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CHAPTER VIL

Conjugate series and complex methods in the
theory of Fourier series.

7.1. Summability of conjugate series!). In Chapter III
we proved some results on the summability (C,7) of Fourier
series.” As regards the conjugate series our results were less
complete. The obstacle was that we knew nothing about the
existence of the integral

@ —L[IeEh=feoh, ~tim( -+ f&cﬁ—ﬁ—_ﬂdf).

T, 2tgtt 0 %k 2tg it

We proved that, almost everywhere, the existence of (1) was
equivalent to the summability 4 of S[fl. We now intend to prove
the latter fact using complex methods, independently of the be-
haviour of (1). This will just enable us to prove the existence
- of (1) for almost every x. The proof will be based on the fol-
lowing lemma. '

Let G(z)=ay+ 0,2+ a2+ ..., 2= re”, be a function which
is regular, bounded, and non-vanishing in the circle |21<1. The
function [ (x) =Ym G (re™) may vanish only in a set of measure 0.

r—l1

Suppose that | G (2)|<1. That I(x) exists for almost-every x
follows from the fact that the real and imaginary parts of
o, -+ o €* + ... are Fourier geries of bounded functions (§ 4.36). Let
us take any branch of the function log G (2) = log | G (re™) |+
+ i arg G (rei*). Since G (2) %0 for |z1<1, log G(2) is regular

1y Privaloff [2], Plessner [2], Hardy and Littlewood [4],
Zygmund [2]

A. Zygmund, Trigonometrical Series. 10
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and log |G (reé®)] 0. It follows that the harmonic function
log | G (re*)| is a Poisson-Stieltjes inlegral (§ 4.36), and so tends,
for almost every x, to a finite limit as »- 1. This shows that
[ (x) 5= 0 for almost every X, and the lemma is established.

For any integrable f(x), S[f] is summable A almost every-

where. It is sufficient to suppose that /> 0. Let f(r, x) be the
Poisson integral for f(x), and f(,x) the conjugate harmonic
function. The values of the function F(2) =f(r, x)+ if (r, x),
z=re”, belong to the right half-plane, so that the funection
G(2) =1/(F(2)+ 1) is regular and less than 1 in absolute value
for |z|<<1. Hence, by the lemma, lrl_[:} G (re'*) exists and is different

from 0 for almost every x. Thence we deduce that, for almost
every x, lim F (re'), and therefore lim f(r, x), exists and is finite.
As corollaries we obtain the following propositions.

() For any integrable f the integral (1) exists almost every-
Where.

() S[f]is summable (C,r), r>0, at almost every point, to
the valne (1) (§ 8.32).

The integral (1) will be denoted troughout by f(x). The func-
tion f(x) is called the conjugate function of f(x). Considering
- the points where E[f] and S[f] are both summable (G, 1), we
obtain the following proposition (§ 8.14):

(iil) Given any integrable f(x), the conjugate harmonic func-
tion f(r,x), tends, for almost every x,, to the value F(x,) as the
point (r, x) approaches (1, x,) along any path not touching the circle.

711, Jf F(x), 0<<x < 2%, is a function of bounded variation, @[dF] is, at
almost every point, summable (C,r), r >0, to the value

o _-lj.lp(x«!-t)+F(x—t)~2F(x)dt=nm{_L/:F(x+t)+F(x—t)—2F(x)]

dt.
" 4 sin? Y ¢

T 4sin?Y ¢ = =

The proof runs on the same lines as in the case w
continuous. Supposing, as we may,
be the Poisson-Stjeltjes integral t
function. Since F(r, x) >0, we pro

hen F is absolutely
that F(x) is non-decreasing, let f(r,x) >0
or dF, and f(r,x) the conjugate harmonic

ve, as before, that lim f(r,x) exists and is
- r—l
finite for almost every x. Combining the arguments of §§ 3.45, 8.8, it can

eagily be shown (the details of the proof we leave to the reader) that, at any
point where F'(x) exists and is finite, S[dF] is summable A if and only if

the integral (1) exists. An appeal to the second part of Theorem 8.8 comple-
tes the proof.
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If F/ is absolutely continuous and F’ = f, an integration by parts shows
the integrals (1) and 7.1(1) to be equal.

7.2. Conjugate series and Fourier series. We shall
now be concerned with the very important problem of conditions
under which the conjugate series is itself a Fourier series. A special
result was established in § 4.22, but the method used there cannot
be extended to more general cases. The following important result
is due to M. Riesz.

7.21. If felr, p>>1, then fe L? and there exists a constant
A, depending only on p and such that Wy[f; 0, 27] < Ap Mp[ f; 0, 2.
Moreover, S [f] =& [f]H.

~ In virtue of Theorem 4.36 (iii), and of Fatou’s lemma, the

theorem which we have to prove is a corollary of, and is in rea-
lity equivalent to, the following proposition.

Let F(&y=u(2)+iv(2), v(0)=0, be an arbitrary function
regular inside the unit circle. Then

1) Mo[v(re™)] < Ap Mylu (re)], 0 Lr<1, p>1.

It is sufficient to prove the truth of (1) in the case when
Nf(z) =u(2)>0 for |z|<<1. In fact, having fixed r, let ¢, (x)=
= Max {u (r, ), 0}, ©,(x) = Min {z (7, x), 0}, so that # (™) = o,(x) 4
+ @,(x) = o (x), say. The functions ¢, 9, are continuous and pos-
sess first derivatives which are continuous, except at a finite
number of points where they have simple discontinuities. It fol-
lows that the conjugate functions ©(x), @;(x), ¢(x) are also
continuous. Let ¢ (g, x), 9ip, X), 9i(p, X), j=1,2, denote the cor-
responding harmonic functions. Since (g, x) >0, we hax:e, assum-
ing the truth of (1) for >0, that My[2;(p, X))] <A, Mpli(e, %),
and, making p-1, Mple;(0)] < Ap Wil (x)] < A, My (x)]. By
Minkowski’s inequality we obtain: W[4 (x)] < Np[p, ()] +Dp[e,(x) ]
< 24, M,[e (x)]. This is just (1) with the constant twice as large,
which is, of course, immaterial.

