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CHAPTER IX.

Further theorems on Fourier coefficients.
Integration of fractional order.
9.1. Remarks on the theorems of Hausdorff-Young

and F. Riesz. It has been proved in Chapter IV that, for any
complex function f(#) with Fourier coefficients ¢,, we have
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This formula contains two propositicns: (i) If fel? the
series on the right converges to the sum equal to the integral
on the left (Parseval), (ii) If ¢, is an arbitrary sequence such that
Ylc,[* converges, there is an fe L? with complex Fourier coeffi-
cients ¢, satisfying (1) (Riesz-Fischer). It is nalural lo inquire
how far these results can be extended to exponents other than 2.
It appears that such extensions are possible, but only parily.
Here we shall only state the results and make a few remarks
about them. Complete proofs will be given in § 9.3.

Given any function f(¢), 0 < £ < 2%, and any sequence {¢.},
— oo < n <+ oo, we write
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We assume that f and b,z may take complex values. Using the
letters p and ¢, we shall suppose, unless a statement to the
contrary is made, that 1 <p <2< g<<co. For any r>1 we
define #' by the condition 1/r+1/r'=1, so that p' is a ¢, ¢'
is a p. :
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The following theorem is due to Hausdorff and Young?).

(a) If fel? and c, are the Fourier coefficients of f, then
Nyle] is finite and Ny c] < W[ f].

(b) Given any sequence of numbers cn, — co <n <+ oo, such
that N,[c] < oo, there is a function fe L7 with Fourier coefficients c,
and such that Ay [f1 < Nplc].

Theorem (a) is an extension of Parseval’s theorem, the
sign = being replaced by <(; Theorem (b) is an extension of the
Riesz-Fischer theorem. In both (a) and (b) the argument goes
from p to p', i. e. from the smaller number to ‘the larger. The
theorem would be false if we replaced p by ¢. For (i) there is
a continuous funection f such that MN,[c] = oo for every p <2
(8§ 5.83, 5.61), (ii) there exist trigonometrical series which are
not Fourier series and have coefficients ¢, such that M,[c] <eo
for every ¢ > 2; the series L 7~ cos2” x is an instance in poiat
(§ 5.4). Roughly speaking, the theorems of Parseval and of Riesz-
Fischer are the best: we can neither strengthen the thesis of the
former, nor weaken the hypothesis of the latter.

The reader will observe that between the two parts of the
Hausdorff-Young theorem there is a certain analogy. The second
part may be obtained from the first if the function f, depending
on the variable Z, is replaced by the function ¢ depending on the
variable 7, integration is replaced by summation and vice versa.
This fact is explained by the theory of Fourier integrals, where
both parts of the theorem corresponding to that of Hausdorff-
Young coincide. The analogy just stated can be detected in var-
ious theorems of the theory of Fourier series and is an important
guide in the search of new results. We shall not investigate
this subject systematically.

9.11. The Hausdorff-Young theorem can be extended to
general systems of complex functions ¢,, ¢,, ... which are ortho-
gonal, normal, and uniformly bounded ((¢.|<M, n=1,2,..) in
an interval (g,5). Let us consider an arbitrary function f (%),
a < t< b, and an arbitrary sequence of numbers ¢, ¢,, ..., and put

1/r

MAf] =W If: a,b] = ( j | Fir dt)”r, RN, fc] = (5__3] | ca f’) :

) Young [12], [13] proved the theorem in the case p'= 2k, k=1,2,..
The general result is due to Hausdorff [2].
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F. Riesz’s extension of the Hausdorff-Young theorem may be
stated as follows?).

‘ (a) If felr(a,b) and if c, are the Fourier coefficients of f
with respect to {p.}, then N,lc] is finite and Wpr[e] < ME—222 [ 7).

(b) If, for a given {c,}), we have MNole] < oo, there is an
felf(a,b) whose Fourier coefficient with respect to o©p is cp,
n=1,2, .., and such that Wy,[f] < MC-»p)p Mlcl.

Applying this theorem to ‘the system of functions ethx

E=0, =1,.., 0 < x <2 we obtain the Hausdorff- Young
theorem.

9.12. The Hausdorff-Young theorem will be established, as a corollary
of F. Riesz's theorem, in § 9.3. Here we give an independent proof of the
former theorem in the case p’ =2, i.e p= 2k/(2k — 1), k=1,2,... This case
is fairly easy and, what is more important, in certain interesting applica-
tions of the Hausdorff-Young theorem it suffices entirely.

Given an felL, we put f(x) = f,(x) and

= f f(x+Df(—Bat,  i=23,..

From Theorem 211 we see that, if ¢, are the Fourier coefficients of f, those
of f; are c;,. From § 4.16(ii) we obtain, by induction, that, it «;,>>0,i=1,2,..,J,
o+ oy .. 4o, <1, then

J
R A [ T

Putting j=£&, o, =a, =...=1/2k, and supposing that fe ij‘”k_l), we
obtaiu -‘J(‘_,[f,‘,]<ﬂl§kl,(2k_l) [f]. Hence, observing that the Fourier coefficients
of f, are cﬁ and applying Parseval’s theorem, we have

Wngyar—ny)[F1 > W7l = RYFF] = Ny le),
i e. Qtzk/('zk-—])[f] = Nyplel; this is just Theorem 9.1(a) for p'= 2k.

9.121. Theorem 9.1(b) may be obtained by a similar argument, using,
instead of the results of § 4.16, analogous results for sequences. We prefer
to follow a different way and to deduce Theorem 9.1(b) from Theorem 9.1(a),
or, more generally, Theorem 9.11(b) from Theorem 9.11(a).

Suppose that Stp[c]<o~=, and let f,=¢ ¢~ -¢,9, n=1,2,.. For
every function g with Fourier coefficients d,,d,, .. we have

5 F. Riesz [6].
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b n n 1/p n 1/p
3 . ' < @—n)p gn
2 1T 1

the last inequality being an application of Theorem 9.11(a). The upper bound
of the left-hand side, for all g with -‘JJEF[g]\/\l, is equal to SJJ(‘[,,[fn] =§JJ?p,[fn}
(§ 4.7.2), so that .
3 [ S
1 ‘ Myl f,] < MC PP fc].

Since the inequality 92p[r] <Ceo implies Ny[c] < ==, the series ¢, ¢;—-cy00t...
is the Fourier series of a function f (§ 4.21). 1f n tends to = through a parti-
cular sequence of values, then f,(x)—f(x) almost everywhere (§ 4.2) and,

applying Fatou’s lemma, we deduce from (1) that SJEp,[f] < MO ﬁnp[c], i e.

Theorem 9.11(b).
In a similar way we could deduce Theorem 9.11(a) from Theorem 9.11(b),

so that both theorems are in reality equivalent.

9.2. M. Riesz’s convexity theorems?!). Consider a system
of numbers ap, 1<j<m 1<k n and the linear forms
Xi=apnx,+apXy+ ..+ anxs, j=1,2,.., m, of the wvariables
Xy, Xgy s X¥n.  Let Mg denote the upper bound of the expression
(0| X 18 ...+ 0m | X | V)P for the values of x,, %y, ... X, satistying
the inequality (p, | %, |+ ... + pa| X4 |Y9)* < 1, that is

m ?, n o

(1) Mg =Max (ZOjIXjW'g) /<Z Pklxkllla) y (4, 82>0),
Xy Xp\J=1 ) k==1

where o; and p; are arbitrary but fixed positive numbers. It is

easy to see that the maximum is attained for every a«,{ > 0.

M,z is a multiplicatively convex function of the variables «, 8
in the triangle (4) 0 <a <1, 0 B <o,

We mean by this that on an arbitrary segment { which lies
entirely in 4, Mg, considered as a function of a point, is multiplica-
tively convex (§ 4.14). To show this it is sufficient to prove that,
for every point P (s, 8) lying inside [, there exist on I, arbitrarily
near P, two points Py(2,,8,) and P,(a,,8,), such that P=¢, P,+t,P,

£>0, 5,0, fi+t, =1, and that Mg < Mg Mig,?).

oy

) M.Riesz [3]; Paley [2]

%) If a function y=1ov(x) is not convex, there is an arc y=g(x),
%, <x <X, lying totally above its chord y =1(x), x, < x < x,. Let X, be the
largest value of the argument x,x, < x <C x,, for which 0 (x) — [ (x) attains its
maximum. Then, for any numbers x{ and xj such that x, <xl < xp < x) <y,
the point (X, @ (xy)) lies above the chord joining (x{, 9 (x/)) and (x}, ¢ (x).
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Since M,z is a continuous function of o, B 1),
ourselves to the case of / lying entirely inside
suppose that [ is not parallel to the p-axis.

Let us fix ¢, 8, and put ¢ = 1/2, b =1/3. Let X1y Xoy vy X be
a sgystem of values for which the maximum in (1) is at’tained'
Vis V2 -, Yn denotes a system of numbers which will be defined’

presently, and Y, Y, .., ¥, are the corresponding values of the
linear forms. The expression

@ (071 + ¢ VD pr |24 + = 3 )2,

we may restrict
4. We may also

considered as a function of ¢, attains its maximum for e = 0. Let
Xx=x+ix", y=y'+iy". It is easy to see that, if a>1, the
expression |x 4 ey |2 = [(x'4 &) + (x4 ey)2]a2 g g differentiable
function of ¢, and its derivative at the point ¢=0 is Na|x-1(signx)y.
Hence the ratio (2) is also differentiable and, equating its deriv-
ative at the point 0 to 0, we obtain the formula

(8) o)l X; 1"/ X pal =9 Loy | X; [~ {sign X) ¥/ S s 4 |*—(ign sl ys.

Let us put ye =|[x:|" sign xs; thence |x;!= '+ and the deno-
minator on the right may be written in the form of a product
(E pr| 2 [*7TR) 0 (8 pp |y [(""1""‘)/")9%, where the numbers 2,86, > 0,
8,>0, 8, +6,=1, will be fixed presently. Let us represent the
coefficient of o; on the right in (3) in the form | Xjjp—a-| X;|a—1.
*(sign X;) V. Applying Holder’s inequality with exponents &, &, k,,
where 1/k+ 1/k, 4 1/ky =1, k= b/(b — a), we obtain from (3)

20 [ X5l o | XG O (3 0; | X [k VR: (8 o) | ¥ itk
@ Cpe [ [P (S o [ [)Ps

Here o;=1/(a—141), a,=2/(a—14)), whence (a—1)o,+ay=1,
that is (1 — o) &, 4 0, =a. Let us put

)X Pz !xk

) Considering separately the cases «>0 and a =0, we prove that
the denominator in (1) is a continuous function of %, Xy, ..,%, in the range
a 20, xq.. X, arbitrary. Hence, denoting the ratio in (1) by f(a, 8, Kiyerr s Xp ),
we see that f is continucus in the range « >0, §2>0, |x 2..-]x,[2=%0.
Since we may plainly define MaB a5 the maximum of f on the ‘sphere’
()} x[t4..4]x,[r=1, and since f is uniformly continuous on S, M, is
a continuous function of o« f It must be remembered that, if a =0, the
denominator ef (1) is equal to Max (| x|, | xz],.. | X, ) (§ 4.12).

A, Zygmund, Trigonometrical Series. 13
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(@a—1)k =1/fg
so that 6,4+8,=1. The relation 1/&,+1/k,=a/b gives (a—1)B,+B,=a/b,
that is (1 —a)B, + B, =8. From the last inequality we obtain
easily _

@ Mg < My My,

91 = 04 (a —_— 1), 02 = Olg, k2 = 1/{33)

The formulae (1 —o)a; + a2y, =0, (1 —a)B, + af, =B show
that (2, B) lies on the segment /' joining (2,8;) and (ay,@8,). If for A
we take a value sufficiently near to 1, it follows from the defi-
nitions that ¢, and o, will be near o. When %, runs from the
smallest possible value, viz. b/a =c/f corresponding to £k = oo,
to infinity, then B8, varies from B/a to 0. Since B/~ B and since «,

is as near 2 as we please, we find, taking for %, a suitable value,

that the point (e, B,) lies on L. Then the directions of [ and !
coincide, and the formula (4) shows M,z to be a multiplicatively
convex function on [ This proves the theorem.
b
9.21. So far, whenever we spoke of the Stieltjes integral /f(x) d g (x),
a
we uvnderstood this integral in the Stieltjes-Riemann sense. Now we shall
introduce the Stieltjes-Lebesgue integral, restricting ourselves to the case
when ¢ (x) is a non-decreasing function.
Let y=¢(x) be a function non-decreasing in an interval a<x<b,
and let ¢(¥), c<Cy<d, be the inverse function, where c¢=y(a), d==9 ().

If ¢ (x) takes a constant value y, for o <<x <8, we assign to ¢ (y,) any value ,

from the interval («,B). If ¢ (x,— 0) <o (%, 0), we put ¢ (y) = x, for y belong-
ing to the interval (p (X, —0), v (xo+0). Let f(x)=F( =g (). If g()
is integrable over (c,d), we say that f is integrable with respect to ¢ over
(a,b) and define the integral by the formula

b ()
@ [r@dew=[eway.
a @(a)
Since the number of stretches of invariability of ¢ (x) is at most enumerable,
the values of ¢(y) corresponding to these stretches have no influence upon
the value of the integral.

