same may

be said of S,,(x;), where

It is not difficult to see that

in
pinvx SIN nh
nh? ’

Sh/v(x) = Cy + y an

R=—0ca

@)

where the dash signifies that the term 7 =0 is omitted in sum-
mation. Since the absolute value of the sum on the right does
not exceed a constant multiple of Max|cn| (m > v), we see that
S, (x)>¢, as v—oo, uniformly in x. Taking for x the point X, defined
above, and observing that §,,(x,) =0, we obtain ¢,=0.

To prove that ¢, =0, we multiply (1) by e™. The new
series converges to O outside £ and so its constant term Cm 18
equal to 0. This completes the proof

11.52. As a corollary of the previous theorem we shall show
that there exist continuous functions of bounded variation with
Fourier coefficients == o (1/7) (§§ 2.218, 5.7.14). For let £ denote
the Cantor ternary set constructed on (0,2%), and @(x) any function
continuous, of bounded variation, constant in every interval conti-
guous to £, but not in the whole interval (0,2=%). The Fourier
coefficients of @ are not o(l/n). For if they were o (1/n), and if
11.44(1) denoted & [D] differentiated term by term, we should
have |a,|+|8,] =0 (1). Since the integral of @ is linear in the
intervals contiguous to E, 11.44(1) would be summable R to 0
outside E, and so (§ 11.4) would converge to 0 outside £. Since
E is a U-set, we should have g,=a, =b, = .. = 0, ©(x) = const,,
contrary to the assumption?).

') See also Carleman [3], Hille and Tamarkin [2].
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11.53. Menchoff’s example. That there are perfect M-sets
of measure 0 was shown by Menchoff!), and is a result chrono-
logieally prior to those of § 11.51.

Consider the following set. From £, = (0, 27) we remove the
interior of a concentric interval of length |E,|/2. The rest F,
consists of two intervals E and Ei. From each of them we remove
the interior of concentric intervals of length ]E{;/3 The rest E,
-consists of four intervals E_», i=1,2,8,4 Having defined E, ,,
consisting of 21 intervals E._;, we define E, by removing the
interior of intervals concentric with £f_; and of length JE,L 1/ (n+41).
We put E=FE,E E,.. and, following Menchoff, we shall prove
that £ is a perfect M-set of measure 0.

That E is perfect is plain. Since the measure of E, is equal
to 2= (1—1,2)(1—1/3)...(1—1/(n+1))=27/(n41), we obtain |E|=0.
To prove that £ is an M-set it is sufficient to construct a function
F(x), constant in the intervals contiguous to E, but not equivalent
to a constant in (0, 27), which has coefficients o (1/n). For & [F]
differentiated term by term converges to 0 outside £ and does
not vanish identically.

The set complementary to E, conmsists of 27— 1 intervals,
which we shall denote by Ir, £k =1,2,.., 27 —1, counting from
the left to the right. We define a sequence of comfiﬂuous functions
Fi(x), Fy(x), ..., Falx), ... (0 < x < 2%) satisfying the following con-
ditions (i) F,,(O) ,,(2’) =0, Fu(=)=1, (ii) Fau(x) is constant in
the intervals 1,,,k~1 2,..,2"—1, and linear in the intervals
El i=1,2,...,2", (111) Frix)= F,,(x) in every /7. Moreover, we suppose
that (iv) if 1,,w1 is contained in an interval E,, the value of F, nt1(X)
in 1,,*1 is equal to the mean value of F, at the end-points of Ej.
These conditions determine the functions F,(x) uniquely (we leave it
to the reader to draw the grdphe of the curves). It is easy to
verify that | Fi(x), < (n+ 1)/z, | Friy(x) — Fa(x)| <1728+ 2). Tt
follows that the sequence {F,,(x)} converges uniformly to a con-
tinuous function F(x), and that  F (x) — Fu(x)| <1/n2n-1,

Let &, be the complex Fourier coefficients of F(x). To show
that nCy =0 (1). we write

'} Menchoff[i]; seealsoN. Bary [1l. Rajehman [4], Zygmund [13].
In the last paper it is shown that. if ny, 1,’l7k>l >3, 2,0, X k_ac the
product kq (1-+a,cos 1, X) may be \\rltten in the form of a trigonometrical
series, which converges to 0 almost everywhere (but not everywhere).
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/Fe“”“‘ dx = n/(F Fx)e i dx 4+ n /F\ e~int dx =
(1) aw hide4

