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CHAPTER X.

Further theorems on the summability
and convergence of Fourier series.

10.1. An extension of Fejér’s theorem. Let f (x) be
an integrable and periodic function, and let s,(x) be the n-th

_partial sum of S[f]. Fejér's theorem asserts that, if f is con-
tinuous at the point x, then

L y
(1) T2 —F @) o

as n—+oco. We shall prove a result from which it will follow in
particular that, at every point of continuity of f,

1
(2) n__l_ll—lls.l(x) f(x)[')O

The relation (2) tells us that the mean value of s/(x)—f(x)
tends to O not because of the interference of positive and negative
terms, but because the indices v for which |s(x) — f(x)| is not
small are comparatively sparse,

We shall require the following lemma.

If fel, r>1, then, for almost every x, and h tending to 0,

/\f(x+t)—f(x)l’ dx=o(h).

The case r=1 was considered in § 2.703, and the proof of the

general result is not essentially different. For let « be any rational
h

number, and let £, be the set of x such that—llz f [ f(xt ) —ajrdt
]

does not tend to |f(x) —a| as £-0. Every set E; and so their
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238 Chapter X. Theorems on the summability of Fourier series.

sum E, is of measure 0. If xe¢ E and if B is a rational number
such that |f(x) —B | <ie, then, by Minkowski’s inequality,

(it - r

ir 1/r

<{%flf(xit)—ﬁifdt} +

1/r

i e reral

Since the first term on the right tends to {f(x)—B| as A-0,
and the following term is equal to |f(x) — B|, the left-hand side
of this inequality is less than e for # sufficiently small. Since
¢ >0 is arbitrary and | E| =0, the lemma follows.

Let oxf)=f(x+D+f(x—18) —2f(x); in view of the rela-
tion | 2:0)| <IF (e =7 (9] +1f (= —f ()], and applying

Minkowski’s inequality, we obtain that @, (%)= /i e ()| dt is.

0
o(h) for almost every x. The chief object of this paragraph is the
following theorem ).

@) If fel, ¥>1, and if k is any positive number, then, at
every point x where Dy, (h)= o0 (h), we have

1
) n+1 Z Ls,(x) —f (x) Ik =0  as n- oo,

=0

(i) If fe L, and if f is continuous at every point of an inter-
val a < x < b, the relation (3) holds uniformly in the interval (a,b).

In the first place we observe that, if (3) is established for a cer-
tain value of &, it holds & fortiori for any smaller k; this follows from
the fact that, if ¢, ¢y, ... cn are arbitrary numbers, the expression
{Jeit ey B4 oo + |eml®)/m}® s a non-decreasing function of %
(this expression is equal to A[g; 0, m], where & (x)=c; for
J—1<x<j, j=1,2,...,m; § 4.15). Secondly, it is sufficient
to prove (3) for k=r'=r/(r—1); for {@..,(m)/#} is a non-decreas-
ing function of r and so, if Dyr(h) =0 (k) for a certain value
of r, this relation remains true for any smaller r; taking r suffi-
ciently near to 1 we obtain % as large as we please. Finally, it is

1) See Hardy and Littlewood [16] (for the case r==k=2), Carle-
man [2], Sutton [1].
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sufficient to prove (3) for the modified partial sums s, (§ 2.3); for

|s,— fle < (s, —f]+|s,— s D% hence, applying Jensen’s inequal-

ity (§ 4.14), we obtain that |s,— fit 2% (s,— f+1s,— s, #)

and it is enough to observe that |s,—s, * tends uniformly to 0.
Now, if 0<v<n,

* 1 E sin vt 1
S,(0) —f(x)= — | o) — dit =—
(%) —f(x) ”/ A()Ztg%t .

1'n a3
s f) e
o 1n !
I

[l AJ\"—’IS*—‘ﬂkF/k < [ ,n |l i’“llb-f-»‘ L {i' o AT
ln+1v=0!v ] \\\ln—}-l‘:oJ v ‘I ln+1_:0i v k} )

and (i) will be established when we have shown that each of the
terms on the right in the last inequality tends to 0 as 7 - ~.
Since |sinvt/2tg4¢|<v for 0<t <=, we obtain that |«”| does not
exceed =1V @p(1/n) v Dyy(1/v)=7,. The relation . () =0 (k)
implies @y:(4) = o(k). Hence 7,»0 and

4) [1 5’11 ()]I/k I 1 fk\”k
e n) i ) S !
( ln + 1;0] R < ln+1.2 " ”0-
%

Now observe that the p’s are Fourier coefficients of the function
equal to ¢.(f) fctgd? for 1/n <t = and to 0 for —= < ¢ <1/n.
Applying the Hausdorff-Young inequality (§ 9.9.2) and suppesing,
as we may, that r < 2, we have

[ 1 n (n)llll,’k 1 (,l_ ”‘ pr(t) rdt>1/r,
® WA <Gl e

where £ = #. Replacing 2tg1? by £, and integrating by parts, we
see that the right-hand side of (5) does not exceed

(n _:1)1‘% {[ ¢>xt,:(t) il,__

F Do) )
r| 2 g o
1,’zz+ lfl tr-}-l l

S SN PSP R
(/z—l—l)”""l()(’Z H—ifl o) J

=(n+ 1)"Vko () + o (w1 =0 (1).

Hence the left-hand side of (5) tends to 0 and this, together
with (4), proves (i).
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The reader has no doubt noticed a curious feature of the
above argument, namely, the less we suppose about the function,
i.e. the smaller the number ».>>1 is, the larger value for 2 we obtain.
The argument however breaks down for #=1 and the problem
whether (3) is true for integrable functions remains unsolved
even when k= 1.

It is also of some interest to observe that it is sufficient to
consider the values of r of the form 24/(2/ —1), [=1,2,8, ..., in
which case the proof of the Hausdorff-Young theorem is simple
(§9.12).

If fe L, r>1, the proof of (ii) is essentially the same as that
of (). We need only observe that, if a < x <, then D (h)=o0(h),
@x1(2) = 0 (h) uniformly in x, and that the estimates we obtain
are also uniform in x. If fel, we can find an interval (a,¥b,),
a,<a<{b<b, such that f is bounded in (a,8,). Let f(x)=Ff"(x)+f"(x),
where f'(x)=f(x) in (a,,b,) and f'(x) =0 elsewhere. If s and s
denote the partial sums of & [f'] and &[f"], then s, = s, + s!' and

n k]wk j 1 S_ l/a]k j S”_ . k\l/k
bz ler <l Sis-re g S -

/—‘0 =()

The first term on the right tends to O uniformly in x,
a < x < b, since f' is bounded and so belongs to every L’. Since
f'(x) =0 for a; < x <b,, the expression |s! — /" |* tends uniformly

to 0 for a < x <b. Hence the second term on the right in the .

last inequality tends uniformly to 0 for @ < x <5, and the proof of
(ii) is complete.

We add that (3) is true if f is integrable and is continuous
at the point x. This is a special case of (ii) when the interval
(a,b) reduces to one point. The result holds if f has a simple
discontinuity at x and if 2f (x) = f (x + 0) 4 f (x — 0).

10.11. When r =k = 2, Theorem 10.1(i) may be proved by
a different argument whlch also works for general orthogonal
systems of functions.

Let @y(x), ©1(x), ... be a system of functions orthogonal and
normal in an interval (a,b). If Y2 converges, and if the series
Co Po(X) + €1 ¢1(X) ..., With partial sums s,(x), is summable (C.1) in
a set E, |[E|>0, to a function s (x), then
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1 n
nt 12 Z[Sk(x)—s(x)]2—>0 as n- oo,
for almost every x e EV).

