CHAPTER V.

Properties of some special series.

5.1, In this chapter we intend to study some particular
series, which are not only interesting in themselves, but provide
examples illuminating many points of the general theory. The
latter consideration will be decisive in our choice of material.

5.11. Series with coefficients monotonically tending
to zero. In § 1.23 we have proved that if a sequence {a,} de-
creases monotonically to 0, or, more generally, if {a.} tends to 0
and is of bounded variation, both series

(1) a) ta,+ Z: ay oS N, b) 21 ay sin nx
N== nas
converge uniformly, except in arbitrarily small neighbourhoods

of the points x=0 (mod 27). We will now prove some further
theorems on the behaviour of these series.

It is obvious that, if a,>> 0, a necessary and sufficient con-
dition for the uniform convergence of the series (la) is the con-

vergence of a,4 a,4 .. For the series (lb) the situation is
less trivial. \

. If an> anp1 0, a necessary and sufficient condition for the
uniform convergence of the series (1b) is na,- 04).
' We shall consider only the values 0 < x « !/, =. To prove the
sufflclepcy we denote by ru(x) the M-th remainder ay cos Mx ... of
the series (1b), and put ¢, = Max ka; for % =n, N= Ny=[1/x] -1,

) Chaundy and Jollife [1].
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= rh(x) + r'i(x), where rii denotes the sum of all the terms belong-
ing to ry with indices > N. If NAM, we have riu(x) =0. If
N> M, then
N—1 1
[ ()| < x 2, kap < —
| rin(x) | < k=2M T

5y NV = M)y < em

It follows that |ru(x)|<Cem for every M>0. Applying Abel’s
transformation to ri, M <N, we obtain

oa

< 2 (ar— apy1) | Dix) |+ an’ Dy—(x) | < 8ay < 8Nay < 8Bea,

—_ %
k=N X

| Fu(x)

since | Dp(x)|=|sinx+ ...+ sin kx| <1/sinfx<n/x<4/x. Similarly,
it N M, then |ri(x)| < 8 au/x < 8 May <8ex Hence |ru(x) <
& | P | 4+ | (x| << Oe for 0 <x <Y/, 7 Since this inequality is
obvious for x =0, the uniformity of convergence follows.
Conversely, assuming that the series (1b) converges uniformly,
and putting x ==/2N, N - oo, we deduce from the inequality

N N
- 3 ﬂ ~. - "_"
S ausinnx > sin—.ay > 1>sin-.4Nay
(/2N 4 N 4

that Nay- 0. This completes the proof.

If na, is bounded, the above argument shows that the partial
sums Sn(x) of (1b) are uniformly bounded, but, as is seen from
the series sinX -+ 1 sin 2x 4 ..., the sequence {su(x)} need not be
uniformly convergent.

5.12Y. (i) If an—~ 0 and {a.} is quasi-convex, the series 5.11(1a)
converges, save for x =0, to an integrable function f(x), and is
the Fourier series of f (x). If {aa} is convex, f(x) is non-negative.

Applying Abel’s transformation twice, we obtain the expres-
sion for the n-th partial sum of the series 5.11(1a)

(1) 5u0) = 3 (m+1) 428 Ko) +-Kilo) (-4 1) Aok Del2) e

where D,, and K denote Dirichlet’s and Fejér’s kernels. If x=£0,
the last two terms on the right tend to 0 with 1/z, and therefore
$a(X) = f () = 2% ay Ky (x)+24% a; Ki(x) + ..., which is non-negative
for {a,} convex. Since |f(x)] | Loy | Ko(x) 42| Loy | K(x) + oo

1) Young[9, Kolmogoroff f1].
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and the last series integrated over (— =, ®) gives the finite value
(| L ay|+2| 4 ay|+...), f(x) is integrable.

The problem of the series 5.11(1a) being a Fourier series ig
slightly more delicate, and we shall see in a moment why it iy so.

From the expression for f(x) and §,(x) we easily find that
| f(x) — su(x)| is contained between the expressions

j: Z:‘I—l (m + 1) I 142 am ] }(m(x) + ](,,(X) (fl "l_ 1) , A[Z"'] ‘} + CZ,,,.|.'1 I)n(x) |.

m=n

Integrating this over (—=, %) we find that M [ f—s,]=0(1)+2ap.1 L,
where L, denotes the integral of |D.(x)| over (0,x). Now it is
not difficult to prove that L, ~ log n (see Ch. VIII). Hence

(i) Let su(x) denote the partial sums of the serles 5.11(1a).
If an~ 0 and {a,} is quasi-convex, the relation W [f - 8,] >0 holds
if and only if a, = o (1/logn).

If anlogn-co, e, g. if a,=(logn)="s, n>1, then M| f—s,] ro0,
M [sy] > 0. The series

0 & cos

@ ,,%2 log n ’
which plays an important part in some problems, is a limiting
case, since here the sequence M [f—s,] is bounded and yet it
does not tend to 0.

To complete the proof of (i), we observe that the series
5.11(1a) is certainly ©[f] if M [f—s,]-0 (and in particular if
aplog n~0). When this condition is not satisfied we must proceed
otherwise and two ways are open for us. The first of them consists in
proving that M [f—o,)» 0 as n-co, or that W [f(x)-—f(r, x)] >0
as r -1, where o,(x) and f(r,x) denote respectively Fejér's and
Abel’s means of the series considered. We prefer to base the
proof of (i) on the following theorem, which will be established
in Chapter XI: If a trigonometrical series converges, except at one
point, to an integrable function f, the series is & [f].

Remarks. (a) Given an arbitrary sequence of positive numbers
¢« =0, we can easily construct, e. g, geometrically, a convex sequence
{a.} such that a, > e, a,-0. Thus there exist Fouricr series
with coefficients tending to 0 arbitrarily slowly (see also § 2.9.2).

