icm

CHAPTER VI

The absolute convergence of trigonometrical series.

6.1. The Lusin-Denjoy theorem. The convergence of
the series

® Z (el +] )

implies the absolute convergence of the series

(2) La, 4+ > (ancos nx + b, sin nx).

n==1

The series (2) may be absolutely convergent at an infinite
set of points without (1) being convergent. A simple example is given
by the series X sinn!x, whose terms vanish from some place
onwards for every x commensurable with =.

If the series (2) converges absolutely in a set E of positive
measure, the series (1) converges'). Suppose, for simplicity, that
a, =0, and let axcos kx + b sin kx = ps cos (kx 4 xz), where pr >0,
pr=az+b;. The function

oo

®) . o (x) = 2 pa| cos (nx + xn) |

n=1
is finite at every point of E. Hence there exists a set ¢ (_E,
|€|>0, such that «(x) is bounded on ¢, a(x) <M say. Since
the partial sums o,(x) of (3) are uniformly bounded on ¢, the
series may be integrated formally over ¢:

n=1

@ .;5pnf!GOS(nx+xn)|dx<MiCl-
&

) Lusin [8], Denjoy [1]
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To prove the convergence of py -+ py ... , which is equivalent to
our theorem, it is sufficient to show that the integraly I, on the
left in (4) all exceed an &> 0. Let I, be the integral analogous
to I, with |cos(nx + %4)| replaced by cos? (1x -+ Xn). Since 1> [,
it is sufficient to prove that [,>e. For this purpose we use the
formula 2 cos? (ix -+ X,) = 1 - cos Onx -cos 2X, — 8in 2nx - sin 2x,
Since the Fourier coefficients of the characteristic function of
the set ¢ tend to 0, we obtain that [, g &1, which completes
the proof, all I; being positive.

The set E in the theorem which we have establigshed is of
positive measure. This property, while sufficient for the conver-
gence of (1), is not necessary. The problem of necessary and
sufficient conditions seems to be unsolved.

6.11. We shall supplement the previous theorem by a few
results of the same character. Suppose that, for the series 6.1(2),
we have p, 4 py - .. = oo, and let £ be the set of points where
o (x) < 0. The complementary set H, where the upper limit of
the sequence {a.(x)} of continuous functions is equal to -4 oo, is
a product of a sequence of open sets; for if Gy denotes the open
set of points where at least one of the functions on(x) exceeds N,
we have H= G, G,.. It follows that E is the sum of a sequence
of closed sets. None of these closed sets contains an interval;
for otherwise we should have py-Fpg ... It follows that
all of them are non-dense, E is of the first category, and there-
fore, if 6.1(2) converges absolutely in a set of the second category,
even if it is of measure 0, the series 6.1(1) converges b,

-

6.12. There exist trigonometrical series absolutely conver-
gent in a perfect set but not everywhere (§ 6.6.1). On the other
hand, as we shall prove, there exist perfect sets P of measure 0,
which, as regards the absolute convergence of trigonometrical
series, resemble sets of positive measure: every trigonometrical
series absolutely convergent in P is absolutely convergent every-
where. In particular Cantor’s well-known set has this property.

A point-set B will be called a basis, if every real x can be
represented in the form o X; - ay X5 + ... - & Xy where d, dy, ..
are integers, and Xy, X, .. belong to B. We may also write

5 Lusin [1].
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x=¢ X +..+enXn, where ¢;==1 and the x; are not necessarily
different. We require the following lemma.

Let B be a basis, and let B* = B, denote the set B translated by
a number u. There exists a set S of the second category such
that, for every y € S, we have y = o, x} 4 0y X5+ ...+ n X0, With o
integral and xf < B*'). To prove this, we observe that for every x
we have x=o,(xf — )+ o, (x§—a)+ ..., L e x-+hku=oa xi+
+ dy x5+ ..., where k =k, is an integer. Let En —co<n <+ =,
denote the set of x for which k,=7n. For any x may exist seve-
ral k.; we choose one of them. At least one of these sets, say Enx,
is not of the first category, and we may take for S the set Ej,
translated by n,2. We may say that B* is a bais for S.

