CHAPTER 1V.

Classes of functions and Fourier series.

41. Inequalities. We begin by proving a number of
inequalities whieh will be applied in the sequel).

Let ¢ (1) 2> 0 for 27 0. We say that f(x), a-~x- b, bolongs
to the class L,(a, b) if the function ¢ (|f]) is integrablo over (a, b),
If it is not necessary to specify the interval, we denote the class
by L(?‘ simply. If ¢ (w)=w/, r>0, we write L” instead of 1‘%’ L
instead of L' and put

W [f; a,b] = (/b ¥ l’"dx)w, WS a, b]:(b 1({ h/’, fIr dx)‘“".

When the interval (a,b) is fixed, we shall write simply D4[f],
%[f] The former expression may have a meaning even when
(a, b) is infinite. If r =1 we shall write 3, ¥ instead of My, AU,

Similarly, given a sequence a = {ay), finite or infinite, we
write

%la] = (Z I a, [r)ilr 2)'

_4.11. Young’s inequality. Let o (x), 43>0, $ (v), v 20, be two
functions, continuous, vanishing at the origin, strictly increasing,

!) For a detdilled discussion of various inequalites see I ardy, Little-
wood and P6lya, /nequalities,

N
N » ‘ ) 1§ 1r
) Given a finite sequence 8= 8y Qg a0 sy, lot B, [tllw(‘N Zlﬂu f’) ’
el

This expression has properties analogous to those of W LS], but we shall not
consider it here. o
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tending to oo, and inverse to each other. Then, for a,b > 0, we
have the inequality, due to Youngd),
¥ 4
(1) ab<P@)+ ¥ (b), where @ (x) = [ vdu, ¥(3)= [ ¢ dv.
) 0

The geometrical proof is obvious. It is also easy to see that the
sign < can be replaced by=if and only if b=v (@). The functions @
and ¥ will be called complementary functions. If ¢ (w)=u? b (v)=0""
>0, 14+o=r, 14+ 1/a=r, we obtain

a b’
ab < —4-—
7 r

(2)
where the ‘complementary’ exponents r, 7' are connected by the
relation 1/r+1/r'=12). This is a generalization of the well-known
inequality 2ab<Ca*+-b% to which it reduces if 7 =#'=2. It is plain
that either r <{2 <7 or 7' <2 < r. From (1) we deduce that, if
JF(x) e Ly, g&(x) €Ly, the product fg is integrable. In particular, fe
is integrable if fel”, gel”,

4.12. Hdélder’s inequalities. Consider non-negative sequen-
ces A= {An}, B={By}, AB={A.B,}, and suppose that %,[4] =
= Np[B]=1, r> 1. Substituting, in 4.11(2), 4,, B, for a, b, and adding
all the inequalities, we obtain that N[AB] <C1. If {a.), {b.}
are non-negative and al, N~[b] positive and finite, then, putting
Ap = a,/N[a], Bn= b,/Nr[b], we have NJA]=1, N.[B]=1, and
from % [AB] <1 we obtain the first of the Holder inequalities

(D

which is obviously true also if 9,[a] =0 or 9-[b]=0. The
second inequality (1), where f, g >0, is obtained by the same
argument, summation being replaced by integration. In the gene-
ral case (a, b, f, g complex), we have

€N [ab] < Nofa] No[6], M [Fgl < MLF1Mple], 7> 1,

b
(2> ‘Z an bn i \< Enr[a] Nr’ [b]: Ij fg dx 1 ‘< ‘)Rr[f] 93?#[8’],

) Young [7].
%). This notation will be used systematically in this chapter, so that by p’
we shall denote the exponent ¢ such that 1/p-}1/g=1.

A, Zygmund, Trigonometrical Series. 5
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since the left-hand sides in (2) do not exceed [ab), M [/£] res-
pecu‘:liri‘ttle attention shows that the first relation (2) (llegumgutes
into equality if and only if arg (2, bs) and |a,|"/[0s" are inde-
pendent of 7 (arg 0 and 0/0 denote any m‘lmbor.ﬁ we please).
For the second relation the conditions are: arg J(x) g (x) and
| (x)["/lg (x)|" must be constant almost gverywhem. -

The number M, finite or infinite, will be called thg essentlal
upper bound of a function g (x), a- X« b, it (‘i) g(if) M almosl;
everywhere, (ii) for every M= M the set of x for which g (x)>M
is of positive measure. If M=l oo, we shall call /' an essentially
bounded function. We will prove that if M is lhe essential wpper
bound of |f(x)| in (a, b), then W.,[f;a,b] » M as r N ln' .'tha
first place M, [f] <" M (b — @)V, so that lim W[ /]~ M. N’G){.'t,rll' M
is any number <M, and E the set of points where ]/ (x)| .~ /V{',

then M, [f] == | E|r M, L D f] M, and so Lim W[ /] - M. 'J‘h%s
| completes the proof in the case of (a,0) finite, or when gcx, by is
infinite and M=o, Let now (2, 8) be infinite md 0 M<lco, We
may suppose that M =1. The same agument as before proves
that lim M,[f]>> 1. To show that lim M,[f]=1 we need only
observe that Wf] is a decreasing function of r which, by the
preceding remark, is 2= 1.

In virtue of the result just established, it is natural to define
Me[f; @, b] as the essential upper bound of |f| in (a,0). By L™
we may denote the class of essentially bounded functions. The
second inequality (2) has then a meaning (and is obviously true)
even when ¢ = co,

Since any series @, + a; 4~ ..., @, »0, can be represented as
the integral, over (0, c0), of a function f(x), where f (x)=a, for
nLx<n+1, n=0,1, .., the above remarks apply also to series.

4121, Let fie L, i=1,2,..,k where r;:>0, 1/ry+1/r,+
+..+1/re=1. An easy induction shows that W [f, Sy .. [fa] <l
K MAAT DS o] oo M [ fo]. Similarly for series.

4.13. Minkowski’s inequality. Let a == {a,}, & = {04} be

two sequences, @ + b = {a, - b,}. We will now prove Minkowski’s
inequality ‘

Y Hence A [f1> M as r-oea
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¢)) Wla+ 6] < Nela] + W[, r>1.

Writing (an =+ b,)" = (@n + 8. @y + (2, + buy " bn, and applying
Hoélder’s inequality to the sums of terms (@n+bny '@, and of terms

(@+b1) =" bn, we find that % [a-+5] <07 [a-+5] 9t [a] -+ " [a+-5] 907[8)],
and (1) follows.

The same argument proves Minkowski’s inequality for integrals:
W[ f + ] < MLf] + Mg],

It 0<r <1, all these inequalities cease to be true. However
we have then

®) MLf+8] <M1+ Mgl, Wa+b] < Nila] + R[], 0<r<1,

@

r>1.

inequalities are simple corollaries of the inequality
EFy < x4y, x> 0, y>0, 0<r <1, or, what amounts to
the same thing, of the inequality (1 4+ x) <1+ x". To prove the
latter we observe that (1 + x)"— 1 — x” vanishes for x =0 and
has a negative derivative for x> 01Y).

Let % (x,y) be a function defined for a < x < b, ¢ <y Ld
An argument similar to that which led to (2) gives the inequality

d 1r

{1 s ayr dx}'w </ '{/?1 BT dy, e,

a 4 c

4

which may be considered as the most general form of Minkowski’s
inequality since it contains the results (1) and (2) as special cases .

4.14. Convex functions and Jensen’s inequality. A fun-
ction ¢ (x), a <x B, is said to be convex if, for any pair of
points P;, P, on the curve y = (x), the points of the arc P P,
are below, or on, the chord P, P,. As an example we quote the
function x?, p > 1, which is convex in the interwal (0, co),

For any system of positive numbers p,, p,, ..., ps, and any
system of points xi, X,, .., %, from (z,B), we have the inequality

'} From the inequalities (2) and (3) we conclude that, if feL’, geL”, then
{f+gel’, r>0

) I (e, d)=(0,2), i (x, y)=f (%) for 0Ty <1, h(x,y) =g (x) for 1Ty <2,
the inequality (4) reduces to (2). If F(x)= Ay EX) =10, for n<x<<n-41,
n=20,1,.., we obtain the inequality (1).


pem


Chapter IV. Classes of funetions and Fourier series.

68"

&) @&fﬁ%+m+mm»wmwo+m+mwmh

R o e S o [ S Ry

due to Jensen'). For n=2 this is just the definition of convexity,
and for n>2 it follows by induction.

If is obvious geometrically that, it ¢ is convex, ¢ (x--0),
and similarly ¢ (x — 0), must exist. These limits can .be neither
+ oo nor — co. Moreover % (x -+ 0) = 9 (x — 0) = ¢ (x), i. e. convex
functions are continuous.

Assuming ¢ continuous, we may take as the definition of
convexity that for every arc P, P, there exists a subm:c P P}
lying below or on the chord Pi P In fact, if there existed an
arc P, P, lying, even partially, above the chord Py P, there would
exist a subare P| P} lying totally above the chord Py P, so that
the two definitions of convexity are equivalent.

It is easy to see that a convex function has no proper maxi-
mum in the interior of the interval in which it is defined.
Let o (x) be convex in (0, o) and let x, be a minimum of ¢, If
¢ (x) is not constant for x> X, then ¢ (x) tends to -+ov, as
x - oo, at least as rapidly as a multiple of x. This follows from
the fact that, if x, <x, <%y <.., %u-> oo, the angles which the
chords joining (x;, ¢ (x)) and (i1, @ (¥ig1) make with the real
axis, increase with i, Therefore, if ¢ (4) is convex in 0, ), and
¢ () » co with u, the relation feLe involves the integrability of f.

Let f(£), p(¢) be two functions defined for a «I t < b, and
such that o« <f (@) <8, p ()= 0, p(¥) / 0. Let ¢ (1) be a convex
function defined for o < u < B. Jensen’s inequality for integrals,
viz.,

b
[o(fyp tyat
<@ ,

14

[p @ at

a

[ff@pwdt

@) ¢
[p@at
is a simple corollary of (1) if f(f) and p () are continuous and
(a, b) is finite, In fact, if a=¢, <t <..<f,=0 is a subdivision

of (a,b), b=t —ti, pi=p (t) 8, x1=F (), the inequality (1)
tends to (2), provided that Max &;-0. To prove (2) in the most

1 Jenseny [1].
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general case is not a difficult task, but for the sake of brevity
we content ourselves with the case which we shall actually need
later, viz. f >0, ¢ (#) non-negative and increasing with z, (g, b)
finite. Since any bounded f is the limit of a uniformly bounded
sequence of continuous functions f,,!) we obtain (2) for f and p
bounded. Similarly, for f and p integrable, we have f=lim fj,
p =1imp,, where each f, and p, is bounded and f. < fati,
Pn < pPnt1; an application of Lebesgue’s theorem on the integration
of monotonic sequences yields the desired result.

4.141. A necessary and sufficient condition that a function y (x) defined at
every point of an interval o< x B, — o<l a < B <oe, should be convex, is that
¥ (x) should be the indefinite integral of a function non-decreasing and integrable
over (o, B), i. e.