(b) 1f an, b, are the Fourier coefficients of an integrable func-
tion, the series X b,/n converges (§ 2.621). The example of the
Fourier series (2) shows that the series ¥ ap/i may be divergent.
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5.121. In the preceding section we proved that, if a, >0, Vg a, >0, the
rsezries 5.11(1a) is a Fourier series. We will now show that the condition
a, >0 cannot be replaced by Aa,z,/>0. More precisely, there exists a cosine
series with coefficients monotonicaly decreasing to 0 and yet the sum f(x) of this
series is not integrable'). In fact, let us suppose that there exists a sequence
of integers 0 =, <}, < ... such that a, is constant for L, <k \g‘}.n+1, n=1,2..
Making Abel’s transformation, we obtain for f(x) the formula

) foy=3 da,Dyx)= ¥ a,D, (),
k=0 n=1 n
where a, = Aal » We require the following two inequalities

n

T
@ / | D,(x) | dx > Clogn,

L= f | D) dx < Clogn, n=23,.,
1/n 0

where C and C, are positive constants, The second inequality is a corollary
of the relation L, ~logn, which will be proved in Chapter VIIL. On the
other hand, since D,(x)=0(n), the integral of |D,(x)|over (0,1/n) is O(1),
and the first inequality (2) is also a corollary of the relation L, ~logn.
From (1), (2), and the inequality | D,(x) | < 2/x, 0 <<x <=, we see that

T v—1 oo
®) [ |fldx>> Cologh,—C; 3 a,logh, —2log (=) 3 .
1/h n=1 n=v+41
Y

Putting «, = 1/nl, 7,n=2(’“)2, and arguing as in § 4.23, we obtain that the
left-hand side of (3) is unbounded as v— o=

5.132%). Next we shall consider the partial sums sa(x) of
the ggries 5.11(1b) with coefficients monotonically tending to 0.
Let D,(x) = sin x + ... + sin nx = [cos § x — cos (W4 §) x]/2 sin § x,

Bn(x) =[1—cos(n+%) x}2sintx>0, 0 x <= We have
(0 5u(x) = X A Do(%) + s Du(x)» X dan Din(x) = f(%).

Substituting Em for D, in the last series we obtain a funcgon
]?Zx) differing from f(x) by %a,tg'/,x. The series defining f(x)
has non-negative terms and, since the integrals of 5,1 over (0, =)
are exactly of order logn (§ 2.631), we conclude that f(x), and

1 Szidon [1].
) Young [9], Szidon [1], Hille and Tamarkin {1].
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therefore f(x), is integrable if and only if the series with lerms
da,log n converges.

As in § 5.12, we see that M [f- s:|~0, provided that
Ada,log 2+ 4ay log 8 4..< o, (Observe that a, log n <7 day, log n+
+ day log (n+1) 4 .. = 0 (1)).

Since a,~ 0, a simple calculation shows that

9F (%) sin X = @, + @y 08 X + 5 (Am41 — @p-1) COS M.

el
The series on the right, which is uniformly convergent, is
S[2fsinx]. Writing the Fourier formulae for the coefficients
a4, @y, @y — 4y, ... of the last series, we obtain, by addition of some
of these formulae, that

m
(2) In = 2 / Flx)sinnx dx, n=1,2,..

T g
Collecting the results we may enounce the following theorem.

If @y 5 tugr 0, the sum f (x) of the series 5.11(1b) is bounded
below in the interval (0,7%), and we have the formula (2), where
fsinnx is continuous?). A necessary and sufficient condition for
the integrability of f is the convergence of the series Aa,log 2 -+

If a, > aup1 - 0, the convergence of the series da,log2--..
implies that of a, + 1/, a, -+ Y, a;+ .. and vice versa. The first
part of this proposition follows from Abel’s transformation, if we
observe that logn —log (n —1) =~ 1/n. For the second part we
must use the fact that, if a, + & a, + ... <oo, then a4+ 2,/24...+
+ an/n 2> an(1 4 ... + 1/n) and so a,= O(1/log n).

5.2. Approximate expressions for certain series ?).
It is important in some cases to know the behaviour of the series
5.11(1) in the neighbourhood of the point x =0, and we intend
to give approximate expressions for their sums, which we shall
denote by f(x), f(x) respectively.

5.21. We suppose that the coefficients a, in 5.11(1b) form
a sequence decreasing monotonically to 0 and convex. Put X, = n/2p.

) The continuity of fsin nx follows from that of fsin x.

% Salem [1]. Less precise results had been obtained previously by
Young [3].
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A simple computation shows that f(x,) = b, sin x,+ b, sin 2%, +
~+ .. b, sin p x,, where b; = bj(p), J=1,2,...,p —1, may be written
in either of the forms

bj =+ (ay—; — agpy) — (@1pj — Qipg) + ...
bj = (a7 + asp—) — (@p4j + tap—) + (@ipys + aip—) — ...,
and b, = b = a, — ag, + as, ...

Since a, and 4a, decrease, the expressions in brackets also
decrease, and we find that a; < b; < a; 4 a9, 1. €. 0; < b; < 2a;,
j=1,2,...p—1. Observing that u > sinu > 2u/z for 0 < u < 7/2,
we find that the ratio of f(x,) — b, to [a, + 2a,+...~(p—1) ap_il/p
is contained betwen 1 and =.

To find a simpler expression for f(x,) we shall make an
additional asumption about {a.}, viz. that na, is non-decreasing. To
elucidate this hypothesis we observe that in all the series 5.11(1)
that occur in practice and have coefficients steadily decreasing
to 0, na, is monotonic, at least for n sufficiently large. Moreover,
if na, is non-increasing, the function f (x) is continuous, or has
a simple discontinuity, at the point x =0 (§ 5.11).

If a, is non-increasing and ra, non-decreasing, then [a,+2a,+
+ ...+ (p — 1) ap—1l/p is contained between % (p —1)a,—1 and pa,
or, A fortiori, between {pa,— +a, and pa, Since pa, is bounded
below by a positive number, and 0 <4, <a, we find, finally, that
7 (x;) ~ pa,. To find a formula for an arbitrary x -0 we require
the following lemma.

If x, is an arbitrary point in the interval =2p < x < =/2(p—1),
then f(xp) —f (xp) = 0(pay) as p —co.

In the formula 5.13(1) we break up the sum defining f(x),
into two parts P(x) and Q (x), P consisting of terms with indices
< rp, where r is a fixed but large integer. Since |Di(x)|<
<1+24..4+ k< k, we find, by the mean-value theorem, that

| P (%) — P (%) | < (xp — %) [day 12+ o+ dap (pr)] = 0,

since (x, — x,) < =/2p (p —1), k4 ar~0, and so &* da, = o (k).
Remembering that D (x) = [} ctg & x — cos (n+3) x]/2 sin { X,
we put accordingly Q= Q,+Q,, where Q=%ctgix (4 Aprpa+.)=
=a,1i-tetglx. It is easy to see that Qu(xp) — Qi(xp)=0(1) as
p - oo, Since 4a, is non-increasing, we find that | Qu(xp)| and
8

A. Zygmund, Trigonometrical Series.
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| Qy(x,) | do not exceed Cp*4ay, where C is an absolute constant
(§ 1.22). Now the inequality na, << (n+1) @up1 involves nda, < a,
and therefore

Cp? day, = C(p/r) pr A ap: < C(p]r) apr <2 (C[1) patp < € pay,

it r is sufficiently large. Collecting our inequalities together, we
obtain ultimately | F(xh) — f(%p)| < | P (%) — P (xp) | | Qu(x)— Q%) |-
4] Q) |+ | Qb | <o) +0(1) +25pa, <8epa, for p large.
Since ¢ is arbitrary, the lemma follows.