Let c4(x) be the first arlthmetlc means of {s,(x)}. We shall
prove the following lemma: If X Y2 <oo, the series "[sn(x)-c,,(x)]’/n
converges for almost every x € (a, b). In view of Theorem 4.2(ii),
it is sufficient to show that the latter series, integrated term by
term over (a, b), is convergent. But :

ool pl oo 1 n
— [ @Gn—o)dx= 3 ——— Nk ci<
né'lnh/(,, ) nln(rz-{-]) = *

. o 1 1

— kﬂ — . " ol
& S a4+ 1)2 /g’; G

and the lemma follows. Observing that, for every convergent series

Y u, we have u, +2u, + ...+ nu, = o(n) (§ 3.13(1)), we obtain that

(8, — 02+ (55 —9)%+ ...+ (Sn—on)*=0(n) for almost every x. Now

4
1

Thvs

s

Z (5 = S)Z} { n- 1k‘§o(sk — o)’ 1 +1n + 1.2 ‘2 (o = S)Z}’J

{n +1i=
and since of the two terms on the right the first is o(1) for
almost every X, and the second for every x ¢ E, the theorem is
established,

10.2. In this paragraph we shall prove a number of theo-
rems on the Abel and Cesaro means of Fourier series. The
results will mostly bear on the behaviour of Fourier series in the
whole interval (0, 2z) and not at individual points.

10.21. An inequality for integrals. Let f(x) be a non-
negative function defined in an interval (0, a), where for simpli-
city we suppose that a<<eo, and let f*(x), 0<x < a, be the
function equimeasurable with f and non-increasing (§ 9.42). We put

LE<x, 0<xa,

M) 8N =Sw—— [f)at, 0
E X —CE

and similarly define 9 (x;f*. It is easy to see that for non-in-

Yy Borgen [1], Zygmund [10].
16

A. Zygmund, Trigonometrical Series.
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creasing f, and in particular for f, the upper bound in (1) is
attained when &=0. The following theorem has important ap-
plications.

For any non-decreasing and non-negative function s @, t>=0

bl
a a

@ [ 58050} dx < [ s{0 (e /).
0 0
Given a non-negative function g(x)eL (0,a),let e(y)=|E(y)|,
where E(y) is the set of points x for which g (x)>y; then

3) fguMM=~f}@om=fewwm

0

the second integral being a Riemann-Stieltjes integral. When g
is bounded, the first equation follows at once if we observe
that the approximate Lebesgue sums for the first integral are
approximate Riemann-Stieltjes sums for the second integral. To
obtain the result in the general case we apply the formula to the
function £n(x) = Max {g (¥), n} and then make 1 - co. The equality
of the second and third integral follows by an integration by parts
if we notice that ye(y)~0 as y-oco. This last relation is, in
turn, a consequence of the fact that ye (y) does not exceed the
integral of g (x) extended over the set of x for which g (x) > .

Let E(y,) and E*(y,) denote the sets of points where
8 (x5 1) >y, and 0 (x; f*) > y, respectively. Comparing the extreme
terms of (3) we see that (2) will be established if we show that
|E (1) | <|E*(y,)| for every y,. We break up the proof of this
inequality into three stages. ’ '

(a) Given a continuous function F(x), 0< x < a, let H
denote the set of points x for each of which there is a point §,
0\<&<x, such that F(§ < F(x). Then H is an open set and is
2 sum of an at most enumerable system of open and non-overlap-
ping intervals (o, Bs) such that F (o) < F (B:) (it can easily be
shown that actually we have F () = F (8#), but this will not be
required).

That H is open follows from the fact that the inequality
F (8 <F(x) is not impaired by slight changes of x. Let (o, Bi) be
any of the open and non-overlapping intervals whose sum is E. Sup-

) Hardy and Littlewood [17]; F. Riesz [7].
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pose that F (o) > F (Br), and let x, be the least number belonging to
(ox, Br) and such that F(x)) =% [F(e)+ F (). No point & cor-
responding to x, can belong to (o, X,), for the points x of this
interval satisfy the inequality F(x)>> F(x,). Hence &< a2, and
the inequalities F(8) <F (x,), F(x,) <F (%) give F (3 <F (a).
Here we have a contradiction since the last inequality and the in-
equality § <o imply that o, ¢ /, which is false.

(b) If E is an arbitrary set contained in (0, @), | E|> 0, then

| Z]

[fax< [ dx
E i

This is a special case of a more general result established
in § 9.42. An independent proof runs as follows. Let f(x) be

the function which is equal to f(x) in £ and to 0 elsewhere.
Since fi(x) < f(x), we have fi(x) < f(x) and

B

a a |E]
[anm [ fasm [ s [ on < [ran
E 0 0 0

0

(c) Let Ei(y,) denote the set of pgints where 8 (x;f") > v,
Having fixed y, we shall write E, E¥, E} instead of E (y,), £(¥,),

Ef(yo). If we put F(x)=ffdt-—yox, the set £ becomes the
0

set H of (a). If {(o, Bs)} is the sequence of open and non-over-
lapping intervals of which E consists, then, using the results

obtained in (a) and (b),

| E|

Br N

[Fdx> 3, @e—owy [ fdx>y|El, [fds>y EL
- E 0
g

X
Now 8 (x; ") = X [ f*dt; since the right-hand side of this
X i .
equation is a non-increasing function of x, |£:| may be defined
X
w174
as the largest number x satisfying the inequality ;/ frder > y,.
0

From this and the preceding inequality we infer tllat |E| < | E1).
Therefore, if ¢>0, we have |E(y,+¢]|< lEl (yo+9 | and,
making s—0, we obtain |E (¥,)| < |E*(yo)|. This completés the
proof of (2).
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10.211. We shall change the notation slightly., The function
which we denoted by 8 (x;f) wﬂé now be written 6,(x;f). By

If £, de-

notes the function equimeasurable with f and non-decreasing, then

8,(x; f) we shall denote Sup ¢—i~ » ff dt for x<t<a.
E S—Xx

e 2
/s\alce e < /s{e G ax, [ s} < [ s 8,057
0 4}
The second inequality follows from the first by a simple trans-
formation of the variable x. Let 6 = Max (8, 6,). It is not difficult
to see that the inequality 10.21(2) holds for the new function 9
it we introduce the factor 2 into the right-hand side.

§(9) = Max {s (8,), s (5:)} < s (8,) + 5 (5,) and so

For

548 Ges )< [ (5,05 £ d+ [ 5 (8,05 1)) div = 2 [ 5 {0 (xs ) dx.

Thence, by a change of variable, we obtain
If (a, b) is a finite interval and

9(x;f)=9(x;f,a,b)=SBp jf(zf)dt, a<E<h,
£ x— &k

then
b

/519 (5 1)) de <

2/5

where f*(x) is the function equimeasurable with f (%) and non-de-
creasing.

L[ rod,

10.22. Theorems of Hardy and Littlewood ).

O If felia,b), r>1, then o(x; If)el(a, by and

o

5 L
1) / b(x; §f§)dx<2( )j‘lf}’dx.

This follows from the remarks made in the previous section
and from Theorem 4.17.

) Hardy and Littlewood [17]; see also Paley [6].
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The example of the function f(x)=1'xlog’x considered in
the interval (0,a), 0 <a <1, shows that, if fe [, the function
6 (x; 1f)) need not be integrable.

(i) If fel(a,b), then G(x; f Yel*(a,b) for every 0 <x<1, and
4 1o b
&) {‘/ 6%(x; f) dx} <A, | f ax,
where A, depends on o and b—a only.
Gii) If fllogtifi eL(a,b), then 8(x; fYeLl(a, b) and

b ]

3) [ 9 fyde <B[ flogt f dx+C

where B and C depend on b— a only.