= ﬂ./‘(F— F.»V) eins gy i/‘F‘{,ewin.\* dx = A + B,
0 6

where n and N are positive. Since F (x) = Fx(x) outside Ex, | A}
does not exceed n | Ex|-Max |F — Fy <2zn/N?22V1= 0 (1/log” n),
it N is defined by the condition 231« n <2V, Passing to the
integral B, we observe that Fi(x) is equal to &= (N+1)/= in En
and to O elsewhere. To “estimate the integral of e—* over any
interval belonging to Exwe have two inequalities: the absolute value
of the integral exceeds neither the lengih of the interval nor 2/n.
The first inequality is more advantageous for intervals not large
in comparison with 1/n, the second for larger intervals. However,
neither of these two inequalities alone would enable us to show
that B=o0(1), and to overcome the difficulty we proceed as follows.

Let v=vy< be a positive integer which we shall define pre-
sently; hence Ex( E,. We write Fxy(x)= gn(x) 4 An(x), where
gn(x) vanishes outside E, and is equal to = (N+1)/z in E,; the
sign ‘4 corresponds to the interval (0, =), the sign‘—’to (%, 2=). Then

95 95

B=—1i /gx(x) e—inidye — | /Izv(wc) e—inxdx = B'-+ B,

N+1 N+ _

2 (N—
»B'{<2( ) 'B" < |E,— Ex| N=v)
H “ w

v4-1

since gy vanishes outside E,, /iy vanishes outside £, — Ex, and
both | gv| and | kx| do not exceed (N-+1)/z. If we put v=N—[}'N],
we obtain B"=0(N—3)=0(log~":n), B'= O(N2-1%) = O (log—"=n)
and, collecting the results, 7C, = O (log~">n) =0 (1).

11.54. If £, and E, are sets of uniqueness, their sum E,-+E,
may be a set of multiplicity. We obtain an example by breakingup the
interval (0, 2=) into two sets E; and E,, each without a perfect subset.
Although E, and E, are U-sets (§ 11.5), their sum is not. This example
may be not enlirely convinecing and it is natural to ask whether the
situation is the same if we restrict ourselves to the domain of
Borel sets. The answer to this problem is not known. In the case
of closed sets we have the following theorem due to Mlle Bary?).

1 N.Bary [1].


pem


296 Chapter XI. Riemann’s theory of trigonometrical series.

If E,Es...,Ey,... are closed U-sets, their sum E=E +E,+..
is a U-set.

We shall require the following lemma:

Let & be a closed set of uniqueness and J an open interval,
If a trigonometrical series S with coefficients tending to ( (i) con-
verges to 0 almost everywhere in J, (ii) has partial sums bounded
at every point of J— C, the series converges to 0 at every point of J.

We may suppose that J¢& =40, for otherwise the lemma fol-
lows from Theorem 11.46(iii) and the remark of § 11.32. Now let ¢ be
any interval contained in J and without points in common with &,
Since S converges to 0 almost everywhere in ¢, and has partial sums
bounded at every point of &, S converges to 0 everywhere in ¢,
Hence S converges to 0 in J—¢. Let ) (x) be a function vanishing
outside J and positive in J. The formal product S, of S by €[]
converges to 0 outside J and in the set J—¢. Since ¢ is a U-set,
S; converges to 0 everywhere, Taking into account that A (x) >0 in
J, we see that S converges to 0 in J, and the lemma is established.

