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CHAPTER VIL

Divergence of Fourier series. Gibbs’s phenomenon.

8.1. Continuous functions with divergent Fourier
series. In Chapter II we proved several conditions ensuring the
convergence of Fourier series. Now we will investigate in what
degree those tests represent the best possible results. It will
appear that, although some improvements are still possible, the
problem of the convergence of Fourier series af individual points
has reached a stage where we can hardly hope for essentially
new positive results, if we only use the classical devices of
Chapter II. Such tests as Dini’s or Dini-Lipschitz’s represent
a limit beyond which we encounter actual divergence of Fourier
series.

The first negative result in the convergence of Fourier ser-
ies is due to P. Du Bois Reymond (1876) who proved that

There exist continuous functions with Fourier series diverging
at a point ).

Since that several other examples have been found, and we
intend to reproduce two of them. The first is due do Fejér %)
and is remarkable for its elegance and simplicity. The second
method (§ 8.31), propounded by Lebesgue, lies more at the roots
of the matter and can be used in many similar problems.

8.11. Fejér’s example. It is based on the use of the tri-
gonometrical polynomial )

) P.DuBeis Reymond [11.
) Fejér [T
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cospx , cos (p+1)x T cos(pt+rn—1)x
n n—1 1
M _cos(ut+n+1)x _ cos (»+2n)
] e

Let us denote it by Q (x, 1, ), and let Q (x, p, 7) be the con-
jugate polynomial. Adding up the terms with the same denomi-
nator we find that

7 a1 k
Q (x, v, 1) =sin (p+ 1) x ZMS}E_).C,
k=1 k
Q (x, p, 1) = — cos (p,-]-n)xzsﬂ;;ff.
k=1

Since the partial sums of the series sin x + & sin 2x + ... are less
than a constant C in absolute value (§ 3.23(ii), § 5.11), we have
Q< C |Q <C, for every x,p, 7 On the other hand, for
x =0, the sum of the first » terms of Q(x, p, n), which is equal
to 1/n+1/(n ~ 1)+ ..+ 1>logn, is large with n

' Let {n:}, {4z} be sets of integers which we shall define in
a moment, and let o, >0, o, + ¢, + .. <co. The series

® @ ZSwQumm), b Ju QG

converge uniformly to continuous sums which we denote by f(x),
g (x) respectively. If pr+ 2m <ppts (R =1,2,..), then Q (x, s, 1)
and Q (x, ps, 7)) do not overlap for 2=~/ Similarly Q (x, s, 7)
and Q (x, ps, 7). Therefore, writing every Q and Q in (2) in ex-
tenso, we represent (2) in the form of trigonometrical series

b) >la, sin vx — b, cos vx).
Y=l .

(8) a) La,+2 (a,cos vx b, sinvx), .
y=1

Actually the first of them contains only cosines, the second only
sines. Denoting the partial sums of these series by $,(x), Zu(x),
we see that Spk_l(x) and tm-l(x) converge uniformly, so that (3a)
is ©[f] and (3b) is € [g]. Since - Ispk +,0) — S{Lk_l(())‘ > oy log ny,
the series (3a) will certainly be divergent at x =0 if o, log m
does not tend to 0. Thus

If op = k™2, pp = np = 2%, the continuous function f defined by
(2a) has a divergent Fourier series.
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It is not difficult to see that both series (3) converge uni-
formly for ¢<|x|< % whatever 2> 0. This follows from the
fact that the partial sums of Q(x,ps 7:) and Q (x, ps, 11z) are
bounded for 0 <2< |x| <=, uniformly in x, ps, 7, (§ 1.22). Sin-
ce the series (3b), containing only sines, converges for x =0, it
converges everywhere.

. 812, If ap =k pp=rp= 2%, the continuous function g de-
fined by 811(2b) has a Fourier series which is convergent every-
where, but not uniformly 1),

_In fact, if x ==/4n and p=n, the sum of the first n terms
of Q (x,, n) exceeds (1+1/2+...+ 1/n) sin (=/4) > (log n)/}y 2. The-

refore | Ly, (%) — by, —1(%) | > ax(log 12)/)/2 - ~ for some x, and this

completes the proof. We add a few remarks.

8.13. (i) If we put o =1/k% ps =2 in 8.11(2), the partial
sums Su(X), fx(x) are uniformly bounded (/s.| <A, %, <A) in
(— =, =), but {5,(0)} oscillates finitely and {Z,(x)}, which converges
everywhere, does not converge uniformly in the neighbourhood
of x =0. ’

(i) There exists a power series c¢,+ c,z-+.. regular for
| 2| <1, continuous for |z| < 1, and divergent at z=1. For
(gl = ©[f], and so the power series ¢, 4 ¢; z + ... which reduces
to S[f]1+ i&S[f] for z=¢* is an instance in point?).

(iii) There exist continuous functions F(x) and G(x) such
that & [F] diverges at an everywhere dense set of points, and Z [G]
converges everywhere, but in no interval uniformly ).

Let f(x), g(x) be the functions considered in (i), and let
¥iy Vs, Fay ... D& a set E of points everywhere dense in (0, 27), & >0,
e+ ... <oo. We put F(x)=s f(x —r)+eflx—r)+..,
Gx)=¢,g(x—r)+ e glx—r)+.., and denote by Fu(x), Gu(x)
the k-th partial sums of these series. Let F (x) = Fu(x) -+ Ru(x),
G (x) = Gu(x) + Ra(x). The series defining F(x) converges uni-
formly and we obtain a partial sum of Z [F] by adding the cor-

1) The first example of this singularity is due to Lebesgue.

) Fejér[7].