From what we have proved it follows that f (x) ~ pa,, where
the integer p is defined by the condition =[2p - x <m/2(p—1).
It is however preferable to state this result in a slightly different
form. We may always suppose that a,==a(n), where a (x) is a convex
and decreasing function of x. Indeed in most cases a, is just given
as a (n), but even if it be not so we can, for example, define a(x)
by the condition of continuity and that of being linear in every
interval (n, - 1).

5.211. Let a(x), x>0, be a function decreasing to 0, convex,
and such that na (n) is non-decreasing. If a(n) = a, the sum of the
series B.11(1b) satisfies the relation f(x) ~ x~1a (x~1) as x - 0.

In fact, if p = p.=[#/2x]+1, then n/2p <l x < %/2(p — 1) and,
by the previous result, f (x) ~ pa(p) ~ x~* a (p). It remains only to
show that a (p) ~ a (x~1). For small x we have x— < p <« 2x~L, From
the first inequality we see that a(x~') = a(p). IFrom the second,
assuming p even,we deduce that a (x ) < a(yp)=2/p) (p/2)a(tp) <
< (@2/p) pa (p) = 2a (p). Using the inequality p -+ 1 = 2x~, which
is true for small x, we find that a (x-!) «Z2a(p) for p odd, and
so in any case a (p) < @ (x1) < 2a (p). This completes the proof.

5.22. Supposing the sequence a, a,,... convex and decreas-
ing to 0, we find for the series 5.11(1a) the estimates
p—1
0 f(xp) < %ay +k§1 (@ — Qgp—p) COS fexp,

p—1
@) fx) >34 +k2_31 [(@r — asp—r) — (@optre — Qip-i)] COS kX

Replacing in (1) ay by (ay,—ay)+ ...+ (@yp-a1— az) -+ @y, and
ar—agyp—r DY (ar — Qpga) + vt (@2pt—1 — Agp.z), Wo find that

‘ -1
® S <ot 3 danDilxp)] + 4y
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where D denotes Dirichlet’'s kernel. To obtain a lower bound
for f(x), we shall make an additional hypothesis concerning {a:},
viz. that % (a: — ary1) is a non-increasing function of % (from the
convexity of {a.} we only have £ 4a;~ 0). From this assumption
we deduce that (d2p+k— a4,,_k) < —%— (ak—ag,,_k), k= 1, 2, .. sy P— 1,
and therefore, using (2), that

@ 70> 4440, +,3 A0 Dyt

It is natural to suppose that a,+ a,+..=oco. Thence it
follows that 4a,+24a,4-...4-(p —1) da,_1=(a, —a,)+(a; —ap)+..-+
+ (8p— — ap) > oo, and from (3), (4) we conclude that f(x,)~ da,+
+2da,+ ..+ (p—1)dayy~ da;+24a,+...+p da,.

Now let x; be any point in the interval (z/2p, =/24p — 1)).
We find, as previously, that |f(x,)—f(xp)i<o(1)+ o(p®4day).
This, together with the inequality p? 4a, < da, + 24 a,+...+p da,,
yields the final result: f(x) ~da, +24a,+ ...+pda, where
p satisfies the condition =2p < x<=/2(p—1).

5.221. If a(x), x>0, is a positive and convex function,
tending to 0, then for the sum f(x) of the series 5.11(1a), with
a,=a (n), n(an— any1) non-increasing, and a, -+ a, + .. = oo, we
have the formulae

1/x c1/x
W) @~ [tl®—at+Dld~ [tla)d
1 [

To prove the first formula let us put ge=4da,+24da,+..+
+ kAo, and let F(x) be the first integral in (1). We have to
prove that F(x) ~ gp where p>1/x has the same meaning as
in § 5.211. Let g be the largest integer <{1/x. Since a (£) is convex,
a()—a(t+1) is non-increasing, and it is easy to see that
F(x) > g;— a,. Similarly we find that F(x) < F/p) <€ &+ 4.
From the inequalities g5 < & = &¢+ (8o — &) < go+ (p — ) gdag=
= g, + 0 (¢°da;) = g4+ O (gg) = 0 (o), we see that g, ~ £, and
80 F(x) ~ &y

Let H (x) be the second integral in (1). To prove the second
formula in (1) it is sufficient to show that F(x) ~ H(x). This,
and even a stronger result, viz. F (x)~ H (x), follows from the
inequalities |a'(t)|>|a(f)—a (t — 1)| > |a'(t +1)|. The details o
the proof may be left to the reader. i
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In the above proof we assumed tacitly that a'(f) exists. The exiatence
of a'(t) follows, except for a set of ¢ which is at most enumerable and has no
influence upon the integral, from the mere convexity of a(f) (§ 4.141). Let
us assume now that a”(x) exists. The inequality ﬂ.Aan (- 1)4111,14_1 will
certainly be satisfied if only (*) a’(x) - (x—1) a’’(x) 7+ 0. This test may be proved
as follows. Let a(x)=x[a(x)—a(x-1)]; then a/(x) = a (x) — a (x-+1) 4
4 x[d'(x) —a'(x+1)]. By the mean value theorem we sghall have «'(x)«]0
provided that a'(x - 0y/a(x - 0) -+ x.#0, where 0 is a number contained
between 0 and 1, and the latter inequality is a comsequence of (™). Of course
it is sufficient for (*) to be satisfied for x large.

Examples. 1f ap=n"% 0<a <1, n 21, then f(x) and f (x)
are of order x** as x--+0. If a,=1/logn, n>-2, then
£(x) ~ 1/x (log x)?, f(x) ~1/x|log x|, as £~ 0. In particular the series
@ . j.ﬁlf!l?.x_,

n=y logn

which converges everywhere, is not a Fourier series. This follows
also from the fact that the series (2) integrated term by term
diverges at the point 0 (§ 2.621).

5.3. We shall now congider the power

series

A power series.

i n
(1) ng;ei‘cn log n ,___,;7_;}_‘_&# y
where o and ¢~ 0 are real constants, 2= e”, 0 < x < 2n. The
series (1), which was first studied by Hardy and Littlewood,
possesses many interesting properties.

If 0 <<a <1, the series (1) converges uniformly in the interval
0 < x < 2= to a function o,(x) € Lip o %).