A set E of points x is said to be of measure 0 with respect to ¢, if the
variation of ¢ over E is equal to 0, that is if we can cover £ by a finite or

enumerable system of intervals (a;0;) such that ¥ {'; )y —o (ai)}' is arbitra-

) For a detailed discussion we refer the reader to Lebesgue’s,
Lecons sur Iintégration.

icm

[9.21] M. Riesz’s convexity theorems. 195

rily small. This is the same thing as to say that the sat £ on the x-axis is
transformed by the function V=mu(x) into a set of ordinary measure 0 on
the y-axis!). It is plain that, if £ is of measure 0 with respect to 7, the left-
hand side of (1) is not atfected if we change the values of f{x) in E. The
function f may even be undefined in E. It F{x) = fi{x) outside E, we shall
not distinguish f from f,.

A funetion ¢ (x), a < x <b, is called a step-funetion if (2,b) can be bro-
ken up into a finite number of intervals in the interior of which v (X) is econstant.
If x, Xs..,x; are the points of discontinuity of a step-function %, then

b

/f(.\‘) dy(x) =2Xs,f(x), where 5;=¢ (x;--0) — 9 (x;—~ 0). For such functions

s

a set is of measure 0 with respect to v if it does not contain any of the

points x; It can be proved that, if ¢(x) is absolutely continuous and non-
b

decreasing, the left-hand side of (1) is equal to ff(x) w'(x) dx, but we shall
a

rot require this result, except in very special cases such as (X)) =—1/x.

As regards the applications we have in view, the Stieltjes-Lebesgue
integration is not really necessary and we could work with Lebesgue’s defini-
tion of an integral. The use of the Lebesgue-Stieltjes integral has however
certain advantages, the chief of them being that it enables us to treat series
(p (x) = a step function) and integrals (p (x) = x) in the same way, so that the
arguments and results can be stated in a concise form.

We shall denote by Lr"‘g=L”?(a, b) the class of functions f(x) such that
{f(%)]" is integrable with respect to ¢ (x) over (a,b), and write

W lf] =M, [f]=M

?

J’ b V'
rfiedl=| [ 17V decop .

a
From (1) and §§ 4.12, 413, we deduce the generalized Holder and Minkowski
inequalities

MMM WA+ LA LA

where M, = ‘JJ%r,G. If fis a step-function, then %?m,?[f] is equal to the upper
bound of |f|.

Let S denote the class of step-functions s (x), 2 < x < b, which vanish in
the intervals where ¢ (x) is unbounded. It is plain that such intervals, if they
exist, must be extreme intervals.

r>=1,

() Tke set S is everywrere dense in every class L7% 1< r< o
Suppose first that the intervals (a.b) and (7 (a), ¢ (b)) are both finite, and
let a=ay<a,<a,<..<a,=10 be a subdivision of the interval (a, b) such that

') We define the image of apoint x as the interval ¢ (x—0) <y <5 (x4 0)
of the y-axis.


pem


”196 Chapter IX. Further theorems on Fourier coefficients.

the points a,, fy, ..., @,y are points of continuity of ¢. Let ;= o (a)~y(a,_,);
we define a step-function s (¥) by the following conditions: if ;== 0, we put

ap .
2 §(x)= ES [f(x) de (), a3<x<a, i=1,2,.,n
by
it =10, we put s(x)=0 for a;_, < x<a; in any case s(b)=s(a,_ ;). Ap-
plying Holder's inequality, we obtain that sJJ%NP[S; a;_y, 4] << ‘JJér, ?[f; a4, 4,
and so
@) W, s a D<M, [fiab],

an inequality which will be used in a moment.

Now let us consider a sequence of subdivisions of the interval (q,b)
guch that Max (a;— a;_;) tends to 0, and the sequence §,, 8y .. of the corres-
ponding functions s. If X, is a point of discontinuity of ¢, then 8 X0) > f (x6),
i e gp(y) & (3) for 9 (x,— 0) <Ly < g (x4 0), where g,(¥) =Sl ()] Let £
be the set of the points y which correspond to the intervals of constancy of
@ E is at most enumerable. If y corresponds to a point of continuity of ¢
and does not belong to £, then g,,()—~ g (y) provided that g(y) is the deriv-
ative, at the point y, of the integral of g. It follows that g,,(y) > g (y) for
almost every y. Hence, if f is bounded,

a(b) b
[l =g &r>0, ioe. [ 16— s do ).
o(a) a

It feL"%, we write f=/'--f", where f' is bounded and 9, ST e
Correspondingly $,,(x) = s}, (x) -+ ¢}, (x) and

My  Lf—sml < W, L — 5] + W, JS AW, LSl — 8] Bae <o

for m sufficiently large. This shows that 9J2r’(P[f——— 8,1+ 0, and (i) iz establish-
ed in the case considered.

To prove (i) in the general case, we again write f=f'--f!, where f/=10
outside amn interval (a',b") completely interior to (a, b), f!(x) =f(x) in (a', '),
and ED?r [F"] <%e Let h(x) be a step-function vanishing outside (a', ') and
such that W, [f'—F;d,b]<4e Then

M [Lf—Fa,b]<M, [f'— o ]+ M, [f"a,8] e

and this proves the theorem in the general case.

We shall now prove the following result, which will be required in the
next section.

(i) Given a finite number of functions fi,fy ...,f, belonging to L" ‘P,
1 r<es, and a number €0, we can find step-functions hy, hy, ..., h, such that
Wr’ [f;— k) <e and that, for every sequence of constants ¢, cy, s Ly We have

Dy A< Dy [F), where F= ey fit oty fy hm oy bty By 1SR Son

If the intervals (a,b) and (¢ (@), ¢ (b)) are both finite, this is immediate.
For if #; is a function of type s (see (2)) corresponding to f;, and if the sub-
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division ag, @y, s, ... is sufficiently dense, then 93?,’,:,[fi-7/li] <e. If the subdiv-

ision is the same for all f, then % isa step-fuuctiou of type s corresponding
to f and so, in view of (8), n, lp[h]\<§DEk ‘P[f] for every 1<k <Coo (if N, 1=,
there is nothing to prove). ’ "¢

) To prove (ii) in the general case, we proceed as in the last stage of
the proof of (i). We write f; =714 f! where f}is equal to f; in an interval
(a',¥") and vanishes outside it, f'=c fi' + o f) + ., M= i+ e fu + ..
Let 4} be a function of type s corresponding to the function f; in the interval
(@', b"); outside (a,b') we put Bj=0. If h=c¢, ' 4 ¢, by ..., then we may
suppose that £ corresponds to the function f' in (o', "), and so

My, U5 @, B = My T 0, 0] My 700,01 < W, L fr a0,

9.22. Let us fix two intervals 2 < ¢t <, v <t < v, and
two non-decreasing functions o (f), # <t g, and (), v <t < v,
We suppose that we have an operation T associating with every
function f (¢), # < ¢ < uy, belonging to a class ¥, another funclion
g =T[f], v<t<wv. The functions f and g may even be
undefined in sets of measure 0, the former with respect to o, the
latter with respect to ¢. As regards the class &, we suppose that,
if fied, foed, and if ¢ and ¢, are arbitrary constants, then
¢, fi+¢,f, €. The operation 7 is to be an additive operation, that
is Tley fi+ ey fil =c¢, T[fi]1+ ¢, T[fs] for any constants c,, ¢..

T will be said to be of type (e,6) if T[f] is defined for
every fe L”%(u, u,), and if

1) W, o[TIf]; 0, 0] < MM IS5 1, 1],

where M is independent-of f; in particular T [f]e€ [*¥(®, v;,). The
least value of M satisfying (1) will be called the modulus of the
operation and denoted by M,g, where o =1/a, 8=1/b. The ope-
ration T is a linear operation in the sense of § 4.52.

It may happen that an operation 7 is defined not for all
fe L% but only for a set S of f everywhere dense in L*? (the
distance of two functions f; and f, being defined as Maef; —fo]),
and that (1) is satisfied for all fe S. Moreover suppose that S con-
tains linear combinations of its elements. Then, without changing
the values of 7 [f] for f € S, the operation 7 may be defined by con-
tinuity in the whole space L*? in such a way that it becomes of
type (a, b) and that, moreover,

Mg = Sup M, o[ T/, [f] for fe.

For it fel®%, f.eS, n=1,2,.., M, [/~fu]=0, then M, o[fm—Fa] >0
as m,n-co, and hence, by (1), My y[T[fu] — T [fa]] »0. From
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Theorem 4.2, using the definition 9.21(1), we deduce that the-
re is a function g (¢), which we may denote by T7[f], such
that W, o[T[f]— T [fall » 0. The function T'[f] is defined outside
a set of measure 0 with respect to ¢ and is independent of the
choice of {fu}. If (1) is satisfied with f replaced by f, it holds
for f also.

A parlicularly important case is'the one in which § is the set
S of §9.21.

9.23. Let T be an operation which is simultaneously of type
(a,, b)) and of type (a,, by), where a;=1ju, b;= 1/B;, and the points
P;=(a;,B;) belong to. the triongle (4) 0L <1, 0<IB<"a, Then T
may be extended in such a way as to become of type (a,b) for
every (o, B) on the segment [ joining (o, B8,) and (o, B,). Moreover
the function Mg is multiplicatively convex on L.

Suppose that §>>0, i. e. that / does not lie on the o-axis.

Let P=P(a,B), P=tL, P+, Py t:>0, ¢, +¢ =1. From
what we have said it follows that it is enough to consider func-
tions belonging to the set S of § 9.21. This set S is everywhere
dense in every class L*?, 1 {a<<ecol). If f belongs to S, then
f=xfi+ % fi+ ..+ %, fn, where f; is the characteristic funec-
tion of an interval over which the variation of ¢ is equal to p. If
&=TIf], &=TIfi then g=x g +..+ % g Since fieL%?,
fie L%, hence gicL™? g;e L™ since b is contained between b,
and b,, we obtain, by Holder’s inequality, that g;eLl”¥. We
can therefore find a step-function g? such that we shall have
Sltb,[;,[gi — g} <e Let g = X814 o+ Xnfn; We may also suppose
that M, 4[g"] < M, o [g) 1<k oo, for all values of x,, Xy, ... , Xu.
(§ 9.21(i)).

' Let o be the maximum, with respect to the variables x;, X, ... , Xy,
of the ratio (fx; [+... 4% )/(p | X, [* + ...+ pu| %49 at the point
P. Let 1= ws; since, by Minkowski’s inequality, | My, 4lg] — Dty o[€7] ]
does not exceed e (|x; |+ ..+ |x.|) we see that

) Dy o[£ Mgl f] < 1+ My, g [£7)/ (X | 4 )

Denoting by X, X, ..., X,x certain linear forms of the variables
Xy X3y 0oy Xn, @and by o,,0, ..,0, certain positive constants, we
may represent the numerator of the last fraction in the form

) This is not true if a = .
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(6 | X P+ oo+ om | X ib)ﬁ. Using Theorem. 9.2, we see that this
fraction does not exceed

n, ¢[g*1}’* [V leNy W gL\ g, [ Vsl
up J_TL__ Sup L L < Sup{ k 1Y Su ) ~ }
lﬂ)ta"l‘?[f] lﬂ)l”’!"?[f]r - S)]Lau('?[f]‘[ p lg)('azv?[f]

where the upper bounds are taken with respect to xi, ..., Xn
Thus the left-hand side of (1) does not exceed 7’1+M21;-31 M,Zgz
and, 7 being arbitrarily small with ¢, we obtain

(2) Mag < leﬁl M’;-Sz

From this we deduce the first part of the theorem. Since (o, B,)
and («, B,) may be any pair of points on the segment I, the
inequality (2) proves the second part of the theorem also.

It remains to prove the theorem in the case of [ lying on
the «-axis. This case has no interesting application and we con-
sider it for the sake of completness only. Suppose first that the
number [ = ¢ (v)) — ¢ (v) ‘i finite. If the operation T is of type
(a,, o) and of type (a,, o), where 0 < 1/a, =a; <a,=1/a, then
T is also of type (a,, 1/1) for every 7 >0. Since the expression

\

LYRPIREY

K
to the essential upper bound of g (with respect to the function ¢),
we deduce that M,,, < ["M,,,. Hence, if feS, g=TI[f], and
if (¢,,), o=t o +ty0, t,+1f=1,1s a point on the segment
joining («,, 0) and (2, 7), then

0

increases as 7 decreases to 0 (§ 4.15) and fends

uy

o ) h ’ w a
(/127 a8)" < M8, (/i )

v u

. . it gt
and, making 1 -0, we obtain M, < Mg, Mz, .

To remove the condition [ < oo, let (¢,71) be an ’interval
interior to (v, ;). Considering the function g In (v', v}) only,
we have a linear operation with norm My < My, We have
My, < M;f‘l W ME < M;‘l 0 Mffzo and, making ¢'~7, v »7;, we obtain
My << M;‘J 0 Mo[cz._‘w )

9.24, It is natural to inquire how far the condition impos?d
upon the point (o, §) to remain within the triangle 4 is essential
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for the truth of the theorem. The results are mostly negative.
For details we refer the reader to M. Riesz [3].

Having in view definite applications we supposed in Theo-
rem 9.2 that the coefficients of the linear forms Xj, as well as
the variables x:, were complex numbers. Similarly in Theorem 9.23
the functions f and T[f] were complex functions of a real variable,
In some cases however it is important to have those theorems for
real variables. Theorem 9.2 holds, and its proof is unaffected,
if we assume that the numbers aj, X, are real. Similarly Theo-
rem 9.23, which follows from Theorem 9.2 by passages to limits,
remaing true in the domain of real variables.