It is sufficient to prove (ii) and (iii) in the case of functions
which are non-negative and non-increasing. We may also sup-
pose that the interval (a, d) is of the form (0, a). Then, applying

Hoélder’s inequality,
. [ax |1 A fax T fax fo 0
j Vs f) dx = / x*0= “’l ’]f 19/ =2 ‘:‘,’ };z‘,/fdfi -
(1—a) 2 2 a2 {2 %
_.(a )M‘ / _ai;;/fdt}’

so that in the general case we have (2) with A, =2a""%/(1—2),

To prove (3), let /= '/‘fdx, J= ‘/~flog+fdx; we shall de-
t] 0

note by B, B, ... consiants which depend on a only. If f is non-
negative and non-increasing, the left-hand side of (3) is equal to
a e a a
r ) - : ) 1
@ [L[fat=[frogldx<lloga+[ flogt— dx.

8 X3 o X ¢ X
Observing that f < Max (e, flogt f) <{ e+ flog™ f, we find
that / < J+ae=J +B,. On the other hand, since the monotonic
functions @ (x) = (x +Dlog (x+1) —x < (x +1) log (x + 1) and
¥ (y)=e’—y—1<e? are complementary functions in the sense

of Young (§ 4.11), an application of Young’s inequality gives

4 : p Fos
[274logtlde< [@f+1)log@f+1)dx+ [ et 1 dx.
iy b4 i 0
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Since 2 f+ 1 < Max (8, 3f), the first integral on the right is

less than B,/+ B,. Collecting the results, we see that the left-

hand side of (4) does not exceed BJ+ C, and (3) is established.
Suppose now that f (x) is of period 2= and integrable over

(0,2z). Let

M(x;f) =

x4+t
1/,
Sup — / f et du=Sup [1f @) du,

(gt X
for —= < x = If we replace the condition 0 <|Z| <= by
— 2= —x Lt 2= —x, we increase the upper bound and we obtain,
instead of M (x; f), the function 9(x [f]) formed for the interval
(— 2%, 2%), and so

~

[ s{M (x5 1)) dx <

— —

o
a

]

s{0(x;|f], — 2=, 27)} dx.

Thence we easify obtain that

(iv) The inequality (1) remains true if we replace the interval
of integration (a, by by (—=, =), the function 8 (x;|f]) by M (x;f),
and the factor 2 on the right by 4.

(v) The inequalities (2) and (3) hold if (a, b) is replaced by
(— =, =), and 6(x; | f) by M(x;f). The constant A, will now depend
only on o, and B and C will be absolute constants.

Applications of the previous results to the theory of Fourier
series are based on the following lemma.

(vi) Let y(t,p), —= <t < %, be a non-negative function de-
pending on a parameter p and satysfying the conditions

(58) / CPa<K G [1tdy ¢ <K,

where K and K, are independent of p. If
h(xp)= [ f(x+ D7t p) dt,

then Sgp h(x,p) < AM(x; f), where the constant A is independent
of f.
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For let Fi(f) be the integral of f(x -+ u#) over the interval
o<t ort <u<0. Integrating the formula defining % (x, p)
by parts and observing that Fi(f)| < ¢ M(x;f), we find

()| < M(x; f){ / :tg—/(f p) dt+ =l p) 7 (=7 ,p)}}

Integrating the integral of (5a) by parts and taking into ac-
count (bb), we see that =[y (=, p)+7(— = p)] <K+ K,. Hence
Vh(x,p) | < (2K, + K) M (x; f) and the lemma is established.

It is useful to observe that, if £ dy7/0f is of constant sign, and
if v (£ =, p) are bounded functions of p, then the inequality (5b)
is a consequence of (5a). This follows at once if we drop the
sign of absolute value in (5b) and integrate by parts.

If for 7 (¢,p) we take the Poisson kernel Pi(f), the inequal-
ity (pa) is satisfied; also (5b) is true, for 7dPx{f)'df < 0 and

P+ =)= O (1). Therefore,

(vii) If N(x;f) is the upper bound of 'f(r,x)| for 0 <r<1,
where f (r, X) denotes the Poisson integral of an integrable function
f(x), then N (x;f) < AM(x;f), where A is an absolute constant.

From this and from (iv) and (v) we obtain:
(viii) The function N (x;f) satisfies the inequalities

[ N fyde < A, [ ifrdx, r>1,

™ ..

(®) [ NeGs e < A, [ ifldy, 0<a<],

- -
h =

[ N de< B[ f|logr|fldx+C,

- —_—

where A, depends only on r, A, only on o, and B and C are abso-
lute constants.

The Fejér kernel K,(f) satisfies (5a) but, as can easily be
shown, not (5b). The same may be said of the kernel K> (2),
0< <1, which, besides, is not of constant sign. The kernel
Ko(t), 0 <5< 1, can however be majorised by a function which
satisfies the inequalities (5). For
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c@)n A
— E T 0<8<, n>1,
1—|—-(I’Lit})°+l 0 >

where ¢ (¢) depends on & only. To prove this inequality, which
is due substantially to. Fejér 1)a it is sufficient to observe that
LA®) > Se@n for n[t] <1, LAH) > 4e @n®[t[H for n|t]>1,
and to take into account the inequa{ities 8.3(2). The reader will
verify that the fanction y (f,p) = L)(f) satisfies (Ba); that the
inequality (5b) is also satisfied follows from the fact that
t-dL(t)/dt <0 and that L(= %) = O(1).

Let ci(x; f) be the Cesaro means of order & for & [f]. Observ-

D K< LA =

-

ing that }ui(x; NI % / S+ LE(L‘) dt, we obtain:

—%

(ix) If Ni(x;f), 0<8<1, is the wmpper bound of }csf‘;(x; DI
Jor 1 < n<oo, then Ny(x;f) < AM (x;f) with A depending only
on ¢ the function Ny(x;f) satisfies inequalities similar to (6), where
the constants A4,, A,, B, C will now depend also on & ?2).

The theorem remains true for &> 1. This follows from the
fact, which is easy to verify (§ 8.18), that N;(x;f) is a non-increas-
ing funection of &.

We return to the case of harmonic functions f(r,x). If 0<Cp<ix,
we denote by S,(x) the part of the unit circle limited by two chords
through e* at angles « to the radius, and the perpendiculars
upon them from the origin. Let N(x;f,¢) be the upper bound
of [f(r, 8)| for z=re®, r <1, belonging to S,(x).

(x) There is a number A depending only on o such that
1\:7 ({c; 1, @) < AM (x;f). The function N (x;f, ) satisfies inequalities
similar to (), except that the constants A,, A,, B, C will now depend
also on .

It ig only the first part of this theorem which needs a proof.
If z=re®, r <1, is any point belonging to S,(x), and { = re!*,
then ‘

) ) Fejér [10]. If we replace n by n--1 in the numerator of the last
ratio, the inequality will hold for n >>0.

*) The theorem remains true if im the definition of Na(x;f) we sup-

pose that z rans from 0 to =, It suffices to modify the definition of LZ(t)
slightly (see the preceding footnote).
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1

-—
.

f(r,8) = ‘/—f (x4 1) 7 (£, 0 dt, where 7 (£,0) = — P{(f + x — ).