X
M) 2 =7@+ [E®a, where B(t)<EE) for h<t
o

Suppose first that the condition (1) is satisfied. Since instead of ()
we may consider an arbitrary subinterval of (=«,8), it is sufficient to show
that, if 0<H<C1, x==(1—6)a—-03, the function y satisfies the inequality
1) <A—6) 7 (x)+57(B). Without real loss of generality we may assume
that «=0, 7 () =0, so that the inequality which we have to prove is

8 g i :
[rwar<s [ewa, o -9 [toa<s [toa
0 0 1 43
Now it is sufficient to observe that the left-hand side of the last inequality
is at most equal to, and the right-hand side is not less than, the number
51—6BE@B).
To prove the second half of the theorem let R (x,7) denote the ratio
[z (x4h) — v (x))/h, h==0. From the convexity of y it follows that

() R (x,— k) <R (x, ), @ RxD<RKx M)

provided that 0<% 0< h<Ch, and that the points x,x—£&, x-+ #, belong
to (2,8). From (8) we see that R(x,4) tends to a definite limit as #—>--0,
and, in virtue of (2), this limit, which is the right-hand derivative D“’j((x),
is finite for «a<{x<(f. Similarly we prove that R (x,— &)< R(x,—h) for
O0<h< I, and that the left-hand derivative D™ y(x) exists and is finite
for oo <<x < 8. It follows from (2) that '

() D™ 7(x) < DTy (x).

Y Let F(x) be the indefinite integral of f(x).
Fal®) =n1F (x+1/n) — F (x)].

We may put e. g.
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Let now o< x<lx < B, and ler 0y kR0, Bol Ry X, g0 that

x+h=x,—k We have then D (x) R ) - R (xy, —~Ia) ST ().
From this and from the inequalities (4) we obtain leL, for x < x|,
) D™y ()<< DTy (), DY) DYy (),

i. e. the derivatives D™ 3% (x) and D""z(x) are non-decreasing., Since the set
of points where a non-decreasing function is discontinuous is at most enu-
merable, we infer from (4) and (5) that the set of points where '(x) does
not exist is at most enumerable. The derivative y'(x} is uniformly bounded
in every interval («, ") completely interior to (e, §). Hence the equation (1)
is certainly true if we replace « by «’, £E(f) by //(f) and suppose that o' x.§",
Making «’'->«, B'— B, and remembering that y (f) is continuous, we obtain the
formula (1), with E(f) = %'(t). To show that '(t) is integrable we need only
observe that it is of constant sign in the neighbourhood of the points «
and B, so that the existence of improper integrals involves the intogrability
in the sense of Lebesgue, This completes the prool.

4.142. Let now ¢(x) be an arbitrary funetion non-negative, non-decroa-
sing, tending to == with X, and vanighing at the origin. The curve y==u(x)
may possess discontinuities and stretches of invariability. The inverse fune-
tion x=1¢ (y) has the same properties, and is one valued oxcept for the
values which correspond to the stretches of invariability of ¢ (x). If ¢(x) is
constant and has a value y, for a <x<(B, we assign to ¢(v,) any value from
the interval (a,P). Since the number of the stretches of invariability is at
most enumerable, our choice has no influence upon the values of the integral
®(x) of ¢(x), and it is easy to see that the Young inequality 4.11(1) holds
true in this slightly more general case.

From the theorem proved in § 4.141 it follows that every funetion « (x)
which is non-negative, convex, and satisties the relations @ (0)==0 and
D (x)/x oo as x->e, may be considered as a Young function, More precisely
to every such function @ (x) corresponds another function ¥ (x) with similar
properties, and such that ab=!@ (a)--¥(b) for every a0, b 0. It is
sufficient to take for ¥ (x) the integral of the function ¢ (¥) inverse to the
function ¢ (x) = @'(x). Since P (x)/x->os with x, it is easy to see that ¢ (x)
and ¢ (x) are unbounded as x-»es,

415. M [f] and A,[f] as fanections of « A function

¢ (#) >0 will be called a multiplicatively convex function if, for

every t,2>0, 4,0, {,4+4,=1, we have ¢ (¢, u,+2yu,) < $h () ¢(y).
It is the same thing as to say that log ¢ (x) is convex.

Given a function f(x), the expression W LF) is a non-decreasing

function of a. U,[f] and M* ol f] are multiplicatively convex functions
of o (a>>0) 1),

) Hausdorff [2].
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Substituting | f|* for f, 1 for g, in the second formula 4.12(1),
and dividing both sides by »—a, we obtain that A [f] < %, [f]
for » > 1. That the result is not true for M,, is easily seen from
the example a =0, 6 =2, f(x)=1.

To prove the second part of the theorem, let a = a, £, + 2, Z,,
@;>>0,%;>0, ¢ +%,=1. Replacingthe integrand |f|* by |f|%k |f|%*,
in M,, and applying Holder’s inequality with » = 1/¢,, r' = 1/¢,, we
f‘nd ‘W“ < m altl ‘W“"

that %* < Q[:ifl 9[252.

Dividing both sides by & — a, we obtain

4.16. A theorem of Young. Let f(x) and g (x) be two
functions of period 2=, belonging to L7(0, 2z) and L9(0, 2%) respec-
tively, and let

2n

1) h(xy=[fx+1) gt

4
Then, if 1/p +1/g > 1, and 1/r =1/p +1/q — 1, the function h(x) is
of the class L' and, moreover,

(2 D[] < Ml 1] My ]

We may suppose that f>0,g > 0. Let 2, p,v be any three
positive numbers such that 1/A+1/p.+1/v=1. Writing f(x+1¢) g(?)
in the form frh gt/h frlilp—Ul) g4Qe—1 and applying Hélder’s in-
equality with the exponents , p, v (§ 4.121), we see that & (x) does
not exceed

T

[_2/7};7( x -+ 8) gi(t) dt] " [ﬁ"!’{x(l/ﬂ—lﬁ.) (x41) dt] e [ f gIIV(I/Q—I/L) ) dt]

If we suppose that 1/p — 1/A=1/p, 1/g—1/A =1}y, k=r, the con-
dition 1/A+1/p.+1/v=1 involves 1/p+1/g—1/r=1. The last
two factors in the product are equal to 9)?§’P[f] SJIg/V[g], and the
result follows from the formula

[ ax{ [ frix 4+ gocty de} = D71 Mg

We add two remarks:

(§ 2.12).
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(i) The inequality (2) may be stated in a slightly different
form. If we put p=1/1—0a), ¢=1/(1~f), 0-Ta-"1, 0-=<ply,
then M 4 [A]< M ¢ [f] M [g]l, where 7«01,

1 e ]

(ii) Let us change the definition of /i (x) slightly, introdu-
cing the factor 1/2n into the right-hand side of (1) (similarly as
in § 2.11). We obtain, then, that %, [A] -7 % [/] %, [g].

1y {omtt -p

4.17. A theorem of Hardy. Lel r>1, s<Ir—1, f(x) 0,

X
0L x <o, F(x)= / fdt. If frix)x* is integrable over (0, ~), so
is {F (x)/x) 5, and

(1) U/ { FLX) }’xy dx < (" - ;M I)ri)/‘?"f,-(x) x* dx 1).

¢ ¥ r f f (r=1)/
Since | f #9r =i dt (,/ fres dt) "( [ t=vie=n d!:) T we see
' .

0 ) ]
that f is integrable over any finite interval and that F(x) = o (x(r1—)/r)
as x~0. Applying a similar argument to the integral defining F(x)—F(¢)

enough. Hence F(x)=[F(x)—FE)]+F (&)< Lexlr 1=/rd) (1)~ exlr1-)r

for x large, and, since >0 is arbitrary, F(x)==0(x" ) ag x reo.

Let 0<a<b< oo, Integrating by parts, wriling Fr1 fxs rl e

= fxrls- Fr=tgs—ri-sr - and applying Holder’s inequality, we obtain
b

fb F T  frevas\" | /p( !)x dx}w.

_n}r x5 dx < - [ A
a a I'™—8- l;z I l}z

x
Dividing both sides by the last factor on the right, and making
a0, b-co, we obtain (1).

Fras—r+t110
S

‘ 4.2, Mean convergence. Let J1(x), fo(x), ... be a sequence
of functions belonging to a class L7(a, b), r > 0. If there exists
a function f(x) € L7(a, b) such that M f = fug a, 0] 0 as n-»ev,
we say that {fu(x)} converges in mean, to J(x), with index r. The
following theorem is of fundamental importance.

}) See Hardy, Littlewood, and P61y, Inequalities, Ghaptor IX,
where various extensions of this theorem are given,
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A necessary and sufficlent condition that {fu(x)}, fn € L'(a, b),
r > 1, should converge in mean, with index r, to a function
fx)el(a,b), is that D] fm—fi] should tend to 0 as m and n tend
to infinity').

The necessity of the condition is obvious, since, by Minkow-
ski’s inequality, the relations M,[f— fu] >0 and M,[f—fu] >0
involve M.[ fi — fal < ML f — ful + N[ f— fu] = 0.

The following remark will be useful in the proof of the
sufficiency of the condition. ‘

(i) If {un(x)}, a < x < b, is a sequence of non-negative func-
tions, and if I+ I,+ ..<eo, where I, denotes the integral of uy
over (a,b), then u,(x)+ u,(X)+... converges almost everywhere to a
finite function.

In fact, if the series diverged to + oo in a set of positive
mesure, then, by Lebesgue’s theorem on the integration of mono-
tonic sequences, we should have /, + L+ ... = co,

We will now prove that

() If ML fm—fal>0 as mn-co, we can find a subsequence
{fn,} of {fu} which converges almost everywhere to a finite func-
tion f (x). :

Let & = Max W,[fn — fu] for m>1i, n>>i. Since & -0, we
have e, + e5, + ... <oo if {nm} increases sufficiently rapidly. By
Hoélder’s inequality,

b
(1) f]f"k “.fllk+1 ] dx < (b - a)l";” \)—nr[fnk _—fnk—%ll ‘< 5ﬂk(b - a)l/r,a

and so, in virtue of (i), the series |fu |+ |fu, = fu. | + | fn, —Fra |+ ...

"~ converges almost everywhere. The function f(x)=fn,+(fo,—fa)+F..=

= lim f,,(x) exists almost everywhere.
Returning to the proof of the theorem, we observe that, if
7, > m, then W f — fn,] <em. Applying Fatouw’s well-known lemma?),

Yy Fischer [1], F. Riesz [1], [2].
?) Fatou's lemma may be formulated as follows: if g,(x) 20, k=1,2,...,
b
and g,(x)-+g(x) almost everywhere in (a, b), then /gk dx < A, k=1,2..., involves
a
In particular, g (x) is integrable over (a,b).

b
/gdx{A. See e. g. Saks,
a

Théorie de l'intégrale, p. 84.
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we obtain that W[fn—f] < em Thence we conclude that fe L7 and
that M f — fu] > 0 as m » oo, This completes the proof. We add
a few rexunarks.

(a) In the proof we tacitly assumed that b a<l~, bat the
argument holds even when b - q == o0, since (1) subsists if (a, b)
is replaced by any finite subinterval (o, B) of (a,b).

(b) The funclion f(x), the existence of which asserts the
theorem, is determined uniguely. In fact, if W[/~ fu] >0 and
My[g —~ ful >0 as n- oo, then, by Minkowski's inequality,
M| f—g] < ML= ful + W] fug] >0, i o0 MLS—gl40, f(x) =& (x).

(¢) We proved the theorem for the case r 1 because thiy
case is the most interesting in applicalions, but the resull holds
also for 0 <r<1. In the proof we use, instead of Minkowski’s
inequality, the first inequality in 4.18(3). In particular, to establish
the existence of f(x), we observe that {| fu, |- |/, = fu,| & i}’ <7
KN fu I+ fao — oI+ ...y and that, if we integrate the righl-hand
side of this inequality over (a, b), we obtain a convergent series,
provided that en, + e, + .. < oo

4.21. The Riesz-Fischer theorem. Lel {p.(x)} be a system ‘

of functions, orthogonal and normal in (2, 6). We saw in § 1.61
that, if ¢, are the Fourier coefficients of a function fe L% with
respect to {¢n}, the series ¢+ ¢ ... converges. The converse

theorem, due to Riesz and Fischer, is one of the most important

achievements of the Lebesgue theory of integration.