9.25. As an application of Theorem 9.23 we shall prove the following
theorem, stated without proof in § 4.63. If r<s<r', the class (L",L"y is con-
tained in (L°,L%). Consider the series '

=)

0] _;_ a3 (a, cosnx -0, sinnx), (1a)%—anlﬂ—f—27.n(an cos nx 4- b, 8in nx),
n=1 n=1

and suppose that, whenever (1) is the Fourier series of a function Ffel’, (1a)

is the Fourier series of a function g= T[flel”. We shall prove first that

g&=T][f] is an operation of type (r,7) in the sense of § 9.22. It is plain that

T[f] is an additive operation and it remains to prove the existence of a

constant M such that M, [e] < MM,[f]. Let c:(x) and /,(x) denote the (C,1)

means of the series (la) and of the series %o -+1 cos x ... respectively.
From the formula

-’ e
@ ) ah(x) = .} . / Flx—2) L(6) at
b

(§ 4.64), we obtain IG:(X) <=t ML M [L,], mt,[:;]\g 2, [F1M.[2,], so that,
for fixed n, (2) is an operation associating with every fel” a function
a;eL’- Let M,z be the modulus of the operation (2). Since, by hypothesis,
SJ%,[G:;] is Dbounded for every fel’, the sequence {Mn} is bounded (§ 4.55).
If M= SupM,, we have 9]3,[::]<M9Jk,[f] and, making n- e, M. [g] <M L1
This shows that 7[f] is of type (r, 7).

Now it is easy to complete the proof. In view of Theorem 4.63(ii),” T is
also of type (', "), and from Theorem 9.23 we see that T is of type (s,5),
where s is any number such that 1/s is contained between 1/r and 1/7.

9.3. Proof of F. Riesz’s theorem. To prove Theorem
9.11(a) let

3 e

b
1) = [fOoBdt, n=1,2
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be the n-th Fourier coefficient of f (§ 1.81). Then

oo b b
@  Sler< /| fOrd, lal<M[fO)d

n=I1 a a
where the first inequality is Bessel’s inequality and the second
follows from (1) and the inequality | .| <M. Let us put §(x)=x,
and let ¥ (x)=[x] for x>0, ¢ (x) =0 elsewhere. If ¢ (x) is equal
to ¢, for x=n and is arbitrary elsewhere, the inequalities (2)

may be written
'SJJZ'Z’,D[C] < \;\ﬁg,?[f]’ mtm,!;[c] \< M 9ﬁl,(.p[f]s

so that the operation ¢ (x)= T[f] is of types (2,2) and (I, 9).
In view of Theorem 9.23, T is also of type (p, p'), where p———'l/at,
p=11—0a), $La<<1 Since M,y <1, Mo<M, we find,
using Theorem 9.23 again, that

(a—17)i(1=) 5 ((1—a)/(1—2) 2a—1 . pq2=P)P,
My < Mip M TS M =M

Hence My ylc] < Me=np M, [c], and this is just Theorem. 9.11(a).
To prove Theorem 9.11(b) we argue similarly, starting from
the inequalities

b o o

[1F@Pat< Blel fOI<ME o
a n=1 =

where f is the function the existence of which is agsured by the

Riesz-Fischer theorem (§ 4.21(1)). The details may be left to

the reader.

9.31. We complete the above proof by a few general re‘ma?ks.
In the first place we observe that the appar:atus of the Stieltjes-
Lebesgue integral was not really nec:ssary 1111<th;<pfloo,£ o’f1 Tzheo-

.11(a). For, if we put ¢ (x)=¢, for n—1< , 1=1,2, .
:Eglix?eqéal)ities 9.3(2) mag be writen Mc] \<i?)%2[f], Meof ] MM,
where the integrals are ordinary Lebesgue integrals, and_ we may
apply Theorem 9.23 in the case o(x)=x, b(x)=x. ‘Thls couf:
is slightly less simple in the case of Theoren‘l 9.11(b); but, asf W
know, both parts of Theorem 9.11 can easily be deduced from
each other (see also § 9.9.1).

The proof of F. Riesz’s Theorem can be made more e;eme];nt;
ary by basing it on Theorem 9.2 instead of Theorem 9.23. Bu
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the application of the latter theorem has two advantages. The
first of them is that it clearly shows the proper place of Theorem
9.11, which turns out to be not a generalization but a consequence
of the Riesz-Fischer theorem. Besides, Theorem 9.23 is of funda-
mental character and may be applied, so to speak, automatically
in many cases where an application of Theorem 9.2 would require
certain calculations, which would amount substantially to a proof
of Theorem 9.23.

We also observe that in § 9.3 we applied the Bessel inequ-
ality and the Riesz-Fischer theorem for a complex system {on},
whereas the proofs given in §§ 1.6, 421 bear on the case of
real .. The reader will have no difficulty in adapting those
proofs to the case of complex ¢,. '

9.4. Theorems of Paley. The Hausdorff-Young theorems
are not the only results which connect the type of integrability
of a function with the exponent of convergence of ils coefficients,
~ Further results in this direction have been obtained by Hardy

and Littlewood. The simplest way to them seems to lead through
theorems of Paley which partly generalize the Hardy-Littlewood
theorems and bear on general orthogonal and normal systems of
uniformly bounded functions.

Given any sequence of complex numbers ¢, ¢y, ... tending
to 0, we denote by ci, ¢, ... the sequence |c, |, |c, |, ... rearranged
in descending order of magnitude. If several |cn| are equal, then
there are corresponding repetitions in the c,. We put ,

A ; 7 gr—2 ]/r_g\ J; " ‘]T/I' o
ln‘?l] Eni = ,[c], |2, fz'”“)[ = L,[c"].

n=1 N
Let 9,(x), ¢,(x), ... be a system of functions which are orthogonal
normal, and uniformly bounded (|g,| <M, n=1 2,..) in an inZ
terval (a, 6). Writing ,[f] = W,[f; a, b Paley’s t leore
stated as follows ‘).b ' P y# fheorems may be
o (.i) If, for a sequence of numbers ¢, c,, ..., the expression N, [
is fmzte, there is a function fe L9 such that ¢, is the Fourier coef-
ficient of f with respect to Pn,n=1,2, .., and

o) Ml f1 < Ag ¥yl
where A, depends only on q and M,

) Paley [4].
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(i) If felr, and if Cyy Cyy - are the Fourier coefficients of f
with respect to {9}, then V] <co and

@) WVle] < Ap Myl f],
where A, depends only on p and M.

The reason why we introduced the starred sequence {cf,} be-
comes clear from the following considerations. Let a,, a,, ..., by, by, ...
be two sequences of non-negative numbers, and let Sbe the sum
a, b+ a,by, + ...; S may also be infinite. We suppose that {a.} is
either non-increasing or non-decreasing. Rearranging {b.} in all
possible manners, we obtain for S the largest walue when {a.} and
{b,y wary in the same sense, i. e. if they are either both non-incre-
asing or both non-decreasing; S is a minimum when {a,} and {bn}
vary in opposite senses. To fix ideas we assume that a; > a, >...
To prove the first part of the proposition we observe that, if e. g.
a, > a, and b, <b,, then, replacing @, b, + a,b, by a, b, + a2, b,, we
increase S by (a; —a,;) (b, —5,) > 0. Similarly we prove the second
part.

Hence, considering all possible rearrangements of {/c. [}, we
see that ¥,[c] is a minimum when {|¢,|} is arranged in descend-
ing order of magnitude. With this arrangement the expression
N, [c] attains its maximum. It follows that, if (1) and*(2) are true,
the inequalities which we obtain by replacing ¥g[c], ¥,c] by
DB, fcl, Vylcl, hold & fortiori. On the other hand, since the order of
the functions ¢, within the sequence {g.} is irrelevant, we may
change this order, if necessary, and suppose from the very begin-
ning that ¢y=|cn|. It is therefore sufficient to prove (1) and ©)]
with ¢, replaced by |c.|, and in the subsequent proof we shall
write | .| instead of cn

9.401. Since, by Hdélder's inequality,

1 / M —2)2/ v —2)(g—2)/
S| cal2 = 3| a ] P00 pox0=2i8 L (3] |7 0970 (26,

we see that, under the hypothesis of Theorem 9.4(i), the num-
bers ¢, are the Fourier coefficients, with respect to {on}, of a func-
tion f(x)eL® Let sa(x) be the n-th parlial sum of the series
€, 9,(x)+¢y ©5(X)+... It is sufficient to prove that Myls,¥1] < Ay ¥ylc],
N=1,2, .., for, since My[f— s,Ni_4]~ 0, there is a sequence of
integers {NVi} such that s,M_,(x) converges almost everywhere to
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f(x) (§ 42), and an application of Fatou’s lemma to the last
inequality gives 9.4(1).

oty o1
Let Cyu = Z lCm Iq mr]—z, d)p, = 2 Cn Pmy = 1, 2, . , and
- m=ob—1 m=gl—1

let v > p. We begin by proving that
b
W) 10,900 dx < B, CCl2TH0R), g >4,

where B; is independent of {c,}.
hand side of (1) does not exceed

For, since |¢n| << M, the left-

b
Max{| @, [ | @, %12} [|@, |2 dx <
a

abg Vg 9¥— g2 Yy
<ot 3 enl) (D ga) (5 o)

a1 =" —1 o= =¥ 1

Writing | e | = | ¢ | m@—24 . m—a—2/g, [cn| =] cn| n@=2ia - p~la—2g,

Lep [P =]cp 2 p2a=24 - p=2a-01 applying Holder’s inequalities so as
to introduce the sums C , C,y and observing that

al_q ot
b m’““</ x~%dx, o> 0;

m=ob—1 0
we easily obtain the inequality (1) with B, not exceeding

MI=2 46—/ (g — 1yha=1) (g — 1)@=D (g~8729 < pg—2 q7.

Now, supposing that ¢ > 4 is an integer, we have

b _N ‘“7
MW al= [ |3 @, ds< Z 2 s ficp, D, |dx
a lv=1 | v=1 ve=1 u—1a ' K '
Wiiting [, 0,8, [=|(2,,0,) (B, 0,)...(®, B, ).(P,_,, )Mo

where the number of bracketed factors is Q =1 q (g /[]1)1 and app-

lying Holder’s inequality with the exponents Q (§ 4.141), we
obtain ,

2 . q b uQ
j P,y B,y dx < Ql Jt/ [, @, [ dx} <
’ig;:-j LZ

BHCl/?QCLlQQ—M—":’Q B ”01/(;{”(‘)2 ]u—v|1Q]

si];']' j=t J *
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Here the upper suffix (/) indicates that the factor j =i (which,
by the way, is equal to 1) is omitled. Substituting this in the
right-hand side of the inequality for MJ[s."_,], and applying Hol-
der’s inequality with the exponents g, we obtain

N - H ._7 Iq
Mg[s2V1] < By [[\ 2 Z C, H 2—1"7",“ x4
i=1 {y;=1 vg=l J
Consider the multiple sum in curly brackets. Summing first
with respect to vy, Vo, .y Viy, Vigy, ..., Vg, and then with respect to v,
we obtain that the sum considered does not exceed

[ N [ +oo X \q~—-l
(2 Cy) (2 > 2‘?"5'“”‘”’ . and so

9)22[32N_1]-< { o C} {__ 39— v‘fz(q—n}.q—l

=1

where A = B,{S271¥/20=Dy~1 " Thyg the theorem is proved for
g=4,5,...; and it is plainly true also for g = 2.
To prove the theorem in the general case we observe that

the inequality 9.4(1) may be written
WIS < AT (Jen| my2 n2
n=1

and that f (¢) = T nc, ¢u(f)/n is obtained by a linear transforma-
tion from the numbers nc,, Thus, arguing as in § 9.3, we may
interpolate by means of Theorem 9.23, and Theorem 9.4(i) is esta-
blished completely.

9.402. Theorem 9.4(ii) may be obtained by an argument
similar to that of § 9.121, We put p' = ¢, fix an integer N >0,
and denote by g(x) a sum d; 9,(x)+ d, ex(x) + ... + dn 3N(X),
where the numbers dy,d,,...,d~ will be defined in a moment. Then

b N N : _
(1 | fgds = Zl Cn dn =21 e HO=0P - gy pla=24,
a n= n=

Let us apply Holder’s inequality, with the exponents p and g, to the
last sum. If sign d,=signc,, |c.[?n?~2=|d,[?n~2 the inequality
degenerates into equality (§ 4.12); hence, applying Holder s inequal-
ity to the integral in (1), we obtain

N ip| N 1ig
(S| (2 1arirn2) " <10 0,

n=1 n=1


pem


206 Chapter IX. Further theorems on Fourier coefficients.

In virtue of 9.4(1), the second factor on the right does not exceed
Ay R,[d}, so that

N b
Slenlrar=? < 4 [P dx.

Making N~ o we obtain the inequality 9.4(2) with 4} = A4,

The reader will easily convince himself that A, < M—2igq,,
and so A, < MC—?Vr o), where 2, depends only on ¢, and o, only
on p.