The expression 7 (Z, £) here depends on the variable £ and the
parameter { belonging to the region S.T,(O). That the inequality (ba)
is satisfied, is apparent. The left-hand side of (5b) takes the form

—}_— / |z %Pr(t + &) df, where = x—0. Supposing, to fix ideas,
that £>0, we break up the interval of integration into three
parts (—=,—§), (—§,0), (0,z), in each of which the expression
under the sign of absolute value is of constant sign. Integrating
by parts, and observing that P(0)= O (1/(1 — 1)), £ =001 —71), we
obtain the desired inequality.

Proposition (x), suitably modified, can be extended to general

classes H7, p >0 (§ 7.51):

(xi) If F(2) is a function regular for z <1, and if
po(r; F) < W, 0 <r <1, p>0, then N[N (x; F, 3)] < A, 17, where
A, depends on  only.

This theorem is a consequence of (%) if p = 2. In the gener-
al case we have F(2)= G (2) B (z), where B(2), <1, G(2) is
regular and non-vanishing, and u,(r; G) < ¥ (§ 7.53(v)). The func-
tion G7*(z) is regular and belongs to /2. Since ypy(r; G7)=n,(r; G) <,
we obtain D[N (x; G#2, )] < A, W, and it is sufficient to observe
that the left-hand side of the last inequality is equal to the expression
MIN (x5 G, 9)] > WIIN (x5 F, 9)]-

The most important special case of (xi) is when ¢=0 and A,?
reduces to a radius of the circle.

The theorems established in this section elucidate certain
results of Chapter IV. To prove, for example, that, if feln,
r>1, then M[f — o] >0 (§ 4£35), it is sufficient to observe that
[f (¥) — oa(x)|" tends almost everywhere to 0 and is dominated by
an integrable function. Similarly Theorem 7.56(iii) is an easy
consequence of (xi).

10.23. We conclude this paragraph by a few remarks on

the function f (x) = Sup |/u()|, where
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o AT f+D—f(x—1

J denoting an integrable and periodic function. In § 7.11 we

<=

b

showed that ?(x) is finite almost everywhere. Completing the
results of §§ 7.21, 724, we shall show that

W1 < AWIF] r>1 MIFI< A N[f], 0<a<1;

Wf]< BN [Flogt | F]]+C,

where A, depends only on r, 4, only on «, and B and C are absolute
constants. It is sufficient to prove the first of these inequalities
only, the proof of the remaining being similar. Let us put
bty =f (x + 1) — f(x—1); then

1—r =

= - 17 17

fierd)=F (r,x) == [4x(t) Quty dt—= [ 9(t) R{£) dt = Gi(x) + Hy (),
w~ g Tl

where Q.(f) =rsinf/(1 — 2rcos ¢ + r’), R,(¢) denotes the ratio

1 —r%2tgit-(1 —2rcost+r?), and f(ryx) is the harmonic

function conjugate to f(r,x). Since | Q) |<1/(1 —7r), we have

LG < M(x ). Integrating by parts and observing that

t R{t)=0(1) for t=1—r, and that | }t% R(t)| dt=0 (1), we find
1—r )

that | A (x)|, and so also |fi_,(x)—f (s, x)|, does not exceed a
multiple of M (x; f).

Suppose now that fel”, #>>1; then the function Fx) = f(x;+0)
pglongs to L7, and f(r,x) is the Poisson integral of f(x). Hence
Jrr) | < fror) = F (1, %) |41 F (r, %) [ < DM (3 £) + M (x; H
xﬂxere D is an absolute constant. This inequality gives
SO DM (5 F)A-M(x; )}, ML F1<D N[ M (53 )] +I[M (6 )]}
In view of Theorem 10.22(iv), the right-hand side of the last in-

equality does not exceed a multiple of M, [f]+M,[f] and it suffices
to apply Theorem 7.21.

10.3. Partial sums of S[f] for fecl® The theory of
summability of Fourier series by Abel’s method, or Cesiro’s me-
thods of positive order, is in a state which may be described as
satisfactory. The situation is adequately represented when we
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say that what we need there most are problems, that is inter-
esting problems. Achievements of the modern theory of real
functions have left means at our disposal which seem to be suf-
ficient to cope with problems of summability, although the latter
may in some cases be fairly difficult.

The situation is different when we consider the behaviour
of partial sums. Several results have been obtained for the con-
vergence at individual points, but as regards convergence or
divergence almost everywhere, our knowledge is still very
scanty. Problems which suggest themselves to the beginner (fcr
example the problem whether Z[f] must converge at one point
at least when f is continuous) seem to be far from being solved.
It is true that in the last few years a number of important re-
sults have been obtained, connected with the names of Kolmogoroff
and Seliverstoff, Plessner, and Littlewood and Paley, but much
more still remains to be done.

10.31. Theorems of Kolmogoroff!). Let f(x) be a func-
tion of the class L? and let s,(x) be the partial sums of the
Fourier series

M

of f(x). Since M,[f — 54] >0, there is a subsequence {Sn{x)} of
{su(x)} which converges almost everywhere to f(x) (§ 42). We shall
now prove that for {#;} we may take a sequence independent of f.

Q) If meyafme>2> 1, k=1,2, ..., the partial sums su(x) of
S[f], feL? converge almost everywhere to f (x).

RN
ay T .25
n=

(an cos nx + b, sin #x)

10}t

o0

1

A series Y ¢; is said to possess a gap (1, ?) if =0 ‘for
u<i<v. We shall require the following lemma. If a serifzs X,
with partial sums S,, possesses infinitely many gaps (mp, m}) such
that mhjm,>%>1, and is summable (C, 1) to sum s, then Sm, and
50 also Su,, converges to s.

Let s=0, S+ 8, + ..+ 8= (n+1) on Then
(m;z — mp) Smp = Smp 1 + Smy 42 + ..+ Smly=
= (mfﬁ! + 1) Gm’k - (mk+1) Gmk= o (m&?) + o (mk) =0 (m',k):

whence Sm, =o0(1) and the lemma is established. In particular

)

1) Kolmogoroff[8; Marcinkiewicsz 1]
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(i) If the Fourier series of an integrable function f (x) pos-
sesses infinitely many gaps (mg, mk) such that mh/my, > p > 1, the
partial sums Sp,(x) converge almost everywhere to f (x).

Now, in order to prove (i), we split (1) into consecutive
blocks of terms 7z <7 < Mpyq, 1, = 0, including % a, in the first
block; we then break up the whole series into two, one consist-
ing of blocks with even, the other with odd, indices. By the
Riesz-Fischer theorem, these series are Fourier series of func-
tions f' and f" respectively. For each series the terms with in-
dices 1 are either at the end of or immediately preceding a gap,
and so, by (ii), the partial sums of the two series, viz. Sn, (%)
and sp(x), converge almost everywhere. The same is true for
SnglX) = Sh(x) + ().

(iif) Let s(x)=Sup|ss,(x)|. Under the hypothesis of ), s (x)
E
belongs to L* and Mi[s] < 4, Wy[f], where A, depends on only.

Denoting by B, B,, ... constants depending exclusively on ),
we obtain from (2) that Sup | smy| < B, Sup |om,|. Hence, under
the hypothesis of (ii), Sup |sm(x)|< B, Sup [Omy(x) | < By M (x; f)
(§ 10.2(ix)). Therefore, if f', f", Smy Sm, have the same meaning as
before,

§(x) < Sup [s7,(x) |+ Sup [siy(x) | < By M(x; £+ M (x5 £1)},

Wy [5] < Bo AN [M (55 )] + My [M (33 £)]} < By Ay [F1] 4+ M, [£1),

and it is sufficient to observe that, in view of Parseval’s relation,
the last expression in curly brackets does not exceed the sum

Wl f1+ Dl f] =200,[ 7],

10.32. Convergence of a class of trigonometrical
series!). An immediate consequence of Theorem 3.71 is that, if
X (an + b2 log?n < ~o, the series 10.81(1) converges almost every-
where. For from the last inequality and the Riesz-Fischer theo-
rem we see that the trigonometrical series with coefficients
axlog n, balog n, is a Fourier series and, applying the first part

) Kolmogoroff and Seliverstoff {11, [2], Plessner [4]. The
method of the proo! seems to have been used first by Jerosch and
Weyl [t], to obtain mueh weaker results.
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of Theorem 3.71 to it, we obtain the desired result. Now we shall
prove a more general theorem.