Suppose now that there is a trigonometrical series S with
coefficients tending to 0, converging to 0 outside E, but not every-
where; let R be the set of points at which the partial sums s,(x)
of S are unbounded. R is a product of open sets, for if Gy denoles
the set of points where at least one of the functions | 82(%) | exceeds
N, then Gy is an open set and R = G, G, ... Gy'... The set R is
contained in E; outside E the series converges to 0. Since |E|=0
and S is not identically equal to 0, it follows (§ 11.32) that R=£0.
We may write R=RE,+RE,+.., and since sets which are
products of open sets are not of the first category in themselves 1),
there is an n, such that R E,, is not non-dense in R In other
words, there is an open interval J such that JR+#0 and JRE,, is
dense in JR. From this and from the fact that E, is closed, we
deduce that JRE, D) JR i e. JRE;=JR We write E, = ¢ and
apply the lemma. The series S converges to 0 almost every-
where in J and has partial sums bounded at every point of the set
J=JR=J—JRE 3 J—¢€. Hence S converges to 0 everywhere in J,

contrary to the result /JR=£ 0 obtained previously. This proves
the theorem. ’

') See e. g. Hausdort i, Mengenlehre, 142 (Satz XI).
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11.6. Uniqueness in the case of summable trigono-
metrical series. In § 11.3 we obtained a number of theorems
on the uniqueness of the representalion of a function by means
of a convergent trigonometrical series. Since however there exist
functions whose Fourier series diverge everywhere, it is natural
to ask for theorems of uniqueness for summable trigonometrical
series. We shall restrict ourselves to Abel’s method of summation
which has an important function-theoretic significance. Since Abel’s
method applies to series with coefficients not tending to 0, we
begin by investigating what conditions must we impose upon the
coefficients of the series considered.
Of the two series

(1) a) Ensinnx, b) L1+

n=1 n

COS X,

11y

the first is summable A to 0 for every x; the second for every
x %= 0 (mod 2%). This shows that: (2) for series

) , La, -I—;Z: (ax cos nx + b, sin nx)

summable A4 and having coefficients ==0 (1), the theorem of unique-
ness is false, (6) if we drop the condition 2,-0, b,~0, we cannot
introduce sets of uniqueness such as the set £ of Theorem 11.32.

We write

f@r, x)=1aq, +ﬂ§ (@ cos nx + b, sin nx) rn,

r-»1

fox) = T £ (r, %),

The functions f*(x) and f,(x) may be called the upper and lower
Abel sums of the series (2). We shall prove the following ‘two
theorems, the second of which is a very special case of the first.

(i) If the functions f{(x) and f*(x) corresponding to the series (2)
with coefficients o () are both finite everywhere, and if f(x) 2= 7 (x),
where 7 is integrable, (2) is a Fourier series.

(ii) If the series (2) with coefficients o (n) is, for every x,
summable A.to 0, then ay=a, =0, =..=0.
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In the case of coefficients tending lo 0, propositions (i) and
(ii) were established by Rajchman?'). His method applies, without
essential changes, to a slightly more general case, viz. when the
periodic part of the series (2) integrated twice is the Fourier
series of a continuous function?®); in particular when we have
|y +1ba = O(n"™), 7,>>0. The proof of propositions (i) and (ii), as they
are stated, requires new devices, and this final step was taken by
Verblunsky #).

The proof of (i) will be based on a number of lemmas. It will
not impair the generality if from the start we assume that a,=0.

11.601. Rajehman’s inequalities. These are fundamental
for the whole argument and may be stated as follows. [f

5‘? a, cos nx -+ b, sin nx
c— Y &n 205 T2 T On SIN AR
n=1 n:

M

is the Fourier series of a function F(x), and if f*(x) and f(x) are

the upper and lower Abel sums of the series (1) differentiated twice,

then, at every point x, where (1) is summable A, the intervals

(D? F (x5), D* F (x0)) and (f (%), [*(x,)) have points in common, i. e.
(2) D F(x) <f(x0),  fulxg) < D?F(x)%).

Let x, =0 and let F(r, x) be the harmonic function corres-
ponding to the series (1). We may assume that F(0)=0, i. e. that
F=F(r,0)+0asr—0. Toprove the first inequality (2), it is sufficient
to show that, for any m, the inequality D>F> m implies > m
We may also assume that m = 0, for otherwise we may consider
F(x) — m(1 — cos x) instead of F(x). Suppose, contrary to what
we want to prove, that f%(0) <0. From the Laplace equation

ST L)
F Ox? ¥ or or

'} Rajehman [5].

*y seee.g. Zygmund [14]: M. Riesz [7] was the first to consider
problems of uniqueness in the case of coefficients not tending to 0.

% Verblunsky [3:].