Passing to the proof of the theorem, let us consider.t'he
branch of the function FP(z) which is positive at the origin.
Writing #, v instead of u (re™), v (re’¥), we have, by Cauchy’s
theorem,

) M. Riesz [4].
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27 I 1 2 ]p
1 Fr(z) i . _ - ’
9) — | —Lde=— [(u+ivydx=ur0)=1-— | udx}.
@ 2% IZIL z 2x '0/ ( | 27 z,/ I

The difference (z- iv)? — (iv)? is equal to the integral of the
function pzP—i, which is regular in the right half-plane, taken
along the straight line between /v and z+ v, and so its mo-
dulus does not exceed the length .z of the path of integration,
multiplied by the maximal modulus of the function integrated,
viz. p (0?4 vyhe—D  p2hr—1) (wp—t + vp—1).  Using this and the
fact that the last term in (2) is equal to 7[u] < Af[u] (§ 4.15),
we obtain from (2) the inequality ‘

in it

2m
1 . p21f‘n(.”_1) _ 1
3) = P dx ] < wulvP-NYdx -— | uldx.
@ |5 [uopas| <P [wrulopndst o [wa

vy T 0

Now (iv)?=|v [P exp (£ ip), where the sign in the expo-
nent is that of o; it follows that N ({v)?=|v|[Pcosipr. Let / de-
note the integral on the left of (3). Then the inequality will
hold a fortiori if we replace |/| by | /|; and so, applying Holder’s
inequality to the product z|v/P~), we obtain the inequality
lcos & pm | My [0] < p 2e—0) (M5 [u] + Wy [u] W' [0]} + Mo [1]. De-
noting the ratio M, [v)/M,[u] by X, we see that

€] lcos $pr | X7 L p2P-D (XP—14-1) 41,

It follows that, if only cos }p=#0, X cannot exceed a constant 4,
and thus the theorem is established for p43,5, 7, ...

It would not be difficnlt to supply a special proof for these
exceptional values, but it is more convenient to use another,
more illuminating, argument, which will give us, besides, inform
ation about the constants A,. '

7.22. If the inequality 7.21(1) is true for a certain p>1, it
is also true for the complementary exponent p'; moreover A, = A,
Let g (x) be any trigonometrical polynomial with 9, [g] <1,

and g (x) the conjugate polynomial. From Parseval’s relalion
‘we have o

b g

_/ vg (x) dx = _y/. ug (x) dx.

It is not difficult to see that M,[v] is the upper bound of
the expression on the left for all possible g (§ 4.7.2). The expres-
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sion on the right does not exceed, in absolute value, M,[x] M,[g] <
L Mp[u] ApMylg] < ApMplul, so that Mp[v] < 4, My[u] and the
theorem follows. At the same time, since Theorem 7.21 was
established for 1 <p <2, it holds for p > 2, and in particular
for p =3, 5, ... ‘

7.23. Stein’s proof. The preceding proof of Theorem 7.21
is due to M. Riesz. An alternative proof, based on a different idea,
has been obtained by Stein!). We shall reproduce it here since
it is very simple and yields a good estimate for the constants A,.
Its main feature is the use of Green’s formula

(1) ) %—?ds:é_/dwds.

c

Here S is the circle £2+ 72 < 7% C its circumference, and @ a func-
tion of rectangular variables &7, which, together with its first and
second derivatives, is continuous in S; dw/dr denotes the deriva-
tive in the direction of the radius vector, and 4w the expres-
sion 0?w/0E? 4 0%w/o w7 '

As we already know, it is sufficient to prove Theorem 7.21
for the case 1<p <2, u(2)>0. Consider z(2), v (2), | F(2)|=
= (u*+v?)'" as functions of ¢ 7. A simple calculation shows that

@  dw=p(p—Dwr|FP, A|Fp=p|FFFP
so that, since p <2, |f|>u, we find 4|FpP<p' dur. Let
Mo u (reix)] = A (r), ME[F (re®)] =u.(r). We shall apply the formula 1)
to the functions @ = u? and @ =|FP. Since ds=rdx, the left-
hand sides will represent rd\/dr and rdp/dr respectively, and,
in virtue of the inequality 4| FJP < p'4 u?, we obtain p' (r) < p'N(r).
Integrating this inequality with respect to 7, and taking int-o
account that A (0)=p.(0), p'>1, we find p(r) < p'h (). This is
just the inequality 7.21(1), with A,=p"#, 1<p<2. If « is no long-
er. positive, the value of A, is increased by the factor 2. It
follows that A, <<2p'” <2p for p> 2. For better estimates we
refer the reader to the original paper.

Yy Stein [1].


pem


150 Chapter VIL Conjugate series and complex methods.

7.24. Theorem 7.21 ceases to be true when p =1, since the
sum f(x) of S [f] is not necessarily integrable (§ 5.221). It fol-
lows, in particular, that the proper, i. e. the best possible, value
of A, is unbounded when p tends to 1 or to co. The place of
Theorem 7.21 is taken by two other theorems. We shall prove
the first of them by M. Riesz’s method, whereas for the second
the method developed in the preceding section will be more con-
venient. ‘

@) If f(x) is integrable, so is |f (x)|?, for any 0<p<1. Mo-
reover there is a constant B, depending only on p and such that
W[ ] <BMFL, 0<p<1Y. ~

() If |fllog*|f| is integrable, then f is integrable and
Sfl=S[f). There exist two- absolute constants A and B such
that

n 2
) [171dx <A |fllog* |f| dx + B,

As regards (i) it is, as before, enough to prove that, if
F(2) = u+ iv is regular for 2| <1, then M,[v] < B, My[u]. Sup-
pose first that > 0. Taking the real parts in 7.21(2), we have,
since |arg (4 iv)? | <L i p, ‘

. ‘ 2:: 27 P
&Szgﬂj (1?4 v)P dx (ifu afx) .
I 0

2n 0

This inequality holds & fortiori if we omit the term u? on
the left, but then we obtain just what we wanted to prove, with
B =(27)~Psec £ xp. To remove the assumption >0, we proceed
as in § 7.21, but, since Minkowski’s inequality does not work for
p<1, we apply the inequality |¢|7 =0, 4,7 < |o 17+ 6|7
(§ 4.13) and the value of B, is increased by the factor 217

To establish (ii) it is again sufficient to prove the inequality
(1) with f, f replaced by u,v. Suppose first that £>e. We ve-
rify that 4 (zlogu) = |F'(2)Plu, 4|F|=|F'|)|F| < 4 (ulog u).
Denoting by X (7) and p (r) the integrals of uzlog # and |F| over

') Kolmogoroff [4]; Littlewood [8], Hardy [9), Tamarkin [1].
+ ) Zygmund [4]; Titchmarsh [3], Littlewood [4], Stein [1};
logTx denotes the function which is equal to log x for x>1 and to 0 elsewhere.
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the interval 0<Cx <27, we find that p'(r) < ¥ (), and hence
(1) <A (1), since |[F(0)]=u(0) < u(0) log u (0).