9.41. TItis aninteresting fact that Paley’s theorems contain the
theorems of F. Riesz as special cases, although in a slightly
less precise form: into the right-hand sides of the inequalities
My [f] << MC=p¥P 3 fe], Nplc] << MEC—r W,[f] we shall have to in-
troduce a numerical factor B, depending on p. In view of the
last remark of 9.402 it is sufficient to show that

M Byle™] g Nyle),  Byle™] > 1 el
where 7, depends only on ¢, and 7, only on p. We shall prove
the first of these inequalities only; the proof of the second is
similar.

First of all we observe that, if x, y, ... are non-negative num-
bers, then (x -y ..} < x4y + ... for 0<r <1, and (x +y+.) =
> x4y . for r >> 1. The first of these inequalities has al-
ready been established in the case of two terms (§ 4.18), and in
the general case the proof follows by induction; the second in-
equality may be obtained in the same way. Now

oo 9 +1_1

oo

*q oY *7
Sdlw=Y 3 almeg
n=1 V=0 oY

oo o
— *q —1 — NG -1
€202 Y ey 207D =902 3 () 9071
V=0 v=0

oo g—1 oo qg—1
—a| ¥ oy 2g—3 | ¥ LT
<L 27 (_,__.cgv ) <2+ Yoy 27 <

V=0

Y 1

oo 2 g1 o 1

o) SR e S R ag—3 )

<2 (€1+‘.w, > cn ) <272 M) =21 00,

V=l gy 1

and the first inequality (1) is established. -
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This result might suggest that, perhaps, the theorems of
Paley and those of F. Riesz are, roughly speaking, equivalent.
But this is not so. For if we put e. g. ¢,(x1 = cos nx, (g, b) = (0, =),
cn=n""log(n+41), n=1,2, .., then ¥,lc] <=, and so, by The-
orem 9.4(i), the function f(x)=rc¢, cosx -+, cos2x- .. belongs
to [% Since W [c] = oo, this result cannot be obtained from
Theorem 9.11(b).

9.42, Given a real function f(x), a <Cx < b, we shall denote
by E(f>y) the set of points where f(x)>y. The functions f
and ¢ will be called equimeasurable functions it | E(f>y)! = E(s>y)]
for every y'). Each of these functions may be thought of as
obtained from the other by a sort of ‘rearrangement’ of the
argument x, although we should find some difficulty if we tried
to define this rearrangement precisely. It is plain that if one of
two functions equimeasurable in the interval (a,b) is integrable,
so is the other and their integrals over (a, b) are equal.

For every measurable function f(x) defined in a finite inter-
val a < x < b, there is a function f*(x), a < x < b, equimeasur-
able with f(x) and non-increasing. For let m (y) = |E (f>y)| and
suppose for simplicity that a =0; then f*(x) may be defined as
the function inverse to m (y). The function f* is defined uniquely
except ‘at its points of discontinuity. To fix ideas we may sup-
pose that f*(x -+ 0) =f(x). Similarly there is a function f.(x)
equimeasurable with f(x) and non-decreasing.

We shall require the following lemma.

If f (x) is non-negative, then, for any function g (x) which
is non-negative and non-increasing, we have
b b b

(1) | ef.ax< [ gfax< | gf*dx.
a a a
First of all we observe that, if f.(x) tends almost everywhere
to f(x), then fi(x)~>f(x), fulx)~f(x). except at a set of points
which is at most enumerable. This follows from the fact that,
for every y, | E (f=> )| > |E(f>y)|. Secondly, if {/s} is monotonic
and tends to a limit f(x), and if (1) is true for fr, n=1,2, ..,
it is true also for f. This follows from the preceding remark
and from Lebesgue’s theorem on the integration of monotonic

Y} This notion has been introduced by F. Riesz [8].
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sequences. Now (1) is certainly true if (4, ) can be broken up
into a number of intervals of equal length in each of which f,
and so also f* and f, is constant, for then the integrals (1)
reduce to sums (§ 9.4). Since, starting with such functions, we
may, by monotonic passages to limits, obtain any measurable func-
tion f(x)1) (more precisely, a function equivalent to f(x)) the in-
equalities (1) are true in the general case.

9.43. Now we shall show that, if we invert the rdles of f(x)
and {c,} in Theorems 9.4, we obtain theorems which are equally
true. It will simplify the proofs slightly if we suppose that the
interval (g, &) is finite, but the proofs in the general case undergo
but little change. We suppose for simplicity that (a,0) is of the
£yrm (0, ). By f* we shall denote the function which is non-
increasing and equimeasurable with [f], and write

h ]i/r

! 1r 2)
wif)={/ 1l wa, .

It
L = {/ frrartdxg
"0
If the functions ¢, satisfy the same conditions as before, then
(i) If W,[f*] is finite and if c, is the Fourier coefficient of f
with respect to ©n, then N,c] is finite and
(1) : ANl < Ag Ug[f7],
where. A, depends only on.q and M.
(ii) If, for a sequence {c.}, we have N,[c] <co, the numbers cy
are the Fourier coefficients of a function f such that
@ W< Ay Nlel,
where Ay = Ap.

Since the proofs follow the same lines as those of Theo-
rems 9.4, we shall condense some parts. We begin by prov-
ing (1) in a weaker form, with f* replaced by.|f| on the right.

Yy See e. g. Hobson, Theory of functions, 2, 876.
%) In the case (a,b) = (—eos,-}-=0) it is convenient to define ¥ as a fune-
tion which is equimeasurable with |f|, even, and non-increasing in (0,e<e),

+ee 1/r
* J * !
and to put 11,[;*]:l ] P e axl .
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The inequality is true for ¢=2, and so, if we prove it for
qg=4,5,.., an application of Theorem 9.93 yields the result for
general ¢. Let f,(x) be the function equal to f(x) in the interval
(h27, B27") and to O elsewhere, v=1,2,..., and let ¢’ be the
Fourier coefficient of f, with respect to Cn, 80 that c,,:c,’,—}-cf,—]—...
We fix an integer N> 0 and observe that

N N o e [N
Ziczzl’J:ZlC}z+Cr2¢+...iq<2...2'l_,, sl
n=1 n=1 =1 vg=1 ‘,,=1 ) l

- RN B SRR
and that 2w | [ 1Y eicdie?
n=1 z‘}j_—.} ln:f ' J ’
<J

where Q=4£g (7 —1).
N | o
(3) 2 ]CE‘ C;: i‘]’Q < Bq 'f‘}: ’fr;, 2_1‘2;!_"__/“

n=1

Now we prove that

y

where B, M?* B; with B, depending only on g, and 7, equal to
M[|f7x9=% h2~’, h27"*']. For the left-hand side of (3) is equal to

N ' /IZ*P'—H' 1, | :,12—-V+1 g
n.§;1| f f‘Fnde l / fondx| <
= e i :
P AR PR S
<wo{ [isias) "\ [ nias) T8 S ]
hy B n=1 Y

and, by Bessel’s inequality, the last factor on the right does not
exceed W3[f; A2, A27FY). Writing |f| = | f| xa~2a x—(s—g,
|fI?=|f]? x*@—Da x~2¢—2/4, and applying Holder’s inequalities, we
obtain (3). Hence, arguing as in § 9.401, we obtain the inequality

N g
(Z|c,,[‘7) < A Uf], and (1) follows on making N tend to co.
n==1

So far we have proved (1) with f* replaced by |f|. To obtain
the exact inequality (1) let us assume first that f is a step-func-
tion. Rearranging the order of the intervals where f is constant,
which amounts to an one-to-one transformation of the interval
(0, ) into itself, we transform |f| into f*. At the same time f(x)
is transformed into a function % (x), and the functions ¢, are trans-
formed into functions ¢, which again form an orthogonal and
normal system. Since the Fourier coefficient of f with respect

A. Zygmund, Trigonometrical Series. 14


pem


Chapter IX. Further theorems on Fourier coefficients.

210

to ¢, is equal to that of 7 with respect to dy, (1) follows, in our
case, from the weaker inequality previously established.

To prove (1) in the general case, let {fx} be a sequence of
functions for each of which (1) is true, so that

N h
@ Sleklr < A [ £ x0-2dx,
N n=1 )

where N >0 is fixed, f;f is non-increasing and equimeasurable
with |fz|, and c? ¢k .. are the Fourier coefficients of f. Since
any bounded f is the limit of a uniformly bounded and almost
everywhere convergent sequence {f:} of step-functions, and since
% > Co, fa(x) > f5(x) as koo, we may replace cn, fi by ¢u [ in
(4). It f is arbitrary, we put f/e(x)=f(x)* it |f(x)] <<k and
fu(x) =0 if |f(x)| > k. Hence again ck o Cry Jr(X) < f;:(.H()c) > fH(%),
and, since the fz are bounded, (4) is true for f. The inequality (1)
follows on making N - co,

To prove (2) let us fix N> 0 and put fv=c; ¢, + ... + cyon
We verify that

h
,Lf3] = Sup [ fvgdx for all g0 with ll,[g] < 1.
0
It is even sufficient to restrict g to the domain of step-functions.
n N

A moment’s consideration shows that, then, / frg dx = | fuy dx,
0 0

. [0
where the absolute value of the function 7 (x) =7 (x; g, N) is

equimeasurable with g. Denoting the Fourier coefficients of 7
by d., we have

N—.—
chdn

n==1.

<

n
(5 U,[f~] = Sup /-ﬁm' dx = Sup
£ 0 g

N 1/p N 1/p
< Sl;p (21[ ‘n [p) (le dy ip’) < Sup E&p[cl Aﬂ’ up’[‘f*] =
n= n== g
= Sup Ay Wyle] Uylg") < Sup Ay N,[e] Nyle] < Ay Wyle].
g

Since Ny[c] <co involves N,[c] < oo, there is a sequence
{{Nk(x)} which converges almost everywhere to f(x), and so
ka(x)» Jfi(x) for almost every x. Comparing the exireme terms

of (5) and putting N = N,, we obtain (2) by an application of
Fatow’s lemma. )
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The reader will easily convince himself that 4, < M@—274q,
and A, < M@= o}, where o, depends only on ¢, and =, only on p.

9.5. Theorems of Hardy and Littlewood ). Tiae the-
orems established in the previous paragraph are extensions to
general orthogonal systems of results which had been obtained
previously for the system 1, e, e—'* ¢2* | by Hardy and Little-
wood. This special case, however, is of independent interest, for
the results may be stated in a different form and give the solu-
tion of an interesting problem. It will be convenient to change
the notation of the previous paragraph slightly.

Given a sequence g, €y, €y, €9, C—s, 3y ... 16t Co>CL 0y >0
be the sequence |¢,), |¢;], |c— ], ... arranged in the descending or-
der of magnitude. Similarly, given a function f(x), — = < x < =,
we shall denote by f*(x), — & < x < 7, the function which is equi-
measurable with |f(x)| and even; for 0 < x <%, f*(x) may be
defined as the function inverse to % |E ({f|>y)|. We put

+oe yr = 1r
W v = 3 jeardnl+ o win={ e

* * * *
If, for a moment, we denote the sequence ¢y, €1, C—y, €3 ... by
oo f oo
% s . % | * . .
dy, ds, ds, ..., then the ratio X ¢ (|n|+ 1)’*‘*’,,%7 d, w2 is contained
= ]

between two positive numbers depending exclusively on 7. Thence
we see that Theorems 9.4 remain true for the system 1, e*, e—, ...
if ¥, is given by the first formula (1). Similarly Theorems 9.43
are true for this system if the interval (0, /%) is replaced by
(— =, =) and 1I, is defined by the second formula (1).

We know that a necessary and sufficient condition that
a sequence Cg, €y, C—1, ... should be that of Fourier coefficients of
an feL? is that 2 |c¢,|?<oco. This condition bears on the moduli
of the ¢, so that a necessary and sufficient condition that the
numbers ¢q, ¢, €~y, ... should be, for every wariation of their arg-
uments, the Fourier coefficients of an f¢?, is again X | en P<eo.
We ask whether anything similar is true for other classes L. The
answer is negative: there can be no such condition for 7~ 2.
For let us consider the series :

) Hardy and Littlewood [10], [15]; see also Gabriel [1], Mul-
holland [1]. :
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@) E =% einx 2 —+ p% gine 0<a<).
n=1 n=1

If u = 3/, the first series belongs to L it ¢<<4 only (§ 5.7.8), while
the second belongs, for a special sequence of signs, to every L7
(8§ 5.6, 5.61) so that two functions, one of which belongs to L7
while the other does not, may have the same |ci|. If a=1/, the
tirst series in (2) belongs to L7 for p <*'/;, while the second need
not be a Fourier series.

These facts suggest a change in the problem. Now we shall
vary not only the arguments of the ¢, but also their order, and
we ask when the new sequences will be those of Fourier coeffi-
cients, with respect to the system 1,e™, e, .., of functions be-
longing to L.

() A necessary and sufficient condition that the ¢, should be,
for every wariation of their arguments and arrangement, the Four-
ier coefficients of a function fe L9, is that V,[c*] < co; and then

® Ml f] < Ag Bye7]
for every such f, where A, depends on q only.

(i) A necessary and sufficient condition that the c, should
be, for some wvariation of their arguments and arrangement, the
Fourier coefficients of an f e L?, is that V[c*] < co; and then

(4) B[] < Ap Wyl /]

for every such f, where A, depends on p only.

For the proof we shall require the following lemmas:

9.501. (i) If a, > ay > ..~ 0, a necessary and sufficient con-
dition that the fanction g (x)=1X a,cos nx should belong to L',
r>1, is that the expression S, =X a, n—2 should be finite

(ii) The result remains true for sine series.