$) For the first part of the theorem see P. Du Bois Reymond [I],
Fejér [7], for the second Steinhaus [6].
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responding part1al sums of S[ef(x —r)} for i=1,2,. Suppose
that 7> 0 is given. The partial sums of ©[R:] and S [R:] are
all less than A (spy1+ e+ ..) <7 in absolute value (see (i)),
prowded that k= k(~r) is large enough. Since S[F]=©& [Fil+-S[Ry],
SlGl=¢c[G]+€ [Rz], we conclude that (1) © [F] diverges at any
of the pomts ry, 1<i <k, where the oscillation of the partial
sums of & [e; f(x — ri)] exceeds 7, (2) if x¢ ¢ E, the oscillation of
the partial sums of E[F] at x is <7, (3) the oscillation of &[q]
is less than 7 at every x. Since 7 and 1/& may be arbitrarily
small, we obtain from (1) and (2) that & [F] diverges for x ¢ £ and
converges for x € E. From (3) we deduce that S[G] converges
everywhere and it remains only to show that the convergence is
non-uniform in the neighbourhood of every 7». Now, since & [f (x—)]
converges nomn- umformly in the nexghbourhood of rn, so does
Sleng (x — 1)+ Ril =S[en g (x—rn)] + S [Re), if k>R 1slarge enough.
We have G = [Gr —en g (¥ — 1)+ [er g (x — 7) + Ri] and, since
& [Gr — &r & (x—r1)] converges uniformly in a neighbourhood of 75,
the convergence of ©[(] cannot be uniform there, and this com-
pletes the proof.

8.14. In the preceding section we proved more than we set
out to prove since we showed that, for any enumerable set E,
there exists a continuous f, such that &[f] diverges in E and
converges outside £ ). The problem of existence of a continuous f
with & [f] divergent everywhere, or almost everywhere, is not
solved yet and seems to be exceedingly difficult. However it is
a very simple matter to construct a continuous f with &[f] di-
vergent in a non-enumerable set of points. Let 7,7, .. be now
the sequence containing any rational point of the interval (0, 2%)

infinitely many times and let f(x) =23 k=2 Q (x— r;, 2%, 2¥). Here
k=1

f is continuous, and to obtain & [f] we simply replace every Q
by the expression 8.11(1). At any rational point, &[f] will con-
tain infinitely many blocks of terms with sums exceeding £~ log 2%
for some, arbitrarily large, values of k4. It follows that & [f] has
the partial sums unbounded at an everywhere dense set of points.
We know that the set of points at which a sequence of conti-
nuous functions s,(x) is bounded is a sum F, + F, + ... of closed

'Y Steinhaus [7]. See also Neder [1], Zalewasser [1].
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sets (§ 6.11). In our case no F; contains an interval, and the
sum Fy+ F,+... of non-dense sets is of the first category. It is
known that the sets complementary to sets of the first category

contain perfect subsets, and therefore are of the power of the
continuum.

8.2. A theorem of Faber and Lebesgue. We shall show
that the Dini-Lipschitz condition cannot be generalized. There exist
two continuous functions f(x), g (x), both having the modulus of
continuity O (1/log 1/8) and such that Z [f] diverges for x=0, Z [g]
converges everywhere but not uniformly '). We define f and g as the
sums of the series 8.11(2) respectively, with o=2"%, =1, = 2%
The argument used in § 8.11 shows that Z [f] oscillates finitely
at x =0, and that & [g] converges non-uniformly in the neighbour-
hood of x=0. To prove the inequalities for o (¢;f) and o (3; &),
e. g. for the former, let v=v (#) be the largest integer 2 such
that 2% < 1/h, where £#>0. Break up the sum defining f into
two parts f,(x), fo(x), the latter consisting of terms with indices
>v. We have then |fy(x + &) — fo(x)| <2C @'+ 277+ .) =
=4C. 27" K 4C/log 1//L. A simple calculation shows that

Qx, p, 1) = — (4 1) Q (x,p, 7) —sin pr — ... —sin (p + 17— 1) x +
+sin(p+n+1) x4+ ...+ sin (n 4 21) x,

so that | Q(x, 1, m)| < (p+m) C+20< (241 (C+2) =nC' it we
suppose that p=rn, 2(C+2)= C'. By the mean-value theorem
we see that |fi(x -+ /&) — fi(x)| does not exceed

C'hi27! ol L o2 p 4272 =0 (/zvg—‘/ 922 2) =
=0 (27%) = 0 (1/log 1/h).

Therefore | f (x4 B — f(£) | < [fult +B)—fi(9) |+ fals+ B) —folx) | =
= O (1jlog 1/k) and the theorem is established. Arguing as in
§ 8. 13(111), we can make & [f] diverge in a set everywhere dense,
and & [g] converge non-uniformly in every interval.

1) Faber[i], Lebesgue [1].
2) We use here the following proposition: if, for a positive sequence
{my}, we have My yqlmy > g > 1 then my 4 my + .+ my = O (my); for

My -y =y A1, <y (144 g < (L — g ).
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8.3. Lebesgue’s constants. This name is given to the
numbers

1 7 2ﬂ|sin(n—|-%)t1
— n dt = — ——— dt.
o) La _LD(::)I Mf 2 sin 1t

1T

Let s.(x; f) denote the n-th partial sum of & [f]. It is plain that,
if | f| <1, then | sa(x; )| < Ly, and for the function f (£) = sign Du(%)
we actually have $,(0; f) = L. The latter function is discontinuous
at a finite number of points, but, smoothing this function slightly
at the points of discontinuity, we can obtain a continuous f, | f| <1,
such that §,(0;f) > L, — ¢, whatever ¢ > 0. Thus, for a fixed
L, is the upper bound of |[s.(x;f)| for all x and continuous

f,1f] < 1. For this reason it is interesting to investigate the be-
haviour of L, as n-»oo. We will prove that L, (4/=*)logn
as n-ool),

Since the function % ctg ¢ — 1/£ is bounded for |#| <=, and
|sin nt| < |nt], we have

T~

75] . | . t
L,,:E Mdt_;_o(l):z/ts_m_"_ut_*_o(nz
Ty 2tglt ol t
_q EED min /n 1
2 'S [ sin nt | 2. 1
= ! L dt = Y ———d{10 (1).
- kél f P + 0(1) - t‘/‘Sll'lﬂ lk{__fl t—*—-kﬁ//’ll + ( )

kwin

The sum in curly brackets, contained between the numbers
net (14124 .4 1/(n — 1)) and ne—(1/24+1/84... +1/n), is equal
to z—tnflogn+ 0 ()] (§ 1.74). Since the integral of sin #f over
(0, =/n) is equal to 2/n, we have L, = (4/=%) log n+0O (1) =~ (4/=%) log n.