In the general case we proceed as in § 7.21, viz. put 3 {x)=
= 01(x)+9,(%) +5(x), Where ¢, = Max {¢ (x), e}, 7, = Min {z (x), — &,
so that |g(x)| <e. Since ¥[py(x)] < Wfpo(0)] < Wlea(0)] < e,
(§ 4.15) the inequality (1) follows, with 4 =2, B = 2ze.

That ©[f] =& [f] is a corollary of the relation M [f — 4] >0
which will be established in § 7.3 (s, denote the partial sums

of S[f]).

7.25. It is important to observe that the integrability of
|f|log* |f] is essential for that of f, and cannot be replaced by
anything less stringent. This follows from the following result,
which is, in some respects, a converse of Theorem 7.24(ii).

If f is non-negative and f integrable, then f log* f is integrable 1).

Suppose, as we may, that f > 1, and let # (2), © (2) denote
the Poisson integral of f and the conjugate harmonic function.
Putting F(2) =u +iv we consider the integral of the function
zg! F (2) log F (2), taken round the circle |z|=r. Applying Cau-
chy’s theorem and taking the real parts on both sides of the
equation, we have

2m
(D 1 /{ulog Yur+o® — varctg F«} dx=u(0)logu(0).
T u
In virtue of the inequality 0<varctg (v/u) <i=|v|, we obtain
I bind
@) 1 zzlogua’x\{l/]w]dx—}—u(O)logu(O).
2m ‘ 4

In § 7.56 (see also § 7.26(iii)) we shall learn that, if f is integrable,
then © [f] =& [f], so that the integral on the right in (2) is bound-
ed and the result follows by an applicaticn of Fatou’s lemma.

7.26. Integral B. There exist, as we have already mentioned, functions
fel such that f is not integrable. It is interesting to observe that, with a
suitable definition of an integral, more general than that of Lebesgue, the
function f is integrable.

Given any function f(x), a <{x < b, we repeat it periodically in the in-
tervals at+rhSx<<a-+(k+1h k=-+1722 .., where h=b—a. Let
a=xy < x; <..<x,=~"be any subdivision of (a,b), £; an arbitrary point from
(*;_y, %), and p==Max (x; —x; ). Consider the expression

) The theorem is due to M. Riesz.
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n
&) 10 =L P =5y, 0<t<b—a
= .

and suppose that there exists a number / with the following property: for
any £ >0 we can find a 8 =28 (¢) such that |/(?) Yy — 1| <s except for £ helon-
ging to a set of measure less than ¢, provided that p<8 (independently of
the values of x,£). We shall say, then, that f(x) is 1nteg1dble B over (a,b)
and that / is the value of the integral!). It is easy to grasp the meaning of
the above definition if we proceed as follows: besides the function f(x) we
consider a whole family of functions f,(x) = f (t+ x), depending on a parame-
ter ¢, and for each of them we form Riemannian sums. If f(x) is not inte-
grable R, no fy(x) is, but it may happen that ‘on the whole' those sums ap-
proach /. If this happens, f is integrable B; we could also say that f is
integrable R ‘in measure’. '

(i) If f is integrable L over (a,b), it is also integrable B, both integrals
having the same value.

Put f=f,-+f, and correspondingly /() =/, (t) -+ /(f), where f, is con-
tinuous and the integral of | f,| over (a,b) is less than !/ye*/(b—a). The in-
tegral of [/,(f)| over (a,b) is less than /3¢, so that the set 7 of f where
| L) | >1/;= is of measure < e. 1f /,/;, [, are the integrals of f,f;,f, over (a,b),
then | /() —7| < |/ (t)—-]lH—Hz () {+|1;]. The first term on the right is
less than i/;¢ if only <8 =70 (), The second is less than !/se for te 7. The
third is less than Y4 ¢? (b—a)<’/3 z, assuming, as we may, that (b —a) <1.
Hence |/(t)—1|<e¢ for te T,| T|<e if only p<8, and the theorem follows.

(i) For every f e L, F is integrable B over (0,2r), and G [f] =& [f] ).

Substituting 7 for fin the expression (1), we obtain a function T,
conjugate to /(f). By Theorem 7.24(i), we have My, [/(f)]-< By M [/ (H)]<<

<% By M[f]. It follows that [7(#)|<Yss, for ie T,| T| <, if only the in-
tegral of |f] over (0,2%) is less than =m=(¢). In the general case we put
f=fi+f, where f; is a trigonometrical polynomial and the integral of |f,]
is less than 7. We find then that |7(f)| < e for t ¢ T,| T| < s, provided that
p<8=10(). Thus the integral B of f over (0,2r) exists and has the value 0,

We shall now show that the products 7005 kx, 7sin kx are integrable B
over (0,2z), to the values —nb,, may, k=1,2,... We may suppose that
= a; = =0b,=0. We have then

(2a) fcoskx =7 cos kx, (2b) fsin kx = sin kx.
This is easy to verify when f is a trigonometrical polynomial. Hence (2)

=y =by=..

1) Integral B is one of several definitions of an integral propounded by
Denjoy; see Denjoy [3], Boks [1]. Proposition (i) (see below) belongs also
to Denjoy, but the proof of the text, which is much simpler, has been given
by Saks.

%) Kolmogoroff [5]. The example of the series conjugate to 5.12(2)
(or simply that of the odd function equal to 1/xlog (x/2=) in the interval
0<x =) shows that a function may be mteglable B over (— =, =) without
being integrable B over (0, ).
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is true if we replace f, f by s,.,, where 3, 5, denote the (C,1) means of & [f],
G [f] respectively. If n-»ee, then 3, €OS kx—»fcos kx and, to prove (2a), it is
sufficient to show that (s, ——f) cos kx— 0 for a sequence {ni} -> o, This follows
from the relations M, [(" —f) eos kx] < W[, — 10 (§ 42).  Similarly

we prove (2b). The forrnulae (2) show that the products ]Tcos kx and }'—sin kx
are integrable B over (0,2w), the value of the integrals being 0. This com-
pletes the proof of (ii). As a corollary we obtain the following theorem.