The theorem is a corollary of certain lemmas, which are in-
teresting in themselves and have wider applications.

5.31. van der Corput’s lemmas. Given a real function

f (@) and numbers a < b, we put

[ Lo

b
F@)=2e"o, I(Fab)=[F@dy, SEa)= 3 F@).

) Hardy and Littlewood [9].

Following Hille [1], we base our
proof on van der Corput’s lemmas. '

See van dexr Corput [1].
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(i) If fw), a<x<b has an increasing derivative f'(u),
and if f'(w) > p> 0, then |I(F; a; b)| < 4p~"-

Suppose that there exists a 2>0 such that f'(z) > ) or
f'(u) < —*, throughout (a, b). Since 2xiF (1) du= dF (u)/f'(z), an
application of the second mean-value theorem to the real and
imaginary parts of /(F;a, b) shows that |/| < 2/ah <1/

Assuming that the conditions of the lemma are satisfied,
suppose for the moment that f'(z) is of constant sign, say f' > 0,
in (a, b). It a<<c<<b, then f'(&) > (c—a)p in the interval ¢ Lu<b.
Therefore |/(F;a,b)|<|I(Fa,c)|+|I(Fe, by} <(c—a)+1/(c—a)p.
Choosing ¢ so as to make the last expression a minimum, we find
that |/ (F; a,b)| <2p~"a In the general case (a,b) is a sum of two
intervals in each of which f'(z) is of constant sign, and the re-
sult follows by the addition of the inequalities for these intervals.

(ii) Let D (F; a,b)=1(F a,b)y—S(F,a,b). If fi(u) is mono-
tonic and |f'(u)| < &, then |D (F; a,b)| < A, where A is an abso-
lute constant.

Suppose first that a and b are not integers. S may be writ-
ten as the Stieltjes integral of F (u)dt () over (a,b), where & (1)
is any function which is constant in the intervals n<<u<n-+1
and has jumps equal to 1 at the points 7. It will be convenient
to put &(u) =[u] + % for u5£0, = 1,..., 28 (u)=E(u+0)+E&(u—0).
It follows that

b
D (F;a,5) = [F(a) dy (s), where 7 (2) = u—[u] - §.

' The function 7 (2) is of period 1. Integrating by parts, we find

that D (F; a, b) = — I (F'y; a,b) + R, where |R| < 1. The terms of
&[y] are — sin 2znu/zn and the partial sums are uniformly bound-
ed. Multiplying & [y] by F' and integrating over (a, b), we see
that D (F; a, b) — R is equal to the sum of the expressions

1 ’ f '(uL omilf (1) + nu] — b__]:’_(_l_l)_. Eﬁi[f(u)—nu]]
M orin Lf @+n % f Fay—n

for n=1,2,... The factors f'/(f' = n) are monotonic and of

constant sign. The second mean-value theorem shows that (1)

does not exceed 2/nn (n— %) in absolute value, and so the series

of expressions (1) converges absolutely. This completes the proof

in the case when a and & are not integers. If a or &, or both,
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are integers, it is sufficient to observe that D (F; a, ) differs fro

' )
lufoD(F;a—r-s,b—s) by at most 1. Y i
£

(ili)y Under t/zé.c.onditions of (i) we have
| S(F; a,b)| < [f'(0) — fi(@) + 2] (4o~ + A).

Put B,=p—4, p=0,%1,.., and let B, =f'(ep), F =
j——exp 2ni[f (w) — pu].. It is obvious that [f’(u(,a)p——;](%):% i/;a(uihe
mt.erval (%, Bpt1). Let dy, g, ...y dpps be all the points «, if such
exist, belonging to the interval a < %< b. Using (i) and (ii), we see
that the expressions S (F;ap, opq1) == S{Fp; oy, ) =T (Fp; a.,,’a,_,_l)——
— D (Fp; ap, #p11) do not exceed 4p~— 4 A in absolute valu’e.! The
same may be said of S(F;a, ;) and S(F; oy b). Since S (F; a, b)
is a sum of analogous expressions formed for the intervals (;z ;/.,)
(%, Ort1); oo y (B ), the number of which is §+42 = f’(a,n|.’5.) Z
— F(a)+2 < f(6) = /(@) +2, the result follows. ‘

5.32. The partial sums sy(x) of the series 5.3(1 1
are O (N'h) uniformly in x. B(1) with o=—1},

The function f'(#)= @2=)~" (culo i i

T 7 g &+ ux) has an increasi
derivative. va >0 is an integer, a =2", b = 2", we conclul(;ge
from § 5.31(iii) that |S(F;a, b)| < C2" with C depending only
on ¢. The same is true if 2’ =a<b < 2. Let 27 < N « 2+
Ejin—yi?(gl \<1+|§(F; 1,2) [+ | S (F2, 4) + .t | S (F 2%, N) | <
oy nf2 g H o
;n N {2h 4 ... 4272 L C 22 L C, N'h, with C, depending only
We can now easily prove Theorem 5.8, Using Abel’s trans-

formation we obtain for the N-th partial sum of the series 5.3(1)
the expression .

N—1

1) 3 s,8) e e spu(x) N=2,

y=1

. — 0t __ JEE P

lSlEQB v = O (v™""%), we conclude from (1) and from the re-

fa ion §,(x) = O(v/ﬂ? that the partial sums of 5.3(1) are (&) uni-

f(;l;ﬁiy %xg}srg)en; if « > 0, (b) uniformly O (log N) it « = 0, (c) uni-
y % if «<0. Take 0 < i oo |

formy © e O0<a<<1, Making N- oo in (1)

o N e
tpa(x+h)—<pa(x)=v§1 {s(x+h) —s() = 4 3 =P+4Q,

=l V=NtL

icm

[5.4] Lacunary series. : 119

where 72>>0, N=[1/k]. The terms in Q are O (v/) A" *=0(""%,
so that Q= O(N") = O (h%). On the other hand, since s,(x),
apart from a constant factor, is the partial sum of the series 5.3(1)
with o = —3/,, we have (see case (c) above) that s(x) = O (+%).
Applying the mean-value theorem to s,(x + k) — s,(x), we find that
the terms of P are O (fv') A% = 0 (), and so P= O (AN =
= O(h*). Therefore | ¢, (x+ £) — ¢,(x)| <|P|+|Q|= O (#*) and the
theorem follows.