Let @y, 0,,9,,... be an arbitrary system of functions, orthogonal
and normal in. (a,b), and let ¢y, ¢y, cyy ... be an arbitrary sequence
of numbers such that cy+ci-+c3+..<co. Then there exists a
function fel¥a,b) such that the Fourier coefficient of [ with respect
20 ¢y iS Cny n=0,1,2, ..., and, moreover,

b oo b
oy ffﬂdx = en, /(f»— S)idx >0 as no> oo,
z 7= p

where S, denotes the n-th partial sum of the series ¢ py-tc¢i®y ... t).

) Fischer [1], F. Riesz [1]; see also W. M. and G (. Young [i],
where several alternative proofs are given, and Kaezmarz [2].
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From the equation

b n+-k .
/ (Snte— Sa)?dx = > £
a =n-+1

we see that M,[sm — s,]>0 as m,n->co. In virtue of the last
theorem; there is a fanction fe L? such that M.[f — s, >0 as
n-»oo, If n>j, we have
b b 4
@ e = [ supydi = [ foydx+ [ (sa—J) 9 dx.
a a a
By Holder’s inequality, the last term on the right does not
exceed M,[s, — f] My[ej] = My[s, — f] in absolute value. Hence,
making 7 - oo, we conclude from (2) that ¢; is the Fourier coef-
ficient of f with respect to ¢;, and it remains only to prove the
first equation in (1). '
In virtue of 4.2(ii), there exists a sequence {s,,(x)} converging to
f(x) almost everywhere. Since M3[sn,] = citcit..co, < citci-+cit..,
an application of Fatou’s lemma gives Mf1<a+d+a+..,
and this, together with Bessel’s inequality G+d+ot. < SDi%[f],
yields the desired result. :

422, Corollaries. (i) A system {p.(x)}, orthogonal and
normal in an interval (a,d), is said to be closed in this interval
if, for any function f e L%(a, b), we have the Parseval relation

b oo
() [frax=3c,
a n=
where ¢, ci, ... are the Fourier coefficients of f with respect to {¢z}.
In the domain of functions of the class L* the notions of a closed
and of a complete system are equivalent. That every closed system
is complete, is obvious. To prove the converse assertion let
Cyy €1y ... be the Fourier coefficients of a function fe L% Since
s+ cj + ... < oo, there is, by the Riesz-Fischer theorem, a g e L*
with Fourier coefficients ¢, and such that 9th[g] =co+ci+ ..
Since f and g have the same Fourier coefficients, and {p.} is
complete, we have f =g, and the equation (1) follows.
(ii) We know that the trigonometrical system is complete
(§ 1.5). Therefore, if am, b, denote the Fourier coefficients of a
function f € L% and ¢, the complex coefficients of f, we have the
Parseval equations
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P 4

1 L R
(2a) — /ﬂ dv=tfoi+ 3 <az+b,:>, @) o [Srdxes N el
I m £up

thh dlffer only in notation. It may, however, be obscrved
that they can be obtained independently of the Riesz-Fischer
theorem. In view of Bessel’s inequality, it is only the inverse
inequality which demands a proof. Let o,(x) be the Fejér sums
for the function f; o, being a trigonometrical polynomial, we have
2 oo 2 A 8, \1 8 9
— [ o dx =} aj + 2 (ai+ bi) (1 — ) dah 4 N (i b,
T h k=1 n-1 kel
and, since a,(x) > f (%) almost everywhere, it is sufficient to apply
Fatou’s lemma.
If we substitute |f|> for f2 in the formula (2b), we obtain
a formula which holds also for f complex. To show this, let
f=fi+ifs, and let cu, €, ¢l be the complex Fourier coofficients
of f,flvfz If 26/1—a”_ibﬂ, nmalz"",bn, then }/‘|u = | f) |2'|"lf2 %
Cn=0Cn =|ch P W2 (ah by —ali b)), Since the last
term on the right is an odd function of 7, we obtain that
+oo

2 el

(iii) If f(x) is periodic and belongs to L (0, 2x), the juncholz
f(x) defined by the formzzla

i1
_1 /f<x+2f> fEt) i { LS Gt =] Cot) |

Ty tg %t Aot 7:;, 2ty '&”/‘ ]
exists almost everywhere and belongs to L*Y). Moreover & [f] =& | 7l
That & [f] is the Fourier series of a function g ¢ L? follows from
Bessel’s inequality and the Riesz-Fischer theorem. Consequently,
the first arithmetic means o,(x;f) of S[f] converge almost
everywhere. Thence follows the existence of f(x) (§ 3.32), and

since, at almost every point, o,(x, f)- > g (%), oulx; ) > F (), we

obtain that g=/. This completes the proof. We may add that,
by Parseval’s relatlon, '

an
h= /(rfl A av= ] iR

"()

o
= X (enf+1ei)

(®) flx=

um

/‘fzdx.

T

@ »»-/dex pai4

Y Lusin [1].
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4.28. The result (iii) obtained in the preceding section will be gene-
ralized in Chapter VII, where it will be shown that the integral 4.22(3)
exists almost everywhere for any integrable f. Here we will make a few
remarks of a different character.

The existence of 7 (x) is not trivial even when f(x) is continuous. The
convergence of this integral is due not to the smallness of f(x41t)— f (x—1)
for small ¢, but to the interference of positive and negative values, for, as
we will show, there exist continuous functions f such that the integral

=
0 /’lf(-\f—H)?f(x——f)i .
a

diverges at every poini'). It will slightly simplify the notation if we consider
functions f of period 1 and replace the upper limit of integration = by 1in
the integral (1). We begin by proving the following lemma.

Let g (x), where | g (x)| <1, | g'(x)| <1, be a function of period 1, and such
that for no walue of x the difference g (x-u)— g (x — u) wvanishes identically
in u®. Then, for n=2,8,..., we have

—g(nx— ) | dt < C, logn,
t

/ [ g (nx—+nt)—
iin
where the constants C and C, are mdependent of n.

Let nx=y, nt=un. In virtue of the periodicity of g, the first integral

takes the form
1

[1gt+n—gw s

o

- g (nx—ni) | dt > Clog n, / | g (nx—nt)

1)du//

1
>(—i~++—,1;) l/‘ig(y—}—u)-—g(y—u)ldu-

The first factor on the right exceeds a multiple of logn and the second, as a
continuous, periodic, and non-vanishing function of y, is bounded from below
by a positive number. This gives the first part of the lemma. Similarly we
obtain the second part, observing that the integral of |g(y+u)—g(y—u) |fu
over (0, 1) does not exceed 2.

Let us now put

@ flxy= _Sj a, g (b, %),

n=1
where the coefficients a,>>0 and the integers & <(h;<C... Wwill be defined in
a moment. The integral of |f(x - —f(x—1) |/t over (1/4,,1) is not less than

) For the divergence almost everywhere of this integral, and of the
integrals (1) below, see Lusin [1], 182, Titechmarsh [2], Hardy and Li-
ttlewood [4]. For the general result see Kaczmarz [3], [4].

?) For example, we may take for the curve y= gx), 0
broken line passing trough the points (0,0), (/3,*/s), (1,0).

< x<l1 the
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1 . . . . ‘
g0y oyt — g Gy =1 1)]

a, ; 1 e
A
1y
y—1 o ]l g(/ v +)‘ £) e q(" A {)I
@ —(X+3 |a / AT ; BTN - Cay log hy —
az=l eyl 1,"7‘.,
[ s
—C, 2 a, logh, —2logh, E a,,
fiz=], TEVEN

sinee | g (h, X+ hyf) — g (o, 6 — i, ) [ =72 I we put a, = 1/ul, &, == 200" the
right-hand side of (3) divided by v tends to Clog2:~0, and this proves
that (1) diverges everywhere.

It is interesting to observe that the integrals
n "
@) / PAC t%“—;_f_ @, o / Jx-t-04-1 (; s d) = 2 (X) i

0 o

apparently similar to the integral 4.22(3), may diverge everywhore for f con-

tinuous. The proof, although analogous to that given above, 1 slightly loss
simple. See also § 8.9.5,

4.3. We have proved that the necessary and sufficient con-
dition that numbers a,, a, &, ... should be the Fourier coefficients
of a function feL?is that § a4+ (ai + b}) ... should converge.
The question arises if anything so simple can be proved for the
classes L” with 7452, The answer is negative and it is just this
answer which makes the Riesz-Fischer theorem and the Parseval
relation such an exceptional tool of investigation. Postponing
to a later chapler the discussion of some partial results which
may be obtained in this direction, we will consider here criteria
of a different kind, involving the Cesiro or Abel means of the
series considered. .

Besides the classes L,P, L" introduced in § 4.1 we shall consider

the classes B of bounded and C of continuous, periodic functions.
If a trigonometrical series

-

b iny
25 Cy o
[/

1) Lg, +ngl (@n ¢Os 11X + by, sin 1K) =
is a &) [f],.with / belonging to Ly, B or C, we shall say that the
series (1) itself belongs to Ly B, C respectively. By S we shall
denote the class of Fourier-Stieltjes series.

The first arithmetic means of the series (1) will be deno-
ted by o,(x).
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4.31. Classes B and C. A necessary and sufficient con-
dition that the series 4.3(1) should belong to C is the uniform con-
vergence of the sequence {o,(x)}. The necessity is nothing else
but Fejér’s theorem. To prove the sufficiency, we observe that,
for n>|k|, we have

2

2 (1 — ﬂ) Ce = 1 an(X) e~ dx.
n+4+1 27
As n— co, the left-hand side tends to ¢, and the expression on
the right to the Fourier coefficient of the function f(x) = lim g.(x).
A necessary and sufficient condition that 4.3(1) should belong
to B, is the existence of a constant K such that |o(x)| < K for all x
and n. The necessity was proved in § 3.22, with K equal to the
essential upper bound of | f|. Conversely, if |s,| < K, we obtain that

[

,o 1 . By
20> [dax=ta+ 5@+ (1) >
v k 2
. L 2 2 2] —————)
>t 2+ 1= )

where v>0 is any fixed integer less than 7. Making 7 - co we
see that & ai+-(af 4 83) +...+ (a2 + b)) < 2K Since v is arbitrary,
the series % @ + (ai + b1) +... converges, and so 4.3(1) is a [f]
with fe L2 Therefore a,(x)~f(x) almost everywhere, and the
inequalities [o.(x)| <K, imply that |f (x)| < K almost everywhere.

4.32. The class S. A necessary and sufficient condition that
the series 4.3.(1) should belong to S is that M [c.] < V, where V
is a finite constant independent of n').

If 4.3(1) is a S [dF], then

1!»—x

(1) anl) =L [ Kalox = 1) AP 0, oa0)| < L [ Kotx = )| dF ()]

Integrating this inequality with respect to x, and interchanging
the order of integration on the right?), we find that

Y Young [8].

?) |dF ()| means the same as dV (f), where V (f) is the total variation
of F over (0,1).

%) Sinece K, (u) is continuous, the justification of this procedure is imme-
diate: we may replace the integral of |s,(x)| by approximaie Riemannian
sums and interchange the order of summation and integration.
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an a

Wion] < L [1dF ()| [Kulx—tyds - [ [dF @] =V,
T b 0 i
where V is the total variation of F over (0,2=). For the second

part of the theorem we need the following important lemma.