) Rajchman [5; Rajchman and Zygmund [1], Verblunsky[3,]
It can be ‘showu that, if D*F(x;) exists and is finite; then f, (x,) =f*(xp) = D?F(x,)
(Fatoun [1]}, but, in the general case, the interval (f+, /*) need not be contain-
ed in (D*F, D*F); see Rajchman and Zygmund [1].
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we obtain that r 7/, where the dash denotes differentialion
with respect to 7, is an increasing function of 7 in an interval
ro <7r<1. Since F,+0 as r-»1, the mean-value theorem gives
Frllogr=pF; r, <r<p<l1, and hence, for a 5 contained in (5, 1),

Frlogr — Fllog o =p Fy—s F} <.

To show that this is impossible, it is enough to prove that

— d{ F .
lim | l<0. Let A=4(r,t)=1—2rcost+r2, P(f)=1(1—r%)/4,

1 dr |log 7|
o (1) ={F )+ F(—t)— 2F (0)}/sin®#£. From Poisson’s formula we
obtain

d(rF)_. 17 1-7r2
lim — =lim-— [ [F () + F(— )] ——dt =
= VS Ml .—.5[[ O+ rEa—s
(3)
1 1—r2 (1] d \
=lim— | ¢ (¢) sin®¢ dft =lim{—— [ o (f) sin t — P(t)dr!»
m"o/ © 4 = nra‘/’() a0 J

where 7, 0 <7 <=, is any fixed number. Taking v so small that
o) > h>0 for 0<<t <%, replacing 2 (f) by A, and integrating
by parts, we find that the right-hand side of (8) exceeds
i =
2 tim | cost Pi(t) dt = " Jim [ cos t Pi(t) dt = 1h > 0.
T 7510 % o1
Now, if ¢ (r) = (1 — r¥)/rlog r, we have

@ [ = )'=c(r>(

logr

BT

1 1—72

Since ¢ (r)—»>—2, '(r)= 0O (1 —r), the upper limit, for r—1, of
(F;/log r)'is negative, and the first inequality of (2) follows. Applying
this inequality to — F (x), we obtain the remaining inequality.

11.602. If P is a linear set of points, we shall call a porfion
of P, any non-empty product of P by an open interval /.

Let P be a perfect set and {f.«(x)}, n=1,2,.., a sequence of
continuous functions defined in P and bounded at every point of P.
Then there is a portion I1 of P in whichk the sequence {f.(x)} is
uniformly bounded.

Let Enm(m,n=1,2,...) be the set of points where | fu(x) | < m,
and let Hn=Eim Esm Esm... The sets E,n, and so also the

2

) e
Zr
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sets H,, are closed. Since P is the sum of all /,, at.least one
of the terms, say H,, is not non-dense over P, i. e. is dense in
a portion /7 of P. Being closed, it contains /7. Hence |fa(x)|<m,
for n > 1, xe /I, and the lemma follows.

11.603. A function g(x) is said to be upper semi continuous
if, for every sequence {x,}->x, we have lim g (x,) < g(x). An
n—yoo

important property of an upper semi-continuous function is that it
attains its maximum in every finite interval; the proof is immediate.

If ©(x) is an upper semi-continuous function satisfying the

inequality D*® >= 0, the function @ is convex.

The proof is a mere repetition of the argument of § 11.31(i)
(with E =0).

11.604. Let y.,(x) denote the second integral of v (x). If, under
the hypotheses of Theorem 11.6(i), the series 11.601(1) is, for a<x<b,
summable A to a continuous or, more generally, upper semi-continuous
Janction F(x), the difference F(x) — v,(x) is convex for a< x <b.

Taking account of the preceding lemma, the proof is contained
in the proof of Theorem 11.31(iv) where we showed that, with the
notation of that paragraph, F(x)—f,(x) was convex; it is sufficient
to observe that, in view of Lemma 11.601, we have 7.(x) < DF (x).

The last lemma we shall require is :

11.605. If the series uy+ u, + u,+ .. has Abel’s upper and
lower sums finite, the series u, + a2 4 1y/8 4 ... is summable A.