(iii) If f is integrable L, then T [f] is the Fourier-Lebesgue series of T').

7.3. Mean convergence of Fourier series>). The theo-
rems on conjugate functions which we proved in the preceding
paragraph enable us to obtain some results for the partial sums
Su; 8, of &[f], S[f]

() If felr, p>1, then Wy[f — sp] = 0.

(i) If f is integrable, then W,[f — sz] » 0, M[f — 5.] 0 for
every 0 <p <l

(iii) If |fllogt|f| is integrable, then M [f—sa]~0, M [f—8,]-0.

Let Sy, S, denote _the modified partial sums s, s (§ 2.3).

Since S, — S, and S, — 5, tend uniformly to 0, it is sufficient to
prove the theorems for S, S instead of S,, 5,. From the formula

sin nt
Sp(x) =— dt
)= /f( R g
replacing sin nt by sin 1 (¢ 4 x) cos nx — cos n (t + x) sin nx, we
see that |S,(x)| <1 g(x)| + | g:x)], where g, is conjugate to
f(x) sin nx, &, to f(x)cosnx. Theorem 7.21 and Minkowski’s

inequality give
6y Myfs7] < 24, Mol 1,
an inequality important in itself. Now put f = f'+f", where f'is
2 trwonometrxcal polynomlal and M [f”] <e. Similarly we have
=Sy + Sn s f—sn_(f'—sﬂ)+(f”—sn) and so, if p>1,

ML f — Sﬂ] <M f' — Sn + ML+ mpls n ] =M, [f"] 4 Mfs n]

for n large. By (1), the right-hand side does not exceed (24,41) ¢,
and the first part of the theorem follows.
If |f|logt|f| is integrable, then

1) See also Titchmarsh [4], Smirnoff [1].
) See the papers referred to in the preceding paragraph.
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2

@) Ns;] < 24 [ |f| log+|f| dx + 2B

(§ 7.24). Let us apply this result to the function Af, where &
is a positive constant. It follows that '

1

M [s7] < 24

Sy

171 10g+ a7+ 2 <,

if 2B/k = { ¢ and the integral of 24 | f| log*t| kf| over (0, 27) does not
exceed £ ¢, To obtain that M [f—s,] > 0, we again write f=f'- f,
where /' is a polynomial, and the integral of |/"|log*|kf"| is
small, and proceed as before.

From the formula defining s,, we conclude that [s5(x)— F (x) <
<}£1(x)§ +]&:(%)], &, and g, having the previous meaning. Thus
M [s4] satisfies an inequality analogous to (2), with 24, 2B repla-
ced by 84, 8B, and again M [f — 5] -+ oo,

Theorem (iii) is proved in the same way, except that for
p<1 we use the inequality M[f'+ /"] < MI[F]+ W5[ £1].

As corollaries of the above theorems we obtain the following
results, the first of which is a generalization of Theorem 4.41(ii).

(v) If the Fourier coefficients of a function fe L, p>1,
are an, by, those of a gel” are a,, b, we have the Parseval Jormula

piid
1 N oo
® ~ [redr=tad+ 3@+ i,
T Q n=
the series on the rig}zt‘being convergent |

(v)  The formula (3) holds also if |f| log*|f| is integrable and
g bounded.

.'Ijhe proofs are similar to those of Theorems 4,41(ii') and
4.41(iii), if we take into account that MWy[f — 8] >0 in case (iv)
and M [f — s,]> 0 in case (v).

(vi) For any integrable f there is a sequence of indices n,
such that s,(x) converges almost everywhere to f(x); similarly we
can_find a sequence {my} such that E,,k(x) tends almost everywhere
to f(x). This follows from (ii) and Theorem 4.2(ii),

We add that for {n} and {m:} we may take

. . . any sequences
Increasing sufficiently rapidly and, consequently,

{me} ‘and {m,}
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may be subsequences of arbitrary sequences of integers tending
to -+ <.

7.31. Theorem 7.3(i) ceases to be true for p=1 or p=occ:
M[f — sa] does not necessarily tend to 0 for f integrable, nor
does S, tend uniformly to f for f continuous. It is interesting
to observe that if f and f are both integrable, or both continuous,
then ©[f] and ©[f] behave much in the same way, as is seen
from the following theorems ).

(i) If f and f are both continuous, and = [f] converges uni-
formly, so does E[f]. If f and f are both bounded and & [f] has
partial sums uniformly bounded, so has € [f].

i) If & [f] is a Fourier series and W [s,) is bounded, so is
M [sa); and if M [f — sa] >0, so does M [f — ).

The proofs are based on the following two lemmas, the first

of which may be considered as the limiting case, for p= oo, of
the second ?).

(a) If tu(x) is a trigonometrical polynomial of order n, and
| tn(x) | << M, then |t(x)|< 2n M.
(b) If Mta(x)] < M, p = 1, then M[E'(x)] < 2n M.

The proofs are very simple. In the formula

th(x) = 1 [t,,(x + 1) [sinu+2sin 22 4 ... + nsinnu} du
T p
we add to the expression in brackets the sum (n—1) sin (n41) 2+
+ (n — 2)sin(n+ 2) & + ... - sin (22 — 1) &, which, since £, is a po-
lynomial of order z, does not change the value of the integral.
Adding together the terms ksinki and ksin(2n — k)u, we obtain
the formula

¢)) In(x) = —?—f to(x + u) sin nu K, (u)du,
T 0

Kn,—1 denoting the‘Fejér kernel. It follows that |#3(x)| does no't
exceed the (n—1)-st Fejér mean of the fanction 2[Zx(x) |, and it.
remains to appeal to Theorem 3.22 and the formula 4.33(3).

1) Fejér [6], Zygmund [a].