8.31. We have proved that, if # is large enough, there exists
a continuous f(x) = fu(x), |f2]| < 1, such that s,(0; ) is large. This
function depends on #. To obtain a fixed f with s,(0; /) unbound-
ed we appeal to Theorem 4.56(iv). If we replace in it y.(¢) by Du(?),
x () by f (¢), and use the fact that L, » co, we deduce that there
is a continuous function f(x) with lim |s,(0; f)| = o9, i. e. Theo-
rem 8.1 %).

) Fejér [8].

2) Theorem 4.56(iv) (which is due to Lebe sgue [2]) lies rather deep,
and in the case y,(f) = D,(t) it is not difficult to prove it directly, We refer
the reader to Lebesgues Legons.
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8.32. Let X, be any sequence tending to + ~ more slowly
than log #. Since the integral of | Dy(f) |k, over (— =, =) tends to
+ oo, applying Theorem 4.56(iv) again we have:

For any sequence ), = o (log n) there exists a continuous f such
that sn(0; f) > My for infinitely many n. In § 2.73 we proved that,
for any continuous f, s.(x; f) = o (log 1), uniformly in x. Now we
see that this result cannot be improved.

The above theorem can also be established by the method

“of § 8.11.

8.33. Applying Theorem 4.55 in its most general form to
the proof of Theorem 4.56(iv), we obtain a result from which we
conclude that the set of continuous fanctions f with & [f] con-
vergent at the point 0, or at any fixed point, forms a set of the
first category in the space C of all continuous and periodie func-
tions. Thus the set of continuous functions with Fourier series
convergent at some rational point or another is again of the first
category. In other words, if we reject from the space C a set of
the first category, the Fourier series of the remaining functions
have points of divergence everywhere dense.

8.34. As a last application of Theorem 4.56(iv) we shall
show that, in a sense, the Dini condition of § 2.4 cannot be im-
proved: Given any continuous p (£) > 0, such that w (¢)/t is not in-
tegrable in the neighbourhood of t=0, we can find a continuous
function f, such that |f (¢) — f (0)| < p.(¢) for small |t!, and none the
less & [f] diverges at t=0.

Let sy(x; f) be the modified partidl sums of S[f] (§ 2.3).
Put v.(f) =p () sinnt/2tg £ £ If M[y] = O (1), we can find a
continuous g (x), | g| <1, such that the integral of 7(f) g(f) over
(— =, =) is unbounded as n—oo. This means that S[f], where
f(x)= g (x)p(x), diverges at the point 0. Since we may freely
suppose that p. (0) = 0, we have |f(£)—f(0)| = [f ()| <p ().

To justify our assumption that M [7,] = O (1), we prove the
following lemma: If o (x) is bounded, B (x) integrable, both periodic,
then

) L =fa(nx) B () dx - [a(x)dx [ 8 (x) dx
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as n-ool). We begin by the following observation, the proof
of which may be left to the reader: If, for every ¢ >0, we have
8 =B, + B, where M [8,]<e and the relation (1) holds for §, and
any bounded o, then (1) is true. Now (1) is certainly true if B
is the characteristic function of a set £ consisting of a finite
number of intervals. Therefore it holds true when E is open,
or, more generally, measurable. Thence we pass to the case of §
assuming only a finite number of values. Since we can approxi-
mate uniformly to any bounded g by such functions, we conclude
the truth of (1) for B bounded. If B is integrable, we put =8, + B,
where B8, is bounded and M [8,] small.

Let us now put o(f)=|sint|, B =p@)/2tg4?| for
0<e<|t| <= B(¢)=0 elsewhere, and denote the corresponding
integrals /. by I.(g). Since M [14] > I«(c), we have the inequalities
lim M [.] >1im [,(c) = lim [,(c). The function p(£)/2tg ¢ being
non-integrable, we may make lim /,(s) as large as we please,
if only ¢ is small enough. This shows that M [7.]~> oo, and the
theorem is established.

The case () =0 (log1/|¢))~* (we may put, for example,
u (f) = (log 1/|¢| log log 1/ £y~ for small |Z]) is of special interest
in view of the Dini-Lipschitz test (§ 2.71).

Consider a continuous function f(f) with &[f] divergent at
the point 0, and such that f(0)=0, f{¢)=o0 (log1/[£])~*. Let
fi&)=f®, ,&)=0 for 0 <t <x, and fi(£) = 0, fy(t) = f () for
— 5Lt <<0. Since f=Ff +f,, it follows that at least one of the
functions fi, f,, say f;, has a Fourier series divergent at the
point 0. Consider the interval (a, &) = (—=/4,0). It is plain that
the modulus of continuity of the function f, in (a, b) is o (log 1/3)—!
aud that f (a—£)— f (@) = o (log 1/1)~), f (b + 1) — f (6) = o (log 1/t)!
as £ >-0. In spite of that, & [f,] does not converge uniformly in
the interval (g, b). This result justifies the last remark of § 2.72.

8.35. Lebesgue’s constants may be defined for any method
of summation if we replace D,(f) in 8.3(1) by the corresponding
kernel. In the case of the method (C, 1), or Abel’s method, Le-
besgue’s constants are all equal to 1. As regards the constants

) Fejér [8. This lemma will be applied only in a special case of
o continuons,and § continuous except at a finite number of points. We prove
it in the general case since it embraces Theorem 2.211.
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&) corresponding to the metod (C, &), 0<k<1, the following

result has been proved. L fends to a finite number L® > 1, as
n—>oco. For any 0<\k <1, there exists an f (x), If1 <1, such that

lim |on(0; F) | = L® 1),

8.4. Kolmogorofi’s example. There exists an integrable
function f(x) such that S [f] diverges everywhere 2.

Let fi(x), fa(x),... be a sequence of trigonometrical polyno-
mials of orders v, <v,<..., with the following properties (i) fu(x) >0,
In
(ii) / Jn(x) dx = 2%. Suppose, moreover, that to every f, corresponds
[(]
an integer A, where 0 <<}, < v,, a number A4, > 0, and a point set E,,
such that (iii) if x e £, there is an integer & = k., )y < £k < Vrty
for which si(x; fa)> An, (iv) An > 00, (V) Ay > o0, (vi) ECE(C..,
Ei+Es+...=(0,27). Under these conditions, if {n} tends to oo
sufficiently rapidly, the Fourier series of the function