If B is a basis, every trigonometrical series absolutely conver-
gent in B is absolutely convergent everywhere®). Suppose first
that the trigonometrical series considered contains only sine
terms. We prove by induction that |sinn (s X; + ...+ em Xm) | <<
< |sin nx, |+ | sin 7y | 4 ... 4| sin nxy |, if & =1, and the result
follows. In the general case let z be any point of B, and let
x=y-+u We have a,cos nx + b,sinnx = a(u) cos ny -+ (1) sin ny,
where @n(t) = a, cos nu + by sin nu, bu(w) = bs cos nu — a, sin na.

The absolute convergence of the series at the point y =0
implies | a,(#) | +|ay(#)| +...< oo, and therefore the series by(n)siny +
+ b,(1) 8in 2y +... converges absolutely in a set B* obtained from B
by translating it by —«z. In virtue of the lemma, B* is a basis for
a set S of the second category. The argument which we applied
to sine series shows that (1) siny + b,(w) sin2y + ... is absolutely
convergent in S, and consequently, by Theorem 6.11, everywhere.
The same may be said of the series with terms a,(z)cosny 4
+ bu(u) sin ny=a, cos nx+b, sin nx, and the theorem is established.

6.13. To give an example, we shall show that the Cantor ternary set C
constructed on (0,1) (or on any other interval) is a basis. More preeisely, we will
show that the set of all possible sums x--y, with xeC, yeC, fills up the

whole interval (0,1)%). This could be deduced from the fact that the ternary
development of any x€C can be written in the form not containing the digitl,

1) Thence it is not difficult to deduce that B* is itself a basis (§ 6.6.2),

but this is not necessary for our purposes.
2) See Nisemytzki [1], for the case of sine series.
%) Steinhaus [4]. More general results will be found in Denjoy [2],

Mirimanoff [1].
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but a geometrical proo% is more illuminating. Consider the set I' of points
(x,y) of the plane such that xeC, yeC. The set /' may be obtained by the
following procedure. Divide the square Qy with opposite corners at (0,0) and
(1,1) into nine equal parts, and, removing the interior of the five squares
forming a cross, comsider the sum @, of the remaining four corner squares,
For any of these corner squares we repeat our procedure, and let @, be the
gum of the new corner squares, and so on. Plainly F==Q; Q, Q,.. The
projection of any Q; on the diagonal joining the points (0,0) and (1,1) fills up
this diagonal. In other words, any straight line L, with the equation x +y=np,
0<C k<1, meets every Q; at one point at leagt. Since the Q, are elosed and
form a decreasing sequence, ['L;==0 for 0«Jh< 1, and this ls just what we
wanted to prove.

6.2. Fatou’s theorems. The problem of the absolute
convergence for sine or cosine series has a very simple solution
in the case when the moduli of the coefficients form a decreasing
sequence

If the series a, cos X + @y c08 2X ..., |G| 2= |ay| = ..., IS abso-
lutely convergent at a point x,, then |a,|-+|a,|+..<oco. The same
is true for the Series a,sin x -+ a,s8in 2x - ..., provided that x, 7z 0
(mod=)1). To prove the first part of the theorem we may plainly
suppose that 0 <x,<w. From the hypothesis it follows that
|a, | cos® x, + | ay | cos*2x, 4 ... < eco. Since 2cos?nx, = 1- cosny,,
where y, = 2x,, and since the series |a;|cosy,--|a,|cos2y,+...
converges (§ 1.23), the result follows. The second part is obtained
by a similar argument.

6.21. The set A of points where a trigonometrical series
6.1(2) converges absolutely, possesses curious properties. Let 4
denote the set of points of absolute convergence for the series
conjugate to 6.1(2), and let B and B be the sets of points where
the series 6.1(2) and its conjugate converge, not necessarily abso-
lutely. It will be convenient to place all these sets on the cir-
cumference of the unit circle.

The proof follows from the formulae

An(X+h)+a(x—h)=2anx(x)cosnh, by(x-+h)—bu(x~h)=—2a,(x)sinnk,

) Fatou [2].
% Fatou [2).

The proof of the text ig due to Salks,
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where the notation is that of § 6.12. From the first of them we
deduce that, if |a;(x)|+[ay(x)|4+..<oc, and if the series
a,(x — k) + a, (x — k) + ... converges, or converges absolutely, so
does the series a,(x + &) 4 ay(x + &) + ...

The theorem remains true if we consider the points of sum-
mability, the arcs of uniform convergence, etec.