4.321. Given a sequence of functions {Fy(X)}, a-"x =7b, of
uniformly bounded wvariation, either there exists a uniformly boun-
ded subsequence {Fyu(x)} converging everywhere to a Junction F(x)
of bounded wariation, or {| Fi(x)|} diverges uniformly to -~ as
n- ooty

Suppose first that all the functions F, are non-negalive, non-
decreasing and less than a coastant V. Let R=={r.} be the
sequence consisting of all the rational points from (a, b) and of
the points a, b. {Fu(r;)} being bounded, we can [lind a sequ-
ence (Sy) piy ph o Ph - of indices, such that {Fi(r)} converges.
Rejecting the first term p}, we find from the remaining indices
b, b5, ... a subsequence (S,) Dy Py oo . Py . such that {F,,'i(/‘.,)} con-
verges. Rejecting pi, we choose among the rest a subsequence
(Ss) Py 3y .. such that {Fyi(rs)} converges and so on. The se-

1.2 .3 .
quence pi, pi, pi, - being, from some place onwards, a subsequence
of every S, we see that {F,Jge(x)} converges, at least for rational X,
to a limit F(x), non-decreasing over the set where it exists.

For any x interior to (a, 6) put & (x) = lix? F(t)— lim F (),
JERAE S ()

r e R. Since for any system X, Xy, ..., % we have d (x,) - .-
+d (x,) < V, it follows that the number of the points x where
d(x) 3> e>0 is finite. Let Z be the at most enumerable set of
points for which d(x)>0. We will prove that, for any x c¢Z,
lim Fpile(x) exists. In fact, given an arbitrary 7 >0 and an x € Z,
X==a,b, we can find two rational points r'<x<r", such that
0L F(r)—F(r)<u. Since Fplle(r’) < F,,/le(x) < Fpl]e(r"), where the
extreme terms tend to F(r'), F(r') as k- oo, we see that the
oscillation of {F,,f(x)} does not exceed %, i. e. the sequence con-
verges.

Let D be the set of points where {Fi(x)} diverges; D is at most
enumerable. Repeating with D the same argament as with R, we

) Helly [11.
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find a subsequence {:} of {p}} such that {Fy(x)} converges in D,
i, e. everywhere in (a, b).

In the general case we put Fu(x)= Fu(@) + Pu(x) — Na(x),
where P,(x) and Nn(x) denote the positive and negative variations
of Fu(x) — Fu(a). Let us suppose that we can find a sequence
{my)} such that {F,(a)} converges to a finite limit. From {mz} we
choose a subsequence {m}} such that {Pn,(x)} converges, and from
{m}} a subsequence {1} such that {N(x)}, and therefore {Fry(x0)}
converges. That F(x) = lim F,(x) is of bounded variation, follows
from the fact that F (x)=lim Fr,(a)+lim Pn(x) —lim Np,(x), where
the last two terms are non-decreasing and bounded functions of x.

If our assumption concerning {Fu(a)} does not hold, then
[ Fa(a)| - co. Since the oscillations of the functions F,(x) are uni-
formly bounded, it is easy to see that {| 7 (x)[} diverges uniformly
to + oo as n»oco. This completes the proof of the lemma.

The following remark will be useful later. If the total va-
riations Pn(b) + Ni(b) of the functions F. do not exceed a number
W, the same is true for the total variation of F.

4.322. Supposé now, in the case of Theorem 4.32, the con-
dition M [6,] < V satisfied. Let Fa(x) be the integral of o(f) over
(0, x). The functions F.(x) are of uniformly bounded variation
over (0,27). Since F(0)=0, n=1,2, .., {| Fa(x) |} cannot diverge
to + oo and so there exists a sequence {Fn{(x)} uniformly boun-
ded and converging everywhere to a function F(x) of bounded
variation. Let 7;>|k|. Integrating by parts, and making j - oo,

we obtain
2w o
| %] 1 7 - 1 ., ik »
1— A2 Voo = = [ op, e®dx =— Fn,(27) + — | Fpje ™ dx
( ni-+ 1) Fomd Y 2z 5 (27) 2ﬁ0f " ’

bid it

o= L FEm) 4+ E [ Femax—L [ P (),

27 2% 27 h
for k=0,=%1, .., so that 43(1) is & [dF]. We complete the theo-
rem by a few remarks.

4.323. If 43(1) is a & [dF], where F(x)=% [F (x4+0)+F (x—0)]
for every, x and if the total wariation of F over (0,27) is V,
then M[o,] » V as n-oco. It has been proved in § 4.32 that
Tim M [6,] << V, and it remains only to show that the assumption
lim M [s,] < W<V leads to a contradiction.

A. Zygmund, Trigonometrical Series. ’ 6
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In fact, let {m;} be such that Wt [m,] " W. The sequence
{F,,j} considered in the preceding section may, plainly, be chosen
from {F,,,j} and, by the final remark of § 4,321, the total variation
of F(x)=1lim F,,j(x) would not exceed w. Without loss of pgene-
rality we may assume that F (%) = 4 [Fx 4+ 0) 4 F(x —0)], for if
we replace F,(x) by L[F(x 4+ 0)+ F(x — 0)] at every point of
discontinuity, the total variation of the function will not incre-
ase. Since G [dF] and € [dF,] have the same coefficients, it fol-
lows that the difference Fi(x)=F (x) — F(x) is equal to a con-
stant C at almost every point x. On the other hand we have
Fi(x) =% [Fi(x+0)—]—F1(x——0)], go that Fi(x) = C for every x.
Hence the total variations of F and F, over (0,27) are equal,
contrary to what we assumed.

4.324. A necessary and sufficient condition that 4.3(1) should
be a G [dF| with F non-decreasing is o,(x) -0, n = 0,1,2, ..

The necessity follows from the first formula 4.32(1) since
K,>> 0. Conversely, if au(x) 2> 0, the functions F,(x) consgidered
in § 4.322 are non-decreasing, and the same is true for F(x)==
=lim F,,j(x).

4.325. A necessary and sufficient condition that 4.3(1) should
be the Fourier series of a function of bounded wvariation is that
M o] = O(1). This theorem is equivalent to Theorem 4.32 (§2.14).

. 4.326. Carathéodory’s theorem. Let {Fi(x)}, 0 x - 2x,
be a uniformly bounded sequence of functions. If Fi(x) tends
almost everywhere to a limit F(x), then ckre, ag k> oo, where
¢k ey n=0,%1,.. denote the Fourier coefficients of the functions
Fi(x), F (x) respectively. Simple examples show that, without addi-
tional conditions, the converse theorem is fulse, and is an important
fact that this converse theorem is true when the functions Fi(x)
are monotonic. More precisely:

Let {Fi(x)}, 0 x<2r be a sequence of uniformly bounded
and non-decreasing functions, and let et be the complex Fourier coef-
ficients of Fu. If, for n=0,%1,+2,.., we have lim cj = c, as
k- co, the numbers c, are the Fourier coefficients of a monotonic
function F(x), and Fx)-> F(x) at every point x, 0 < x < 2x, where
F (x) is continuous?).

1) Carathéodory [2].
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In virtue of Theorem 4.321 there is a subsequence {Fy;} of
{F:} converging everywhere to a non-decreasing function F (x). It
is plain that the Fourier coefficients of F are c¢., and we
have only to show that F.(x)- F(x) except, perhaps, at the
get of points where F is discontinuous. Let § 0 <& <2g,
be a point of continuity of F(x). Let us suppose that Fu(&) does
not tend to F(f). We can then find a sequence {F} such that
lim Fp(%) exists and is 7= F(§). To fix ideas let us suppose that
lim Fy(&) > F (). We can find a subsequence {F(x)} of {Fr )}
such that lim Fj,(x) = G (x) exists everywhere. The Fourier coef-
ficients of G are ¢, and so F(x)=G(x). On the other hand
G (§) = lim F,(¢) = lim F,(€) > F (£), and, since G (x) is non-decrea-
sing and F (x) is continuous for x =¢, we have G(x)> F(x) in
an interval &£ << x < &+ %, £> 0, so that G (x) = F (x). This con-
tradiction shows that Fx(§) -~ F ().

4.33. Classes L,!). Let ¢(u), u>0, be convex, non-negative,
and such that ¢ (w)/u— oo as u~co ). A necessary and sufficient con-
dition that 4.3(1) should belong to L, is that M [p|c.|] < C, where
C is finite and independent of n?). ‘

We may suppose that ¢ (z) is non-decreasing, for otherwise
it is sufficient to consider the function 9*(#) equal to ¢ (#) for
u>u, and to ¢ (1) for 0 < u < 4, 4 denoting the point where ¢
attains its minimum. The classes L, and L are plainly identical.

To prove the necessity of the condition consider the inequality

v
a

|

[ K — B)1£ &) dt.

0

(1) loa(¥) | <

A

By Jensen’s theorem, and taking into account that the inte-
gral of the function p (f) = Ku(x —t)/= over (0, 2z) is equal to 1,
we find that

A

[ olf @) Kalx — 1) dt.

0

@) ?loatn)| < —

Integrating this with respect to x and inverting the order
of integration, we find the important inequality

) Young [10], see also Zygmund [4]
z) It follows that v is bounded in any finite interval.
%) We write v |, | instead of ¢(]s,]).
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3) M [ ] on |} <= DM e I£11,

which gives the first half of the theorem.

As regards the second half, the Jensen inequality ¢ (Wifa,]/2x)
< M [o]on[[/2n < C/2n implies that N [o,] = O(1), i. e. the series
43(1) is a © [dF] (§ 4.32). To prove that F(x) is absolutely con-

X

tinuous, it is sufficient to show that the functions Fu(x) = / o,(t) dt
0

are uniformly absolutely continuous, i, e. that, given an e.> 0, there
exists a ¢ >0 such that, for any finite system S-of non-overlapping
intervals (ay, by), (@, by), v, (by — ap) + (by — @) ... <28, we have

(4) %3 [ Fu(bi) — Fula))| =7 &, n=1,2,..").
The inequality .

¢ ("} [ Vou(x) | dx ) - "/CP |. ‘G.”._.‘“ dx - C

Sls S 18]

may be written in the form o (§u)/6u < Cf§, where wu==1/|S|,
E= / lox|dx. In view of our hypothesis concerning ¢, we see
s

that if u -~ oo, then £~ 0, and so if |S| is sufficiently small, then
£<e,

Since the left-hand side of (4) does not exceed &, the abso-
lute continuity of F follows.

Let F'(x)=f(x). The series 4.3(1) is &[f]. To show that
feL, we observe that o,~f almost everywhere, and, applying
Fatow’s lemma to the inequality N [¢|s.|] <7 C, we find that
M [fl<<C

As a corollary we obtain that a necessary and sufficient
condition that 4.3(1) should belong to L7, r>> 1, is that M,s,] = O(1)%.
As Theorem 4.32 shows, this result does not hold for r == 1.

4.34. A necessary and sufficient condition that 4.8(1) should
be a Fourier series Is that W [o, —a,] -+ 0 as m, 1 » 0¥,

1) In fact, if, for fixed S, the inequality (4) is matisfied by the fune-
tions F, it is also satisfied by F=lim F,,

) W.H and G. C. Young [1].

¥) Steinhaus [2], Gross [1].
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Let us suppose that 4.3(1) is a &[f].
equality

Integrating the in-

(1) |C’n(x)—f(x)i<%flf(x—}—t)—f(x)}](’n(t)dt

over (0, 2r), we find that

T ~
g

(2) Mon—f1< 1 [0(8) Ki(t) dt, where 7 (£) = /:; Flx+t)—f(x)]dx.

T

—TT -

Since 7 (f) is continuous and vanishes for #=0, and the
right-hand side of the last inequality is the n-th Fejér sum of
& [n) at £=0, we see that M[s,—f]->0, and so M[om — 0] <
< Mon—f]+M [6,—f]—+0 as m, n-co.