() If the series 3, (ar+b3) logn converges, the series 10.31(1)
converges almost everywhere.

The argument which we shall use to prove this theorem is
not less interesting than the result itself, and may be used in
many problems.

Without loss of generality we may suppose that a,=a, = b,=0.
Let Ex(x) and Hi(x), 2=0,1,..., denote the partial sums of the

series
> CO0S nx > COS nx
v 2

p———
= Vlog n

n':ﬂ 10g n

respectively. Let # (x), 0 << x < 2%, be any measurable function
taking non-negative integral values and bounded above by some
integer N. If s(x) are the partial sums of 10.31(1), and if the

series 2, (@ cos nx + by sin nx) y/log n is E [g], then

5,(%) = wf—'/ g (t) E(t — x) dt.

Pulting v = n(x), integrating over the interval (0, 2x), and
using Schwarz’s inequality, we obtain

m

1

9

T i

[ sy dx =

/. dx | g () En(t —x) df =
0 o ;

]

V=

rt

<

S

T o 1
= 1 | g @®ydt | Exo(t — %) dx < Mylg] My [T 6/ Ent — x) a’x].
TN 0

The square of the last factor is equal to

2w 2w

i
%L ‘/N dt [_/‘ E”(x)(t - x) dx] [./ En(x')(t —_ x’) dx'] =

© 0

1

T In

In an \
:./ [ dx dx' {% f Eny(x — &) Enpy(x' — 1) dtr

The expression in curly brackets is equal to Hu(x — x7),
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where ﬂi = m (x, x) = Min {n (), # (x)}, and so the right-hand
side of (1) does not exceed

T 41 a6 = )| | Hager G = %)} doe ' =
oo
=2 j / 1 Hn(x) ()C ”" xl) | dxdx'.
0 0

In § 5.12 we saw that M [AH,]= O(1). Hence, integrating first
with respect to x' and then with respect to x, we see that the
right-hand side of (2) is less than an absolute constant A, and

2= i oo 1/2
@ [ Saaf€) dxé{ L AM[gl = A J\n gg(ai + by log v} .

‘0

This is a fundamental inequality from which the theorem
follows comparatively easily. For let on(x) = Sup Sa(x), O<_n<N,
4v(x) = Sup { — Sa(x)}, 0L < N. Since §,(x) = 0, the functions gx
and %y are non-negative. By choosing suitable functions 7 (x),
the inequality (3) gives M [pa] < AMy[g], M [9] < AMy[g].  The
sequences {zx(¥)} and {n(x)} are non-decreasing and so, pu_ttmg
@ (x) = lim ga(x), ¥ (x)=lim 9n(x), we have M[DP] < AMy[g],
M) < AM[g]. The functions &P and ¥, being integrable,
are finite almost everywhere and, since @ (x) = Sup Sn(x),
¥ (x) = Sup {— sx(x)}, the sequence {s.(x)} is bounded for almost
every X. :

If Q(x) denotes the upper bound of |Sn(x) — su(x)| for all
values of m and 1, then 2 (x) < @ (x)+ ¥ (x), and so we have
M (Q) < 24AM,[ gl

To prove that {s.(x)} converges almost everywhere, let
Q2(x) = Sup | $4(x) — Sm(x)| for all possible values of m> M and

n> M, and let gu(x) NATZ1(a" ¢os nx + b, sin nx) ylogn. The func-
a

tion Qu is the @ corresponding to ga, so that M [Q] <24 M,[ga].
In view of Parseval’'s formula, M,[gmu] >0 as M- oo, and so we
also have M [Qy]-0. Since {&x} is a non-increasing sequence,
we conclude that M[limQy]=0, i. e. lim Qu(x)=0 for almost
every x. In other words, the sequence {S.(x)} converges for almost
every x, and (i) is established.
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(i) If the series 10.31(1) belongs to L*, the partial sums
Sa(x) of the series are o()'logn) for almost every x.

: Jy y — ol ) ' b
v mForhz it ay p/log n=am b,ylogn=="0, n=23 ., then
S (an +bn)logn<oco. Hence the series < (a} cosnx -+ &), sin nx)
converges for almost every x, and it is sufficient to prove the
following lemma. If 0 <[l <I; < .. > =0, and if the series
Usfly + uy/ly + ... converges, then u, +u, + ... +u,= o0 {12)-
Let Sp=uy4 .4 tny 1=/l + tgyy/lnsy — ... Taking m
1 - . . .
such that {r,| <z for 2> m, and applying Abel’s transformation,
we have

n n
Uz
Sn—Sm =2 e = Iogalngs + 3 il — lee) ~ Faga Iy
m+1 ¢k m-+2

for n>m. The last expression does not exceed 2:/, in absolute
value. Hence |S,| < | Sn—58m +  Sm, <2l + Sn <8el, if n
is large enough. Since = is arbitrary, the lemma is established.
(iii) * If the series 10.31(1) belongs fo L2, the series
< @n COS nX + by sin nx
— }log n

converges almost everywhere.

Since the sequence w,=1/}logn, n=23, ..

is convex,
(iii) follows from (ii) and the lemma established in § 8.71.

10.38. The theorems of the previous sections have been
extended by Littlewood and Paley to the case of functions be-
longing to L7, r > 1. In this case the arguments are more difficult
and require new devices. We shall state here, without proof, the
most important of the Littlewood-Paley results ). Let s,(x) denote
the partial sums of the series 10.31(1), which is the Fourier series
of a function f(x); then

(i) If fel, r>1, and if the sequence {1} satisfies an inequal-
ity mppfne>0>1, k=1,2,.., the sequence {s,(x)} converges
to f(x) for almost every x; the function Sup |sa(x)| belongs to L.

&

) See Littlewood and Paley [1]. Detailad proofs have not yet
been published, but some indications as to the methods of proofs will be found

in Paley [1], where similar results are obtained for the orthogonal system
defined in § 1.8.5.
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Gi) If felr, 1<r<?2, then, almost always, Sa(x) = o (log n)'

and the series .
=a, cos nx 4 b, sin nx

2 (ogny”

converges.

(iii) If {4} is any sequence of numbers o which each has one
of the three values 0,1,—1, and if felr, r>1, npafng>1>1,
the series

oo npay
e > {ancos nx + by sin nx)
k=1 n=np+l
is the Fourier series of a function g e L'

We add a few remarks.

Proposition (i) is false for »=1; more precisely: for any
sequence |} of positive numbers there is an integrable function f(x),
and a sequence {ny) such that ney./nx >y and that Sny(x) diverges
almost everywhere. For the proof we refer the reader to-Kolmo-
goroff [7]. Although the result is not stated there explicitely, it
is an easy consequence of the argument used.

Theorem (ii) is established for 7 < 2 only, so that for funec-
tions fe L5, s> 2, and in particular for conlinuous functions, it
does not give more than Theorems 10.32(ii), (iii). It is not exclu-
ded that proposition (ii) is false for r>2.

The meaning of (iii) will be understood better, if the read-
er compares this result with the theorems established in § 5.6.