Forif g(ry=u,+wr+..., then G(r)= Egﬁ = /g—(—‘g)—*ﬂ dp.
- - n=l ’l O P
Since the integrand is bounded, we have |G(r)—G(r')| >0 as
r-1,r">1, and the lemma follows.
Suppose that the #, are funclions of a parameter x. Jf the
function g (r) is uniformly bounded for 0 <r<1 and x belonging

10 a set E, then the series u, 4+ tu,+ .. is uniformly summable A
for x e E.

1‘1.606. We now pass on to the proof of Theorem 11.6(i).
Applying Lemma 11.605 twice to the series 11.6(2), we see that

) _ Y fncos nx b, sin nx

. ==l n2
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is summable A for every x (using well-known Tauber’s theorem
that series summable A and having coefficients o (1/7) are con-
vergent !), we see that (1) converges for every x; this result will
not be required in the proof). The main point of the proof will
be to show that the sum F(x) of (1) is continuous, a result which
is immediate if e. g. a,~ 0, 6, 0. Let

v @n COS X+ bpsinnx @, cos nx—+bysinnx
L T T

pl(r9 x):-— i, pﬂ(r’x): - "
n=1 n n=l1 n-

We begin by proving that in every perfect set P there is a portion
11, such that p,(r, x) is bounded for 0 < r<C1, xe/llL For, if
r,<r,<.. is a sequence tending to 1 sufficiently slowly, then
| po(rny X) — po(r, x)| <1, for ramy <7 <Ky 0 < x (27 In view of
Lemma 11.605, lim p,(r, x) exists for every x. Since the sequence
p,(rz, X) is uniformly bounded in a portion /7 of P (§ 11.602), the
same may be said of the expression p,(r, x).

From this and the last remark of § 11.605, we see that, in
every perfect set P, there is a portion /7 in which the function
F (x) = lim py(r, x) is continuous. In particular, taking P = (0, 2%),
we obtain that the set 4 of discontinuities of F is nowhere dense
in (0, 2%).

Suppose, contrary to what we want to prove, that 4==0.
First of all, 4 cannot contain isclated points. For, if x, were one,
consider the difference & (x) = F(x) — 7,(%x) in the neighbourhood
of x,. Since &(x) is convex to the right and to the left of X,
(§ 11 604), the limits &(x, = 0) exist, and so, in view of Theorem
11.21(ii), & (x, + 0) = & (x, — 0) = & (x,). Hence ¢ (x) is continuous
at x,, and so is F(x)."

4 being dense in itself, the set 4 of limiting points of 4 is
perfect. If («,B) is any interval contiguous to A, the function &(x)
is convex for a <x <3, and ¢ (2+0)=2(2), ¢ (—0) =2(B). Let
[I=JA be a portion of 4 in which F(x), and so also 3 (x), is
continuous; J denotes an open interval. Being convex in any
interval belonging to J— /I, the function 2(x) is upper semi-
continuous in J. The same may be said of F(x). Applying Lemma
11.604, we obtain that &(x) is convex, and so also continuous, in J.
This shows that F is continuous in J. Hence 4=0.1i e F is
everywhere continuous.

1) See e. g. Landau, Darstellung und Begriindung.
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By Lemma 11.604, the difference &(x)=F(x)—7v,(x) is convex
over (—oo, o). To complete the proof of the theorem, we observe
that D*F (x) = D%y(x) + D% (x) = 7 (x) + D% (x) exists for almost
every X and is integrable (§ 11.31(ii), (v)). Let f(x)=Max{f,(x), DF(x)}.
Using Lemma 11.601, we see that f(x), which is contained between
f{x) and f*(x), is everywhere finite and satisfies the inequality
D*F(x) < f(x) < D*F(x). By Lemma 11.31(iv), F(x) is of the form
11.3(1); this, as we know, proves that 11.6(2) is € [f], and the
theorem is established. Incidentally we obtain that, under the
conditions of Theorem 11.6(i), f,(x) =f*(x) for almost every x.

11.61Y). [f the conditions of Theorem 11.6(i) are satisfied, except
that f(x) and f*(x) may be infinite at a finite number of points
X1y Koy oo, X, the series 11.6(2) differs from a Fourier series by a
linear combination of the series D(x—x), i=1,2,..,k, where D (x)
denotes the second series 11.6(1).