Conversely, the condition M [6, — 6,] >0 implies M[s,] = O (1),
i. e. 4.3(1) is a & [dF]. To show that F is absolutely continuous,
it is enough to prove (as in § 4.33) that M [o,; S]!) is small with
|S|=(b — a;) + (b, — a;) + ..., uniformly in 7. Now M [o,.8] <
< M [0, — a,; ST+ M [o,; S] < M [on — 0,50, 28} + M [0,5 S]. Let v

be so large that M [s, —0,] < % e for n>>v. For fixed v we have

1 . '
M [oy; S] < 0 e if only |S|<8& = &(c). Therefore M [o,; S] <e for
n>v, | S| <4, and this completes the proof.

4.35. Suppose that a convex and non-negative function ¢ (x)
satisfies the condition ¢ (0)=0, so that o is non-decreasing.
Assuming that 4.3(1) belongs to L,, we may ask under what con-
ditions M [¢|o, —f[] » 0. Starting from 4.34(1) and using an
argument similar to that of § 4.34, we see that M [¢]a, —fl1-0,
if only the function

o) 1 @) = [ ollf (41 —F () | dx.

is integrable and tends to 0 with £ This may not be true if ¢
increases too rapidly, but an insertion of the factor '/, into
curly brackets saves the situation: if fe L‘P, then the function
Mo/, | f(x+1) — f(x)]}] is integrable and tends to 0 with . In
fact, let f=g+#h, where g is bounded and M [¢|k]] <= By
Jensen’s inequality we have

1) This symbol denotes the integral of |s,| over S.
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WMo (o f(x+1)—F N < EM[p {{ g+ —g @[+
M {E 1A (o4 1) —h ().

The last term on the right does not exceed '/, W [ |/ (x - t)|]+
+1, M [¢|#]]<e/2, and, since the preceding term tends to 0, ')
the left-hand side is less than e for |#| sufficiently small.

At the same time we have proved that, If the series 4.3(1)
is a S[f] with fe L, where ¢ () is convex, non-negative, and
¢ (0) = 0, then

Wlp (s |f —o0nl}] >0 as 1> oo,
In particular, if fe L7, r =1, then W,[f — 0,] > 0 %).

4.36. Abel means. So far we have worked with Fejér's
kernel. The essential property of this kernel, viz. po&zi‘tiveriess,
is shared by some other kernels, in particular by Poigson’s
kernel. Therefore all our results remain true for Abel’s method
of summation, which, as we know, has a very important function-
theoretic significance. Since the proofs are esentially the same
ag before ?), we content ourselves with stating the results ), By
‘ Z (3r(,1))c) we mean the harmonic function corresponding to the series

(i) A necessary and sufficlent condition that 4.8(1) should
belong to C is that f(r, x) should converge uniformly as r-+1; a ne-
cessary and sufficient condition that 4.8(1) should belong to B, is
that f(r, x) should be bounded for 0 < r<1, 0 <7 X < 2,

(i) A necessary and sufficlent condition that f(r,x) should
satisfy a relation

27
frx=1

2ny 1 —2r cos (t —x) - r?

F(®),

where F is of bounded variation, is that M [f(r, x)] = O (1) as r
. , 0 ) , = ) as r-1.
If V is the total variation of F over (0,2x), and if 2F (x)= F(x+0)-+

") From our hypothesis concernin i
» serning ¢ it follows that, in any finlte in-
terval 0 Cu<Ca;, we have v (1) < Mu, with M= M (a). ’ oy flatte fn
" W.H and &. C. Young [1].
%) That in Abel's method the wvariahl
} ) ! e changes continuously is quite
1mmat?rml, since we may consider any sequence {r,} tending to 1. v
) See also: Evans, The logarithmic potential, Fich tenholz [11.
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4+ F(x—0) for every x, then W[f(r,x)]>V as r-1. F is non-
decreasing if and only if f(r,x) > 0.

(iii) Let ¢ (4) satisfy the hypothesis of Theorem 4.33. Then
a necessary and sufficient condition that 4.3(1) should belong to L,
is that M [e |f(r, x)]= O (1) as r-1. ‘

If 43Q1) is a S[f] with feL,, then M[o Y I f(x)—f(r,x)[}~0
as r-1. If felr, r>1, then M.[f(x)—f(r, x)] 0.

(iv) The series 4.3(1) is a Fourier series if and only if
M [f(r’ .XJ) '_f(p’ )C)] -0 as ryp- 1.

4.37. (C k) means. Most of the results remain true, although
some inequalities become less precise, for guasi-positive kernels,
in particular for the (C, k) kernels, & > 0. Let = W denote the
integral of 1Kﬁ(zz) /= over (0,27), and A= 2® the upper bound of
{)\E,k)}, n=1,2,.. We quote the following theorems, the proofs of
which follow immediately.

G If Mo lsh|] = O(1), then the séries 4.3(1) belongs to Le.
If 43(1) is a &[f] with fels, then M[e|2teh]] = O(1), and
M[o{ sk — f|/4N]=o0(1). In particular, a necessary and sufficient
condition that 4.3(1) should belong to L', r>1, is that M o] =0 (1).
[f4.3Q1) is @ S[f] with fel', r>1, then MW, f—och] -0 as n-oco.

(ii)y A necessary and sufficient condition that 4.83(1) should
belong to S is that M [sh)= O(1). ;

(iliy A necessary and sufficient condition that 4.3(1) should
belong to L is that M [ok, — i) >0 as m,n—co. '

4.38. Let us replace o, by the partial sums sx in the theo-
rems of §§ 4 31—4.35. The conditions which we obtain remain suf-
ficient (although, as we shall see later, some of them are no longer
necessary). The proofs are similar, except at one point: we can-
not use the fact that if 4.3(1) is a & [f], then Su(x) » f (x) almost
everywhere, for such a theorem is false. But for our purposes
it is sufficient to assume that there exists a subsequence {Sn,(X)}
of {s,(x)} converging to f almost everywhere, and we shall see
in § 7.3 that this is certainly true if {n;} increases sufficien-
tly rapidly.

4.89. In the sufficiency-parts of the theorems of §§4.831—4.38
it is enough to assume that the conditions imposed upon ca(X),
f(r, x), or Sx(x), are satisfied not for all indices n, r but only for
a sequence of them. The proofs require no changes.
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Thus if, for a sequence f; <y <" .., {Sup or {9y} converges

geries belongs to S, ete.

This enables us to state some of the theorems given above
in a slightly different form. For example, a necessary and sufficient
condition that 4.3(1) should belong to C is that the functions o,(x)
should be uniformly continuous. The necessily follows from the
inequality 4.33(1), which, applied to f(f -4 /%2) — f(#), shows that
o (3 0,) L@ f) (§ 2.2). Conversely, if the functions o,(x) are
uniformly continuous, there exists a sequence {g,,(X)} converging
uniformly to a continuous function f(x) '), and so the series is

glf}, feC.

4.4. Parseval’s relatioms. Let f and g be two functions
of the class L2, with Fourier coefficients a., b, and al, by, respec-
tively. Adding the Parseval formulae 4.22(2a) formed for f+-g and
f—g, we obtain

2
1) ;1: f fgdx

%]

-+ E](ﬂnah -+ bnb'n),
(=

B
2

where the series on the right converges absolutely. The formula (1),
which is called Parseval’s relation for f and g, holds in other
cases besides the one in whieh fe L2, geL??). Two classes of
functions K and K, will be called complementary classes if (1) holds
for every fe K, g € K;. The series on the right need not be conver-
gent; we shall only suppose that it is summable by some method
of summation. It will appear that the Fourier series of functions
belonging to complementary classes have, in some cases, much the
same, or analogous, properties, and Parseval’s formula (1), where
f and g enter symmetrically, is just the means to discover these
properties in common.

441. The following are pairs of complementary classes: (i) L,
and Ly, where @ and ¥ are Young's complementary functions,
(i) L7 and L" (r>1), (iil) B and L, (iv) C and S. In all these
cases the series in 4.4(1) is summable (C, 1).

) We apply here Arzela’s well-known theorem on families of ani-
formly continuous functions. See 6. g, Hobson, Theory of functions 2, 168,
%) The formula is obvious if one of the functions Jand g is a trlgono-

metrical polynomial. The series on the right consists then of u finite nuwmber
of terms. ‘
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Part (iv) of the theorem is to be understood in the sense
that, if as, b, are the coefficients of a €[f], fe C, and a}, b, are
the coefficients of a & [d(] ¢ S, then we have the formula 4.4(1)
with fg dx replaced by FdG. Part (iii) is a limiting case (r = =)
of (ii). :

Let o,(x) be the (C,1) means of &[f], =, the (C,1) means
of the series in 4.4(1), and 4, the difference between the left-hand
side of 4.4(1) and ¢,. We have then

(1) 4:=%f(f——o,z)gdx,

P

and, applying Holder’s inequality, we see that | 4, does not exceed
=t M f—0,] Mp[g] >0 as n-oo, This proves part (ii) of the

theorem. To establish part (i), which embraces (ii), we apply

Young’s inequality to | 4,|/16:
" 4p /16 <MD {Y, | f — oal}]+ M [¥{Y, [g]}].

From Theorem 4.35, we obtain that lim 4, < 16— M [¥{Y/, | g ].
Let g=g'+ g", where g' is a trigonometrical polynomial and
M {Y, | e"}] <e1). Substituting, in (1), g’ and g" for g, we obtain
eXpressions 4, and 4}, such that 4, = 4, + 4. Since g' is only
a polynomial, we see from Parseval’s formula for f and g' that
4, ~0. On the other hand, lim 4 < 16z M [¥ {Y/, | g"[}] <16¢/x.
Since lim 4, < lim 4, + lim 4} < 16¢/=, where ¢ is arbitrary, we
infer that 4,- 0.

If f is bounded, |f| < M, g integrable, then |f—o,||g]
tends to 0 almost everywhere and is majorised by the integrable
function 2M|g|. Applying Lebesgue’s theorem on the integration
of sequences, we conclude from (1) that 4, - 0.

Finally, to prove (iv), let us replace in (1) g (x) by dG (x).
Since = | 4, | does not exceed Max | f (x) — an(x)], 0 < x < 2%, mul-
tiplied by the total variation of G over (0, 2%), we have again
4, -0, provided that f is continuous.

4.411. Let g (x) be the characteristic function of a set E,
and f(x) an arbitrary integrable function. Parseval’s formula
for f and & may be written in the form

) We may take for g” a (C,1) mean of €[g], with index sufficiently
large (§ 4.35).
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/'f dx=4a, | E| ~|-5‘j /‘(a” cos nx -+ by sin nx) dx.
E el I

Hence &[f] may be integrated term by term over any measurable

set and the resulting series is summable (C, 1) to the integral of f

over the set. As we shall see later, the integrated series conver-

ges it fel,r>1. If fe L, this is not necessarily true (§ 4.7.16).

4.42. Applying Parseval’s equation 4.4(1) to the functions
f(x+1) and g (x), we find the formula

2
L4ty g () dn=
(1) T
! o .
= ‘{oé‘_lﬂ 4 3 {(antthy - babh) cos nt - (ahby — aubly) sin nt},
ne=1

where lhe series on the right is uniformly summable (C, 1) in
each of the cases considered in Theorem 4.41. Moreover, given
any pair of integrable functions f, g, the Sformula (1) holds, in the
(C,1) sense, almost everywhere in ¢. For the proof it is sufficient
to observe that the left-hand side 4 (f) of (1) is an integrable
function and that the series on the right is & [/] (§ 2.11).