3) The first is due to S. Bernstein [i1]. For the second see

Zygmwund [9] and F. Riesz {3]. The factor 2 on the right may be made
to disappear, but this makes no difference to us.
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Let o, and o, denote the first arithmetic means of &|[f]
and &[f]. Suppose that S[f] converges uniformly. The formula
3.13(1) for the difference s, — o, now takes the form: o, —s,=
= §p/(n+1) = (sh—sp)/(n 4+ 1) + s, /(rn + 1), where n,-is fixed and
so large that |s»—s,|<<!/,s, uniformly in x, for any n>>r#,. From
(a) we see that | s — s, | < L en. Since for n 2> n, » n, we have
|$hl/(n+1) <{e, it follows that lon—35a|<e for n>n, i e
6,—S,~0. But, f being continuous, we have oz - f, and so’—s-,z —>f.
uniformly in x. This gives the first part of (i). The proof o%
the second part is still simpler and may be left to the reader.

We prove (ii) by the same method, using (b) for p =1

Considering, for example, the second part of (ii), we observé
that_ém [Sn—$n] <1,e if n, is large enough and n>n, Thence
arguing as before, we obtain that M [o, — s,] = M [s}/(n+1)] -+ 0’
This and the relation W [f — 5,] » ive M[f— s, .
theorem is established. Vel ~‘07 give M7=l =0, ‘aﬂd the
_ We shall complete (i) by the following remark. The relation
Sn—S» >0 was established under the sole hypothesis that & [f]
converges uniformly. We have then &[f] =& [F], where fel?
and so o, converges almost everywhere. Therefo,re Y, if @[f],
converges uniformly, S[f] converges almost e@eryw/ze,re If the
;_igrtzals sums of & [f] are uniformly bounded, the partial ‘mm
S [f] are bounded at almost every point. s of

74 ?r_h.raloff’s theorem. Theorem 7.21 teaches us that
except in -lxmltmg.cases, the functions f and ]T have, so to speak’
the same integrability. It is therefore natural to ask if anythino:

similar is true for continuit ..
: y. The answer is
ing theorem due to Privaloff. given by the follow-

If felipa, 0<a <1, then feLipa?).
Consider the formulae

f_(x):—:l__fﬁwdt, :

Flethy=—1 [f(x+t)~f(x+/z)dt
i T 2tgi(f—h) ’
D] Fejé 6]; 7 4

D) Pr;:ZI[o]ffse[eajfilsoPrlvalo”H]’Zygm“ﬂdm-
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where 2> 0. They differ slightly from 7.1(1), but, since tgif is
an odd function of £, the additional terms vanish. The integrands
are O (|¢1*™), O(t—~k|*") respectively. Consequently, if we
cut the interval (— 2#,2%) out of the interval of integration
(— =, =) in (1), we commit an error R, = O (h*) in the first for-
mula and an error R,= O (k%) in the second. Hence the difference
F(x+ k) —f(x) is equal to

@ ﬁ%(‘j +ﬁ/) [f o+ ) — f (9] [ctg (¢ — B) — ctg £ 2] dt +
+ R2"‘R1 +R:

where R=[f(x+h—f(x)] [ lctgh ¢ —h) —ctgdt+n]dt =
2h ‘

=0 (k%) [2 log ?l“i(—t:—”—)] -0 ().
sin & (¢ + 1) |

Since ctgd (t—h)—ctgit =sind/sing (- sin 11, the
function under the integral sign in (2) is O (t1®-O(h|t}™),
hence the integral itself is O (h*). Collecting the terms, we find
that f(x-+ k) —f (x) = O (¢*) uniformly in x, and the theorem is
established.

The theorem fails for « =0 and « = 1. The function conjug-
ate to sinx + %sin2x+ .. =1(r—x), 0<x<2% is not bounded.
Integrating the last series formally, we obtain a function which
is Lip. 1, and whose conjugate is not. Repeating the previous
argument we find that, if feLip 1, then o (3;f) = O (Clog 1/8).

75 Power series of bounded variation. We conclude
this chapter by a few theorems on Fourier series of functions
which, together with their conjugate, are of bounded variation.
It will be more convenient to state these theorems in the form

bearing on power series. We shall say that a power series

(1) ao—}—alz—i—agz?—]—...:]’(z)
is of bounded variation, if its real and imaginary components,
for z = e~, are both Fourier series of functions of bounded var-
jation. We know (§ 2.681) that F (e*) is then continuous; conse-

quently the series (1) converges uniformly for |z|=1, and hence
converges uniformly for |z| 1. The theorems we aim at are

as follows.
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(i) If the power series (1) is of bounded variation, it converges
absolutely on the circle |z|=1"%).

(ii) If the power Series/(l) is of bounded wariation, the func-
tion F (e™) is absolutely continuous?).

We shall base the proofs on a number of lemmas which are
interesting and important in themselves.

7.51. A function F(2), regular for |2|<1, is said to belong
to the class H?, p >0, if the expression

2
1 .
bo(r) = po(r; F) = = [ | F(reis) pdx
2n

is bounded as r »1%). We shall write /7 instead of /!, and . in-
stead of p,. If p>1, A7 coincides with the class of power series
whose real parts are Poisson’s integrals of functions belonging
to £7. The real and imaginary parts of a function belonging to
H are represented by Poisson-Stieltjes integrals (§ 4.36).

In virtue of Theorems 2.13 and 4.86(ii), a necessary and suf-
ficient condition that the series 7.5(1) should be of bounded var-
iation is that the function G (2) = 2F'(2) = a,z + 2a,2% + ... should
belong to /. It is familiar that 2zp. (7; 2F’) represents the length
of the curve w = F(2), |z|=r.

The first lemma we need is as follows.

If G(2) = Gi(2) Of) = o5 + 0,2 +..., and py(r; G,) < A,
ta(r; Go) < As, where A; 20,4, >0, the series v+ lag]/2 + latnl/r + ..
converges to a sum < = A A,.

Put Guz) = «f” + oz + .., Gie) = o] + o |2 + ..,
k=1,2, G*(z) = Gi(2) Gy2) = o5+ a1 2+ ... In virtue of Parseval’s
relation we have p,(7; Gs) = po(r; Gy), and it is easy to see that
Lo | < o, n=0,1,.. Moreover, by Schwarz’s inequality, we have
p(rs @) < pa'(r; G1) (5 G) = pii(r; Gy) l(r; Go) < A, Ay,

Let us fix a value of 7 and consider the absolutely converg-
ent series o;7sin X -+ oy r2sin 2x + .. = {G'(reix)). Multiplying
both sides of the equation by % (r — x), integrating the result

Y Hardy and Littlewood [10]. See also Fejér [9].
Y F.and M. Riesz [1].
% Hardy [10].
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o_ver (0, 27), and taking into account that then ni-th sine coeffi-
cient of { (= — x) is 1/n, we obtain

- O':; 1 2::‘\ % . = «
W 2=y e -nar < L Gren ax
U b

The last integral does not exceed =4, A,. Making 71, we

find that oy + 1oy ... < =A; 4,, and, since || < 2 the lemma
follows. .