6.22. If A is infinite, then B, and similarly B, is either of
measure 0 or 2z'). If x € A, x+ he 4, then all the points X -+ 7,
%+ 2h, x4 3k, .. belong to A. Since A is infinite, # may be
arbitrarily small, and so A is everywhere dense. Suppose that B
and its complement C are both of positive measure, and let Xy
and X, be points of density 1 for B and C respectively. There
exists an >0 such that, if any interval I, |/| < 2, contains x;,
we have |/B|>%|/|, and if any interval /', | I'| <2¢, contains x,,
then [I'C|>§|I'|. Let I=(x,—¢, x,+¢), and take an x, belonging
to A and distant by less than {e from the middle-point of the
arc (xy, x,). The set B reflected in x, goes into itself, and 7
into an interval /', |I'| =2¢, containing x,. Since the inequalities
|IB|>L|I'|, | I'C| > %|I'| areincompatible, we have a contradiction.

6.3. The absolute eonvergence of Fourier series. We
begin by the following theorem due to S. Bernstein.

If felip o, a>%, then S[f] converges absolutely. For a=1%
this is no longer true?).

Suppose that 6.1(2) is €[f]. Then

) Fx+h—fx—h~2 _i bn(x) sin nk,
L / '[f E+hH—fx—hnPdc=4 :)j pn sin nk,
o =

where pp = a, + b:. The left-hand side of the last formula is < Ch*,
where C, C,, ... denote constants. On setting /2 = %/2N we obtain
two inequalities

= N
9 8, biigA _ 92 . wn —3
(2) Z P;’z sin? - il <CN m’ 2 pn sin? < CNT
Nz 2N n=1 2N

5 Lugin [1).
B Bernsgtein [2], [8].
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Let us now assume that N=2", v=1,2,.. Taking into
account only the terms with indices 7 exceeding 4 N, we obtain
from the last inequality

2’
(3) PN A Tol auitd
n=p?"L11
Thence, by Schwarz’s inequality,
al 2¥ 1 ¥ 1/
o 2 I al B o - (YT
(4-') 4.}4 Prn ( Z Pn) ( _»}4 1") < C] 2/( & “) N
= rI:_»QV _'l,,.}.]

and finally

(-1 [25] ey
Y ul ul - 1 ey (1), -t
(5) D=3 X pa<l € X2,
ey DESS . 2‘/«-]“1_1 Yol
The last series is convergent since «.> {. The proof ot the

second part of the theorem we postpone to § 6.33.

6.31. If f(x) is of bounded wariation and belongs to Lip a
Jor any positive o, & |[f] converges absolutely). That the second
condition imposed on f is not supertluous is seen from the example
of the series
(1) E._ﬁl!?.ﬂ?ﬁ,
7 nlogn
‘which, being the Fourier series of a function of bounded variation,
indeed of an absolutely continuous function (§ 5.12), diverges abso-~
lutely (§ 6.2).
Let o (3) be the modulus of continuity of f, and V the total
variation of f over (0,2r). We start from the inequality

<o (%)g f(x+/ef]\}-) ——f(x + (e — 1);/) Vw(;‘v)

which we integrate over (0,2%). On account of the periodicity,

') Zygmwund [8].
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replacing x by x+& does not affect the value of the integral,
and so all integrals formed from the left-hand side are equal.
Hence we have, by turns, with N =2,

.
oN ( i>_ ( _.7_")]“ _ (T_~
z,/ 4f oy~ \x dx < 2=V o <)

2N

hind N
2 . o TN —0o—~1 2 . 5 W Q]
’;_JZ.PIZ sm 57\7\<- C2N ’ ngllpn Sln'ﬁ< CEN * B
9” ( 0¥
~ 2 —~v(a1) < v/
2-! P/l*‘gzcz 2 + 3 2 Pn \< C3 2 M2,
pemuv—1 41 PR +1
o = /2
Son<C Y27 <o,
=2 y=1

6.32. The problem of the absolute convergence of trigono-
metrical series may be generalized as follows. Given a series
6.1(2), we ask about the values of the exponent 3 which makes

M Sl + 2.

convergent. Theorem 6.3 is special a case of the following theorem;
it is, in fact, the most important case of it.

If felipa, 0<a<{1, the series (1) converges for every
B> 2/(2a 1), but not necessarily for B =2/(2x+1)1).