We may again assume that a, = 0. Repeating the proof of
Theorem 11.6(i), we obtain that F (x) is everywhere continuous
and that, in each of the intervals (Xim1y x7), F(x) is of the form
11.3(1), with’ A and B depending on i. The points x; may be
angular points for the function F (x). Let D,(x) denote the series
cos X+ cos 2x 4 ... The sum of the series D,(x) integrated twice
has an angular point for x=0 and nowhere else (mod2z). There-
fore, if we substract from 11.6(2) a linear combination of the series
D\(x — x;), the function F corresponding to the difference has no
angular points, i. e. we shall have the formula 11.3(1) with A4
and B constant throughout the interval (0, 2z). Tt follows that the
difference considered is a Fourier series, and the theorem is
established. As a corollary we obtain that, if the series 11.6(2),
with (@, + b, = 0 (n), is summable 4 to 0 for xs£x,, the series

is a constant multiple of D (x — x,).

11.62. Theorem 11.6(1) holds even if the functions [.(x) or f*(x),
or both, are infinite in a set E, provided that E is at most enumer-
able and that F(x) is smooth in E. 1t is important to observe that
the latter condition is certainly satisfied when |@n|+|b,] > 0. The
proof may be left to the reader, since it is wholly similar to that

of Theorem 11.6(i), if the lemmas of § 11.81 are used in their
complete form.

) Verblunsky [3,]; ct. also Zygmund {14].

icm

[11.7] Miscellaneous theorems and examples. 303

There are other generalizations of Theorem 11.6(i). The reader
interested in the subject will find them in the papers quoted.
Here we will only mention one of these generalizations, viz. that
all the theorems of uniqueness established in this chapter hold if
integration is understood in the Denjoy-Perron sense ). This is due
to the fact that all the lemmas on which our proofs are based
hold for the Denjoy-Perron integral. Similarly, the Denjoy-Perron
integral may be introduced into theorems on localization. For
example, Theorem 11.46(iii) remains true in the new case.

11.7. Miscellaneous thesrems and examples.
1. Show that Steinhaus’s theorem, i. e. that

Gim : e 1O 1 A2 B
lim |a, cos nx+ b, sin nx | = lim } a,+b;,
n—yco n-—>oc

except in a set of mesure 0, can be proved by the method of § 11.11.

[Observe that, if m is a positive integer, £ an arbitrary set of positive
measure, and 7, -, then

) / cos™ (i x+a, ) dx | E| (2"’?) o=
P

and that, for m large, the right-hand side of (1) is of order m_lx"].

2. Theorem 11.21(i) remains true if a, and b, are O(1fn). Hardy and
Littlewood [20].

[Supposing that 11.1(1) converges to 0, we write
Fx+8H—Fx—1 o=

e sinnh BV
=340 ——=34+ Y =P, 4+Q,
2t nho o i

n=}

where N={[1/I], and 2>0 is an integer. If # is large, then Q) is small.
Abel’s transformation shows that, for fixed 2, P, +0 with . Hence 11.1(1) is
summable L to 0. Conversely, if that series is summable L, it is summable
(C,2) (§ 8.5) and, as the argument of § 11.21 shows, its partial sums are bound-
ed. Hence it is summable (C,1) (§ 10.44) and it is sufficient to apply the
Hardy theorem of § 3.23].

3. Suppose that |a,|-+]0,|= O (i/n), so that 11.1(1) is the Fourier ser-
ies of a funetion f(x). A necessary and sufficient condition for the converg-
ence, at a point &, of the series conjugate to 11.1(1), is the convergence of
the integral

') Besides the papers quoted, see also P. Nalli [1]..
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which represents then the sum of the conjugate series. Hardy and Little-
wood [20].

4. Let the series 11.1(1) be summable 4, for a <{x<(?, to a non-nega-
tive function f(x). A necessary and sufficient condition that the function f(x)
should be integrable over (a,0), is that the series

et —flx—b

: dt,
2tght

o=
* Yagx+ 3 (a, sin nx — b, cos nx)/n
n=1

should converge for x=a and x=25. Verblunsky [4].

[Let F(x) be the sum of (*). F(x) is monotonic in the interior of (g, b),
and fe L {a,b) if and only if F(a-0) and F(b—0) are finite. Since the coef-
ficients ‘of (*) are o(1/n), it is sufficient to apply Theorem 11.21(11)].