7.52. In virtue of this lemma, to prove Theorem 7.5(i) it would
be sufficient to show that the function G(2)=zF'(2)=a,z+2a, 22+ ...
is a product of two functions Gy, G, of the class H?. This—propo-
sition will be established later, but for our actunal purposes a less
strong result will do. Suppose namely that G (z) has only a finite
number of zeros &, %, ... in the circle 2| <1. Put by(z)==z2
if §=0; if {5540, let b(2)=(2—Lp)/(1—2 Tp), B (2)=b,(2) by(2) ... ba(2).
Each function dx(2) is regular for [2] <1, has a simple zero at
Lz and only there, and |bi(2)| =1 for {z|=11. Therefore
the function H(z) = G(2)/B(z) is regular for |z <1, and, as r-1,
lim p (7; H) =1im p. (7; G).

Let A =1lim p(r; G). The fanction H (2) has no zeros for
[2]<1, and so Y H (2) is regular for |z|<1. Put G(z) =} H(z2),
Gy(2) = Y H (2) B (2), so that G, G, = G. It follows that wlr; G| =
=plr H palr; Gl < plr; Bl Gimopalr; Ge] < A as r>1, k=1,2,
Now, as it is seen from Parseval’s relation, p,(r) increases with r,
so that we have p(r; G.) < 4 for ¥ <1. An appeal to the lemma
of § 7.51 gives the following result. If zF'(z) has only a fin-
ite number of zeros in |z|<1, and if limp (r;2F) < A, then
lay [+ 1ay |+ ... <= A.

Now it is easy to complete the proof of Theorem 7.5(1). Let
i now denote the upper bound of u(r,2F) for 0 < r<1. (It
will be proved in § 7.53(i) that . (r) is a non-decreasing function
of r, so that w= A, but this result is not required here). If
0<p <1, the function pzF'(zp) has only a finite number of zeros

!} This last fact, familiar to anyone acquainted with the elements of conform-
al representation, may be proved as follows: {by(e™)| =™ — Gl1—e¥ e, | =
=" — e =T =" — g, ] e — ¢y | =1. It follows that jb,(z) | <1
for |z < 1.
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for |z| <1. Thus la, | p +1ay]p? + oo < T making p -~ 1, we find
that |a, | +]a| 4+ ... < =p and the theorem follows.

7.521. As a corollary of Theorems 7.5(1) and 17.24(ii) we obtain:
If F(x) is absolutely continuous and |F'(x)| logt |F'(x)| €L, then
& [F] converges absolutely (§ 6.36).

7.53. Passing to the proof of Theorem 7.5(ii), we shall again
require a few lemmas

(i) If F(z) is regular for |z| <1, pu(r; F) is a non-decreasing
function of r. It is not difficult to deduce this from the following
proposition which we shall prove first.

(i) If fu(2), fo(2); ..., ful(2) are regular inside and on the bound-
ary of a plane region R, and 0 (2)=|f1(2)|7 +...+ | f(2) |7, p>0,
the function o (z) cannot attain a proper maximum inside B.

Suppose, on the contrary, that ¢ (2) does attain such a ma-
ximum at a point z, interior to R. Let C be a circle |z —2y| <7
contained in R and such that (a) if fu(2) =0, then fi(z)==0
in C,k=1,2,..n, (b) at a point 2, |2, —2,| =7, ¢ (2) takes a va-
lue smaller than o (z,). Let ¢ (2) be the sum of terms e @)
extended over the values of k& for which fi(2,) 7 0. The unit
factors ¢, are so chosen that the function ¢ (2), which is regular
in C, takes the value ©(z,) at the point z,. For every 2, lz—2z,| <L,
we have

102 <A@ P+ + /@) [P =2 (2) <o (20) = ¢ (20) = | 4 (20) |,

and for z=2z, we actually have ¢ (2)<o (2,), i. e. [d(2)] <|d(z)|.
This is in contradiction with the principle of maximum and (ii)
is established.

Consider now the function ¢.(2)={|F (1, 2)|P+... 4+ |F (1= 2) |"}/n,
where 1, 7, ... , 1 -are the n-th unit roots. It is obvious that, for
every 0 <r <1, o,(re¥) > p,(r; F) uniformly in x. Let 0 <<p<r<1
and let Max |ga.(2)| for |z| < r be attained at a point z=re™.
We have then o.(pe™) < oa(re™), and, making 7 - oo, p(p) < p (7).

(iii) Let &,y ... be a sequence of points such that 0<|{,|<1,
and that the product |t |Gy ] ... converges. If ta=1/Ca, the product
e~z -0 1

@ nIle - C; ltni
converges absolutely and uniformly in every circle |z| < r <1, to
a function B (z) vanishing at the points L, and only there.
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The terms of (1) differ only by constant unit factors from
the expressions b,(z) considered in § 7.52. If |2| <7, the differ-
ence 1—(2—10)/(z — &)= (Ca — L)/(z— &) does not exceed
(1—[6[»/A =<2 —|%)/A —r) in absolute value; and since,
by hypothesis, the series (1 — |¢;]) 4+ (1 — %)+ .. converges,
the product With tactors (z — C,)/(z — L) converges absolutely and
uniformly for |z| <{7. So does the product (1). Since the terms
of (1) are less than 1 in absolute value, we obtain that [B(2);<1
for | 2| <1 and the lemma is established. |

(v) If 8,8, ... are all the zeros, different from the origin,
of a fanction F (2) ¢ H?, |z| <1, each counted according to its mult-
iplicity, the product |{;]-18,] ... converges ). Let B.(z) denote the
n-th partial product of (1) multiplied by 2%, if F(2) has a zero of
order £ at the origin. The relation py(r; F) >y as r > 1 implies
pul(ts F[Bn) > 1, (n=1,2,..) and so, by (i), w,(r; F/Ba) < p. Making
r=0 we find |{; & ... L] > 0V F (2)/z* | .=y and the lemma fol-
lows. .