4.43. Let ¢4, ¢y be the complex Fourier coefficients of f, g.
The formula 4.4(1) may be written in the form

1 b devo
1 — de= 2 ¢yc'p (C1).
M o[ e di= 2 ety (1)
So far we have considered only real functions, but the extension
of (1) to the case of f and g complex follows immediately. Sub-
stitute g (x) e= for g(x) in (1) and let ¢; denote the Fourier
coefficients of g (x)e~™* Since c!'p=¢}.p, we find that

Foa
2 Cpchp (G1), n=0,%1,..

2n
1
2) — e—ins gy =
(2) o b/ /g ,

Cousequently, the Fourier series of the product of two functions
fand g, felyp, geLy, can be obtained by formal multiplication
of &f] and &[g] by Laurent’s rule. The serles defining the coef-
ficients of the product are summable (C, 1),

The theorem remains valid if fe B, ge L,
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4.431. It is obvious that each of the inequalities
oo +oo
pgw{0p|<co, 2 ey <o

implies the absolute convergence of the series in 4.43(2). If both
the inequalities are safisfied, then ©[fg] converges absolutely.
4.432. In Theorems 4.41, 442 and 4.43 we may replace sum-

mability (C, 1) by (C, k), £>> 0. The proofs remain the same if we
use the results of § 4.37.

4.44. The problem whether summability (C, k) can be re-

‘placed by ordinary convergence is more delicate. In Chapter VII

we shall prove that the answer is positive if fel”, ge L,
1 <r<co. This theorem is rather deep; here we will prove a
more elementary result. If s, denotes the n-th partial sum of
& [f], the difference ¢, between the integral on the left and n-th

partial sum of the series on the right in the formula 4.4(1), may
be written in the form

2n
(1) = [ (F—s) gdx.

If the partial sums s.(x) are uniformly bounded and tend to
f(x) almost everywhere, the expression |f— S| |g| tends to 0
almost everywhere and is majorised by an integrable function.
Hence 8,0, so that the series in 4.4(1) converges to the inte-
gral on the left. Hence, reversing the rdle of f and g,

If f(x) is integrable and g(x) is of bounded variation, we have
the formula 4.4(1), where the series on the right is convergent?).

From this we deduce that, if f is integrable and periodic, (2, 8)
is a finite interval, and g (x), o < x < B, is an arbitrary function
of bounded variation, not necessarily periodic, then

B B - B 8
1) /fgdx:—%ac [gdx—l—Z{an [gcosnxdx+b,, / gsinnxdx},
a a =ty 2

i. e. Fourier series may be integrated term by term after having
been multiplied by any function of bounded variation?®. In fact,
if B —a = 2=, this is nothing else but the previous theorem. The

) Young [11].
) The case g (x) =1 has been considered in § 2.621.
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case P —a<2% may be reduced to the preceding one, putting
g(x)=0for p<<x < a+2r. In the general case we broak up
the interval (s, 8) into a finite number of intervals of length -

4.451). The last result can be extended to the case of an infinite inte
val, Without loss of generality we may assume that (m, §) s (= ey o oa),
The formula
oo
/fgdx_—%aD /g(x)dx-{—z {a,,/gcotsm dx - by, / & sinny dx}

—ca )

holds true for any integrable and periodic function f, provided thal g(x) is
(1) integrable and (ii) of bounded wvariation over (==, =), In fact, loet us put
w00
(2) (z(x) = Z g x+ 2hr),
If the series on the right eonverges at some point, then it converges uni-
formly over (0,2w), and its sum G (x) is of bounded variution (§ 2.85). On
the other hand, since

T ‘-uu

2 /\g (i - 2hm) | dx = / lg (%) | dx <2 oo,

he=—oo

—

we see that the series in (2) has certainly points of convergence (§ 4.2(1).

Let ¢}, =1 (al, —ib}) be the the Fourier coefficients of (G (x). We have
then a formula similar to 4.4(1), with g replaced by (. Observing that unifor-
mly convergent series may be integrated term by term after having been
multiplied by any integrable function, and remembering that f is periodie, we
obtain from (2) thut

o ' i

/fG dx—]fgdx, / G (x) € i == /g(,x) I g,

)

and the formula just referred to takes the form (1). This completes the proof.

-The hypothesis that g(x) is integrable over (--ee,=<) is, of course,
essential for the truth of the equation (1). However, if a,==0, condition (i)
of the previous theorem may be replaced by the condition that g(x)~0 as
| x|—+ee. In fact, let us put g*(x) = g (2kr) for 2kn «7 x<2(k-1)=, £=0,
&+ 1,.., and let v, be the total varviation of g (x) over (2kw, 2 (k1) ). The
function g*(x) is of bounded variation and, since 7 () = g (x) — g*(x) does not
exceed v, in absolute value for 2kw < X <2 (k1) =, the function y (x) is inte-
grable and of bounded variation over (—es,e), Let us apply the formula (1)
to the functions f and y. Since the mean value of f over a period is equal
to 0, and g(x)-+0 with 1/, it is easy to verify that

) Hardy [7]. Au intevesting application to the theory of the Rie-
mann { function will be found in Hardy [8].
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Joo - 4eo
[f{dx—/fgdx j-{e_””‘dx— /ge—””‘dx

—o0 —co

for n=-+1,42,..., and the result follows.

4.5. Linear operations. We will now prove a series of
results on linear operations!). These results will find application

"in the theory of trigonometrical series.

4.51. Linear and metric spaces.
elements will be called a linear space if

(i) There exists a commutative and associative operatmn,
denoted by +, and called addition, applicable to every pair x,y
of elements of E. If xcE, yeE, then x+yekFE.

(ii) There is an element oe¢ E (null element) such that
x4+ o0=x for every xeFE.

(iii) There exists a distributive and associative operation,
denoted by - and called multiplication, applicable to every xeE
and any real number o, with the properties that 1-x=x,
0-x =0, and that o -xe E.

In most instances it will be convenient to write ox
of a-x. The elements of E will be called points.

E will be called a metric space if to every x ¢ E corresponds
a non-negative number | x|, called the norm of x, satisfying the
following conditions

A set E of arbitrary

instead

lx+ylI<lxl+lyl Jox|=[=|[x], [x]=0 is equivalent to x=o.

The distance d (x,y) of two points x,y is defined as |x—y|,
where x—y=x+(—1)-y. We see that d(x, y) = d(y,x), dix,y)<
<L d(x, 2)+d(zy), and that d(x,y) =0 if and only if x=y.

We shall say that a sequence of points x. tends to the
limit x, x ¢ £, and write lim x, = x, or X, > x, if [x— x,|->0 as
I > oo,

Once the distance has been defined, we may introduce various
notions familiar to the reader from the elements of the theory
of point-sets. First of all we define the sphere S(x,,p), with
centre x, and radius p, as the set of points x such that d(x, x,) <p.

) For a more detailed study we refer the reader to Bana ch’s Opé-
rations linéaires.
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This notion enables us to introduce various sorts of point-sets:
open, closed, non-dense, everywhere dense; furthermore we may
consider sets of the first category, i. e. sums of sequences of
non-dense sets, and sets of the second category, that is. sets which
are not of the first category.

4.52. Functional operations. Let us consider besides £
another space U which is linear and metric. If to every point x ¢ £
corresponds a point # =u (x) belonging to U, we say that u (x)
is a functional operation defined in E. The operation u (x) is said
to be additive if, for any points xy, x, from E, and any numbers X, A,
we have 1 (A %,y Xy) = Ay i () - A 1 (). If w (X)) >u (%) as
X, X, we say that u is continuous at the point x. If an additive
operation u (x) is continuous at some point, it i conlinuous at
any other point, i. e. is continuous everywhere. A necessary
and sufficient condition that an additive operation u (x) be con-
tinnous is the existence of a number M such that

N [ (x)]|

The sufficiency of the condition is obvious. To prove the
necessity, let us suppose that there exists a sequence of points x,
such that || # (x,)| > 1| x,|. Multiplying x, by a suitable constant
we may assume that || x| =1/n. Then X, -0, whereas the last
inequality gives ||« (x,)||> 1, so that 2 would be discontinuous at
the point o.

For the sake of brevity, operations that are continuous
and additive will be called /inear operations. The smallest num-
ber M satisfying (1) will be denoted by M, and called the modu-
lus of the linear operation u. M, may be defined as the upper
bound of ||« (x)|| on the unit sphere || x||=1. It must be remem-
bered that the norms on the right and on the left in (1) may
have quite a different meaning, since the spaces £ and U may
be different. In the applications which we shall consider in this
chapter, the space U will be the set R of all real numbers, and
lz| will be defined as |u/.

< M| x|, for every x e L.

4.53. Complete spaces. A linear and metric space is
said to be complete, if for any sequence of points x, such that
[¢m—2%alj >0 as m, n- oo, there exists a point x such shat || x| 0.
It is an important property of complete spaces that they are of

&
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the second category, i. e. cannot be represented as sums of se-
quences of non-dense sets?).

4.54. Examples. In the examples which we consider below
the points of E are either real numbers or real functions, and in
each case addition and multiplication receive their usual interpre-
tation; the null point will be denoted by 0.

(i) It E=R,|[x||=]|x]|, wehave a linear, metric, and complete
space.

(i) If E is the set of all functions x (f) defined and conti-
nuous in an interval (a,b), and if || x||=Max|x(f)], a <t <5,
then E is a linear, metric, and complete space. The relation x,-x
means that x,(f) converges uniformly to x (¢).

(iii) If in the previous example we suppose that E is the
set of all functions x (f) essentialy bounded on (g, ), and put
|| x|l =the essential upper bound of | x(¢)], we have again a linear,
metric, and complete space; x,-+x means that x.(f) converges
uniformly to x () outside a set 7, | T|=0, of values of £

(iv) Let E be the set of all functions x (¢) € L*(a, b), p > 1,
and let ||x||=||x|,=M,[x; a,b]. The space is linear and metric
(§ 4.13). That it is also complete was proved in § 42. If p = o,
we obtain, as a special case, the space considered in (iii).

4.541. Classes Ly. Let @ and ¥ be a pair of functions com-
plementary in the sense of Young. We ask under what conditions
the class Ly (a, b)) may be considered as a linear and metric space.
First of all we have to define the norm || x!, and, if the definition
is to be useful, the inequality ||x [[<oo and the integrability of
@ [| x (£)|] must be, in some degree, equivalent. We might be inclined

b
to put || x||= D [/ @ (Jx)) dt], where @_,; denotes the function in-
a

verse to @, but a moment’s consideration shows that this defini-
tion, which is modelled on the case @ (x) = u’, cannot be adopted.
First of all the condition || x ||=|2] || x|| would be satisfied only except-
ionally. Moreover, and here lies another difficulty, if @ (z) increa-
ses very rapidly, the integrability of @ [|x,(¢)|] and @ [|x,(¢)|] does

1) The proofs in the general case and in the case £E=R do not differ
essentially; see e. gs Hausdorff, Mengenlehre, 142.
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not involve the integrability of @ [|x,(f) - x,(?)||. For these reasons
we must proceed otherwise').

We shall denote by L = Lgp(a, b) the class of all functions
x (), a <t < b, such that the product x (f) v (¢) is integrable for
every y (f) € Ly-(a, b). If we put

b 14

|x|l=|x|lp=Sup l‘/ x(t)y (¢) dt|, for all y with p, n./ Y y|dt-1,
then it is easy to verify that L’f,, is a linear and metric space.

We assume without proof that ||x| <l o for every x €Ly,
This result will be established in § 4.56.