5.33. Theorem 5.3 ceases to be true when =0 (and so
when o =1). In this case much more can be said: if « =0, the
series 5.3(1) is nowhere summable 4, and, a fortiori, is not a Four-
jer series !). However, if > 1, ¢ =0, the series

oo picnlogn

—— 2", Zz=e¥
M ‘ n‘§z n‘/=(logn)g ’

converges uniformly for 0.<x < 2m. For the proof we replace
Ao by Av=hlog TPy =0 (" log#v)?) in 5.32(1), N_* by
N"1og —® N, and observe that the series with terms O (v~ log*v)
converges.

5.34. There exists a continuous function f(x) such that, if
Qn, by are the Fourier coefficients of f, the series S (1an |+ bn )
diverges for every ¢>0%). For, if f (x) is the real, or imaginary,
part of the function 5.33(1), where f>1, and ol = a3+ b, pn >0,
then I p,>" ¢ = oo for ¢>0, and this is equivalent to our theorem.

5.4. Lacunary series. We now pass to the lacunary tri-
gonometrical series, that is to series where the terms different
from O are ‘very sparse’. Such series may be written in the form

(1) Z (ak cos Nz X + by, sin ng JC),

k=1
assuming, for simplicity, that the constant term also vanishes.
When speaking on lacunary series, we shall suppose throughout

1) Hardy and Littlewood [9]
7y This inequality follews from the mean-value theorem applied to the

difference «(n)— « (n--1), where « (x) = xhlog—P x.
%) The first example of a continuous function having this property was

given by Carleman (1]
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that the indices 7, satisfy an inequality mgpa/me > )1, 1. e. in-
crease at least as rapidly as a geometrical progression with ra-
tio greater than 1.

Given a lacunary series (1) consider the sum

(2) kgjl (ai + b}).

In Chapter X we shall learn that, if (2) is finite, the series (1)
converges almost everywhere. Heré we shall prove the converse.
If the series (1) converges in a set of positive measure, the series
(2) converges. We shall prove even a more general theorem. Let
T" be any linear method of summation satisfying the two first
conditions of Toeplitz (§ 8.1); the third condition need not be sa-
tisfied. All methods of summation used in Analysis are 7*-me-
thods.

If a series of the form (1) is summable T* in a set E of po-
sitive measure, the series (2) converges ).

It must be observed that, when we speak of the summability
of the series (1), we understand that the vacant terms are re-
placed by zeros. Consequently, the g-th partial sum 54(%) of (1)
consists of the terms ax cos 7 x + by sin mex with n, < g, If By
denotes an element of the matrix 7* considered, the hypothesis
of the last theorem may be stated as follows: for every X € £ the
series

®3) ,qg Brg Sq(x) = ap(x),

converge, and lim o,(x) exists and is finite.

To avoid unnecessary complications we begin by the case
when each line of the matrix {,,} possesses only a finite number
of terms different from 0. It will be convenient to consider the

series (1) in the complex form, putting 2¢, = ay — iby, c._p = cy, ¢, = 0,

Mw=—rngk=1,2 . Let, moreover, B ¢+ By g1+ .. = R(q). It
is easy to see that '

p=0,1,2, ...,

Feo
ap(x) = . 2 cpeinn Ru(| ne ),
T e 240

the sum on the right being in reality finite. Since {ax(x)} con-
verges in £, we can find a subset ¢ of E, €] >0, and a number

Y Zygmund [5]; see also Kolmogoroff[2)

.
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M, such that |ox(x)| <M for p=0,1,..,xc¢ In fact, we have
E=E;+ Ey + ..., where E, is the set of x such that {s,(x) | <n
for p=0,1,2,.. At least one of the sets E;, say Eu, is of po-
sitive measure and may be taken for &. It follows that

4on
M2 €] > [ajn) dx = |¢] B ewtRY ms]) +

C
-+ ,:E ¢j Cr Ro(| 17 ]) Ro(| e i')f eilnj=my) x dX.
i €

Let us denote the last integral by 2z b; .. The numbers &; , are
the complex Fourier coefficients of a fumection 7 (x) which is
equal to 1 in € and to O elsewhere. Applying Schwarz’s inequal-
ity to the second sum on the right, we see that it does not exceed

oo ot
2r {j 2. e Plesl RilmDRi( ﬂki)} {; i W}' =
®) Js . : J - J=RR ‘r&
=2ﬁk_2 |ck|ﬂR§(|nk1)~lj kg 1bj,k121'
== e

in absolute wvalue.

From the condition 7x41/n, > 2> 1 it follows that a number
4= 4 () exists such that every integer m can be represented no
more than 4 times in the form n;tm;, j>0, £>0. In fact,
assume that m = r; + ng, j > k. Then m>n; > m/2, and the num-
ber of 7; satisfying this inequality is less than the smallest inte-
ger y such that W > 2. Similarly, if-m =n; —n, >0, then 7; > m.
As mjne > %, we have n; — m/A <m, i. e. n; <mh/(A —1), and the
number of #; in the interval (m, m\/(A — 1)) is also bounded. We
add that the property of {#} just established is the only thing
which we use in the proof, and that it may sometimes hold even
it npyafn; > 1 as j> oo,

Now it is not difficult to see that the last factor on th‘? right
in (5) does not exceed {4 (..4|y-1>+ E‘(D.!?‘.—i- [ 112+ o)) < oo,
where 7, denote the complex Fourier coefficients of 7. Thence,
for v sufficiently large, we have '

(6) on( X

1B P2 <E]CL
RSy
Jokk
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In the series (1) we may omit the terms a; cos n; X -+ b, sinn, x
for 1<k <y, replacing them by zeros. It does no damage to
the summability 7" of the series considered and can only change
the value of M. Assuming the inequality (6), we deduce from (4)
and (5) that

.‘F;.Q
ME| > é‘/l_é_] Leul* R 1 ).

Let K> 0 be any fixed integer.

Since lim Rp(jml) = 1, k=1,2,...,
we conclude that »

K K
. ZKI cr P Ryl |) << 202, & e <20,
T —, fo s s, ¢

and, since the last inequality holds for any K, the convergence
of (2) follows.

To remove the condition imposed upon {f,,} we proceed as
follows. Let o,(x) be an expression analogous to o,(x) (see (3)), except
that the upper limit of summation in the sum defining o, is not co
but a number Q= Q(p). We take Q very large, so as to satisfy
the two following conditions (i) |op(x)—ap(x)| < 1/p for xe¢ E—FP,
where the set EF is of measure < 271 |E|, p=1,2, ..
() lim Bpo+Bu+... + Bpg)=1. Putting E*= E'4+E*4 ..., so that

|E* | < }|E, we see that in the set £ — E* of positive measure the
expression*s cp(x) tend to a finite limit. But condition (ii) ensures
that the o, are also T"-means, corresponding to a matrix with only
a finite nomber of terms different from 0 in each row, and, in
virtue of the special case already dealt with, the theorem is
established completely.