The proof of the first part resembles the proof of the first
part of Theorem 6.3. Let 1= 2/(2e +1). Since 0 <<y<2, we may
also assume that 0 <B<<2. Starting with 6.3(3), and applying
Holders inequality, we obtain

oY o¥ B2 o 12 (—2/1)

2 p§\<( Zpi) ( > 1) <c 2 ",

¥l 2 21

Here 1—B/y <0, and an argument similar to 6.3(5) yields the con-

vergence of p; p§ + ... or, what is the same thing, of the series
(1). This gives the first part of the theorem.

6.33. The second part of Theorem 6.32, and of Theorem 6.3,
is a simple corollary of the results obtained in § 5.3. It was

1y Szasz [2].
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proved there that the real and imaginary components of the first
of the series

oo ei/z logn . y eln log n )
______ ‘inx - o < 1 B e 8”““
(1) IIZ=:2 n‘/ﬁ'“ [4 ” O I 3y 'ij ("L log ’1)1/;' 9

belong to Lip 2, and it is easy to see that, for these components,

the series with terms pi/(mw diverge. The components of the se-
cond series in (1) belong to Lip 1 (§ 5.33), and the series with

terms p:,/“ diverges.

© 6.34. If fis of bounded variation and also feLip o, 0 <a <1,
the series 6.32(1) converges for B> 2/(2 4 @) ).
The proof, which is analogous to that of Theorems 6.31 and
6.32, may be left to the reader (see also § 6.6.7).

6.35. Let F(x) be an absolutely continuous and periodic
function whose derivative F'(x) = f(x) belongs to L% '

If an, b, are the Fourier coefficients of f, those of F will be
— by/n, ap/n. From the inequalities

; a,.l\ < 1 (a’;: + __1), 16n] < 1 (bi -+ 1 ),
n n n 2

T2 2 n?

we see that ©[F] converges absolutely. More generally, if F is
absolutely continuons and F'e Lf, p>> 1, then ©[F] converges ab-
solutely #). The proof remains essentially the same as in the case
p =2, if, instead Bessel’s inequality, we use a more general in-
equality, due to Young, which will be established in Chapter IX.
It is howewer much simpler to deduce ihe theorem from Theo-
rem 6.31, observing that, if F' e L?, p > 1, then F satisfies a Lip-
sehitz condition of positive order (§ 4.7.3).

The result which we have established is, in turn, contained
in the following theorem

6.36. (i) If F(x) is absolutely continuous, F'(x)==f (x), and
\f|logt|f| is integrable, then € [F] converges absolutely ). It will
be convenient to postpone the proof of (i) to Chapter VII, where
we shall obtain this theorem as a corollary of the following im-
portant result due to Hardy and Littlewood:

) Waraszkiewicz [1]; Zygmund [7].
) Tonelli [2].
) Zygmund [4],
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(if) If ©[F] and S[F)] are both Fourier series of functions
of bounded variation, € [F] converges absolutely.

Here we only observe that the integrability of |f|(log™+ |f])'*
¢>0, would not be sufficient for the truth of (). For if we
take for © [F] the series 6.31(1), which converges absolutely only
at the points x =0 (mod ), we have f(x) ~ 1/xlog? x as x - -+ 0,
(§ 5.221), so that |f|(log*|f)'"* is integrable for every &> 0.

6.4. Szidon’s theorem on lacunary series. The fol-

lowing theorem on the absolute convergence of Fourier series
bears a different character.

If a lacunary trigonometrical series

(1) kgl (ax cos ny x 4+ by sin n, x), Mppafne>> 2> 1,
is the Fourier series of a bounded function f(x), |f|< M, the series
converges absolutely *).

Taking, instead of f(x), the functions f(x)*f(— x), we
may restrict ourselves to purely cosine or purely sine series, e. g.
to the former. The idea of the proof consists in considering the
non-negative polynomials

!
(2) Py(x) :/ﬂ] (1 + &1 cos my, x),
where &, =1 and the positive integers m; satisfy a condition

Mppa/me > 22 8. Multiplying out the product P; we see that it con-
sists of the constant term 1, and of terms 4, cos vx, where v = + m;, +
+my, .t my; 2 0, my, <mp, < .. <my; < mp. From the last
equation we see that v is contained between mkj(iap."l—prz——...)
and (1l +p+ pt+..), 1 e. between my(p—2)/(n—1) and
my; /(. — 1). Therefore, since p. > 3, the numbers & gt myy
corresponding to various sequences {&:} are all different; and, if
p is large enough, 2> p,(e), the indices v corresponding to A, 0
concentrate in the mneighbourhoods (mi(1 —e€), mw(l+-€)) of the
numbers my, where & >0 is arbitrary.