W) I plrs F) <p, 0<r<1, we have F(2)= G(2) B(z2),
where |B(2)| <1, G(2) is regular and different from 0, and
po(r; G) < 12,

This lemma, which is fundamental for the whole theory, now
follows immediately. If F(z)5=0 for |z|<1, we may put B(z) =1,
G()=F(2). If (&, ...,Bu(2) have the same meaning as in
(iv), we put B(2) = lim B,(2). From the formula p,(r; F/B,) < p,
we deduce that po(r; G) <, where the function G = F/B has no
zero for |z|<<1. Since |B|<1, the lemma is established.

(vi) If Fe H, then F=F, F, with F, and F, belonging to H*.
If F= GB, where G and B have the same meaning as in (v), we
put F,=VG, Fy=yGB. Since . F)<p(r;0), k=1,2, the
lemma follows.

7.55. Now we are in a position to prove Theorem 7.5(ii),
which we state in the following equivalent form. [f the power

1) Lemma (iv), as well as some other results of this section, is known
to be true for a more general class of functions, viz. for functions F such
that M [log+ F (rei‘“)j = O (1). The latter class, although very important in the
general theory of analytic functions, has less applications to the theory of
trigonometrical series.

?) F.Riesz [4].

A. Zygmund, Trigonometrical Series. 11
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series 7.5(1) belongs to H, the real and Imaginary parts of the series
on the unit circle are Fourier series. It is sufficient to show that
M [F (re’*) — F (pe™)] » 0 as r,p > 1 (§ 4.36). Using ’fhe last. lemma
of the previous section and applying Schwarz’s inequality, we

easily obtain
M [Fret) — F (pei)] < MylFy(ret)] M Fy(re) — Flpe™)] +
+ W[ Flee)] Dl Fy(re) — Filpe)]

Since the second factor in each term on the right tends to 0 as
r, p—~1, the result follows.

7.56. From the lemmas established in the preceding sec-
tions we shall deduce a number of interesting consequences.

(i) If F(2)cHe?, then, for almost every z,=e™, F(e#*)=lim F(z)
exists and is finite as z » z, along any path not touching the circle ).
This theorem is only novel in the case p <1. With the notation
of § 754(v) put Fy(2)= GP*2), Fy(»)=B(2). Fi and F, belong
to H® Since for each of them our theorem is true, it is also
true for F= F”F,.

(i) The function |F(e¥)|P of (i) is integrable. This is a con-
sequence of Fatou’s lemma.

(iiiy If F(2)e He, then My[F (re*)—F(e%)] >0 as r—17%).
This theorem is known to us for p>1 (§ 436). Let p <1,
0<r<p<1l. If F, and F, have the same meaning as in (i),
then, applying the first inequality of 4.13(3), we obtain

| F (re™) — F (pe™) |p < | Fy(pe™) | | Fy(re) — Fy(pe™) P +
| Fy(re™) [ | Fi?(reis) — F{"(pe™) P
Making p~ 1 and integrating over (0, 2z), we find
) F.Riesz [4}. The theorem is false for harmonic functions: there

is a harmonjc function u(2), |z|<1, such that pup(r; u)=0(1) for every
0<p <1, while lim u(reix) exists only in a set of measure 0. See Hardy
r-l1

and Littlewood [12].
?) 'F. Riesz [4].
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T

JIF ey~ Femrdx < [ |Fy(e) 2| Fyre®) — Fyeiy pdx +

0 0
+ | [ Flre) P | Fi¥(rei) — FiP(ei) p .
0

The first integral on the right tends to 0 with 1 — r since
the product |F;(e™) 2 | Fy(re’*) — Fy(e'*)|? is less than the integr-
atl)}e function 27| F (™) > and tends to 0 almost everywhere. Let

17(2) = L (2); L (2) € H*. Since |F,| < 1, the second integral does
not exceed

pind hind

O {12009 — L @ymar] [ [120e 4 2oy ]

The first factor here tends to 0 if 2> 1, the second is
bounded, and the result follows for p > Y/,. Assuming this, we
obtain, from (1), the result for p >1/,, and so on.

(iv)Q If F(2)e H% and |F(e™)? is integrable for B> a, then
F(2) e H*'). The theorem is obvious if «>1. Tt is also simple
if F(2) =0 for |z|<1; for if G (2) = F**(z), then G (2) c H? and
G (e%) € I**"* 5o that G (2) € H®, F (2) ¢ HE.

In the general case we have F = GB, where G (z) 0,
GeH", and the function B is a product of certain rational funec-
tions (§ 7.54(v)). Since |B(2)|<1, the function B () exists for
almost every x and |B (¢*)|<1. We shall show that |B =1
for almost all x. Taking this result for granted, we can easily

prove our theorem. For if F(e®) e L?, [B(e®)|=1, then G (ei*)e LP

and, since G (2)e H% G (2)5~0, we obtain that G (2) e H®, in
virtue of the case already dealt with. Since F(z)= B (z) H (2),
F(2) ¢ H® and the theorem is established.

Using Theorem 7.24(i), we obtain, as a corollary, the follow-
ing proposition.

(v) If the function f: conjugate to an integrable function f is
integrable, then & [f]= &[f].

We have still to prove that |B(e*)[=1 for almost every x.
We may obviously assume that the number of zeros {,, &, ... is infin-

Y Smirnotff [1].
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ite and that F(0)=0. Since |B(2)| <1, it’ 'is gufficient to show
that w(r;B)~1 as r->1 Now‘p,(O;B)= 1.C1[-]C?|... aréd, scmce
u(r) is a non-decreasing function of r, limp(r; B) > ¢, |- L.
Let By denote the N-th partial product of 7.58(1) and Ry the pro-
duct of the remaining terms, so that B = By Rn. Then. we have
lim p. (7; Rav) 2> | Cvga || ¢y ... and, since | By(2) | tends uniformly to
r-=>1

1 as |z|~1, we obtain that lim p (r; B) > Clvq.u | ECAH__QI ... Taking N
arbitrarily large, we see that limp (r; B) > 1, i. e. limp (r; B)=1.