6] F ) =k§1 FusO)Y A,
diverges everywhere,

First of all the series in (1) converges almost everywhere
to an integrable sum provided that the series 1/)/A,, +1/VA,, + ...
converges. This follows from the fact that series with non-nega-
tive terms can be integrated term by term. Let us put n;=1
and assume that the numbers 7,7, .., 7 have already been
defined. The number 7; will be defined as the least integer sa-
tisfying the conditions:

(a) )"l,’ > Vﬂi_p (b) Aﬂf > 4Ani_1a (C) V/:;lfl—f> Vng_y-
From (b) we deduce the convergence of 1/y/A,,+1/)/An+ ...,50
that f(x) exists and is integrable. To prove the divergence of & [f],

let x be an arbitrary point of E,, and let f = x4 v+ w, where z is
the (i —1)-st partial sum of the series (1), and 7!=fn,-/l/An,-;

1) Cramér [1].

) Kolmogoroff [6]. The construction of the text is slightly differ-
ent from that of the original paper. The modifications have been suggested
te me by Mr. Kolmogoroff.
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hence Sx(x; f) = Su(x; 1) + Su(x; ©) + Su(%; w). In virtue of (iii) there
is a k= Ry hn; <R Vi such that

@) ~ su(%;0) > VA,
From (a) and (i) we see that

(3) Se(x; ) = 1 () > 0.

Finally, since for any integrable & we have lsk(x;_g) <
< (2&-+1) M [g; 0, 27/, we find that | sx(x; @) | < 2(2k+1) (1/‘/A”i+1 -+
1YY Ay gt ) <1201V A, 11 <1298,/ Anyy < 12. From this and the
inequalities (2), (8), we conclude that si(x; f) = A, —12. Since
every x € (0, 27) belongs to E for all / sufficiently large, the re-
sult follows.

8.401. It remains to construct the polynomials f, and to
show that they possess the required properties; this is the most
fundamental part of the proof. The function fa{x) will be defin-
ed as a sum of two polynomials ¢ (x) and ¢ (x).

Let us fix n, put x;=2xi/2n+1), i=0,1,..,2n, and con
sider the intervals [; = (x; — &, x; -+ ¢). If & is small enough, there
is a non-negative trigonometrical polynomial ¢ (x) of order M>n,
with constant term equal to 4, and such that ¢ (x) 2> n, say, in
the intervals . For it is sufficient to put o (x) = Kn{(2r 4+ 1) x},
where K, denotes Fejér's kernel and m is large enough. Since
we may take ¢ as small as we please, we may suppose that
Du(x) > 0 in the interval (— ¢, 38), where Dy denotes Dirichlel’s
kernel.

Next we put

! 2 Konf(x — %21),

\ =
¢ (x) PR

where M < my<<m; <..; the numbers m,, m,,.. will be defined

later. If m; <k <mjyq, then

1 i

Si(x; 9) = P z‘;Z; KX — %) +
1 ¢ 1, am—1l+1 }
I i R Rl l . ;
+n+1i=2j:+1{2 o] m; 41 cos L (x — xa)
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Since m;— 141 = (mi—k)y+ (k—1+1) and Ki(x) > 0, we
obtain

C Dy~ 1 “ m; — k
(1) Sk(xs (l’) = P +_‘1 i:z?-}-l “mi 1 Dk(x - )Cgi),
8.402. Let us denote the intervals (x;- 3, X1 —8) by 1},
£=0,1,2,..,2n, and suppose that x e /3 or that xe I3744; in par-
ticular Xo; <X <Xwjo. If 2641 is a multiple of 2n -1, then
sin(k+ %) (x — x») has the same value for every I, and from
8.401(1) we obtain

) sy > IEED Cyp—x) ¢ om—k 1
n+1 =itim; 41 2sin $ (x5 — x)
It is not difficult to prove that, if the numbers m,, my, ...
increase sufficiently rapidly, then, to every x belonging either to
y or to [3jy1, corresponds an integer k= k. satisfying the ine-
qualities m; <k < myyy, sin (8 +3) (%12 — X) > &, and such that
2k +1 is a multiple of 22+ 1. Let us take this result for gran-

ted; we shall return to it later. "Taking such a value for %, we
obtain from (1)

nmy <k <mjq.

i _
sy > L1 11 A1
2 nA41=4 20— x) 20+ 2641 8z (D — )
i. e. su(x;9) > Cy log (n—j), C, C,, C,, ... denoting positive abso-
lute constants. If j<{n—ym then sx(x;¢) > £ C logn = Clogn.

8.403. Let us put fu(x) = ¢ (x) 4 ¢ (x). If x €Iy, or xelyy,
j<n—Vyn, there is an integer & > m; > my > M such that
Se(x;9) 2> Clog n. Hence we have Sx(x; fr) = Sx(x; 9) + su(x; $) =
= ¢ (X) + 8x(x; 9) 2> Clog n.

Now we shall investigate the behaviour of sg(x;f.) in
the intervals /., We shall show that su(x;f.) > +n for xe
and 7 sufficiently large. The right-hand side of the equation
Sm(x; fr) = sm(x; ©) + Su(x; ¥) consists of two terms, the first of
which exceeds n for x e/, and we will show that, if x € /;, the
second term is dominated by the first (this is just the reason
why we define f, as ¢ -+ ¢). More precisely, we shall prove the
inequality su(x;¢)>—C,logn for xel;, and n>1, so that
Sm(x; fr) > n—Cylogn>in for xel, n>n,.

We first suppose that !/ is even, [=2h If k=M =m, we
have the formula 8.401(1) with j=—1. If x € L, the term i=1%
in the sum on the right is positive in virtue of the condition impo-

A. Zygmund, Trigonometrical Series. 12
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sed on the intervals /. If this term is omitted, the inequality
8.401(1) holds & fortiori. Since | Di(u)| < =mf|u|, for |u|<=, and
since |x — x| > 2|k —i{/(2n 1), we obtain that

M s H>——— 3L > Clegn, n>1, xe b,

n+152h—i|
where ' denotes that i+ A.