10.4. Summability C of Fourier series. In Chapter II
we studied various tests ensuring the convergence of the Fourier
series of a function f(x) at a given point. All those tests repre-
sent sufficient conditions only, and the problem of finding a ne-
cessary and sufficient condition (which would not be a more or
less disguised tautology) remains unsolved. The situation is the
same when, instead of ordinary convergence, we consider sum-
mability by an assigned Cesiro mean, e. g. summability (C, 1)
Fejér's fundamental theorem (§ 3.21) gives a sufficient condition
only. We therefore change the problem and ask not when & [f]
is summable by some particular meun, but when it is summable
by some mean or another, i. e. when it is summable C. In this
form the problem was first stated by Hardy and Littlewood, who
also gave a complete solution. This solution has been precised
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at certain points by a number of writers, in particalar by Bo-
sanquet. A new approach to the problem was found by Plessner.

.We begin by proving a number of auxiliary theorems which
are interesting and important in themselves.

10.41. Suppose that f(x) is defined in the neighbourhood
of a point x; and that, for small values of |7/,

1 1 )

fl+) =9+ ET a t+ ‘2"' 2, B4 '{'“(7:1‘;5{ Ay I 4 %(ar‘!‘st)tr’
where the o’s are constants and & =¢, ;-0 with £. The number 2,
1 < s r, will then be called the s-th generalized derivative of f
at the point x,. It is plain that, if f©)(x,), s=1,2,..., exists and is
finite, then the s-th generalized derivative «, exists and is equal
to fG)x,). For applications to the theory of irigonometrical series
it is convenient to modify this definition and to consider the cases
of even and odd suffixes separately. Let ¢.(f)=23[f(x,+ 1)+ (x,—1)],
be(d) = 1 [f (5 +8) — f (%, — D] If either

B Bopz . , PF
d A t = Po '—‘“t_ - A — t2k-—2 Jo )
oa(t) = B+ JLE b B G )
B Bor—_y s 1
dl)xn t =8 t __§_t3 e — t:’k_—l Sapr ! ———y
) P1 +3! + +(2k—1)! +(:*-k,1-r51)(2k+ 1!

where &~ 0 as £-0, and the 3’s are constants, then §; will be
called the j-th generalized symmetric derivative of f(x) at the point

© x,, and will be denoted by fi(x,)Y). The existence of fi;(x,)

involves that of f;—a(x,).
ization of Theorem 3.5.

If foxx,) exists, the Fourier series of f(x), differentiated
term by term r times, is, at the point x,, summable (C,a), « >r, to
the wvalue fi(x,) 7).

We observe that, given 25+1 numbers £y,&, ..., 5, there is a
trigonometrical polynomial 7(x) of order <s, such that T(x,) =&,
0 <j<2s. This is easily seen when we represent 7 (x) in the
complex form and write equations for the coefficients. Since the

The following theorem is a general-

1) The generalized derivatives were first introduced by de la Vallée-
Poussin [4].

2) de la Vallée-Poussin [4] Gronwall [3], Young [4]’
Zygmund [15]. . :

A. Zygmund, Trigonometrical Series. 17
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theorem is obvious in the case of trigonomelrical polynomials, we
may, by subslracting a polynomial 7 (x) from f(x), suppose that
(X)) =F—(%)=..=0. It K(?) denotes the (C,¢) kernel, and o7 (x)
are the (C, ) means of E[f], the (C, ) means of S)[f] are equal
to {si(x)}\", i. e. to :

(=1y /f(t

T

—pyar=2C 1)—/ MG+~ 1) f (e t)]mmt)

KZ‘(

In what follows, C, C,, C,, ... will denote positive constants
independent of the variables ¢ and #. The proof of the theorem
is an easy consequence of the following lemma:

If 0<r<a, then (i) [t
a

g;[\'ff(t) Ldt < C, and (ii) the ex-

|

pression d%r; KX(t) tends uniformly fo 0 in any intérval 0 <7<t <=

Let us take this lemma for granted for the moment, and let >0
be an arbitrary number. If fin(x,) = f—a(%,) = ... = 0, then, since
2/zrt <1, the expression [{s%(f)}{?| does not exceed

w 'f; a4

[isdtr L ko@y at= [+ [= 2+ B,

b drr 7 oo

where 7 is so chosen that || <82C for 0<f< 7 Then
141 C~5/26 %46, and since, in view of (ii), B~ 0 as n- co, we
obtain that {s“(xo)}(’) <& for n2>> n, Hence {s%(x,)}(?~0 and
the theorem is established.

n o .
— Z AE: eut .

v=0

u (@, n, t)=[— AP it Ly (3 — 1, 1, £)]/(1 — &™), and so

Let u (3, n,%) Abel’s transformation shows that

AT w@—s 0

(1 —_— eii)s
To prove the lemma we use, besides (1), the relations 3.3(3) and
the first formula in 3.11(1). Then

1

2A4% sin L ¢

s
pilnt1)t Z

1) u(@nt)y=— ey

Kty =

X [eftr oY g (o — 1L,n,—0l=
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s Aa-j
_L_ﬁ —e= ¥ Lu(r—s—1,n, —1) pilniar] —
9140' sin ZL j= =1 (1 —_— e‘—'f)] (1— e‘:‘z}s

giln+* )1
2sindt-(1 — e i)

—1 s a—j
1 3[_ e E Az
=t (1 —e )l

H

51 Aa—s—l e—:‘(‘u«—n—‘ 27
— Y

_ v=n-+1
2sinyt-(1—eiy |

provided that the last series converges. So far the value of s has
not been defined. Now we take s so large that the last series
differentiated r times is still absolutely convergent. It is sufficient
to suppose that s> a+7. Since A7 = O (17), and since each of the
expressions

=3

| d ( 1
| dt*

(1 > 0) is less than C,/fi*"+! we obtain that A% {K*(£)}" | is less than

the sum of three expressions

\! - a ( e
2siu%z-(1~e—ﬁ)7)g’ di* \ 2sinif-(1—

s pai LA I pamstp
/A I n
QYo  GY i 6 X
‘j.—_-l L‘H‘H" =0 ta-[—l-}—r—p et ts—{—r——y. +1

and the second part of the lemma follows at once. If £>>1/n, the
second sum is < C, n//t*t! and the third is <C,n®***"/tst1. Hence

ta—r—rl {s—r+l =1 i+t }dt < CB'

1'n

Foldr | e st S i
_/tr{%Kg(t)idt<c, /[” o T3
jatr’ z 1'n =

‘On the other hand, from the formula
K*(t)y={; A2+ A}_ cost+ ..} /A]

we easily deduce that | {KZ(£)}7 ] does not exceed the expression

nr AP A% < Gy, Tt follows that [ £ LK)} | dt < C,, and we

obtain the first part of the lemma w1th C=C+ G,
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10.42. Let the series

La, +n;5_,: (an cos nx + by, sin nx),

1)

be summable (C,0), a=0,1,2, ..., for x =X, to sum s. Let r be
an integer > o -+ 1, and suppose that the series (1) integrated term
by term r times converges, in the neighbourhood of x,, to a function
F(x). Then Fin(x,) exists and is equal to §?).

To fix ideas we suppose that r is even; for » odd the proof
would be similar. Increasing o, if necessary, we may suppose
that either r=a + 2, or r =a - 3_ We have ?)