We shall prove that L(p is also a complete space. ‘aupposu that

Xm — Xn|| >0 as m, oo, g0 that || xu — x4 || =€ for m, n.+ vy (e),
It follows that [
1) [ Com —xa)y dt] < 5
b ’
@ [lm—xally|dt <, it gy <1 and m, 0.
Let « be the number such that (b—a) ¥ (2) =1, Taking

y(f) =0 sign (xn—x,), we obtain from (1) that M [x, -~ x,; a, b]<e/a,
Since € is arbitrary, there exists a sequence {x(f)} converging

almost everywhere to a function x (¢) (§ 4.2(ii)), and, applying Fatou’s
4

lemma, we obtain from (2) that /}x Xl lyldt "¢ if py <1

and so ||x—x,| e for 1> v. Thls completes the proof,

We assumed tacitly that & — a <o, but the theorem holds
true if b —a=co. In fact, proceeding as before, we bhOW that
M [xm — X4; @', 5]~ 0 for every interval (a, b'), b’—- a' < oo, contai-
ned in (4, 0). Thence we infer the existence of a sequence {Xm, (D)}
converging almost everywhere in (a, b), and the rest of the proof
remains unchanged.

It is obvious that, if x e L, then x ¢ L":,,. The converse is
false but we shall prove that, if x ¢ L:},, there exisls a constant
6>0 such that 9xeLy, More precisely, if x¢ Lep, X<£0, then

) See Orlicz [1].
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b
/ D[x/||x[]dt<1. It is sufficient to prove this for x bounded.
We will show first that
I,‘}x“ if oy <1}
l“xifij it p,>1]
The first of these inequalities is obvious; to obtain the second
let us replace y by y/p, in the integral on the left. The function

7" is convex (§ 4.141) and so, by Jensen’s inequality, we have
7| ylpy| < ¥|ylpy, so that

b
®) WEZARS

b

/mewmu,ux_ﬂ

a Oy

<=l

and this is just the second inequality (3). From (8) we deduce
that the integral on the left does not exceed |/x|g, in absolute
value, where p) = Max (py, 1).

We know that Young’s inequality may degenerate into equa-
lity; in particular we have

i ’*/qj[

if yz?[[xl/],xll]mgnx (§ 411). Since py is finite with (a, ),
we see that p, <<pl, p), =1 and the result follows?).

]dt";‘fy P’:

It is not difficult to see that a necessary and sufficient con-
dition that x (#) should belong to LZ}) is the existence of a con-
stant >0 such that 6 xelyp. In particular, if @ (1) satisfies,
for large u, the condition @ (2z)/@ (u) < C, where C is independent
of u, and if b—a<co, the classes Ly and Ly are identical.
A simple calculation shows that, if @ (u) = u”, where r > 1, then
[| x|l =r"M,[x], so that, apart from a numerical factor, we have
the same norm as in § 4.54 (iv).

4.55. The Banach -Steinhaus theorem.
proving two lemmas.

(i) Let {un(x)} be a sequence of linear operations which
are defined in a linear and metric space E. If F denotes

We begin by

1y Here again the result holds true for b— a=-=-,

A. Zygmund, Trigonometrical Series. il
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the set of points for which lim || w(0)|| = oo, then FeoFyd-Fy- .,

where the sets F; are closed and the sequence {||u.(x)[|} is uni-
formly bounded on each of them.

Let F,x be the set of points where || #n(x)|| 7. Since the
operations u are continuous, the selts Fun are closed, and so
are the products Fyu = Fip Fau ... We have [[un(x) |- n for x ¢ F,
m=1,2, .., and F=F -+ F, -+ ...

(i) If the space E of the previous lemma is complete, and
the set F of the second category (in particular, if F==FE), then
there exists a sphere S (x,,p), p -0, and a number K, such that
| zn(x) || << K for x e S(%,,p0) and m=1,2, ..

Since F=F, - F, .., and F is of the second calegory, at
least one of the sets Fj, Fy, .., say Fr, is not non-dense and so
there exists a sphere S (x,,p) in which Fr it everywhere dense.

and consequently
lum(x) ] << K for x €S (xy,p), m==1,2,..

Let {uu(x)} be a sequence of linear operations defined in o li-
near, metric, and complete space E, and let My, denote the modulus
of the operation u, (4.52), If lim ||uu(x)|| is finite for every point x
belonging to a set F of the second category in E, then the sequ-
ence My, is bounded. In other words, there is a constant M such that
H llm(x) H \'/b M HXJ H: m= 17 2: e 1)-

Let S(x,p) be the sphere considered in (ii). Since every
xe S (0, p) can be writen in the form x = x, X, where x; ¢ § (x,, p),
we see that [[u.(x)|| < 2K for x e S(0,p), 71, 2,.. It follows
that ||u.(x)]//| x|| <CRK/p =M on the sphere [ x| ==p, and so
||#n(x) || < M || x|| for every x and n. ‘

The theorem may also be stated as follows. If the sequence
[[#a(x)|| is unbounded at some point, the set of points where this
sequence is bounded is of the first category in E.

4.536. Corollaries. In this section we consider operations
of the form
b

a u(x)=[x )y () dt,

) Banach and Steinhawus [1]. The idea of the proof, due to Saks,
may be applied to many similar problems.
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where x belongs to a linear, metric, and complete space E, and y
is a function such that xy is integrable for every x ¢ E.

(i) If the integral (1) is defined for every bounded, or even
only continuous, function x (¢), then y e L(a, b). (ii) Conversely,
if the integral (1) converges for every x e L (a, b), then the func-
tion y is essentially bounded. (iii) If the integral (1) exists for
every X € Ly(a, b), then y ¢ Lix(a, b), where @ and ¥ are functions
complementary in the sense of Young.

To avoid repetition we take these theorems for granted; they
can be deduced from more general results which we will now
prove.

(iv) If the sequence

b
(2) llu(JC) =‘/ X (Zf) yn(t) dt
a
is bounded for every bounded, or even only continuous, function x,
then M [yn; a,b]=0(1). (v) If {ux(x)} is bounded for every x ¢ L (a, b),
then the essential upper bounds of y. are uniformly bounded. (vi) If
{un(x)} is bounded for every xe Ly, then ||y.!|y = O(1).

To prove (iv), we observe that, in virtue of (i), each of the
functions y, is integrable, and so #.(x) is a linear operation defin-
ed in the space considered in § 4:54(iv), r = 1. Putting x = sign y,,
we see that the modulus M, of the operation u, is equal to M [y],
and it is sufficient to apply the Banach-Steinhaus theorem. The
case of continuous functions is not essentially different: we con-
sider the space of § 4.54(iii), and, since the function sign y.(?) is
the limit of a bounded and almost everywhere convergent se-
quence of continuous functions, we have M, = [y, again.

In case (v) we proceed similarly: each of the functions
Yn is essentially bounded, and M,, = the essential upper bound
of {yal. ‘

In case (vi) each of the functions y. belongs (by (iii))
to Liy. In virtue of the inequality M | z.(x) — z.(x,) | < || x— %, }|¢,p;"yn
(§ 4.541), where 2 >0 is a constant so small that iy, e Ly, we
obtain that z#,(x) is a linear operation. Hence, by Theorem 4.55,
lun(x)| < M| x]|p, for n=1,2,... Now, if the integral of @ (| x|)
over (a, b) does not exceed 1, then || x| < 2, and so the inequal-
ity |uu(x)| < Mlilx|lp gives ||yn|w < 2M, n=1,2,.., and the
theorem is established.
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The above proof may be used to establish (i), (ii) and (iii) (pro-
position (i) in the case of bounded functions, is trivial, since we
may put x = signy). To prove (iii) we put yu(f) =y (f) whenever
ly| < n, and ya(t) =0 elsewhere. The formula (2) defines a se-
quence of linear operations, and the inequality 13|l = O (1)
implies || y[ly < o

(vii) If the sequence (2) is bounded for every x e L, then
MWy [y = O ) D). (vili) If the sequence (2) is bounded for every
x¢Lg, then there exists a constant 00 such that W[V 0y,[]=0@1)*.

The first of these propositions is a corollary of (vi). To
obtain the second we obsgerve that,if ||y |ly << M for n=1,2, ...,
then M (V| 3/M[] < 1. (§ 4.541).

The theorems which we have established for integrals have
analogues for infinite sums. The proofs remain unchanged .

4.6. Transformations of Fourier series. Given a numer-
jcal sequence Ay, A, g, ..., let us consider, besides the series

1) L ay + 2 (an cos nx + by sin nx),

S

the following two series

@) 0+ )]l Aq COS 1,
ns)
(3) Lagh+ 21 Mi(@n cOS 11X + by sin nx).
===

Given two classes P, Q of trigonometrical series we shall
denote by (P, Q) the class of sequences {\;} transforming P
into Q, thdt is such that, whenever (1) belongs to P, (3) belongs
to Q9.

) Hahn [1].,

2) Birnbaum and Orlicz [1].

% See e. g. Banach, Opérations linéaires.

1) For the problems discussed in this paragraph see Young [9],
Steinhaus [2], [8], Szidon [1], Fekete [1], M. Riesz [8], Zygmund
[8], Boehnerfl], Verblunsky [1], Kaczmavrz [5], Hille and Ta-
markin [1,]. :
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A necessary and sufficient condition for {&,} to belong to any
one of the classes (B, B), (C, C), (L, L), (S, S) is that the series (2)
should be o Fourier-Stieltjes series.

Let (1) be a ©[f] and let ou(x), l(x), oi(x) denote the (C, 1)
means of the series (1), (2), (8) respectively. We have

2
(4) 51 (x) = —i— [ f et by 1oy at.

Put x=0. If X, e(C, C), or if 2. e (B, B), the sequence {o3(0)} is
bounded for every f¢ C, and, by Theorem 4.56 (iv), we have
M [L]=0(1), i. e. (2) belongs to S. Conversely, if the series (2)
is a &|dL]e S, the formula (4) may be written in the form

2
(5) ' on (%) = —i«/ on(x 4 t) dL ().

Thence we deduce that the uniform boundedness of {s.(x)} invol-
ves that of {oi(x)}. Similarly, if om(x) —on(x) tends uniformly
to 0 as m, n - co, so does op(x)— ci(x), and this completes the
proof of the theorem as regards the classes (B, B) and (C, C).

It (X} € (S, S), it transforms, in particular, the series i+cos x+
+ cos 2x + ... € S into the series (2), which must, therefore, belong
to S. Conversely, if the series (2) is a ©[dL], we obtain from (5)
that

©) [oh0) | < = [ [ + ) [[AL )

Integrating this inequality over (0, 2z), and inverting the
order of integration on the right, we obtain that M [a7] < (/=) M5a],
where v is the total variation of L (£) over (0, 2z). Hence the
series (3) belongs to S.

It remains only to consider the case (L, L). Since

2%
| at(x) — o3(%) | < -1;[ | om(x 4 £) — ol + B)| | AL (B))

M [or — an] < (v/5) M [5m — o4),
the sufficiency of the condition is obvious (§ 4.34). To prove

the necessity let us consider, for every 7z, a system I = {(ed, BY),
(3, 83), ...} of non-overlapping intervals. It follows from (4) that
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an
~ 1 v J
() [ anxyde == [ £( f [ bt — x) dx | az.
i z \ l

Suppose that (2) does not belong to S, so that the indefinite in-
tegrals of the functions /,(x) are not of uniformly bounded var-
iation. We can then find a sequence I, /,, ... such that the coef-
ficient of f(¢) in (7) is not uniformly bounded. By Theorem
4.56(v), there is an integrable f such that the right-hand side in
(7) is unbounded, and, a fortiori, M [5,] 5= O (1). It follows that
the series (3) does not belong to S, and, in particular, does not
belong to L, although (1) is a Fourier series.