If [ is odd, I =2k -+ 1, we again have the inequality 8.401(1)
with j=—1, k= M. It is not difficult to see that | x — xu| ex-
ceeds a constant multiple of [£—i]/(2z 4 1), and, arguing as in
the previous case, we obtain that sx(x; )>— G, log 1, for X € lony,
n>1. This, together with (1), gives sx(x; ¢) > — C,log n, where
xel, n>1, C,=Max (Cy;, C,). Hence, as we have already ob-
served, Su(x; fu)>+n if xecl, n>n,

Collecting the results and observing that Clogn <% n for n
sufficiently large, we obtain that fo every x in the inferval
E) 0L xCdn(n— Vn)/(@n 4+ 1) corresponds an integer k> n, such
that s(x; fn) > Clogn, n>n;. The reader will have no difficulty
in verifying that the functions f, satisfy the conditions of the
lemma established in § 8.4, at least for n sufficiently large.

8.404. There is one point in the preceding argument which
requires explanation. We must show that, if the numbers m,, m,...
increase sufficiently rapidly, then, to every x belonging to /4; + /b4,
corresponds an integer k& satisfying the inequalities m; <k <<{myyy,
sin (B + £) (%342 — %) > 4, and such that 2641 is divisible by
2n+1. Let us put 26+1=p(2r2+1), so that p is odd, and
Xojps — X =4%0/(2n + 1). Then sin (& + ) (%42 — X) = sin 2rph,
and x belongs to Iy + /41 if and only if § belongs to the sum
of intervals 7, <0 < $—1, + + 7 <0 <1 —71, where 7 is positive
and depends on ¢ and 7.

Let m, =M, and suppose that m,, m,, ..., m; have already
been defined. It is sufficient to show that, if p, is a fixed odd
integer, then there is a number v such that, if § belongs to
(1.3 =)+ &+, 1—7), we have sin 27p > 1 for an odd integer p
satisfying the inequality p, < p <p + v. For, if m} denotes a num-
ber such that for every xeli+ i, there is an integer
k,mj <k < mj such that 2641 is a multiple of (27 + 1), and
that sin (£ + ) (X742 — x) > &, then we may take for m;yy any
integer greater than 2.
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Now consider the points g8 where p runs through the se-
quence po, py + 2, pp+4, ... If p is increased by 2, f5 increases by
20, i. e. by a number the fractional part of which belongs to the
interval (24, 1—27). Consider the following three cases (i) 26 € (2, 1/3),
(if) 20 ¢ (1/3’, 2/3), (iii) 28 € (*/;, 1 —21). In case (i) the situation is
fairly simple; for the length of the interval (Y19s ¥/10) is equal to
/5, and so after a bounded number of steps the point 08 will
certainly fall into this interval i. e. we "shall have sin 27p8 > &
In case (iii) the argument is similar.

In case (ii) the situation is slightly less simple for, if 0p, and
20 are both very near (mod 1) to the number !/,, the sequence 8p,
p > py, may stay outside the interval (Y, %/;,) for a long time. Con-
sider the cases (ii') 20 €('/;, %/1y), (il") 20 € (%), 10, (ii") 20 € (*/,, ).
In cases (ii') and (ii""), 49 belongs to the intervals (%, 3/,), e )
respectively, and so, arguing as before, we see that, after an even
number of steps, Op will fall into the interval (Y, ¥/;,).

Now suppose that 26 € 3/}, /;5) C (Ya, ¥s), i. €. 0 belongs eit-
her to (¥s, */15) or to (%/15, 1%,), e. g. to the former interval. It
is easy to see that, if m is even and positive, and if m8 belongs
either to (/is, %/s) or to ("/ys, Yia), then, after a bounded number
of steps, the point pf, ¢ > p,, will reach the interval (Y., ¥/,,). Now
we observe that the numbers p, — 1, p, + 1, 2p, are even and that
(a) if po9 € (Y13, %/12), we may put p=p,, (b) if pf € (%125 “/12), then
(o — 1) 9 € (Y13, °/19), () if o8 € /10, ¥/10), then 2p0 € (*l12s *19), (@) if
Paf € (%125 */10), then (g 4 2) 8 € (Y13, ¥/10), (e) if ph € (**/12, *'/;2), then
200 9€ (%125 /12)s (£) if pof € (M2, 1) (0, Yy5), then (p, +1) 8 € (Y125 %/ 1)-

The case 28 € (%/;a, /1), 8 € (¥/15, 1%15) may be dealt with in
the same way and Theorem 8.4 is established completely.

8.5. Gibbs’s phenomenon. We shall now investigate the
behaviour of the partial sums d.(x) of the series

M Iy —iE-x)

v=1

(0 < x < 2r)

in the neighbourhood of x=0. Suppose, as we may, that x>0,
Since Lctg +t— 1/t is of bounded variation over (0, =), we have

batdo=[Deydt= [ 22 at 1o (1) =
o o 2tg5t
F sin nt 7 sint
=/ ; dt+o(1)= [ Tdt 4o (1),
0 [}
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where the last term tends to O uniformly in x (§ 2.213). From
this we deduce the approximate formula

@ b = [ B dt 4o 1)

where the error is <¢, provided that x <&, n>nye). Let us put

L
w(u):/Sl?tdt. The integrals of (sinf)/t over the intervals

(kx, (k+1) =) decrease in absolute value and are of alternating sign
when % runs through the values 0,1, 2,. . This shows that the curve
y=uov(x) has a wave- -like shape w1th maxima M, >Mq > M, > ..

attalned at the points =, 37, 57, ... and minima m, <my<mg<..
at 2z, 4=, ... From the relatlon do(x) » % (= — x), and the equatlon
dy(x) =— L x + o (nx)+ 0 (1), we see that o (1) >4r as u— oo, i, e.