5. Let S, and S, be two trigonometrical series with coefficients o(1/n)
and O(1/n) respectively. 1f S; converges to s; i=1,2, at a point x, the formal
product of &, and S. converges to s, s, at that point.

As the example S, = S, = % n—1sinnx, x =0, shows, the theorem is not
true if both factors have coefficients O (1/n).

6. (i) If the sine expansion of a function f(x), 0 <Cx <=, has coeffi-
cients o (1/n), the cosine expansion of f(x) converges at the point x=0 and
has the sum 0. (i) If the sine. expansion of f(x) has coefficients o(1/n) and
converges uniformly in the neighbourhood of x =0, the cosine expansion of
f(x) also converges uniformly in the neighbourhood of x = 0. (iii) In the pre-
vious theorem the réle of sine and cosine series may be interchanged, pro-
vided that f(0)=0.

[To prove (i), consider the product of the sine development of f by the
Fourier series of the function signx, | x| <=].

7. Given a function F(x), we write

k(R
AFF (x,20) = E(

=0 \J

J

Let F(x) be the sum of the series 11.6(2) integrated term by term % times.
We shall say that 11.6(2) is summable, at the point x, by the 4-th method of
Riemann, or summable K,, to sum s, if the function F exists in the neigh-
bourhood of x, and if

)F(x+(k~2j)h),

" oo P VT
e tim AEE [Lg g+ 3 (a, cos nx + b, sin nx) (EIBL” =
Rty (2h)* h—0 n—1 . nh
If ia, + b, =0(n%), a>—1, and if the series 11.6(2) is summable
{C,») at the point x, the series is also summable R,, x>« -1, to the same
sum. Kogbetliantz [2], Verblunsky [5]. ‘
[A consequence of Theorem 10.5.10].
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8. If Iﬂnl+lan =o0(n"), r=0,1,2,.., k=r--1, and if 11.6(2) is sum-
mable (C,7), at the point x, to sum s, we still have the relation (**), where &
tends to 0 through a set of points having 0 as a point of density.

See Rajchman and Zygmund [2]. In the same w

a -
alize Theorem 10.42. v e can gener

9.' A sequence {an} is said to be summable R, to the limit s, if the
expression i ’

2 - sin®nh
2 3, sintnk

I
T n=] n?h

converges in the neighbourhood of #=0 and tends to 0 as h—=0. Show th
if {an} converges, it is also summable R, to the same limit.
[See § 1.8.3; the theorem is practically identical with Theorem 11.2(ii)].

10. The methods R, and R’ are not comparable.
wiecz [2].

at,

See Marcinkie-

o 11. The conditions imposed upon the Fourier coefficients of the fune-
tion % (x) (\)f Theorem 11.49 are unnecessarily stringent: it is sufficient to sup-
pose that A'(x) is continuous and of bounded variation.

[Consider the formula 11.49(3) and use Theorem 2.531.
cient to suppose that &' ¢ Lip o, « > 0].

12. Let the series 11.44(1) have coefficients o(n%*), »>—1, and let &
be any integer > a - If F(x) denotes the sum of the series 11.44(1) inte-
grated term by term %2 times, and if & (x) is a function which is equal to 0
outside (2, b), equal to 1 in (a’, "), a<a' <b'<b, and has a sufficient num-
ber of derivatives, the differences

It is also suffi-

n 4
S0 -0 | F@y (t)d_kDﬂ(t—x) dt,
=0 L4 dtt
n 1)* b k

— 3By & [ Fon®) LDt — x at,
—1 = 2 i

are uniformly summable (C,«) over (2, "), the limit of the first being 0.

See Zygmund [11], where the second expression is written in a slight-
ly ditferent form.

13. Let S be any trigonometrical series with coefficients tending to 0,
and let f*(x) and f,(x) be the upper and lower Abel sum. of S. If f* is inte-
grable, and if f, and f* are finite outside a closed set F of measure 0, the
difference S— &[f* converges to 0 outside £. If, in particular, £ is a U-set,
then §= & [f*.

A. Zygmund, Trigonometrical Series. 20
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