This theorem shows that, if the series (2) is infinite, the
series (1) is practically non-summable by any method of summa-
tion. Considering, in particular, the method (C,1), we obtain:
If the series (2) diverges, (1) is not a Fourier series.

5.5. Rademacher’s series. Several properties of lacu-
~ nary trigonometrical series are shared by Rademacher’s series

@ 2 oreld), 0t <,

(§ 1.32). This is not surprising since Rademacher’s functions form
a lacunary subsequence of a complete orthogonal system (§ 1.8.5).
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(i) The series (1) converges almost everywhere if ci+ ci-+
<ol (i) If o+ c +...=09, the series (1) is almost every-
where non-summable by any method T*?),

The proof of (ii) follows exactly the same line as that of
Theorem 5.4 and may be left to the reader. We need only observe
that the system of functions ©;x(2) = 9;(f) ex(f), 0L <k, 0Lh< 0,
is orthogonal and normal in (0, 1).

Under the hypothesis of (i), the series (1), whose partial
sums we denote by S.(f), is the Fourier series of a function
f(t) e L*(§ 4.21) and moreover we have

/ (f —say? dt 0, _/1[f~sn|dt»o, f(sn—f)dt»o,

where 0 < a<b < 1. The third relation, which holds uniformly
in a, b, is a consequence of the second, and the second follows
from the first by an application of Schwarz’s inequality.

Let us denote by F (f) the indefinite integral of f(Z), and by
E, |E|=1, the set of points where F'(f) exists and is finite.
We have proved that, whatever the interval /, the integral of s,
over | tends to the corresponding integral of f. Therefore, the
integral of s,—s;— over / tends, as n oo, to the integral of f—Sp—1.
Let / be of the form (2% (I +1)27%), {=0,1,..,2*~1. Since
the integral of ¢;(f), over / vanishes for j>> &, the integral of
su(t) — sp—i(t) over [ is equal to O, provided that n > k. Hence,
if / is of the form (I2—* (I+1)2%), the integral of f(f) over /
is equal to the integral of se—i(f) over /. Now let t, £ p/29, t, ¢ E,
and let £, € Iy = (12%, ({+1) 2~*). Since si—(f) is constant over I,
we have

Gty = —= [ saydt=—— [f Byt > Ft) as ko,

\ I | Ig | 7| I

5.51. (i) If the series 5.5(2) is convergent, the sum f(f) of

the series 5.5(1) belongs to L9 for every ¢>0%). It is sufficient to
prove the theorem for g =2, 4,6,.. We shall show that

) Rademacher [1], see also Paley and Zygmund [1], and
Kolmogoroff [3], where a very simple proof is given.
) Khintchine and Kolmogoroff [1] (for the case of convergence),

Zygmund [5].
%) Khintehine [1], Paley and Zygmund {1l
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' ]‘ = R
) /W@ﬂ<M%2@,kmew
Q) ()

where M, is a congtant depending ouly on k.
Denoting by s.(f) the partial sums of the series 5.5(1), we
have

1
@ [Hod=34,.,.
0

!
(273 / 7%
o G | o
[}

where A, o, . o= (4 + o+ ...+ o)/ol ol .ol and the summa-
tion on the right is taken over the set of my,m,,...,m,, oy, Oy vy O,
defined by the relations.

[
gl
. Gr (cm,

{7
P, dt,

0<mp<{n, 0L 2k, i=1,2,.0, 1, 1 r <l 2R, o 4 oy, o, O,

Now is it easily verified that the integrals on the right vanish
unless oy, 0y, .., 0. are all even, in which case they are equ-
al to 1. Thus the right-hand side of (2) may be written

[ .
> Asg g Co cﬁf’- Observing that
2B, ~ofd s P g
2 Aﬁl,ﬁg,...,[“ c2igobe | C,i?—- (cn €1 F oo ek,

Br S my, Ymy

we obtain (2) with f () replaced by s(f), My being now the upper
bound of the ratio Ay . 4,/ .. g, Since su(t) - f(£) for almost
every Z, an appeal to Fatou’s lemma completes the proof.

It is easy to see that M, < (2k)!/2% kl = (k + 1) ... 2k/2%k " bk,
This enables us to strengthen the theorem which we have just
proved and to show that

(i) The function exp p. fXt) is integrable for every p.> Q.

Let C=ch+ci+ ... Integrating the equation exp pf*=1-
+ A+ p2 f421 + .. over the interval 0 < ¢ << 1, and using the
inequalities (1) with M, =kt k=0,1,... we obtain that

L

1
oo bk
®) [exppfrat< § (OO
: [} (4

k=0

In virtue of Stirling’s formula &l =~ 2r o* kF'h, the geries

on the right is certainly convergent if epC<1, that ig if Cis

small enough. It follows that, for every p>>0, the function

e:‘;p_pa(f—‘s,z)2 Is integrable if only n=n(p) is large enough.

Since f2< 2 [(f— s5)?+s7], and Sn(?) is bounded, the integrability
of exp p f* follows.
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3.6. Applications of Rademacher’s functions !). The

theorems established in the preceding paragraph enable us to
prove some results about the series

1) +1la, +n§1j: (an cos nx + b, sin nx),

which we obtain from the standard series

2)

by changing the signs of terms of the latter in a quite arbitrary
manner. Let § a, = A,(x), a, cos nx -+ b, sin nx — Anx), n=1,2, ..
Neglecting the sequences {1} containing only a finite number
of +1 or of —1, we may present the series (1) in the form

© 2 A0 ),

where ¢. are Rademacher’s functions and the parameter L, t=£pj29,
runs through the interval (0,1). If the values of # for which the
series (3) possess a property P form a set of measure 1, we shall
say that almost all the series (1) possess the property P.

(i) If the series :
€Y heas+ 3 (@ + b

converges, then almost all the series (1) converge almost everywhere
in the interval 0 < x < 2n. (ii) If the series (4) diverges, then, what-
ever method T of summation we consider, almost all the series (1)
are almost everywhere non-summable T*.

% @+ X (@ cos nx + b, sin nx)

n==1

Let Si(x) denote the series (3), and, if the series converges,
let Si(x) also denote the sum. Let E be the set of points (x, £)
in the rectangle 0 < x < 2x, 0 < ¢ <1, where the series conver-
ges. Assuming that the series (4) converges, we obtain from
Theorem 5.5 (i) that the intersection of E with every line x=ux,,
0 << X, < 2r, is of measure 1. Since the set E is measurable, its
plane measure is 2r, and therefore the intersection of E with
almost every line ¢ =1, 0 < £, <1, is of measure 2r; this is just
the first part of the theorem. The second part is proved by the
same argument provided we can show that the divergence of (4)
implies the divergence of

 Paley and Zygmund [1].
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®) Afx) F ALX) F oo+ AR(X) + ...
for almost every x.