7.6. Miscellaneous theorems and examples.

oo

— 1
1. The formula 7.1(1) may be written Fx) = —;6/ ;

(§ 2.9.8). _ ) )
9. There is an integrable f(x) such that f(x) is non-integrable in every

interval. Lusin [1]. .
e [Take f3»1 such that f logf is mowhere integrable, and apply Theo-

rems 7.25, 2.531]. :

3. () It |f(x)|<1, then exp’|f] is integrable for every AU (i) If
f is continuous, exp i|f| is integrable for every h. (iii) If s, 5, denote the
partial sums of &[f], S[f] respectively, then M [expl|f—s,; 0, 2r] > 2r,
M [exp r 1?“—;,: 127, for A</, = if | f| <1, and for any A if fis continuous.

Zyemund [4]; see also Warschawski [1]. ' .
Ve [To provJe () let F,u,v have the same meaning as in § 7.21. Then

]

21

1 / 7texp{+i\F (2)} dz = exp {FiF o}, | cos Lu exp (-Fhv) dx = const.].
2%l ey i

4. If F2)=u(z)+iv(z) is an arbitrary function regular for [z|<C1
and such that z2>>0, >0, then u (¢™) € L>—%, v (™) e L2~ for every ¢ >0 but
not necessarily for e =0.

[Let F,= Fexp (— =i/4) = u, +iv;, where |v,|<u;. Apply to F; an ar-
gument similar to that of Theorem 7.24(1)].

5 Let @, ¥ and @,,%, be two pairs of Young’_s__complementary fune-
tions. If, for any fel%, (i) the conjugate function f belongs to L?pl and
(i) there exists a constant A independent of f and such that ||f]}¢1\<A |]f]|(])r

then, for any gell,, we have ge Ly and, moreover, || glly<24]/g H,],‘.

[t is sufficient to prove that, if Hde)l <A HuH@ for any function
u-++iv regular for |z]|<{1 and such that v(0)=0, then || vl <24 H”H’/"{
Denoting by # an arbitrary polynomial such that M [P | 2]; 0, 2=] <1, we have

2% B

1lv1§w=sgpifvhdx’=82pIfuﬁdx !-".l:'.zAG.HuHWI’
[ 0
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where s = Max{1, Sup M [@, [ Bj241]} (§ 4.541). On the other hand, since
M[D|r]]1<1, we have ;1h5;¢<2, and so, by (ii), | Bilgp <A L g 24,
Hence (§ 4541) M [, | 42411 <1, 5 =1, and || 0]}y 24 |-

6. Let s(x), x>0, be a funetion which is concave (i. e. 1——-- is convex),
non-negative, has a continuous derivative for x >0, and tends to -+ = with x,
and let S(x) be the indefinite integral of s(x). Let R(x), x>0, be a function
which is non-negative, convex, tends to - e with x, and has the first and second
derivatives continuous for x>>0. Suppose in addition that there is a con-
stant C>>0 such that S$”(x)- $'(x)/x < CR”(x). Under these conditions, if
felp, then Fe Lg.

[The proof is substantially the same as that of § 7.23. Observe that
S(2x) < G, S(x)>0 with C, independent of x. If S (x) <{ R (x), then we have
MS|FI<CCoM[R | f|], where C, is independent of 7).

7. () I |f](ogT | f)* €L, a>>0, then |7 log” (24 F)eL, and there
are two constants A = Aa, B=Ba. such that

ki piid

[ 17108 @+ M ax <A [ 1] Gog¥|f)* detB.
0 o
(i) If the integral of exp!f % «>0. over (0,2=) is <1, then the fune-
tion exp A }f]8 is integrable for 3 = a/(z4-1) and % <i; = 1,(2).
(ili) Theorem (i) is not true for = = 0.
8. Let s and ?n denote the %-th arithmetic means, 2>>0, for S[dF]
and @[dl’] respectively, where F is a function of bounded variation. If f= F’,
and g denotes the function defined by 7.11(1), then M, [s,— f1 - 0, M, [3,— g] =0
for every 0 <p<C1.
9. The constant 4, of Theorem 7.21 satisfies an inequality 4,> 4p,
where A is a positive absolute constant. Titchmarsh [5].
[Consider the funmction f(x)=(z— x)/2, 0< x< 2=, and observe that
Flx) ~ logl/x as x—» 0]
10. Let P(2)=(1+z+2+..+2")/(n+1) = (12282 4... 422" /(n-+1),
QA =Q0+422+4382 .+ (n+1)2"(n+1). If T oy, | < osy 1, +2n, <imy g,
k=1,2,..., the real and imaginary parts of the power series Yo, 2"k P,,k(z),

z=¢", are Fourier series. If in addition o,logn,->e, the partial sums t, of

the power series satisfy the relation lim 9% Itv(e"x) ===, The example is due
to F. Riesz; see Zygmund [9].

[The point of this example is that the phenomenon observed in § 5.12
for Fourier series subsists for power series. Use the relations M [P, (e')] = 2=,
M [Q,(e™)] > Clog n, where C>>0 is an absolute constant].

11. Let F(z)=u(2)+iv(z) be a function regular for lz]<1. If, for
any point X e E,|E|> 0, limu(z) exists and is finite as z—e™ along any
path not touching the circle, the same is true for the function v (z) and al-
most every point x;e £, Privaloff [2]; see also Plessner [3].

For the proof, which is rather deep, the reader is referred to the origi-
nal papers.
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19, If F(x) is integrable and F'(x) exists and is finite for xe E,| E | >0,

1 ﬁFx t)+F(x—1t)—2F(x
the integral (*) “*/ Sl _( ) @)
= 4sin®Y ¢
xeE. Plessuner [3].

[This follows from the previous theorem and Theorem 3.9.13].

13. If the conditions of the previous theorem are satisfied, then, for
almost every x ek, &'[F] is summable (C, k), £>>1, to the value *).

14. If f(x) is integrable in the sense of Denjoy-Perron, the function
F(x) defined by 7.1(1) exists for almost every x. Plessner [3].

15. If either (1)_0<a<1, p>1, or (i) a=1,p>1, and if f belongs
to Lip («,p), so does f. The theorem is falge for « =1, p=1. Hardy and
Littlewood [18].

[Using Minkowski's inequality 4.13(4), the proof of (i) is similar to that
of Theorem 7.4; (ii) is equivalent to Theorem 7.21 (§ 4.7.6)].

A4t exists for almost every
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