Returning to the series (1), take ¢ so small that the intervals
(ms(1 — ), m(1 +¢)), £=1,2,.., do not overlap, and an integer »
such that M > py(e). Put m{’ =ty k=1,2,.., 0<s<r—1,

) Szidon [2]; for a generalization see Zygmund [6].
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and let P/(x) denote the polynomlal (2) formed with {m{™,
1<k, and Ek-«slgn amﬂ Since m, /m/.) > W2 ,(e), we obtain
a7

[ PP dx = 2m,

4 . ¢ M
®  Slawl=t [0 PP dx
fe==1 T § T

since the constant term of Pf’(x) is equal to 1. Making [-» oo,
we find that each ot the r partial series into which we have de-
composed the series | @ |+ |@rp1 |+ | @2 | +... converges. This com-
pletes the prooef.

If (1) is a pure sine series, we consider, instead of (2), ana-
logous polynomials, with cosines replaced by sines,

6.5, Wiener’s theorem. It is obvious that the absolute
convergence of @[f] at a point x, is not a local property but
depends on the behaviour of f(x) in the whole interval (0, 2z).
However, if to every point x, corresponds a neighbourhood I, of x,
and a fanction g (x) = g.(x) such that (i) € [g] converges absolutely,
and (i) g (x) = f(x) in Iy, then S[f] converges absolutely ™),

By the Heine-Borel theorem we can find a finite number
of points Xy, Xy, ... Xn such that the intervals I, I, .. /s, overlap
and cover the whole interval 0 < x <7 2n. Let ly, = (4, v5). With-
out loss of generality we may suppose that u, <wp—i<<lpp; <oy,
k=1,2,.., m, where (&nt1, Unt1) = (l;, v;). Let h(x) be the periodic
and continuous function equal to 1 in (V—, #s1), vanishing out-
side (4, v;) and linear in the intervals (us, vi-1) and (Upgr, 1)
It will be readily seen that A (x) + Xy(X) 4 ... + An(x) = 1. Since M
has a derivative of bounded variation, the Fourier coefficients
of & are O(n* ). so that & [A] converges absolutely.

Since ©[fi] = G[gy,]=C[g:]S[M], we obtain that & [f,]
converges absolutely (§ 4.481). To prove the theorem it is suffi-
cient to observe that S[f]=& [f (O + .. )] =G [fX]+ ...+
+&[f ]

6.512?), Let the Fourier series of a function f(t) be absolutely
convergent, and let the values of f(t) belong to an interval (o, B).
If 9(2) is a function of a complex variable, regular at ever y point of
the interval (a,B), the Fourier series of ¢ {f(t)} converges absolutely.

1) Wiener [1].
2) Lévy [1], Wiener [1].
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)
fiy= 2 Pem k=0,1,2,..

N=—oo

& [f*] is obtained from &[f] by formal multiphcahon, it is easy
to see that if ...+ |c s |+]co i+, |[+.. =M, then ...+ ¢ |+ o |+
+|c§"') |4 ... <C M*k. Suppose that the series '_s(z)z.40+alz+a2 22+

converges for |z{<{r. In the case M<r the theorem is fairly
simple; for the series o, -+ o, f (£) + o, f(f) + ... converges unifor-

+-oo
Let f(t)= 2 c,ei,

l==——oa

Since

mly, and, if v, are the complex Fourier coefficients of 7 {f}, then
+ +=«= = " o
(zz-vchna c../ Hnl< ylﬂkcr)[_'vly y len’
k=0 n=—uoo n——ao k=0 k=0 n=—occ

where the sum of the last series is < | oy ] e | M4 oy | M2 ... <oc.

Let Z, be an arbitrary point of the interval 0 <{f <2z To
prove the theorem in the general case it is sufficient to show
that there is a function g (f) such that < [v{g}] converges abso-

lutely and that g (¢) = f (f) in an interval (¢, — %, £, + k). Suppose,

for simplicity, that #, =0 aud let f(0)=u Without real loss of
generality we may suppose that #=0, for otherwise we have
o {f (B} = 9 {F () —utu) =0 {fi(t)}, Where f,(t)=F(t)—1, 9,(2) =
= ¢ (z-1u), and we may consider the functions f;, ¢, instead of f, ».