To establish the latter proposition suppose that the series (5)
converges in a set of positive measure. Then there exists a set
H,|H|>0, and a constant M such that the sum of the series (5)
does not exceed M for x & F. Put Au(X) = ps 08 (nX - X,), pr2 0.
The series (5) may be integrated over /7 and we have

e

> / cos?(nx + xn) dx < M| H|.
n=1 g

The coefficients of p, in ihis inequality tend to 4 | /| and so all
of them exceed an > 0. Thepce we conclude that the series
pi+pi+ ..., i. o the series (4), converges, contrary to our hy-
pothesis, ‘

The following proposition is an immediate corollary of (ij).

If the series (3) diverges, almost all the serles (1) are not
Fourier series,

The theorem of Riesz-Fischer asserts that, if (4) is finite, the
series (2) is a Fourier series. Now we see that the Riesz-Fischer
theorem is, in a way, the best possible: no condition on the mo-
duli of a sequence {ay, by} which permits (&) to diverge can possibly
be a sufficient condition for (2) to be a Fourier seriest).

(i) If (4) is finite, then almost all the series (1) belong to L

for every q>0. More generally, for almost every ¢t the function
exp . SH(x) Is integrable over the interval 0 < x < 2=, however
large p. may be.

Let C denote the sum of the series (4), and let p be so
small that the series in 5.51(8) converges. If K= K (p, C) is the
sum of the latter series, we have, as in 5.51(8),

1
[ exp p.SHx) at < K.
1]

Integrating this inequality over the range 0 < x < 2= and inter-
changing the order of integration, we find that

n 1 o

. 1o
6 [ dxf expu Skt = [dt [exppSix) dx < 2 K.
0 0 )

0 [§

1 Littlewood [1], [2].
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The interchanging of the order of integration is legitimate since
the integrand is positive.
2w
From (6) we conclude that the integral [ exp n SI(x) dx is

0
finite for almost every f. This establishes the theorem. for p po-
sitive and sufficiently small. To establish the general result we
argue as in the proof of Theorem 5.51(ii).

5.61. Let 5.6(4) be finite. In this case it is natural to ask whether
the functions §;(x) are continuous functions of x for almost all £. But this
ig not so. In Chapter VI we shall prove that if a lacunary trigonometrical series
is the Fourier series of a bounded function, the series of coefficients con-
verges absolutely. Thus for no sequence of signs is the series

1
1) j:sin10xj_—~2—sin10‘*x~]—...—_¥_——1’;sin 107 x + ...

the Fourier series of a bounded function.
If the series

(&) a3 logite &

k=2
converges for an >0, then almost all the series 5.6(1) are Fourier series of conti-
nuous functions.
As the series (1) shows, the theorem is not true for :=0.
We require two lemmas.

(i) Let 5, (%) denote the (C,1) means of the series 5.6(8). If the series
5.6(4) is finite, then, for almost every t, we have ap, %) = o(y"@), uniformly in x.

Let us put @ (x)=exppx®—1, p =1, o(x)= O(x)=2nxexppxt. We
will obtain an inequality for the function ¥ (x) complementary to @ (x) (§ 4.11).
Let x=¢(y) be the function inverse to y=1o¢(x). Since log v(x)=1log 2ux +
- px? 2 px? for x 21, we see that x = ¢ () < p.“"’l* 1/log_v whenever x_>1. Lety,
be the root of the equation ¢ (¥)=1. It follows that ¢ (¥) <1 for 0y <y,
and 1< U () < p Viegy for ¥y >>y,. Thence we deduce that ¥ (y)<y for
Y<yy, and ¥ (y)<p Py ylogy for y 2y, i e ¥ (1) <y 7 (y), where y(y)=
= Max (1, v~ ")/[logy ).

Applying Young's inequality to the integral defining :,,,t(x), we see that

i 2
(3) = oy ) | < [ @180 | duet [ (K, — )} a,
0 6
where K, denotes Fejér’s kernel. Since K,<«n, the second integral on the

~ight is less than
n

I o
: 0
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provided that log n>>p. Taking £ such that exp S’,!(n) is integrable for every
value of p, we see that the first integral on the right in (2) is finite, and go

the left-hand side of (8) is certainly less than 2mp” 1/"l/logn it n is large
enough. Since we may take 1 as large as we please, the lemma follows.

(1) If the first arithmetic means for the series 5.6(2) are O (log ' the
series
@ ;f‘, a, cos nx - b, sinnx
(log n)*/ate

\ &> 0
]
n=2

- )

is uniformly summable (C,1).
Let us put ¢o=¢;=0, ¢y==(logv)~"¢ for v =2, /zV:h;”)::(n—{ml——v)/(n—}-l),
Cy=c¢, hy, and let o,(x), t,x) denote the first arithmetic means for the
series 5.6(2) and (4) respectively. Applying Abel’s transformation twice we obtain
n~—1
(%)= 3 0+ 1o, () L Cy (1) 5,00 4 €,
ve=0)
Sinee 4 C,=C,, the lagt term on the right is 0 (1) uniformly in x.
' The reader will have no difficulty in proving the formula £*C, =
=h, A ¢, +2dhy deyyy+ A Dy c,p0 which 18 analogous to the formula for
the second derivative of the product of two functions. In our case 4 fry==(
and so, by (5), .

()

] o 1l
©) =3 ED G+ 1) 0,0 L o) E S0 1) 0,(%) D gy 01).
=0 n+41 gy

Given any function A(x), let us put o () = o)=L (x) — A (x-n),
B (1) = By(u) = h(x) — 2% (x 1)) -+ A (x~-2u). Since «(0) == (0)=[0)=0 we
obtain, by Taylor’s formula, that a(u)=-—N(x~--01), B(@)x=%N"(x--0,u),
where 0<(H<{1, 0<z0;,< 1. Taking \(x)= (logx)~"*¢, nu==1, we oblain

that ay(1) = A ¢, = O (V"L log="h¢v), By(1) =4 ¢, == O (v log=""€v), Thence

we see that (v-}-])a‘,(x)Ac.,_l_l -0, and, by (6),
n—1

M o) = AP Do) L oy 0 (1) = 3 AP0 A1) s, (x) 4 6y - o(1).
y=0 y==()

Since the partial sums of the, series with terms (v--1)sy(x) 4 ¢, are
uniformly convergent, the same is true for the first Cesiro means, so that
the last sum in (7) converges uniformly, and the Jemma is established.