Let G (x) denote the integral of g, and H (x) the integral
of |gl, over (0,x); let An=a,+ay+ ..+ an. By B, B,, ... we
shall denote positive numbers which are either absolute con-
stants or depend on r only. If g e L”, the series defining g is & [g]
(this is a corollary of the following proposition which will be
established in Chapter XI: if a trigonometrical series converges,
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except at a finite number of points, to an integrable function f,
the series is &[f]), and so -

G(x):fg(t)dt: fﬂsinnx, G(r—")=
vy

0 n=1 n
=lla a Qg0 = "t ) =
_ (_E__.’E‘!'L_{_%_mj‘;”__‘__ sins % Enz_a_mﬂ-)sin me .
m\m  m4+-n m4+2n n o gi\m m-n, no
[20/8] [ a [2n3] g
>B, 2 (“’?“Mm-l_n)}Be Y = > B;a,
a1\ om+n [n5j41 1
Sdynw—r < B, X Gr (—) < B, Y wH (‘—) <<
n=2 n=2 n ) n=2 .
w/(n—1) [ -
. H rH ()" .
<B, Y [ {—Q}dngﬁ [ [H () dx < By | [fIrds
n=2 o X hf l X T

(§ 4.17, s=0) and the necessity of the condition in (i) is establi-
shed. To show that the condition is sufficient we observe that
Ty

n I oc |
Zavf—i‘i 2 a,cos vx:\gA,,Jl._;_

y=1 ty=n+1

le ()| <

(§ 1.22), and so | g (x)| < B4, if =/(n+1) < x < =/n. Hence

win

®  [lgrax=3 [

\glrdx < Bs X Ain?,
n=1 =/(n 1) n=1
and it remains to show that the last series converges whenever
S, < oco. Let f(x) denote the funclion which is equal to a. for
n—1Lx<n n=1,2,.., and let F(x) be the integral of f over (0, X).
Sr < co implies that f7(x) x—2e¢L(0,0), and so, by Theorem
4.17 with s = r — 2, {F (x)/x) x™% = F’(x) x—* ¢ L (0, ). Since the
last relation is equivalent to the convergence of the series
Y Ayn—? lemma (i) follows. Lemma (ii) may be obtained by
a similar argument, or, still simpler, may be deduced from (i)
using Theorem 7.21. ‘

9.502. Now we are in a position to prove Theorems 9.5.
That the condition of Theorem 9.5(i) is sufficient follows from
Theorem 9.4(i), whence we also deduce the inequality 9.5(3). - To
prove that the condition is necessary, consider the series ¥ ¢, &
and ¥ ¢, ei"*, If both of them belong to L?, so does their sum
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+°° . o
S (cncly) eine = 2 [CZ + X 4 (cn+cln) cos nx],
Ne==—n0a N n==1 .
and from § 9.501(i) we obtain V,[c*"] < oco.
Theorem 9.4(ii) shows that the condition of Theorem 9.5(ii)
is necessary. That it is also sufficient follows from the fact that

te
the series 2, cne™ belongs to L7 if ¥,[c*] <co (§ 9.501).
=m0
9.51'), The following two theorems, in which we consider
‘rearrangements’ not of the Fourier coefficients but of the va-
lues the function, are, in a sense, reciprocals of Theorems 9.5.

(i) A necessary and sufficient condition that N,[c] should be
finite for all f(x) having the same fX(x), is that N [f*] should be
finite, and then

o) Ngle] < Aq W[ 7.

(if) A necessary and sufficient condition that Yi,[c] should be
;iniie ford Stzme f(x) with a given f*(x), is that U,[f*] should be
inite, and then

3] WL

The proofs of (i) and (ii) are similar to those of Theorems
9.5 and are even a little easier since f*(x), unlike.c,, is a sym-
metrical function of its argument. The only thing we need is the
following lemma: if a function g (x), |x| < =, is non-negative, even,
and decreases in (0,=), and if a, are the cosine coefficients of g,
then a necessary and sufficient condition that N,[a]<eo, r>1, is
that the function g7(x) x"—2 should be integrable. We shall only
sketch the proof which runs on the same line as in. § 9.501.
Denoting by G (x) the integral of g over (0, x), we shall show that

T 7\
® l<20(y) a>B.e(T),

where A, =|a,|+|a;|+ ...+ |a.].
from the formula

< Ay Rfel.

The first inequality follows

w/n

7

~2“- n ~/ g (%) cos nxdx + [g (%) cos nx dx,
T/n

) Hardy and Littlewood [10],[15].
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where the last term on the right is, by the second mean-value

theorem, less than g(=/n)-(2/n) < G(z/n) in absolute value. To prove

the second inequality we notice that 1 s+, +..+a+La,is
equal to

/g()

Ty w9

sin nt . ¢ =/
dt > /[g” — SO | nedr
2tgtt 2tg L+ =/n)

> B,y / SAU) sinntdt > B, g (:—> >Byg (—:) .
A4 2n ‘1

Now it is sufficient to observe that, if g~ x™—2 is integrable,
so is G7(x) x72, hence X G7(z/n) < oo, and, in view of the first inequ-
ality in (8), N a]<<ece. Conversely, if 9,[a] < oo, then & {Anin}" < oo,
(this is an easy consequence of Theorem 4.17 with s=0) and the
second inequality in (3) gives Yrn—7g'(=/n) <  ~. Since g (x) is non-
increasing we obtain that g7(x) x—* is integrable.

9.6. Banach’s theorems on lacunary coefficients ).
We know that a necessary condition for a sequence {a, b.} to
be that of the Fourier coefficients of an integrable function f,
is |@n|+|b2{=0. I as b, are to be the Fourier coefficients of
a continuous f, the series a} -+ b; + a3+ b3+ ... must converge.
The converse propositions are obviously false, but we will prove
that, at least for some values of n, the Fourier coefficients of in-
tegrable, or continuous, functions may be prescribed, roughly

- speaking, arbitrarily.

(1) Let {m} be any sequence of positive integers such that
nipa/ne>A>1, i=1,2,.., and let {x;y:} be an arbitrary sequ-
ence such that (xi -+ y]) + (%3 + yq) 4+ ...<oco. Then there exists a
continuous | with Fourier coefficients an, b, satisfying the equations
Any = Xiy by =Y, L=1,2, ..

(ii) If {n)} satisfies the same conditions as above and if
x;~0, y;~ 0, there exists an integrable f such that a, = Xi, ba;= Vi,
i=1,2 ..

We begin the proof of (i) by two remarks.

1) Banach [1], Szidon [3],[4], Verblunsky [2].
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(a) It is sufficient to prove the existence of a bounded f
with the prescribed coefficients. For let {ex} be a convex
sequence tending to 0 and such that the series with terms
(7 +y?)/en, converges?). If we can find a bounded function
g~ ta,+(a,cos x+b; sin x)+..., such that a, = xifen;, by, =yifen,,
then %a, s, + (2, cosx 4 by sinx) e, + ... is the Fourier series of a
continuous function (§ 4.65), and the terms with indices #; in this
series are (x;cos n;x -+ y; sin n; X).

(b) 1t is sufficient to prove that, for every integer &> 0,
there exists a function fi(x) ~ % af + (af cos x4+ 6% sin x)+ ..., such
that an, = x;, by, =y, 1< i<k, and that |fi(x)| < C, where C is
a constant independent of k2. In fact, let us assume, as we may, that
ay=0,j=1,2, ..., and let Fy(x) be the integral of fx over (0,x).
Since the f; are uniformly bounded, the functions F; are uniformly
continuous and we may find a subsequence {Fu,} converging
uniformly to an F(x)eLip 1. The Fourier coefficients of F are
limits of the corresponding Fourier coefficients of Fp, as k- oo,
and so the bounded function f(x) = F'(x) has the prescribed coef-
ficients for-all the indices . '

Now we shall prove a number of lemmas,

9.601.

If Mya/ne> 2> 1, and if the series X (a;+ bi) converg-
es, then :

1) k}j (axcos 1y x + by sin 1, X)
=]

is the Fourier series of a function f(x) belonging to every class L7, and

1r oo A
3

1 n v \ \
(2) {—— flf(x){'dx[ < 4 Z(am—bm}
T 4 k=1
where A, depends only on r and )\

This lemma will be required only in the case 7 = 4, but the
proof does not become simpler by considering any special value
of r. Since the left-hand side of (2), multiplied by 2=, is an
increasing function of r (§ 4.15), it is sufficient to consider the

) We may find first a sequence {‘E’k , €, >0, tending to 0 and then
majorise it by a convex {ek}*
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values » =2k, k=1, 2, ... Suppose first that the series (1) converges
absolutely, and let F(2) =X c;2" be the power series the real
part of which, for z =e®, is (1). Then

Fiz)= Y d, 2,

y=0

where d, = 0 if v is not of the form

B) oy g, + oty Mg, 4y with 1, > e, >0, %> 0, o+ o=k
Now we observe that, if ) is sufficiently large, %>, then every
positive integer can be represented at most once in the form (3).
For otherwise we should have an equation B 7z, + 3, ¢, +... = 0, where
> 1>y 0| B << Ay B 540, and so also mg, <k (ne,+nx+.0),
1 <A1+ 2"24..), which is impossible if » > & =£-1.

2

1 a fey 19 M‘ P2 if
By Parseval's theorem, o / | Fi(ei¥) |2 dx =) | d, % where, if v
0 y=0

is of the form (3),

ht il }

190 120,
12y ¢ 2%y
| ickz‘l

= o P
Hence, if * > X, 1 / | F (e L Al ( E]cﬁ) , and since we have
2 k=1

TQ
If ()| < |F ()], cx = ar — iby, the inequality (2) follows with
Ay =20
To remove the condition concerning the absolute convergence
of (1), we apply (2) to the function f (7, x)== (2 cos 12 Xx4-besin np x) r'e
and then make r - 1.
To prove (2) for general .>1, we break up (1) in?o a finite
number, say s, of series, for each of which the number 2 is > 2+ 1.

Correspondingly f = f, +f, + ... +fs. Since
s

May [f1 < @AY -{Z (a§+b§>} o M [F1 < 2 Manfi,
k=1 } i

we obtain (2) with A,,; = s (&))",
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9.602. Under the conditions of the preceding lemma,

2‘7I: oo s
) L [1f)idn> B, {Ig (ak+ bi)} ’

_ where B, depends only on A\

It J; denotesl ths left-hand side of 9.601(2) then, by Hélder’s
inequality, J, < Ji"* 7" and so Ji > Jg/]f.

To prove (1) we apply the preceding lemma and observe
that 4,,; =1.

9.603. Let n;, n,, ..., 1, ... be the sequence of Theorem 9.6(i).
Let us fix an integer £> 0 and let B denote the set of all peri-
odic functions f, |f] 1. We put

1w

T

an
1 . .
/fcosrzgxdx, yfz—ffsmn,-xdx, 1{ilk,
. %

>
0

X =

a !H

and denote by E the set, situated in the 2k-dimensional space,
of points P (x;, ¥y, .., Xz yz) obtained in this way. This set is
convex, that is, if two points P, P, belong to it, so does every
point tP+(1—£) P,, 0 <2 K1, of the segment P, P,. An argument
similar to that used in § 9.6(b) shows that E is closed. We will
now prove the following lemma.

E contains a whole ‘sphere’ xf—i—yf—}—...—i—x;j—#yigl?% where
R =R, is a constant depending on X but not on k.

, Let oc%, Biyes %, Be be an arbitrary set of numbers such that
o+ ..+ B:=1 and let

T (%) = (% cos ny x + By sin 1y %) + ... + (2 cOS 1z X + Bp sin 1 X).

If P(xy,..,ys) corresponds to an fe B, we have the Parseval
equation

2m
(o0 % 4+ By 3) + oo (0 X+ B yi) = 1/f Tdx.

T
For f=sign T'c B the last integral becomes =~! 9 [7]> R,

where R = B (§ 9.602). If we put f=6sign 7, where 0 has a
suitable value between 0 and 1, we obtain that oy Xy ot Be ye = R

\
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This fact may be interpreted geometrically!) as follows: on every
‘plane’ o x, 4.4 B y,=R?, ‘tangent’ to the ‘sphere’ (S,)xi+...+yi<R?,
there exists a point Pc E. )

Let us assume, contrary to what we intend to prove, that
not all points of §; belong to E, and let P, be a point on the
boundary of E nearest to the origin O. Let S, be the sphere
with centre at the origin, having P, on its ‘surface’, P, the point
where the radins OP,; meets the surface of S,, P a point belonging
to E and situated on the plane /7, tangent to S; at P. It is
obvious that S, (C E, and that no point Q=%P, on the segment
P, P, belongs to E (for, otherwise, it would follow from the con-
vexity of E that P, is a point interior to £ 2). The line PP, lies
on /1, and so PP, cannot lie on the plane /], tangent to S, at P,
since /1, and /I, have no point in common. Thus the line PP,
meets S, in more than one point. Thence we deduce, by con-
tinuity, that if Q5% P, is a point on P, P, sufficiently near P,
the line QP must have a point P; in common with S,. It is easy
to see that Q lies befween P and P} (for P, and Q lie on differ-
ent sides of /1), and since PieE, Pe E, so does Q. Here we
have a contradiction since no point Q 5= P, on the segment PyP;
belongs to E. This establishes the lemma.