[ﬂﬁﬂ—

Substituting x=n=/x in the formula (2), we obtain that du(ﬂ/ﬂ,) > (x)>
> o (co) = 45, Thus, although dn(x) tends to d (x) < ¢= for every
fixed x, 0 <x <=, the curves y= d«(x), which pass through the
point (0, 0), condense to the interval 0 <y < ¢ (z) on the y-axis,
transcending the interval 0 <y < d (+ 0) in the ratio

2fﬂﬁa_1mmw

Since the d,(x) are odd functions of x, a similar situation
occurs in the left-hand neighbourhood of x = 0, where the curves
y = ds(x) condense to the interval — ¢ (r) <<y < 01%). This phe-
nomenon is called Gibbs’s phenomenon and may be described,
quite generally, as follows. Let a sequence {fx(x)} converge to

a function f(x) for x, <x < X, + £, say. If, for n and 1/(x — x,)
tending to -+ oo mdependently of each other, lim f,(x) > f(x, +0),
or if lim fu(x) <f(x, +0), we say that {fu(x)} presents Gibbs’s
phenom?mn in the right-hand neighbourhood of the point x,.
A similar definition holds for the left-hand neighbourhood 2).

1} For interesting graphs and a more detailed discussion we refer the
reader to Carlslaw's, Introduction to the Theory of Fourier Series and Integrals.

*) See Zalcwasser [1], where a discussion of some problems con~
nected with Gibbs’s phenomenon is given.
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8.51. Let f(x) be an arbitrary function having a simple
discontinuity at a point & f (£ 4 0) ——f(E—O)-l#—O The function
4 (x)=f(x)—1-d(x — &)/ is continuous at &. Suppose that  [4]
converges uniformly at the point & (§ 2.601). The behaviour of
Su(x; ) in the neighbourhood of & will then, in a sense, be domin-
ated by the behaviour of s.(x;{-d (x — £)/x), and so Gibbs’s phe-
nomenon will oceur. Thus, in particular, if f is of bounded var-
iation, & [f] will present Gibbs’s phenomenon at every point of simple
discontinuity of f1).

8.52. The formula 8.5(2) has interesting applications ). Sup-
pose that f(x) is of bounded variation and ¢ a point of discon-
tinnity of f. Let {#.} be a sequence of numbers such that mh, -~ H.
Making the decomposition f (x) = 4(x) + I-d (x — &)/z, we find the
formula

sﬂ(e_]_kn)_)f(é—i—ﬂ)—l-f(ﬁ——O)+f(i:+0) —fE-0) 2 / S";tdt,

2 2 7:5

where $,(x) = s.(x; f). Taking for H one of the infinitely many
roots of the equation ¢ (#) = =/2 (in particular H = o), we obtain
the formulae: (¢ + %.) » f (€ 4+ 0), $a(§ — £a) » f(E — 0), where
hy= Hjn it H is finite and, for example, #, =1/y'n if H= co.
From these formulae we obtain, in particular, the value of the

jump fE+0)—f(E—-0).

8.6, Theorems of Rogosinski?®). In the preceding para-
graph we obtained certain results concerning the behaviour of
Su& + A5 f), provided that f was of bounded variation. It will
appear that similar results hold in the general case if we con-
sider the symmetric expressions & [Sq(5+ #n) 4 Sa(§ — %x)] instead of
Sn(€ + Aa).

8.61. (i) If = O(l/n) and if the series 8.11(3a)*) converg-
es at a point & to s, then L [si(i -+ on) + su(8 — 2)] »s (i) If this
series is summable (C,1) at the point & to the walue s, and if
o, = O (1/n), then

¢9) £ [Sa(E + a) + 8a(E — 2tn)] — (2(3) — ) cOs 1%z = s.

) Fejér[8], Rogosinski [2].

2) DuBois-Reymond [2], Fejér [3].
¥ Rogosinski [3], [4]

4) not necessarily a Fourier series.
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Abel’s transformation shows that
n—1

@) L[5 A ) + $n(E — )] = 2 su(8) 4 cos kan + S, cOS Ny,

Here we have a linear transformation of {s.(f)}, and the reader
will verify that Toeplitz’s conditions (§ 3.1) are satisfied. In part-
icular, the condition (iii) of Toeplitz follows from the 1nequallty
| 4 cos kan| < on= O (1/n).

This completes the proof of (i). Making Abel’s transforma-
tion once more, we obtain, for the left-hand side of (2), the ex-

pressxon
n—2

3) X (k+1)ord? cos ko, 40,y nd cos (n—1) a, + S, cOS nay,
k=0

where o = o) are the first arithmetic means of the series
considered. This expression without its last term is a linear trans-
formation of {o,}. Toeplitz’s conditions (i) and (iii) are again sa-
tisfied. Supposing, in particular, that s, = s, =8=..=1, we
find that the sum of the. coefficients of o, in (3) is equal to
(1 —cos na,). It follows that the expression (8) deprived of its
JJast term and divided by 1 — cos na, tends to s, and this is just
(1). As a corollary we obtain

If-811(3a) is a & [f], & a point of continuity of f, and p any
fixed odd number, then % [sa.(& -+ pr/2n) + su(& — pr/2n)] - f (). This
relation holds uniformly in any interval of continuity of f.

8.62. We know that, if ¢ is a point of continuity of 7, then
[orE+h) — f ()| <e for E>v, || <3&1). Hence, for any sequence
{} ~ 0, we have |ox(€ +£,) —f(€)| ep, B < n < co, where e, 0.
It follows that, if op = ox(§ + ha), 1 <k <n, 0p = 7:/2/1 the expres-
sion 8.61(3) is f(€) 4+ o (1), and so -

If su(x) = su(x; f) and & is a point of continuity of f, we have

3 [$aE + 2n + ©/21) + Su(i 4 hy — /21)] > f©)
for every {h,} - 0.

In § 811 we learnt that s.(x;f) may be unbounded in the

neighbourhood of a point of continuity of 7. The last theorem de-

tects a certain regularity in the behaviour of the curves y = s,(x):
for |x — €| <e, the arithmetic mean of the values of s,(x) at the

) See footnote 1) on p. 52.
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ends of intervals of length =/n differs very little from. f (§), and
the less the smaller ¢ and 1/n are.