14 14

To complete the proof of the theorem let a/,=a,(logn) 2, b,=b,(logn) 2 .
In virtue of (i), the first arithmetic means of almost all geries with terms
=+ (a}, cos nx bl sin nx) are ol/logn, so that, by (ii), almost all series with
terms + (a, cos - b,8in nx) are uniformly summable (C, 1), i. e. belong to
the class C.

We add that this theorem can be generalized, viz. if (2) is finite, almost
all the series 5.6(1) converge uniformly over 0, 2r) 1),

) Paley and Zygmund [1]; see also Salem 2]
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5.7. Miscellaneous theorems and examples.

%‘ Let {a,} be a sequence tending to 0. A necessary and sufficient
condition that {a”} should be quasi-convex is that it should be a difference
of two convex sequences tending to 0.

It {a,} tends to 0 and is quasi-comvex, then the sequences {a,} and
{ILA[Z”} are of bounded variation.

2. If we put f(x)=3Xn “cosnx, g (X)=Yn %sinnx, 0< « <1, then
f(x):x“”l sinYre (1 — ), g(x)_'\;‘xm“1 coshma/ (1 —a) as x—-}0.
[This fgllows from the first formula in 8.11(1) and from the fact that
2 4 L
AL (B1)/n" =1-4+0@1n) § 8.12)

£

: sin nh
3. Let gy(x) =4+ Zl (*;’;**) cosnx, R =1,2, .., 0 < kh-<{= The func-
Ne==

tion g;(x) vanishes in the interval (k%,%) and is equal to a polynomial of
order #—1 in each of the intervals ((k—2)h, kh), (& —4) B, (E—2) 1), ...

\:7 eimx
[Consider the funetion fi(x) = S EmE of § 215 and the expression
gpx -+ Rl — (’1“) g, (B —2) i)+ oo o fo(x — ER).

The result may also be obtained by repeated application of Theorem 2.11
to the function f,(x) (§ 1.8.21)].

4, It a, > a,z_|_1~>0, the series Y a,cosnx is a Fourier-Riemann series.
Szidon [1].

5. Ita,>a,;,;~0and La,

6. () it {an}, a,~0,is conves, the functions f(x)==X a, cos nx and Flx) =
=Y a,sin nx have continuous derivatives in any interval (s, z—s),e > 0. (ii) If
{a,l} is only monotonie, this is not necessarily true, and the functions may be
almost everywhere non-differentiable.

[() follows from the fact that the series differentiated term by term
are uniformly summable (C, 1) in (s, =—z¢). To prove (ii) observe that the
second series in 5.121(1) behaves like a lacunary series if }~”+1/}~.n>}\>1 and
apply the following theorem].

sinnxel, then Ya,cosnxel.

7. Let the series 5.4(1) be a S[f]. If f(x) exists and is finite in a set E
2,2 4 49

of positive measure, then I 13 (a, + by) <=

[This follows from Theorem 5.4 since the differentiated series is sum-
mable in E by a method T*].

8. Let of), 9:(t), .. be Rademacher's functions and let Ecﬁ<ea, @)=
=Y¢,¢,0), 0= t<1. Then m, Nefe] < M [F1<<M, Nle], @ >0, where the
constants m_ and M, depend only on «.

[The second inequality follows from Theorem 5.51 and from the faet
that M_[£;0,1] = Y [f] is a non-decreasing function of «. To prove the first

inequality for 0<{« <2 observe that -‘JJtZ is a multiplicatively convex fane-

tion of «].

A. Zygmund, Trigonometrical Series.
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9. Let 54(1) be a S[f] and let g4/, Y R ‘fl?11¢511. we ‘huve the in-
equalities m_ 5 Ilp] << D If; 0, 2] < M, 5 Nilel, where 02 == a’ - b2 and the con-
gtants m and’ M depend only on « and A

[t is sufficient to prove, for lacunary series, a theorem analogous to
Theorem 5.51(1). The proof is similar if, for fixed a,) is wsufficiently large, In
the general case we split up the series considered into a finite number of
series for each of which the number 1 is largel. '

10. If the series 5.4(1), with nk+‘1/rz,z;>k>3, converges in an interval
(a, b), then the series converges absolutely. Fatou [1].

[Let a, cos n,x-{- b, sinn, x = p), CO8 (n,x - x;,). It is easily seen geome-
trically that there is a point x* in (¢, b) such that cos (1, x™* =-x;) > <> 0 for
k sufficiently large. The theorem holds for A>>1. See Zygmund [6]].

11. The points of convergence and those of divergence for the series
¥ (sin 10"x)/n are everywhere dense in the interval (0, 2m).
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12. Let 0<<a <1 and 0<(f. The series Zln“l"j gin® elnx converges eve-
Mo

18, If 1<Ya-P 12 the sum of the previous series belongs to
Lip (4e-+8—1). Hardy (1], Zygmund [71-
[Apply van der Corput's lemmas and an argument similar to that of

§ 5.32]. X m
14. The function F(¥)=— x-lim / [ [ A+ cosd” t)dt is a continu-
meyesd o

ous funection of bounded variation with Fourier coefficients= o (1/n). F. Riesz [5].

[The product p,, = (1 -+cos41)..(1 --cos4™¢) is a trigonometrical poly-
nomial of order mmmr}:m—}«zim_l—[—... -4, Since the lowest term of the poly-
nomial Py, 1 — Py = Pp, €08 4™t g of order B = 4t g~ 4>,
Ppis a partial sum of p,,.4, i e. {p,}is asubsequence of the sequence of part-
al sums of a trigonometrical series (*) 1--a, cos X - aycos 2 -~ Let P,(x)
be the integral of p, over the interval (0, x), and let 7,, be the number of
non-vanishing terms in p,; it is easy to see that Y eefed = 87, —1, L e
Tt ™ T =3 0= Tm—1)y Tt~ T = 3". Since Pyt —Pm consists of
3™ terms each of which does not exceed 1 in absolute value, we have
| Prys — P [ 3m/Bm+l = 0 (3™/4") and so the function P(x)=lim P, (x)=P+
+(P,—P)--... is continuous. P,(x) is non-decreasing and so is its limit.
It follows that the function F(x)= — x - P (x) is continuous and of bounded
variation. To obtain & [F| we reject the linear term from the series (*) in-
tegrated term by term. Since a;m= 1, the coefficients of & [FF] are not o (1/n)].
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