9.604. Now we are in a position to prove Theorem 9.6(i).
We put (xF + 30) 4+ o (xk + y7) = Fi. From the last lemma follows
the existence of a function fu(x), |fe(x)! < /R, such that the
Fourier coefficients of f» on the places 7, 1 <i<k, are equal to
%i, ¥i. In virtue of remark (b) of § 9.6, this completes the proof
of the theorem.

Corollary. Let o (1) be an arbitrary function tending to oo
with z. Then there exists a continuous function f having the
Fourier coefficients a,, b, such that the series Srro (1/ry), where
r2 = a + bh, diverges®).

1) We use the geometrical language to make more intuitive the argu-
ment, which might be given a purely analytic form.

7y If P! is an arbitrary point gituated sufficiently near to Py, the line
QP' meets S;, and 8o F'eL.

5 Gronwall (1}, Szidon [4], Paley [8]. Putting ¢(u)=logz,
we obtain an f such that r?_g—l—r‘é*E + ... =oc for every £>>0 (§ 5.33).
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For let {a, B+} be an arbitrary sequence of numberg suc%n that
o kg . < oo, pre(1/p) + 3@ (1/ps) + ... = 00, Where pr = o + i
There exists a continuous f such that @y = o, bk = ﬁ;f,.,say. Since
oto (/o) e (1p)+ .. diverges, so does 719 (1/r)+rae (1/ry)+ ..

9.61. The proof of Theorem 9.6(ii) is easier than that of
Theorem 9.6(1) since we are able to give the required series
explicitely !). First we prove the following lemma: For any bounded
sequence {x;, y;y there exists a Fourier-Stieltjes series having xi y;
as the coefficients with the indices n. It will be qconv‘,eniant to
write Xn,Vn, instead of x; y.. We may suppose that pu= Xu4yu, << 1.
Let us assnme first that x> 8. We put Xn; cOS ;X + Yu, 8in #; X =
= pn, €08 (1: X + ¢n,) and consider the partial products p, of the
product

1 P

1]
i

{14 pn;co8 (n:x + @np}.

i=1

1

Multiplying out these products, we see that no reduction of terms
takes place (§ 6.4) and that the polynomial p. is a partial sum
of pri1. Making k- co we obtain, quite formally, a trigonome-
trical series. Since some partial sums, viz. p,, are non-negative,
this series is a Fourier-Stieltjes series (§ 4.39). Moreover the
coefficients with suffixes 7; are X, y», It is important to observe
that, if A is large enough, %> X, (¢), the indices of terms different
from 0 belong all to the intervals (m(1 —e), n(l4¢)), for every
0<e<1 (§ 64).

In the general case A >> 1, we break up {#;} into r sequences
Ty M3y v} My M3y e} o ML, 15, .. in such a way that nin/n > p,
i=1,2,..,1<s<r >3 being a large number which we shall
define in a moment. Let P; denote the product analogous to (1),
consisting of factors 14 pncos (mx -+ ¢,), where m runs through
the sequence 7, 73, ... We shall prove that P, -~ P, ... -~ P, gives
the required Fourier-Stieltjes series. In faect, if p is large enough,
the indices occuring in the series obtained from Py all belong to
the intervals (7/V3, ni %), i=1,2,..., so that the series P,, P,, ..., P,
do not overlap. Since in the series P; the terms with indices 7}
have the coefficients %n$, Yns, the lemma follows.

) Szidon [3].
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To prove the theorem, let {s;} be a convex sequence tend-
ing to 0 and such that {x,,i n;y and {y,,t./anl.} are bounded. If for
a Fourier-Stieltjes series 1a,+ (2, cosx + b, sinx) + .. we have
n; = Xn;{Cny bn;=Yn,fen;, the series &ay5+ (2, cos x +b, sin x) &, +...
is the required Fourier series (§§ 4.64, 5.12).

9.7. Wiener’s theorem on functions of bounded vari-
ation. Let f be a function of bounded variation, a0, its
Fourier coefficients, and p; = a> —+bp, pn> 0. We know that, if f
is discontinuous, then np,5= 0 (1) (§ 2.682), but since this inequality
may occur also for f continuous (§ 5.7.14), it is not a necessary
and sufficient condition for the discontinuity of f. It is interesting
that such a condition may be obtained if the expressions rp, are
replaced by their arithmetic means:

A necessary and sufficient condition that a function f of bound- -
ed wariation be continuous is that A,= (g3 2ps+ ... + npa)/n-~01).

We first prove the theorem in the following form: A neces-
sary and sufficient condition for a function f of bounded variation
to be continunous, is

1) n > ok sinzlﬁao as n - oo,
k=1 2]1, .

Let @n()=[f (u+n/n)—f @)*+[f (@ +2z/n) —f (@ +=/m)]*+...
+[f@+2r)— f(@+r=@2n—1)/n)]>. Using Parseval’s formula, we
obtain

I

(2 J 0.(1) du= 8mk‘§1 ps sin? ;—;1

(§ 6.31). If f is continuous,  (3) the modulus of continuity,
and V the total variation of f, then, for every n, we have
on() < © (vfn) V>0 as n- oo, so that the right-hand side of (2)
tends to 0, i. e. we have (1). Conversely, if f is. discontinuous
at a point & f (¢+0) —f(E—0)=d+#0, 2f O =FE+0)+f(E-0),
then, if n is large enough and («,f) is any interval of length =/n
containing ¢, we have |f(B)—f(#)|>d/3. It follows that, it nis
large, ©.(#) > d*9 for every u and so the right-hand side of (2)
does not tend to 0 as n-— co.

1 Wiener [2]
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We shall now show that, if C, is the left-hand side of (1),
the relations A, -0, C,~ 0 are equivalent. Let B, denote the ratio
(p} + 2% + ... n%/n. We shall show first that the relations
A,-»0, B,~»0 are equivalent. Since the expressions kp. are
bounded, the formula A, 0 implies B, »0. Applying Schwarz’s
inequality to the sum 1-p, +1-2p; 4 ...+ 1-np,, we obtain that
An < By, so that B, -0 implies A, - 0.

It remains to prove that the relations B,-0, C,~0 are
equivalent. Let us take only the first n terms in the series (1).
Since sinz > 2u/ for 0 < u < %/2, we see that B, < Cp,, and so,
if C,~ 0, then B,—0. Observing that p; <2 V/& (§ 2.213) and
breaking up the sum C, into two, the first consisting of terms
with indices < nr, where r > 0 is an integer, we see that

ar 9 k L 2 9 ps 1
Co <1 pi (—Z) +2Vin Y -
k=1 n k=nr4+1 k?

The first term on the right is equal to B, -=’r/4-0, if By~ 0.
The second term is <2V?r and so is small for r large but fixed.
This shows that C,—+0 if B,- 0, and the proof is complete.

9.8. Integrals of fractional order. Let f(x) be inte-
- grable in an interval (a, 5). Let F,(x) denote the integral of f ()
over (a,x), Fy(x) the integral of F,_,({) over (a,x), a=2,3, ..
It can be verified by induction that

1 r a—1
1 Flx) =—— [ (x—¢ 1)y dt < b
O F =g @-0Tf0d a<x<s,
where [ (¢)=(e—1). If I'(2) denoles the Euler Gamma func-
tion, the formula (1) may be taken as a definition of F,(x)
for every «>0. From the results of § 2.11 we deduce that F,(x)
exists for almost every x and is itself integrable!); for « > 1 it
is even continuous.

This definition of a fractional integral is due to Riemann
and Liouville?). In the theory of periodic functions it is not
entirely satisfatory since F,(x) is not, in general, a periodic func-

b
) For I () Fa(x) :/g (x — Hf(t)dt, where g = u*t for u>0

» and g (u) =0 elsewhere.
* Riemann [2], Liouville [1].
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tion if f is one. Moreover it makes F,(x) depend on a particular
value of a. For this reason we shall consider another definition,
propounded by Weyl, and more convenient in the theory of trigo-
nometrical series’).

Let f(x) be an integrable function having the period 1. (It
simplifies the notation slightly if we consider functions of
period 1 and not 2z, but this point is plainly without importance).
We assume that the mean value of f over (0,1) is equal to 0, so
that the constant term of &[f] vanishes. It follows that the
integral f; of f is also periodic, whatever the constant of inte-
gration. If we choose this constant of integration in such a way
that the integral of f; over (0, 1) vanishes, then the integral f,
of f; will also be periodic, and so on. Generally, having defined
the periodic functions fi, fy, ... f,_;, we define f,(x) as that of the
primitives of f, ;, whose integral over (0,1) vanishes. Hence,
the Fourier expansion of f,(x) does not contain the constant term.

deoo
In other words, if f ~ > ¢, e ¢, =0, then

N==—0o0

oo o2mins

1
@  f)= 3 e [ 1) ¥z~

=2 @rin®

¥, (x) being the function which has the complex Fourier coefficients
*(,(1“) =(2nin)™ v,=0 (§ 2.15%, where the actual function ¥,, cor-
responding to the interval 0 < x < 2z, is denoted by fz). The
formula (2) may be considered as a definition of f,(x) for every
a> 0, if we put 1, = (27n)"* exp (—% 07), \—n = Tn, 1>0, 7, =0.
From Theorem 5.12 we see that there really exists an integrable
function ¥, (x) with Fourier coefficients v.. The integral in (2)
exists for almost every x (§ 2.11), and the series converges almost
everywhere. This last fact follows easily from the results of
§ 8.7, if we apply them not to the factors 1/logn as in § 371
but to the factors n™*

‘Let us denote f,(x) by I[f]l From (2) we see that
LI = lugelfl, 2 >0, 8>0. Since, for a=1,2,.., L[f]
coincides with the ordinary integral, the most interesting is the

ny Wevyl [l
?) See Errata.
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case 0<<a<1. To find the actual form of ¥,(x) we consider
the formula

oo

(3) f 1ol p—il df = e""'z" T, 0<a<],

0

which is easily obtained from the equation /" (a) =f x4 e dy
0
by integrating round the contour

0<e<LzL R z=Reb,

z=cell, L > 020,

and then making ¢ and 1/R tend to 0. Making the substitution
¢t = 2zmu in (8), and taking into account the last remark of § 2.85,
we see that, for 0 < x <1,

4) I (0) Vo (x) =
=lim {x* - (x+ D) F )T —n%a), 0 <a <1,

n-yeo

It is easy to see that, if we omit the term x*~! in the expression

on the right, the limit, which we shall denote then by /" (e) r,(x),
exists uniformly in 0 <{x<{1. Taking this into acecount and
observing that in the integral in (2) we may substitue f (¢) ¥ (x — 1)
for f (x — 2) ¥, (), we obtain from (2) and (4) that

® 10 =7 ff(x“"‘)ta—ld’fzf% JF@® G —pta

()3

It appears that the new definition differs from (1) in that
the lower limit of integration is equal to —co. It must be remem-
bered that the integrals (5) only converge owing to the fact that
the mean value of f over (0, 1) vanishes.

Let 'F:(x), —1<x<1, be the function equal to 0 in (—1,0) and to
xa—ljl'(a) in (0,1). Since Wa(x—i-l) = 'Ifa(x), considering the cases — 1 <<x 0
and 0<<x<<1 separately, we see that U“m(x)—WZ(x) is regular and equal
to the funection ra(x) for —1<<x<C1. If we replace ’I"a by '[’; in the integral
(2), the funection f,, 18 chunged into Fa from (1) (with @ =0). Thence we con-
clude that the funetion F(#) = F(x) is regular for 0<Cx <1, and so the two
definitions of a fractional integral are, after all, not so essentially different.
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It is easy to define derivatives f*(x) of fractional order. For the
sake of simplicity, we confine ourselves to the case 0<a < 1, which

is the most interesting in applications: and we put fi(x) = _4_ Jia(%).
dx

It is easy to prove that, if f,_,(x) is absolutely continuous (in
particular, if /* is continuous), then f(x) is the a-th integral of
/% In fact, from the definition of f* we see that [f*] is obtain-
ed by term-by-term differentation of 3[f,_,]. In other words,
€ [f°] may be obtained from & [f] by introducing into the latter
series the factors 751““) = (2=in)*, and this shows that f is the o-th
integral of f%(x).

9.81. Integration of functions satistying Lipschitz eon-
ditions ). (i) Let 0 <a<1,8>0, a8 <1. If feLip «, then
SgeLip(e+8). (ii) Let 0<y<ao 1. If feLipa, then fi exists
and belongs to Lip (« — 7).

Let F(f) denote the integral of f over (0,f), so that
F(x) — F(x—1) is a primitive function of f(x—#) with respeet
to . Integrating by parts the first integral in 9.8(5) and observing
that F(x) — F(x —£) vanishes for f =0, we obtain

(1) F@ /faleo)=01—8) f [F (x) — F (x — )] #2 dt.

Let us write a similar equation for fa(x+4), £>0, and
substract (1) from it. We have /" (§) [ Solx +h) — fs(x)] = An+ By,
where An, Br denote the integrals over (0, &), (4, o) respectively.
The integrand of A, may be represented in the form

A—B) B F(x+hH—F)]—[Flx+h—t)—Fx—b]) =
=1 =B [f(x+h—8F) — f(x —08)]2),

where 8, ;,... are numbers contained between 0 and 1. Since
| f(u) —flu) < M|u, —u,|*, M denoting a constant, we find

) Hardy and Littlewood [6]. A special case of (ii) will be found
in Weyl [1].
?) Here we employ the mean-value theorem.