8.7. Cramér’s theorem. We shall now study Gibbs's
phenomenon for the method (C,7). From the inequality 3.22(1)
we deduce that Fejér’s sums cannot present Gibbs’s phenomenon.
Moreover it is easy to see that, if this phenomenon does not exist
for a value 7, of r, it cannot exist for any larger value of r.
For, if J,l(x) denote the Cesaro means for € [f] and if we have
m—eLai(x) < M+e for |x—&| < n>n, and if r>ry,
then m — 2¢ L on(x) < M4-2¢ for [x—& <1 nzn (§3.13).
It is therefore sufficient to consider the case 0 <r < 1.

There exists a number 0 <r, <1 with the following property:
If f is simply discontinuous at a point &, the (C,r) means oi(x) of
& [f] present Gibbs’'s phenomenon at & for r <r,, but not for r > r, Y.

8.701. It is sufficient to prove the theorem for the series
8.5(1), for which we have the formulae

X ke
(1) i) =—4x+ [Ki®)dt,  oi(9)=4(=—x)— [ Ki(t) dt, .
0 X
where K; denotes the (C,r) kernel. Let us consider first the case
r = 1. Replacing the denominator 4 sin’>{ ¢ by ¢, we find, as in
§ 8.5, that

X
(15
bat |
0

sin? t

) on(x) = —

dt + Ru(x),

where o,(X) = on(x), Ry(x) = O (") = 0 (1) uniformly in x. Since
6u(x) - (= — x)/2 for 0 < x <27, we obtain from (2) that

msint2
@) , f( , )dt.z%::.

0

From (2) and (3) we deduce the following proposition which
will be used presently. Given any number 1> 0, there exists an
e=c()) >0 and an integer ny=ny(l), such that o,(x)<=/2~—¢ for
0L x L liny n>n,.

1y Cramér [1l. Gronwall [2] showed that r, = 0.4395516...
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8.702. Next we require a formula for XKi(£). Such a formula
was found in § 3.3(3). Applying Abel’s transformation to the
last term of it, we find that K(t) is equal to

N B ST L e |
oAl sind | — ety T et T 1—e--ff}j B
_ 1 sin[(n4+-3+int—Far] ro 1 6 8r(1—nY
T AL (2 sin } &+t n+1 (2sindd)? m (2sindf)®

where [0 <1 (see § 1.22). Integrating this expression over (x, =)
and applying the second mean-value theorem to the first integral,
we obtain from the second equation 8.701(1) that o,(x) is equal to
20, B
o +=
nAn(2 sind xy+t - n2x?
where |8;] <1, and | B| is less than an absolute constant.

It was implicitly proved in § 8.12 that there exists an ab-
solute constant C such that A, > Cn” if n > 1, 0 <r < 1. This
shows that, if nx is large, of the last three terms in (1) the first
is the largest in absolute value. Therefore there exists a number [
such that [ou(x)| < #/2 for In < x < m, 12 <r <1, n>n,.

Now we will show that, if 1 — 7 is small enough, we have
[on(x) | < %/2 for 0 < x < I/n. Taking inlo account the inequalily
A/ AL > Ai] As, which is true for 0 <k n, —1<r<s, we find
that | on(x) — on(x)| is less than

P
1) %(W—X)—’Tﬁ%dg%x-l-

n A;_\ A;_ | ai r41 s+1 _

) 2( —_ sv>ls1n x| [A,,r _Aﬂs ]: nx(s—r)

v=1 An An ] v An An (I‘-—I—l) (S'I'l)

If s=1, the last expression is less than $+nx (1 —r), and so it is
sufficient to take r such that 1 (1 —r) I <e (J) (§ 8.701).

8.703. We have proved that, if r is sufficiently near to 1, o}
cannot present Gibbs’s phenomenon. To show that, if r=>0 is
small enough, Gibbs’s phenomenon does occur, we consider the
faxpression |o7(x)~Su(x)| which, in view of the inequality 8.702(2),
is less than xnr/(r41). Since Sa(m/n)y> ¢ (x) >=/2 (§ 8.5), we
conclude that Gibbs’s phenomenon certainly occurs if we have
wrf(r+1) <o (@) — =2, ‘

) For a different proof, based on complex integration, of this formula,
see Koghbetliantz [1].
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8.764. In the previous sections we established the existence
of a number 7, 0<r, <1, such that for any » >r, we have
Gibbs’s phenomenon, whereas for » <r, we have not. It remains
only to show that for » =r, the phenomenon does not occur.

Let #; be any positive number less than r,. From the for-
mula 8.702(1) for o, we see that there is a number [, such that
lon(x)| < 4= for r  <r< 1, [/n < x< = From the inequality
8.702(2) for |o, — on| we see that on(x) is a uniformly continuous
function of 7 in the range r > 0,0 < x << /n,n=1,2,.. If the
Gibbs phenomenon occurs for a value r >r,, that is if there is
a sequence {X,} -0 such that |op(x,) | >L=+¢, then 0. x, << yJn

. and so, if |s —r| is small enough, !gs(x)|>1 =+ L This shows

that the set of r for which the Gibbs phenomenon occurs is an
open set, and the theorem is established.

8.8. Miscellaneous theorems and examples.

1. The Lebesgue constant L, is equal to

%—62 2‘71 .{1 + s s e 112 @n 1) — 1112 — 1),

Y=

From this formula we see that {Ln} is an increasing sequence. Szego [2].
[Consider &[lsinx|] (§ 1.8.2) and the formula
(sin kx)?*/sin x = sin x -} sin 8x -} ... 4 sin (28— 1) x].
2. Theorems 3.5(i) and 3.5(ii) are false for r=1.

[To prove the first part of this assertion, show that f sin t] K ()] dt = OQ1).
6

where K, denotes Fejér’s kernel, and apply an argument similar to that of § 8.31.
For the second part we refer the reader to Hahn [2]].

3. A series wy—u,-+.. is said to be summable by Borel’s method, or

.
summable B, to sum s, if e~ 2 s, X"[nl—>s as x-»es, Where s, =ty ... 3- 1,
n=0

Show that
(i) It a series is convergent, it is summable B to the same sum.