2 a, cos nx -+ b, sin nx.
nr

F()—

@)

Without loss of generality we may assume that x,=0, s=0, g,=0.
We may also assume that (1) is a purely cosine series; for the
sine component of (2) is an odd function of x, and so its r-th
symmetric derivative at the point 0 is equal to 0 Let us put
(1) = (CoS WY&, Sn =S =01+ A+ .. dCny e s sh=stT s
Since s2 = o0 (n*), and so also 5571 =0 (n%), s =0 (n%), ..., Abel’s
transformation applied (o + 1) times gives

F(t) = (—1yPt 3 any (nt) = (= 1) ¢7 2 s34y (),
. n=1 n=1

where the (x -+ 1)-st difference 441! is defined by the following
conditions: for any sequence {#,} we write du,=4"u,=,— tlpyy,
Auy,=A4(4—1n,). It is well known that, if z(x) is a function
differentiable j times, x, and £Z>0 are fixed numbers, and

U, =u(x,+nh), n=12 .., then
B Au,=(— 1)/ uix,+ nh+ 8jh), 0<8<19).
Let ar P -
© Pw=3wE o, (g=tex=PE)
y==0 (2 )l x’

1) See Plessner, Trigonomeirische Reihen, p. 1881. This resultis a gener-
alization of a theorem of Riemann (§ 11.21). The series (2) .is certainly
convergent if, for example, |a,|-+|b,|=0 n%).

?) Into the right-hand side of (2) we might introduce an arbitrary
polynomial of order {» — 1); this would not affect the result.

' #) The proof of (3) will be found in many treatises of Analysis. See e. g.
de la Vallée-Poussin, Cours dAnalyse, 1, p. 72.
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Then 1 (7£) = X (nt) 4+ P (nt)/(nt)", and so
Ygr—1
Fity=2 ——t"+tR(
v=0 (2! TR,
where A, = (— 1)"5r+‘/\‘ ocAa—H 2T, R(t)=(— 1y2% aﬁawl} (nt).

Since, in view of (8), 4*Mn¥ 7 = O(n"""“‘)——O(n‘““‘*), the
series defining the numbers A, converge absolutely; it follows
that the series defining R (¢) is also absolutely convergent. The
theorem will have been established when we have shown that
R({@)=o0() as £-0. Let N=[1/t], 0<t< 1. Then

(R =Xis A“+1><nt>1~"+ b SU+V.

n_‘\.’
The function X () is regular in the whole plane, and so, on account
of (8), |4*"'k(nt)] < C*T' for n N, where C, C,, ... denote

constants independent of 2 and . It follows that U does not exceed
é’\l’

Ctett _5_,’1 | s%|=Ct*+1. o (N*t)=0(1) as £-0. On the other hand, an easy
n=

calculation shows that |v* (%) < C, 7, and so | X&) | < Cyu7,

for # >> 1. Using (3) again, we therefore obtain

oa oa

V< C2 ta—r—}-l E isro: i AT = Cz tzz—r—l—l Z o(nu.—r) — Cz 2T O(Nr———aw-l).

n=N+1 n=N+{1
Hence V=0(), U+ V=0(1), and the theorem follows.
10.43. An immediate corollary of Theorems 10.41 and 10.42 is:

(i) Suppose that the series 10.42(1) has coefficients O(n*) for some k.
A necessary and sufficient condition that the series should be summable
C for x = x,, to sum s, is that there should exist an integer r > Q
such that, if F(x) is the function obtained by integrating 11.42(1)
term by term r times, then Fy(x,) exists and is equal to § *).

When 10.42(1) is a Fourier series, the above result may be
stated in a different form.

Given a function ¢ (f), defined to the right of £ =0, we shall
say that the number s is the (C, r) limit of 2 (¢) as £+ 0, if
t-0

(r > 0).

1) ——fm(u)(t—u)’lduas as

) Plessner, loc. cit.
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A more detailed discussion of this notion will be found in § 12.3.
The relation (1) will be written (C, 1) ¢ (£) = s. It (Cao@)~>s
for some «, we shall write (C) o (£) 5.

(i) A necessary and sufficient condition that the Fourier ser-
ies of a function f(x) should be summable C, for x=Xx,, to the sum
£ (%), I8 (C) vslt) = f (o), where ox(t) =% [f (% + 1) +f (x5 —HIY.

Let 10.42(1) be S[f]. Since &[f] at the point x = x, is
the same thing as & {g.(f)] at the point =0, we may assume
that x, = 0 and that f(?) is an even function of #; we also assume
that f(0)= 0. Fourier series may be integrated term by term,
and so, if F(x) is the result of integrating &[f] r times, we
have an equation

¢
©  FO+P®=—— [¢@ ¢ —uydy

r—1! ¢ .
where P (f) is a polynomial of order <r—1, and ¢ (1) = o, (1) = f(n).
From this we see that, if (C,r)p (£)»0 as £—0, then F(,(0) exists
and is equal to 0. Conversely, if F(»(0) exists and is equal to 0,
then F(f) = o (t") + a polynomial of order r —2; since the right-
hand side of (2) is, in any case, o(t™%), it must be o(£"), i. e.
(C, r)oy(t) 0. To complete the proof of (ii), we apply ().

Proposition (ii) may be precised as follows.

i) If (C ) ox(t) > f(x,) as t->0, then S[f] is summable
(C, B), for x=x,, to the value f(x,), where §>a>> 0.

v) If S1f] is summable (C, B) to the sum f(x,), for x =X,
then (C, o) o (t) > f(x,) as t >0, where 3> —1, a>f+ 1.

For the proofs we refer the reader to Bosanquet [1], where
also a further bibliography will be found. Here we intend to apply
proposition (ii) to obtain an important result due to Hardy and
Littlewood. For the proof we require the following theorem:

10.44. Jf Su, is finite (C.o) and summable (C,§), B>cx> —1, tken it is
summable (C,a—3) for any 8>07%). '

We may suppose that f=a-}1, 0 <<3<1, for the general result can be
obtained by repeated application of this special case. Assuming, as’ we may,
that the sum of Ty, is 0, we have to prove that, with the notation of § 3.11,

.sf‘f'*'a/zél;':'i'a -+0. Now

) Hardy and Littlewood {7}
2y Andersen [1].
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[10.45] Summability € of Fourier series.

13 LIPS 1nf] n

o i1 & —

Sn =2An—ksk:2+ E =P,+Q,
k=0 k=0 p=[nfj4+1

(e <h<1)

. ) .
Observing that |s, | < C,k%, where Ci, Cs,... denote constants, we have
n

a—1 z 8 Z [
Y AT=Cn A Ly~ G a =y
Ek=[nf]+1

IQni<ana

(Since 6>>Y, the first inequality is true for «<(0 also). Henee, if 4 is sufficiently

near to 1, we have | Q, !,1Az+a<‘,gs, where ¢ is arbitrarily given and n>n,

Having fixed 9, we shall prove that P, :o(na+a);for, making Abel’s transformatien,
[nh] [n5]

1 —2 ati -8 5—2 -+ 3
1P < | S AT o™ < Gl — T Y 0T ) o) =
k=0 k=0

=G —9P 0 (* ™) = 0 (*TH) < e 42

for n>n,. Hence §s§+5/AZ+6§<e for n>Max(n,n,), and the theorem Iis
established. .

10.45 1. (i) If f is non-negative and if Z[f] is summable C
at a point x, then S[f] is summable (C, ) at that point, for every
positive .

(ii) If f >0, a necessary and sufficient condition that < (71
should be summable C at a point x, to f(x), is that (C,1) ¢:(2) ~f(x).