A. Zygmund, Trigonometrical Series. 15
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that (2) does not exceed M@A-B) 21 4% in absolute value, and so
| Ap| < M (1 — B) hHEpB.
The left-hand side of (2) may also be wrilten in the form

(1 —p) B H[F(x+h) —Fx+h—=Ol—[F)—Flx =0} =
— (=B 2R [f (x + 0k — f (x+ 02— D))

This expression does not exceed M1 —B8) t#t8-2 4 in absolute

value and so |Br| < MAaE (1 —g)/(1 —a—B). Collecting the re- .

sults we see that iq(x + k) ——fB(x)i < M, h“*ﬁ, where M, is inde-
pendent of x and 4. This completes the proof of (i).

If o+ B=1, it is not difficult to obtain that the modulus
of continuity o (3 fg) of fg is O (dlog 1/8).

4 . . d
Passing to the proof of (ii), we observe that, since f71(x) =;i—;f1__ .

we have to prove that fl-Y possesses a derivative belonging to
Lip (= — 7). Let us put =1—7 in the formula (1); differentiating
the integral on the right with respect to x, we obtain

®) 1 [1F () —f (v — b)) £71 dt.

Since |f(x) —f(x — )| < Mt* and f is. bounded, the integral 3)
converges uniformly in the neighbourhoods of /=0 and l=oco,
and so represents a continuous function ¢ (x). It remains to show
that @ e Lip (¢ —1). Let us replace x by x-#, 2> 0, in (3) and
substract (8) from the new integral. Breaking up the interval of
integration (0, o) into two, (0, %) and (%, o), we have, as in the
proot of (i), @ (x+%) —¢ (x) = Ax+ B The integrand in A, does not
exceed 12 TH|f (x+h)—f (+h—t) | +|f (x)—f (x—8) [| < 2My 777
in absolute value, and, consequently, | An| < 2MA2*T v/(e. — 7). The
integrand of B, does not exceed 2M 1A% ¢~ and | By | << 2MA* T
Hence f7 e Lip (@ — 7).

It has been proved by Hardy [4] that the Weierstrass series
considered in § 2.9.3 is nowhere differentiable if ab = 1. If a=1/b,
that series may be considered as the (1 — «)-th integral of a tri-
gonometrical series which is a linear combination of the series

oo

4) 2 b7 cos brx, 367 sin brs,

n=1 n=1

Each of the series (4) belongs to Lip « (for the first of them this
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was actually proved in § 2.9.3; the proof for the second remains
essentially the same). This shows that the proposition (ii) is false
for y =a: for a function feLipa, 0 < a<1, there may be no
point at which the derivative f*(x) exists. The same example
shows that proposition (i) fails for a + 8 =1.

9.82. Integration of functions belonging to a class L7 1.
In the rest of this chapter we abandon our convention concerning

the use of the letters p, g, which may now denote any numbers
greater than 1.

(i) Iffelr, p>1,and 0<a<1/p, then f, € L9, where q is given
by the formula 1jp—1jg=a. Moreover Wy[f,; 0, 11 < K M,[£;0,1],
where K= K (p, q) depends only on p and q.

(i) Ifp>1,1p<a<1i/p+1, then f, e Lip (=~ 1/p).

We begin by proving (ii), which is comparatively easy. In
virtue of Theorem 9.81(i), it is sufficient to consider the ecase

1/p<a<1. Applying Holder’s inequality, we see that the left-
hand side of the equation

1
Ful ) — fo(x) = [ F (e — ) [U (¢ + ) — F(0)) dt

does not exceed M[f] MY (2 + 1) — ¥, ()] in absolute value,
and we have only to show that the second factor is O (A*'7).
Supposing that 0 <% <1/2, we may write

B 1—h 1

1
O [lrg+h—-verd=[+[+[=P+Q+R
0 0 h 1—h

Denoting by C, C,, ... constants which depend only on 2 and p,
we may write the following inequalities, true for 0 <{Z <1 and
0<a<1:

(2 | ¥ < 7, At | < Gt

The second of them is an immediate corollary of the formula
F(e) Vi) =tm [+ (E+1)* 2+ ..+ (¢ +n)* 7] (2~ >) which, in

_ turn, follows from 9.8(4). Returning to the equation (1) we see that, if

0<t<h, then | W, (t-+h)— W, ()| <2Ct, and so P Cyhle 17+

) Hardyand Littlewood [6]; see also Hardy, Littlewood,
and P 61y a, /nequalities, Chapter X.
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(the reader will observe that (¢ —1)p' > — 1 since a> 1/p). Simi-
h

larly, since R= [ | V,(6) — W,(t —h)|” df, and since for 0<f<
0

we have | ¥, (f) — ¥, (t — h)| = | ¥, () — V(1 + £ —h) | << 2CE*L, the
expression R satisfies the same inequality as P. Finally, if
h<t<1—h we obtain, by the mean-value theorem, that
| Wt -+ k) — V()] < C ht* ™ and so Q < Cyh?” A& P+ Collect-
ing the results we see that P+ Q 4+ R < C, A7+ physe
W[ ¥t + ) — Vo (8)] = O (A*~7). This completes the proof of
the second part of the theorem.

Remarks. (a) Putting f = f; + f,, where f; is a trigonometrical

polynomial and M,[f,] is very small, it is easy t that
m(a;fa)=o(5a~llﬂ)_p y to see that

(b) The theorem which we have proved holds also for
p=1,1<e<2 This follows from Theorem 9.81(i) and the fact
that the integral of f is continuous

9.83. Theorem 9.82(i) is rather deep; its proof is long and
will be based on a series on lemmas. Before we pass on to these
lemmas we observe that a theorem less general than Theorem 9.82(i)
viz. that f, € L% for every ¢ >0, is trivially true. For ¥, (t) = O (t“‘l)’
in the neighbourhood of #=0, so that ¥,(¢) e L/~ and we
need only apply Theorem 4.16. ,

9.831. The first of the lemmas is as follows: Lef f(x)>0
g (%) >0 belong respectively to L#(0, oo), L90,c0), where p> 1’
021 I M=1/p+1g ~1=1=1)p ~1/g'> 0, Wy[f;0, 0] = 4,
My[g;0,00] =B, and if F(x) denotes the integral of f over (0, x), then

FF (¢
() 0/ TQ g dt < K, AB, (K, = p'ola"),

Applying Hélder’s inequalit
y Wwe see that th - i
does not exceed B multiplied by ° lefi-hand side

@ | ( [Fr 5 dt)uq,-,
0

flr(l):jn :che .inequa.lity Up+1/9>1=1/g+1/g' we see that q>p.

Fczt)ei sAtllf;fzquIz;IJty applied to the integral defining F gives
7', Hence iti 7 = Fi'—

T e;ceEd , writing F! Fi'— F?, we see that (2) does
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g=p| T @ _ 4 _ g’ g—p [ =) p\p ALY
a7 (fFf’f 7t ‘dt) A7 (/(f.)dt) ;
0 5 V2

and, by Theorem 4.17, the right-hand side does not exceed Ap'?7.

9.832. The second lemma is: Let f, g satisfy the conditions
of the preceding lemma and be, in addition, non-increasing. Put-
ting v=2— 1/p —1/q, we have

_ [ [f= e
Iwaaf—lxwﬂp~dxdt<[(.l AB,

where K, depends only on p and q. Since
oo i oo x 1
I1=[g(t)dt [ Jf@x (t—xrwx] + [0 dx[ [ ety as| =Lt L,
4] 0 9 0

it suffices, in virtue of the symmetrical role of f and g, to con-
sider e. g. . Let A =1 —p; decomposing the inner integral in I
into two, taken over (0,#/2) and (¢/2,?), and remembering that f
is monotonic, we find that this integral does not exceed

L F PG + G GON< DGO FGO/GE) <497 & FOUL,
since f(#) < F(w)/u. It remains to apply the preceding lemma.
9.833. The third lemma, which is the most fundamental,

may be enunciated as follows:
Let f(x), g (x), h(x) be three non-negative functions defined in
(— oo, +o0). Let f(x), &%), h'(x) denote three functions, even, non-
increasing in (0, oo), and equimeasurable ') with f, &, h respectively. If
oo
(1) 1= [ [ 1)@ bctt)dedt

and I* is the corresponding integral formed with f*, g I, then 1T,

This lemma asserts that, among all functions equimeasurable
with f, g, b, the maximum of [ is attained when the functions are
even and non-increasing in the interval (0, o).

(i) We start with the case in which f, & k are characteristic
functions of sets F, G, H consisting of a finite number of inter-

1y § 042 Let m(y)=|E(f>y)|. We may define f¥(x), 0 < x < ==, as the
function inverse to %m (y). We agsume that FHx) = fH(x 4 0) for x>0,
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vals, each of the form (z,n-+1), n=0, X1, =2, .. We shall
suppose that the numbers of these intervals in which f, g, £ non
vanish are 2, 2B, 21, respectively, o, B, 1 being even. Let

fo oo
@ o= [gOhG+Dd, b= [FOFE+Dd.

The continuous curves y =o (x), y = ¢ (x) are linear in the inter-
vals (n,n+1),and y =0 for | x| large. The function ¢ (x) is even,
vanishes for x > ¢+ B, is equal to 28 for 0 < x <y —# (assum-
ing, as we may, that vy > §), and is linear in (v — 8, v 4 B); ¢ (x)
never exceeds 2. Integrating (2) wse find that the areas of the
two curves are the same, viz. 487. Multiplying ¢ (x) by f (x), ¢ (x)
by f*(x), and integrating over (— oo, 4+ c0), we deduce the lemma
from geometrical considerations if a v —f or a’> v+ B.

Suppose then that 1 —f<a<<y-+B. We can find two in-
tegers B, < B, 7, <7 such that v, — B, =7 —B, 1, + B, = ¢. The lem-
ma is true for «, B, 7,. Thence we will deduce it for «, 8,41,
7+ 1. For the values of ¢ (x) in the interval (— ¢, ) will increase
exactly by 2, and the result will be established when we have
shown that the values of ¢ (x) in (— oo, +o0) will increase
at most by 2. Since ¢ is linear in the intervals (1,2 - 1), it suf-
fices to consider integral values of x.

It H; denotes the set /7 translated by x, then ¢ (x) = | GH,|
represents the number of intervals of length 1 common to G and
Hy. Now we may plainly suppose that one of the two intervals
which we add to G (and similarly to /) is extreme on the left,
and the other extreme on the right, with respect to G. Then the
reader will easily convince himself that GH, will increase by
at most two intervals, each of lepgth 1. For let J', J" be the inter-
vals which are added on the left to G and H, respectively; then
(G+J) (He+J")— GHy=J' (H: +J") 4 GJ". If J' does not be-
long H,+J", then |GH,| remains unchanged when |J"G|=0,
and increases by 1 otherwise. If J' belongs to A --J", then J"
lies to the left of G; hence |/" G| =0 and | GH,| increases by 1.

The same argument gives the result for «, 3, + 2, v, + 2, and
8o on, and finally for «, B, 1.

(ii) Qhangiug variables we establish the truth of the lemma
when the intervals have rational end-points. The restriction that
the number of intervals in each set is divisible by 4 can now be
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removed, since, if this is not so, each of the intervals may be
divided into four equal parts.

(iii) To prove the lemma in the case when F, G, / are ar-
bitrary measurable sets, we observe that F (and similarly G, )
is a difference between an open set and a set of arbitrarily small
measure; hence, for every £ >0, we have F = - F, — F, where
7 consists of a finite number of intervals with, say, rational
end-points, and |F,| <e,|F,| <e The reader will have no dif-
ficalty in reducing the present case to the case (ii), observing
that, roughly speaking, if one of the numbers |F|, |G}, |H] is
small, the integral 7 in (1) is small.

In the above argument we tacitly assamed that each of the
numbers | F|,| G|,| H]| is finite. That the result holds without this
assumption will follow from proposition (v) below.

(iv) If f> 0is any function which only takes a finite number of
values oy, %, ... tm, then f=u,f, + s fo + ...+ lUm fm, where #, ..., Uin
are positive constants and fi, fa, ..., fm are the characteristic funs-
tions of sets F, ( Fy C ... C Fn. Then f*=u, fi+ s+ ..+ tnfn-
If, in the same way, g&=7, g4+t Ungn k= ht.+ W kp, then

* *
I=Suw vy Iy < Ewvjwe ljp =1,

where I are formed with f;, gj, # This proves the lemma when
f, & h assume only a finite number of values.

(v) Let {fa}, {&n}, {#} be three increasing sequences of non-
negative functions and let /o~ f, n— & Bn— k. If the lemma is true
£0r fn, Gny hny it is also true for f, g, 2. In fact, Fu(%) ga(t) n(x 4 1)
tends, increasing, to f(x) g (&) A (x+ 1), and so, using an obvious
notation, we have, by Lebesgue’s theorem, {,,—>l. On the other
hand, f > fn g* > g k" > hy; hence I" > I1,>1, and, conse-
quently, I* > I

(vi) Every non-negative function f is the limit of an incre-
asing sequence of functions assuming only a finite number of
values; e. g. we may put fu(x) =27" k, 0 L k< n2", wher.e
21 & fu(x) < (B+1)277 and fulx) =n2" elsewhere. From this
and (iv), (v), we conclude the truth of the lemma in the gene-
ral case. .