(ii) A power series may be summable B outside its circle of converg-
ence, so that the method B is rather strong. Nevertheless,

(ii) There exist continuons functions with Fourier series non-summable B
at some points. Moore [1}].

(iv) If [f (%o k) —f (xp)]log1/j 2| >0 with &, &[f] is summable B at
the point x;, to the value f(xp). Hardy and Littlewood [2].
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[Ad (i): apply Toeplitz's theorem (§3.1). Ad (ii): the series 1-4-z-}-22-|-,.,
is summable B for Wz < 1. To prove (iii) it is sufficient to observe that the
Lebesgue constants’ corresponding to the method B form' an unbounded
function, These constants, which are equal to

2/ —x(1—cos 7) | 8in (x sin t 11| dt,
2sint

are of order logx. Propositions (ii) and (iii) show that the methods B and
(C,k), £>>0, are not comparable].
4. Consider a sequence po. py, ... of positive numbers, with the proper-

ties that P, =p,+p, 4.4 p, >, p,/P,>0. A series uy—4u, 4. is said
to be summable by Nérlund's method corresponding to {pv} or summable
N{p} to sum s, if

Sy = (S0P 4510, —l— w8, PP, = (g Py ..+ U, PP, s

as n-—>oo, It P,l=/1,°;, a>>0, we obtain, as a special case, Cesiro’s method of
summation (§ 3.11). Show that

() If Lu, converges, it is summable N{p } to the same sum.

() If 0<py<pi<<.. andif Zu, is summable (C, 1), it is also sum-
mable N{p } to the same sum. Tamarkin, Fourier series, p. 156.

5. Let pv>pv+l : A necessary and sufficient condition that
- the method N{pv} should sum €[f], to the value f(x), at every point of econ-
tinuity of f, is that the sequence

=0, Py—>eo.

A _P—IZPV
V=1

should be bounded Hille and Tamarkin [1.],

Tamarkin, Foarier
Series, 190. ’

[In the first place we show that, if ), = 0 (1), then the N{p } kernel

is quasi-positive (§ 8.201). Conditions (ii) and (iii) follow immediately. To
prove (i) we argue as in § 3.3 and obtain, for the kernel, the expression

sin(n1)¢ 2 cos(nt1)¢t n
9sin i Py Vgojuvcos(v—{—i/z)t——-—stn—%z)—P,‘,‘l-éjpvsin(v-%—l/z)t=U,z—-V,zv

V=0

Applying Abel’s transformation to V,, and denotin jér’ in
g by K, Fejér's kernel, we find
that M [V,; 0,%] does not exceed i ’

Py f {+10p,k, +2(v+1>dp }dt=%«rP;i{(n+1>p,1+"§<v+1)dpv}-
y==0

V=0
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The expression in curly brackets is equal to P, so that M [V, 0, =} =, and every-
thing depends on the behaviour of M [U,; 0, 7] = M [U,; 0, 1/n] + M[U; 1/n,=].
It is easy to see that U,=0(n) in the interval 0<(t<(1/n, so that
M [Uy; 0,1/n] = O (1). Now Abel’s transformation gives, for U,, the value

1 sin (n—l—l)t[ sm(n—-}—i)t sin (v +1) t\_
) P, lp" 4sin®7 +ZA Py dsin?yf f
Jsin G-+ 1)¢] F r
th t sin (v1)¢ d < tdt
Observing tha / “Tamti t= ]’,/, + f (/+1) ’n Tsintit

1, where 4 and B are con-

+ [ 1 siﬂiw <A@+Dlog(np)+BE—+1), v=
1ly 2

stants, we see that the absolute value of (1) integrated over (1/n, %) gives
less than ’

n—1
{(n+1 pn+2(»+1>dp,}+,, { dp,- ¢+ 1) log (n />}+0<P—1xogn)

Here the first term is equal to B. Making Abel's transformation, we see that the
second term is equal to

II

n
2;117‘ log ;1+P {Zp log ( n/v)}+P {yvp log (1*—)‘, A, +B,+C,

n y=2 v=2

It is not difficult to verify that the condition 4, = O (1) implies logn= 0 (P,),
i.e. A,= 0(1). Since log(l—1M) =2 —1/% we obtain C,=0(1). Applying
Abel’s transformation, we see that B, = 0(,)+ O(P;1logn)= O(1). Hence
MU, Yn, =] = OQ1), M[U,; 0,7] = O (1), and the first half of the theorem is
established.

To prove the second half, it is sufficient to show that,if M [U,] = O(Q),

then %,= 0(1). Applying Abel’s transformation to U, and observing that
| sin (n --1) #| 3> sin? (n 4 1) £, we see that the relation M [U; 0,7] = 0O (1) implies

=
@ Py fsma (n--1) tJ nﬂ’f;_(ﬁﬁ)t_FZP sm(a-}—l)t}dt— 0 ().
g sin¥ ¢ veo
It i3 not difficult to see that the integral, extended over (0, =), of the function
sin?(n-+1)t-cos (n-+%) t/2sin% ¢ is bounded. Hence, using the equation
25in? (n4-1)t =1 cos 2 (n4-1)t, and the fact that the integral over (0,=) of
sin (v-1) tcos 2 (n+1) ¢ is O (1/n) for 0<v<n, we see that (2) may be written

T n—1
1/2[«,1—1/{2P‘,Sin v-1) t}dt+R=0(1),
0

y=0
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where R= 0 (Py+ P+ ...+ P,_y)/n P,=0(1). From this we obtain X, = O (1)].
6. The partial sums d,(x) of the series sin'x 4% sin 2x-- ... are positive

for 0<x <= Jackson [1]; Landau [1].
[Suppose that the theorem has been established for n—1 and that

dy(%), 0 x (', attains its minimum at a point X, 0 <<x,<<w. Since
d! (xo) = [sin (n %) xo — sin ¥ x]/2 sin Y x, = O,

we ohtain that sin (n--%)x, =sin),x, and so also |eos (n—-1%) x, | = coa Y x,.
This shows that sinnx, = sin (n - %) xo coshxy — cos (n -+ ) xo8in ¥ x, >0,
d,(xo) > d,_4(x,), which is impossible since the theorem is true for n—1].
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