Let 9 (2) = o, + o,z + ... be convergent for [z, <r. In virtue
of the special case already dealt with, it is sufficient to construct
a function g (¢) with Fourier coefficients ¢, such that g () = f(¢)
in (— /4, k) and that .4 |ci] 4|0 +|ci|+...=M <r; for then
S [o {g}] will be absolutely convergent.

Let X (£) =& (t) be a continuous periodic function such that
(i) M(#)=1 for 0 Lt Lp, (i) M) =0 for 2p L L7, (1) 2 (@)
ig linear in the interval (p,2p), (iv) A (f) is even. If [,=1£
are the complex Fourier coefficients of X (Z), then [, = 3p/2x,
I, = (2 sin Y, pnsin ¥/, pn)/zp n’ 2 0. We shall require the fol-
lowing relations

e
1 X EI<A4

ne=—co

[E— 1

(2) Z

fl==—00

(=0 asp~0,

where A, B, ... denote constants mdependent of p. To prove (1)
we observe that from the 1nequaht1es | sin LL1<1, Isinu|<lul,
we obtain || < 2/ pn?, || < 3p/2%, and so, if N=[1/s]+1,
the sum in (1) is less than

3p Z"I'; 2

i V -----
}_ 2n.—1 2"[: + n=N+17 TP /Z“

<14+ Np + 4/mpN < A.
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Now # —[f_, is the complex Fourier coefficient of the fune-
tion X (£) (1 — ey, Considering the real and imaginary parts of
the derivative X’P(t) (1 — ety — iet )\P(t) of this function, we easily
find that the total variation of this derivative over (—=,n) is
uniformly bounded, and so, in virtue of the results obtained in
§ 2.218, we have |/f —If_ |<B/n® 1If v is a positive integer, the
series in (2) is equal to

v —y=—1 L] v . o:‘ 1
S+(Z+3 )< T ik-tl+m 3 p=Pta
n=—y n==—oo  pr=y--1 Ne=i—y n=zy-1

Taking v large enough we have Q<4e If p-0, then
M [Ag]~0, and so £ -0 for every n. Hence, for fixed v, P<ye,
P+ Q< e if pis small enough, and this proves (2).

Let ¢ > 0 be an integer which we shall define in a moment,
and let ¢, = 4, + v, where &, = ¢y, U =0 for |p| <7 g, and u, = 0,
v, = ¢y for |p|>¢. Since f(0) =Y ¢, =0, X[¢,|<oo we have

o0
2 Uy

F ]

- e

<r/3A, 2 "U}Il(:r/gA

Prr——oa

if ¢ is large enough. Denoting by df the Fourier coefficients of
the function f(£) A(t), we have

e .
& :;)—;%Lc” B
eS| E §| 50 |
2l Y | Xl |+ 2| Xl _, =S+T,
Hrmem O =00 | e P flzmem ) | Pl !'
+:o oo oo eoa r
T< 2 X lolll_l= 2 |v| X &<y A=Y,
N=—oo pzm—oa 1 pem—oa H=m—cc 34
too | g tee | g, 1
S= 2 2 Cp(lnwp — by ln) < 2 :\_.4 Cp(ln--p - ln)‘ -+
n=—oa | pr=—q Nmmmoa | Pz
o0 q
+n2 | {n | chp =38, + S,
et P

It it plain that S, <!/;r. Since |lp—p — | << [lhmp — Lpmpya |+ oo +
—H ln—l — ln l for p > 0, [ lrz-—-«p e ln] ~:’~‘,§; l,,.".‘,, — l,,.mp -1 J —}— ave *I— ll/l‘“l'l - l/l ‘
for p<<0, §; is less than a multiple of the series (2) and so
tends to 0 with p. If p=p, is small enough, then S;I%,7,
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S+T <S4+ 8+ T<Yyr+Y,r+4Y,r=r Hence, putting
g W) =FfON(0), ci=dp, k=g, we shall have f(f)=g(t) in
(— &, k), E|cn| <, and this completes the proof.

As a corollary we obtain that, if & [f] converges absolutely
and f(x) =0, then & [1/f] converges absolutely.