Changing ¢ into — ¢ in (1) we obtain a similar result for in-
tegrals (1) with % (x —2) instead of & (x 4+ 1).
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9.84.
us replace, as we may, the interval of integration (0, 1) in the
formula 9.8(2) by (—4,4), and let g(x)eL? be an arbitrary
periodic function such that M [g]=1. Then (§ 4.7.2)

e o

Wolf,] = Mox | f,() g (o) dx <Max | [ |F(0) g(x) Vus—1)] e,
—*h =2 =y

Let f*(x) be even, non-increasing in the interval 0 << x << oo, and
equimeasurable with the function equal to |f (x)| for |x| <1 and
to 0 elsewhere; similarly g*(x). Since | ¥, (u)| < C|u[*™" for |u|<1,
where C depends only on o, we deduce from Lemma 9.833 (with
h(z)y=|u{*""and % (x + £) replaced by % (x — £)) and Lemma 9.832
that M,[f,] does not exceed

0o £) o*

Maxdc [ [ LOLE gt < ackmyifs o, o 0le 0, o),
00 jATTEY

if1—a=2—1p—1/g, i e. it a=1/p—1/q. Putting 4CK, = K

we obtain that M,[f,] < KM,[f].

9.85. Theorem 9.82(i) is false for p =1, that is if fe L, = 1/(1 — o), then
f, need not necessarily belong to L9. In fact, if f(f) = — c+ t_l(log 1y~ —le
for 0<C2<C1/2, f(t) =0 for 1/2<t<<1, where C is a constant such that the
mean value of f over (0,1) vanishes, we have ’ ‘

*n o
f= [ e—vat= [ F0¥, e —at+R ),
0

0
where R is a function regular in a neighbourhood of x =0, 'If:(tz) = u%1rI ()

for u>0, W:(u)=0 otherwise (§ 9.8). If 0 < x<C1/2, thelast integral exceeds

cx* X1 Z X —
G X —1—1/g
et T 7o Oft (log 1/2) a.

Hence, for x small, f (x) >C,x%1(log 1/x)~"/%, and so faELq. To show that

Theorem 9.81(i) is false for a=1/p, i. e. that if fel?, then fijp need not be bound-
ed, we may argue as follows. Multiplying the integral iﬁ 9.8(2) by g(x)el,
integrating over (0,1), and inverting the order of integration, we see that if,
for eve,ry fel?; fll,p were bounded, then, for every g(x)eL, we should have
&ypel”, which we know to be false.

9.86. It is of some interest to investigate whether Theorem 9.82(i) is a
coroll'ary of the theorems on Fourier coefficients establisbed in the first part
of this chapter. We shall show that this is really the case when p <2<y,

Completion of the proof of Theorem 9.82(i). Let
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P, q having the meaning of Theorem 9.82(i), and only then. Assuming f real
consider the inequalities ’

oc oo ’
* —9 g Iq
) N efnP <, (2) 2L€L<m’
n=1 n=1 n%4
* ok .
where ¢;,C,,... is the sequence !¢, |,|c,],.. rearranged in descending order of

magnitude. The inequality (1) is implied by the relation felI” and (2) implies
that f, eL9. Now (2) is certainly true if the series with terms cff' =24 con-

st
verges. We have ¢,7 m99' = ¢ nP =2 ¢}9"~P y—04'+2—p ap4, since

—eg'+2—p=—Q/g —1/pY g +2—p=g'p' —pip',
we obtain that c,? n727 =¢? 0"~ (¢t n'” ), Since the terms on the left
in (1) decrease monotonically, the expression cff 2. s bounded, i. e.
4
c:n”/’ = 0 (1), and this, together with the last formula and the inequality (1),
ensures the inequality (2), provided that p<<2<q, p<g. To get rid of the
last condition assume that p<{2<g and ¢'<p. We have then ¢ < 2<p, ' <p.
Since a=1/p—1/g=1/g' —1/p', we see, by the result already obtained, that
integration of order o transforms L9 into 17 , and this is eguivalent to the
fact that the said integration transforms L” into L9 (§ 4.63(ii))Y).
We have only proved that M, [f,1<e but in the same way we can

obtain the complete result M, [ ] < KM,[F]

It is easy to see why the above argument fails in the cases p<<q<(2
or 2< p<q (which are equivalent) e. g. in the latter. Integration of order a
consists in introducing the factors 7n=1n[—a ¢, into E [f], where {¢,} is
a special sequence of unit numbers. The proof given above shows that, if
p<X2<q, the theorem holds when ¢, is an arbitrary bounded sequence. To

show that such an extension is impossible for 2<(p<g, let us suppose
that the Fourier expansion of f is the cosine series with coefficients sn/}/nlog n,

n=2,8,.., where ¢, =14 1. Choosing for {¢,} aspecial sequence, we may have
fel?, p>2 (§ 5.6). Introducing into &[f] the factors sn,’n“, 0< o<y, we ob-
tain the series X (cos nx)/ni"/"l'a logn. In the meighbourhood of x =0 the sum
of this series behaves like x_"”"'a/logx and so it does not belong to LT it

h—1fy>a If o=1/p—1/g<%4—1/g, the series does not belong to L.

9.9. Miscellaneous theorems and examples.
1. Let o,(8), wy(f),...,w,(f) be a system of functions measurable and
bounded in a finite interval a <t <(b, and let

18 tlr j n . 1{&1‘1
a2

13
MaB= Sup ] inmi(f)

Ky ¥p |y ji=1

1) Theorem 4.83(ii) holds in the case of complex factors.
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Show that (i) Ma@ is a multiplicatively convex function in the triangle
() 0<La<, 0B<a, (ii) Theorem 9.11(b) is a consequence of (i). M. Ri esz[3].
[Oﬁce the continuity of MO'-B in the triangle 4 has been established,
(i) may be proved by an argument similar to that of § 9.2, independently of

the more difficult Theorem 9.23. To prove Theorem 9.11(b), we put wf) = p(t),
compute M;, and M, ./, and obtain
’ T [ n ]I/p

) Ml a, b] < MO ‘li:Z] e[

where s, is the n-th partial sum of the series (S)e¢; ¢+ ¢3¢+ ... Since
Nule] <o, S is the Fourier series of a function f(f) and a subsequence {sn/}
i1
of {Sn} tends almost everywhere to f(f). An application of Fatou’s lemma to
(1) eompletes the proof. If the interval where the functions ¢; are orthogonal
is infinite, observe that the inequality (1) is true for any interval (a,,5,) com-
pletely interior to (a,b), and so it holds for (a, ) also].
2. Let f(x) be a real function belonging to L”, 1< p <2, with Fourier
coefficients a,,b,; the inequality of Theorem 9.1(a) then gives

| a ]I/P’ B ]'1/‘!’

[la” 5 A7 1 r
l]ﬁ +’g_jl(lanll’ +18,] )] \\lnbfff(t)l”dtj

Inverting this inequality and interchanging the numbers p and ¢/, we obtain
the inequality corresponding to Theorem 9.1(b).

3 Let 1<p <2< p<r<p, ¢ <<s<gqg b=1p+1r—1,
p = 1/g +1/s —1. Then (i) Under the hypothesis of Theorem 9.4(ii),

) {”gl(c: " } <A W7,

where A;, depends on p and M only. .
@Gi) It E(c;rr‘l-‘)s<°<, the series ¢, 0, is the Fourier series of a fune-
tion fe L9, and
(5l
N - BTN
@ M If1< 4, lﬂé’l CLa N

where A, depends on ¢ and M only.

' The results are due, in substance, to Hardy and Littlewood [10],
who considered the case of trigonometrical series.

[Proposition (i) is, so to speak, an intermediate result between Theorem
9.11(a) and Theorem 9.4(ii), and is a consequence of those theorems. To prove
it, we observe that r=t,p-t,p', £,220, t; -1, =1, apply Holders inequality
to the left-hand side of (1) and use the theorems just quoted. To prove (2),
we show that (2¢"9n9%)"9 does not exceed {E@yn "P)S}”S, and apply Theo-
rem 9.4(i)].

4. Let {¢,} be a set of functions orthogonal, normal, and uniformly
bounded (|9, |<M) in an interval (a, ). If e, | <1/n, n=1,2,.., the ¢'s are
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the Fourier coefficients, with respect to {';”}, of a funetion f such that exp if
is integrable for every A <C1/eM.

[Assuming for simplicity that ¢, =0, observe that

2 b B oo =1 L, k—1
) I8 A _ ) 1 k—1)
* - By <o ME2 —E{k—1) A g1
SR A Py <M
4 -
for £ >2, and that explu=1-lu-4n2 2} ]
5. If the functions ¢, satisfy the conditions of the previous theorem,
the interval (a,b) is finite, |f|log+|f| is integrable over (a,b), and 7, are the
Fourier coefficients of f, then the series |y, |/n converges.

[This follows from the previous theorem by an application of Young's
inequality. Observe that the inequality (*) holds if we replace f by any part-
ial sum of the series ¢, ¢, 4 ¢ 054 .1

6. Under the conditions of the previous theorem we have

oo ¥ oa
Z lil‘< bt Ze_k‘:
n=1 1 n=l
where {Y:} is the sequence {|y,|} arranged in descending order of mag-
nitude, and % is any positive number. For a similar result see Hardy and
Littlewood [15].
[The second inequality follows from the first].

Tn i< oo,

7. When 1<{p <2, equality in Theorem 9.1(a) occurs if and only if f is
a trigonometrical monomial, i. e. if f(x)= Ce™, where C is a constant and
n =0, -+1,.. Similarly equality in Theorem 9.1(b) can occur only if all the ¢,
except perhaps one, are equal to 0.

[For the proof (which is not quite simple) see Hardy and Little-
wood [10]. The special case p= 2k/(2k—1) is comparatively easy and may
be proved by the argument of § 9.12, investigating cases of equality in
Young’s inequality 4.16(2). See also Hardy, Littlewood, and Pdélya,
Inequalities, Chapter VIII].

8. Let P, = (o, B;) and P; = (u,, 2) be two points in the triangle
/ 2
(DHogLa<1, 0B << If a sequence {.,} belongs to (L™, LYPY) and to
/, Ji } ’D .

(1Y%, 1 /P2y (5 4.6), then it belongs also to (L% L'F) for every point (s, §)
on the segment P, P,. M. Riesz [3].

[The proof follows the same line as in § 9.25].

9. (i) Let a,, b, be the Fourier coefficients of a function f(x¥)el?, p>1;
then, if nl-+1/nl-> L>1, the series S(a;“,i-{— b';’zl_) converges. More generally

(if) If the power series So,2" belongs to /7 (§ 7.51), the series Tja, |
converges. Paley [5]; Zygmund [5].

Proposition (i) shows that, if E(x? -+ y;f’ = oo, the function f(x) of Theo-
rem 9.6(ii) does mot belong to any class I, p>1.

b4

[By Theorem 7.53(vi), F(2)=F(2) ‘F._,(z), where F,(2)==X 8, 2" and Fy(2)=Z 1,2

belong to F2 Let T|g,>=58% I|y,[*=C Then
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nj—1 ng

g *fa n s
lo‘ni|<(.2+ Z )|3k7ni—“k|<-3( 2 l'rklg) +C( 2 lBk|2)7

F=0 k=gl ni—ftj np—q-+
whence we easily deduce (ii)].

10. (1) If 0<Ca <1, 0<B<C1, a+B>1, and if feLip«, then fB(x) has
a derivative f'(x) e Lip (a+p=—1). (i) If 0<<a<<y<{1, and if f(x) has a de-
rivative f'(x) € Lip o, then f7(x) e Lip (1 +a—7).

[Corollaries of Theorems 9.81].

11. Theorem 9.82(1) holds for p=1 provided that €[f] is a Fourier
series. '

For the proof, which is rather difficult, see Hardy and Little-
wood [6]

12. Let r>1, r'=r/(r—1). If fel, ge L”, we have the formula 7.3(3),
the series on the right being convergent. If r==2 the series converges abso-
lutely. Show that this last result is false for any other value of r. M. Rie sz [4].

[Suppose that 1 <r<2, and let r<<1/(1 —a), 0<a<(1/2. There is a
function % (x)eLip o such that &[#] does not converge absolutely. We may
assume that €[#] =X a,cosnx is a purely cosine series, for otherwise, if x,
is a point where ©[%] does not converge absolutely, we may consider
YA (xg-+ %)+ 2 (X, — x)] instead of A (x). Let

fx) =3 n"cosnx, g(x) =nr"®) = > n"a, cos (nx -1 ax).
n=1 n=1

Since T |a,| =1, the Parseval series for f and g does not converge absolute-
ly, although fel” (§§ 5.221, 5.7.2), and g is continuous and so belongs to L”].

13. Let f~3¢,e™, g~3d, ™ I fel?, gel’, where 1<p<2,
p<r<p, the series

M 3 ateHEEm g A,

N——oa

converges. If in addition r <2, the series (1) converges absolutely. Hardy
and Littlewood [14]. .

[It r=p', the theorem follows from M. Riesz’s equation 7.3(8). Applying
this special case to the functions f)‘(x) and g (x), and taking account of Theo-

rem 9.82(i), we obtain the convergence of (1). To obtain the second part of
the theorem, apply Theorems 9.9.8(i) and 9.1(a)].
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