Under the hypothesis of (i), we have 10.43(1), with g(z)=12L2),
for some r>0. Since v.(z) > 0, the left-hand side of 10.43(1) is
not less than

2 12 7
l._. - ~
{7 [ oal) ¢ —uy—2du> f%—'j o) du, i. e. —i- [2dwydu =0 Q).
0

1
Let &(f) = -1-[ e+ B +f(x—1) —2f(x) di. In § 3.3 we proved

0
that, at any point x where &(f)=o0 (1), 2[f] is summable (C, o),
«>0,"to the sum f(x). Exactly the same argument shows that, if
£(f) = O (1), then & [f] is finite (C, =) at the point x (it must be
remembered that ¢.(f) has a slightly different meaning in § 3.3,
viz. f(x ;{— t) 4+ f (x — ) — 2f (x)). Since the conditions 08 >0

and ;— . /}nx(u) du=0(1) imply &(t)=0(1), 2[f] is, in our case, finite
0

1) Hardy and Littlewood [5].
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(C, =) and so, in view of Theorem 10.44, summable (C, a -+ 8) for
every o >0 and &> 0. Putting o+ 8=¢, we obtain (i).

We write o.(f)=0(t)=,(t), and denote by Px(#), £=1,2,..., the
integral of @;_;(u) over 0<Lu <. The relation 10.43(1), with s=f(x),
may be written @.(f) = f (x) #’/r!, and to prove (ii) we have to show
that @,(f) =~ f(x)f. Since Pu(t), £=1,2,.., is a non-decreasing
function of £, proposition (ii) follows by repeated application of
the following lemma:

Let s (t), t >0, be an everywhere differentiable function of t.
If s'(t) is non-decreasing and if s(£)~=st* as t~0, then s'(¢) = sat*,

Let 0<<8<1 be a fixed number; by the mean-value theorem,
1 A—=0ts@H<s@—s@) < —08)rs@).

Since s () — s (6f) =~ s5-(1 —6%)£% we obtain from (1)

lim 5@ - (120

el R
—  s(8t 1—6% . — s — g
lim (a-—)—l Lo lim a(_l) < ! Gaﬁll
>0 (96) (1—6)8 5o 1 (1—8)8

Since 8 may be taken as near to 1 as we please, we obtain
lim s'(£)/t*7" > 52, lim §'(¢)/£* 7 < 59, 1. e. $'(F) = st

It is plain that (i) and (ii) hold when f is bounded below,
and so, in particular, when f is bounded.

10.46.
1. If fel’, r>1, and if s,(x) are the partial sums of €[f], then

Miscellaneous theorems and examples.

1 L H
Y A s, (0]
a1 {:;e v —->'1

for every #>>0 and almost every x. In particular, s,{x) = 0 (log n) for almost
every x. Carleman [2].

[Use the equation P =1-43%u--.. and argue as in § 10.1].

2. If fel? and s,(x) are the partial sums of € [f], then, for almost
every x, the sequence 1,2 3,.. can be broken up into two complementary
sequences {mk} and {nk} (depending in general on x) such that smk(x) - f(x),
<
I 1/ny <C oo,

[Use the lemma of § 10.11].
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[10.46] Miscellaneous theorams and examples.
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8. A series Yu, is said to be absoluiely summable A, if the function
g(r)=Tu,r" is of bounded variation over 0-< r<(1. Show that, if £ u, <o
then T u, is absolutely summable A.
4. &[f] is absolutely summable A for x = x, provided that either (i) f

satisfies Dini’s test (§ 2.4) at the point x, or (ii) F(x) is of bounded variation
in the neighbourhood of x;. See Whittaker [1], Prasad [2].

5. Let s,(x) and ?n(x) denote the partial sums of Sif] and Z[f] respee-
tively, and suppose that there is a funetion g(x)>»0, ge L, such that s, (x) > —g{x)
n=>0,1.2,... Then (i) there is a function /(x) belonging to L' for every :>0and such
that §,(x) < (x), |5,(%) | <{h(x). Moreover, (il) if fel’, gel’, r>>1, then
helr, i) if flog¥iflel, glogT g elL, then hel.

For this and the following theorem see Paley and Zygmund {2

6. () If |f <1, and 5,(x)>—A4, 0<x 27, n=0,1,..., where 4 is a constant, then
there is a constant B~=B(4) such that s,(x)<B. (ii) If f(x) is continuous and, for
any ¢>>0, we have §,(x) > f(x) —=, n > n(z), 0<{x < 2=, then E[f] converges
uniformly to f(x).

7. Let {a,} be a positive decreasing sequence such that {na,} is monotonie
and Ta,n<= let s,(x) and #,(x) denote the partial sums of the series
Sa,cosnx and T a,sinnx respectively; then the faunctions s(x)=Sup s, (x)!

n

and t(x) = Sup | £,(x)| are both integrable.
n

8. If a, and b,, n=12..., are the Fourler coefficients of an integrable
function, the partial sums of the series

== g, cos nx -} b, sin nx S a,sinnx — b, cosnx

%) * L
n;—‘fl (log n)lTo n;-f_)

(>0

(log n)1+°
can be majorized by integrable functions. For =20 this is no longer troe.

9. 1f g, >0, k=1,2, ..., and if the series T a, sin kx is the Fourier series
of a bounded function f(x), the partial sums of the series are uniformly bound-
ed; if f is continuous, the series converges uniformly. Paley [7]

[Let s,(x) be the first arithmetic means of the series considered. To
prove the first part of the theorem, observe that, if f(x)] <M, then [5,,(x) [ <T M,
I8 () | << An M (§ 7.31), and so, taking x =0,

2n k
3 (1—— kay, < 4Mn.
=\ 26t

Taking the first n terms on the left, we obtain a, -+ 24+ ...+ na,<8Mn, and
it is sufficient to apply 3.13(1)].

10. Theorem 10.42 holds for o fractional and > —1.

"[For —1<Ca<C0, r=1, the theorem was established by Hardy and
Littlewood [1]. The general result can be obtained by combining the
Hardy-Littlewood argument with that of § 1042].
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11. The results concerning summability € holds, mutatis ‘mutandis, for
Fourier-Stieltjes series; in particular, if F(x) is non-decreasing, summability C
involves summability (C, ) for any ¢>> 0; a necessary and sufficient condition
that £ [dF] should be summable C for x = x;, is that F(I)(-fo) should exist.

12. Power series on the circle of convergence may be considered as
trigonometrical series, so that Theorem 10.43(i) remains true for power series

1) S, einx,
n=0

It may however then be stated in a slightly different form, viz. it holds it by
F(%g) we mean the r-th unsymmetric generalized derivative defined at the
beginning of § 10.41. Plessner. Trigonometrische Reihen, p. 1382; see also
Hardy and Littlewood [7].

[Theorem 10.42 holds if 2 >—1, r > a1, and F(,)(x) is the r-th unsym-
metric generalized derivative, provided that 10.42(1) is of the form (1)].

13. If 10.42(1) is the Fourier series of a bounded funection f(x), the con-
jugate series is summable C if and omly if it is summable (C,¢) for every
e>0. A necessary and svificient condition that S[f] should be summable C
for x = x,, is the existence of the integral '

_lff(xmu)wf(xo—t) o,
= 2tglht

which represents, then, the sum of & [f] for x=1x,. Prasad [8], Hardy
and Littlewood [19]. :

[To prove the first part of the theorem, we show that the difference
3.32(1) is bounded for every >0 (that it is bounded for 0<r<1, was im-
plicitely proved in 3.32). For then s(x) — s:(xp) = O (1) for every >0 and
§>0, and it is sufficient to apply Theorem 10.44. For'the second part of the
theorem we refer the reader to the papers quoted !)].

'} A theory of summability C of the series conjugate to general trigono-
metrical series will be found in Pless ner, loc. cit.”
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