6.6. Miscellaneous theorems and examples.

1. The set of points where the series ¥ 7! sin n! x converges absolu-
tely contains a perfect subset.

[Consider the graphs of the curves yi sin n! x].

2. (i) Every measurable set of positive measure is a basis; (ii) every set
of the second category is a basis.

[Let £ be an arbitrary set of positive measure, and xeE, yeE. To
prove (i) it is sufficient to show that the set of the differences x —y contains
an interval. To show this let E, denote the set £ translated by #. Consider-
ing the neighbourhood of a point of density 1 for the set F, it is easy to show
that E E,=F0 if & is sufficiently small. This theorem is due to Steinhaus
[6]. The proof of (ii) is similar].

3. A necessary and sufficient condition that the Fourier series of a
function & (x) should converge absolutely is that there should exist two func-

2%

tions f and g of the class L? such that & (x)=;1~ /nf(x—}—t)g(t)dt. M.Riesz;
,.ﬁ'»a

see Hardy and Littlewooad [8].

[That the condition is sufficient follows from § 2.11. Let ¢, be the
complex Fourier coefficients of /; to prove that the condition is necessary
consider the functions with Fourier coefficients |¢, = and Ec,,l/z sign ¢,].

4. The conditions of Theorems 6.3—6.32 are unnecessarily stringent. Thus
Theorems 6.3 and 6.32 remain true, and the proofs unchanged, if we assume
that feLip (#,2). In Theorem 6.31 we may assume that the funetion f is of
bounded variation and belongs to Lip («,1).

5. Let 0<<a<(1, 1<{p<2 If a, b, are the Fourier coefficients of an
2] 7]
Felip (&, p), then X ([a,|"+|b, ") <Ce for every p<p/{p(+o)—1}. Szasz [3].

[The proof is similar to that of Theorem 6.32 if, instead of Parseval’s
relation, we use the inequality of Hausdorff-Young which will be established
in Chapter IX].

6. (i) If feLipa, 0<<a<(1, then % ng—"/’ (| a,| 418, )<= for every B<Ce.
Hardy [4]. (ii) If f is, in addition, of bounded variation then X nt? (la,|+1b,)<ee
(ii) Tf feLip (2,p), 0<<a <1, 1<{p <2, then X nl(la, |+ b, ) <<= for every
T<a—1/p.

[To prove the first part of the theorem consider the inequality 6.3(4)].
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[ .

in inx
7. Let F() =2 ¢ £

2 /all — where 0w« 1, and § —1 is positive
He==

(losz n)“

and sufficiently small, 'J‘hen the real and 1ml\g1n‘uy parts of f are of bound-
ed variation, belong to Lipa, and yet X p =oo for k=2/(2-}a). It follows
that Theorem 6.34 cannot be improved. IFor the proof see Zygmund [7].
See also § 5.7.18. :

8. Let a, b, be the Fourier coefhc]eu‘rs of a function f(x) and let
ill - tn(f) Fl +P' "[_ —l_ P where F/L O F = a/c { b/e

(@) It |f(x)| <1, then £, (zn+1)/“ (ii) For every n there is a function
f (x) = f,(x) such that t, . cAn's where A is a positive absolute constant.

See Bermstein [3], where a little more is proved, viz. that for f we
may take a trigonometrical polynomial of order n.

[@) follows from the inequalitics of Bessel and Sehwarz. To obtain (ii)
let g/x) =g 20 = i(2) 08 X - . -9, (f) cos nx, where 9,9y, .. are Radema-~
cher’s fynctions. Then

1 T 27 1 i
/a't / | g/x) | dx —-/ / | gx) | dt’ mi/ (eos® X ... 4|~ cost nx) e v
i W 0

i o
=1 m, /{cosF ) e (sin? xo) ) die / {(cos? x--sin® x)~|_..,}."*danm1 n'

0 0
(88 5.7.8, 4.13(3)). Let f; be a value of 7 such that the integral of | g, (¥)| over
(0,2r) exceeds xm,/zl/‘*, and let a,, b, be the Fourier coeflicients of the function
fx) =sign g,o(x). Then

u rt Bl

2 (a4 015 | 24 vt (@) = /fm 2, () | ==

o

1r -
= r/ \g,o(x) [ dx myn,
4

The idea of the proof is taken from Paley [2], where it is applied to
another problem. The result may be used to prove the second part of The-
orem 6.3]. :
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