4.61. Let P denote the class of trigonometrical series con-
jugate to those belonging to P. It is plain that if 7, and gimi-
larly Q, is one of the clagses B, C, L, S, then (P, Q) == (P, Q).

A necessary and sufficient condition that {\.} should belong
to any one of the classes (B, B), (C, Q), (L, L), (§,5) Is that the
series conjugate to 4,6(2) should belong to S.

The proof is similar to that of Theorem 4.6. We need only
slightly change the formulae which we have used, so as to intro-
duce conjugate series. In fact, let o,(x) and o,(x) denole the
first arithmetic means of the series

o o
(1) 21 (@n sinnx — by cos nx),  (2) 2 M@y sin nx — by cos nx)
== A=l

respectively, and let /,(x) be the arithmetic means of the series
Agsin x 42, sin 2x 4 ..., conjugate to 4.6(2). If the series 4.6(1)
is a ©[f], we have the formula

a
) ) == [ fe+ 0T
L}
analogous to 4.6(4). Considering, for example, the case (B, B), we
suppose that the series 4.6(1) belongs to B and ask under what
conditions (2) is the Fourier series of a bounded function. Arg-
uing as in the preceding section, we obtain that the necessary
and sufficient condition is M [,] = O(1). The remaining cases
may be left to the reader.

4.62.. Let v (#), u>> 0, be a function non-negative, convex,
bounded in any finite interval, and tending to infinity with #.
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If the series 4.8(1) is the Fourier series of a function f such
that v (|f] is integrable, and if 4.6(2) is a E[dL], then 4.6(3) is
the Fourier series of a function g (x) such that  (\gl=fv) is integrable,
where v denotes the total wvariation of L over (0, 2x).

Without real loss of generality we may suppose that y ()
is non-decreasing. Let £;=2xi/N, i=0,1,..,N, and let v(x)
denote the total variation of L over (0,x), so that v (27) =w.
Dividing both sides of the inequality 4.6(6) by v, and applying
the mean-value theorem in each of the intervals (fi—, %), we
obtain that
N N

n | 5i(x) v < ‘_Sl Ei]-’i/_; i

where p; = v (¢;) — v ({i-1), &= su(x + 1), ti1 << £ < % Applying
Jensen’s inequality, and making N - oo, we obtain that

N N (= Q1 = ‘ ‘
< 2@ Pl Py 74 oK) | (< }7-/ 7 lonlx+)|dL().

l b

Now it is sufficient to integrate the last inequality over (0, 2z),
to invert the order of integration on the right, and to apply
Theorem 4.33.

It must be emphasized that the condition which we imposed
upon the series 4.6(2) is only sufficient and by no means neces-
sary. This is easily seen in the case v (@) = u?, since, by the
Riesz-Fischer theorem, a sequence {\.} belongs to the class (L% L?)
if and only if A= O(1).

The theorem which we have proved may also be stated in
the following form. If @ (x) is a Young function and the series

S ey i
/.lv | ’l(x) ’j

'4.6(2) belongs to S, the sequence {}.} belongs to the class (L, Lep)-

It belongs in particular to every class (L, Ln,r>1.

4.63. Let @, ¥ and @, ¥, be two pairs of Young’s com-
plementary functions. .

The classes (L, LZ‘%) and (L?jp‘l, Ly) are identical.

The proof will be based on the following lemma. A necessary
and sufficient condition that the series 4.6(1) should be a E[f] with
fe Ll is that, for every g e Ly with Fourier coefficients ay, by, the
series
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Q, a
¢y 5
should be finite (C,1)Y).

It fe pr, geL?}», there exist two constants A >0 and p >
such that A fe Ly, p g € Ly, and the necessity of the condition fol-
lows from Theorem 4.41(i). To prove that the condition is sufficient let
ou(x) and 1, denote the first arithmetic means of the series 4.6(1)
and (1) respectively. We have then '

p .

0 %

-t 2.11 (ap an-- by by)
=

a7

0

Since the sequence {t,} is bounded for every g e Ly, it follows
t}iat [ 5n]lgp = O (1), which shows that the series 4.6(1) belongs to
Ly (8§ 4.56(vi), 4.33).

Now it is deasy to prove the theorem. If {},} ¢ (L:},, L:},) then,
for every f e Lg with Fourier coefficients ay, b,, and every ]ge Ly
with Fourier coefficients aj, &, the series |

(2) '%' )‘D [ a(; 21 ()‘n Qn a;z + )\r/. bn b‘,)
n==,
is finite (C, 1).

. It means, in virtue of the lemma, that the series with coetfi-
cients X, ap, A, b, belongs to Ly, i. e. {\:} e (L, L)
s L)

Coro;larifs. *(i) If <D*and* ¥ are complementary functions,
the classes (Lyp, Lp) and (Ly, Ly) are identical.
. (i) If r>1, s>1, the classes (L7, L) and (L%, L") are iden-
tical. In particular (L7, L") = (L”, L").

In Ch. IX we shall prove that,if » <s<p', ti r o
is contained in (L*, L), ) r'y the class (L7, L")

4.64. If the series 4.6(2) belongs to L, then {\ S
{)\.,,}e(B, ‘C). Let 4.6(1) be a &[dF]. From the forr{mllll}ae ié(g’
with f (x + ) replaced by dF (x+£), we find that =) [5m — o] doeb:
not exceed M [/ — /] multiplied by the total variation of F
over (0,2x). It follows that W [oy —op]+0 as m, n- co. Thuﬂ

) A series uy4-u, .. is said t ini |
0 be finite (C, ), i 3
means of the series forms a bounded gsequence, (6 the st Costro
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the *serief 4.6(3) belongs to L. Similarly we find from 4.6(4) that
% |om — on| does not exceed M [ln— /) Max |f], i e. B istrans-
formed into C.

A similar proof shows that, if the series conjugate to 4.6(2)

belongs to L, then (A} e (B, C), {\a} € (S, L).

4.65. The conditions which we imposed upon {%.} in the
preceding section are not only sufficient but also necessary. For
the first parts of the theorems this follows immediately by consi-
dering the series § 4 cos X + cos 2x ... (C S and sinx+ sin2x+
4 ...e S. For the second parts the proof is more difficult and we
do not propose to consider it here.

Let {\,} be an arbitrary convex sequence tending to 0, e. g.
£, = 1%, a >0, h=1/log 1, \,=1/log log n, for n sufficiently large.
In § 5.12 we shall prove that the series 4.6(2) with such coefficients
belongs to L, i. e. {\:} transforms Fourier-Stieltjes series into Fourier
series, bounded functions into continuous.

The sequence A, = 1/(log n)'*%, ¢ >0, n>1, belongs to (S, L)
and (B, C). For =0 this is no longer true (§ 5.18).

47. Miscellaneous theorems and examples.

1. Let ¢ (x), x>0, be convex, increasing to e with x, and vanishing
at the origin. If ¢(y) is the inverse function, and a.»0, >0, then
ab < ap (@) by (6)- ,

9. Given afunetion Fe L'(a,b), r>1, let Ig= I [FG dx|, where Ge L.
a

Show that M, [F]= Sup /4 for all G with M, [G1<L.

[Since M, [F] < e, we may suppose that M [F]=1. By Young’s ine-
quality we have 10<?‘)E;[F]/r—I—-S)Pﬁ[G]/rﬁg 1, and for a special function G,
viz. when G=| Fl'—!sign F, we have [z=1. It is easy to see that the theo-
rem holds true when D, [F] = e

We add that, if (a,b) = (0, 2x), it is sufficient to take for the functions a
only trigonometrical polynomials, gince for any Gel” we can find a trigono-
metrical polynomial g such that M, [G—g]<e and so, by Minkowski's ine-
quality, | M, [G]— M.[£] | <l

8. Let y(x), x>0, be convex and strictly increasing, 7 (0)=0. Let f(x)
be integrable and periodic, and F(x) the indefinite integral of f(x). I
My | f1;02x] KL C, and 0<Th < 9%, then | F (x -7 — F(x) | < By (C/R), Wh,elre
Yy 18 the function inverse to y. If fel’, r>»1, then w (F;8) = o (3Y,
Young [3].

[Apply Jensen's inequality].


pem


106 Chapter IV. Classes of functions and Fourier series.

4. It Flog" | f| is integrable over (—w,m)%), so is flog1/ x|,

[Apply Young's inequality to the produet 2|f|-%log 1/ x||.

5. If a, are the cosine coefficients of f(x), and f(x)log 1/ x| ig inte-
grable over (—m, =), the series a, - ay2-}-ay/8--.. converges and has the

2

sum ~—£/f(x) log @sin%x)dx. Hardy and Littlewood [7].
g

[Express the partial sums of the series as an integral. The partial sums
of the series cosx-+Ycoa2x .. are O(logl([x)) uniformly in n.  This fol-
lows from the first formula 1.12(3) and from the general theorem that, if

ag r=1—1/n->1. To prove the latter fact we observe that, il |u,| -~ A/k,
then [f(7) — s, |<TA = [ |42 ] au| - -n]a, | 4= Aln (L r)y =2 O],

6. Let m,,(ﬁ) = (U/I(a;f) == Max W, [f (2 -R) = f(0); O8] for O herd,
The function f is said to belong to Lip (%, p), if ml,(?:) = () (?3'”). show that
(i) if feLip (s p), then feLip(xp), 0<p, < p, (i) il f is continuous and
pres, then v,(8) » o @), (iil) if fe Lip (4, p), then fel”,

[To prove (iii), integrate the inequality ‘J.h‘;:[f(,\%lw Ry = F () 0 € with
respect to £, invert the order of integration; and consider a value of x for
which the function [f(x-+#)—f(x)l’ is integrable with respect to /. 7T a-
markin, Fourier Series, p. 49].

7. A necessary and sufficient condition that f(x) should belong to
Lip(1,1) is that there should exist a function g(x) of bounded variation,
equivalent to f(x). Hardy and Littlewood [6,].

[To prove that the condition is sufficient, let g,(x) be the first arithme-
tic means of &[f]. Then M [o,(x-+h)—s,)] <M [f (€ | h) - F ()] <X Ch,
M [o},(x)] < C, and it is suflicient to apply Theorem 4.825. To prove that the
condition is necessary it is enough to suppose that f(x) is non-decreasing,

For a more elementary proof see the paper referred to above].

8. A necessary and sufficient condition that JF{x) should belong to
Lip (1,p), p>>1, is that f should be equivalent to the indefinite in tegral of a
function belonging to L”. Hardy and Littlewood 16,].

[The condition is necessary since

2 Heleh n
MNE [f (x4 h) — £ ()] / { [ f’(t)ldt}p dx P [1£[Pat.
0 X h

To show that the condition is sufficient we prove that ‘.Dl‘;,[‘c;l(x)']mo ).

9: Let 5,(x) and o,(x) be the partial sums and the (C,1) means of S|[f].
Then (i) a-necessary and sufficient condition that f should belong to Lip«,
0<a<(1, is that the s, should belong to Lip « uniformly o n, ({) if feLip «,

then o (3;s,) = 0 (3” log 1/8) uniformly in n.

9 It u is real, u denotes the number Max (z, 0).
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10. Let o,(x) be the first arithmetic means of a trigonometrical series.
A necessary and sufficient condition that the series should be a Fourier series
is that there should exist a function ® () >0, o (m)ju->e with 1, and such
that Mpls,|]=0(1). dela Vallée-Poussin [2].

[If ¢ (1) >0, ¢ (4)/u—>e< there exists a convex function o,(u) < ¢ (u), sa-
tisfying the same conditions. If fel, then there exists a funetion o (1),
9 (u)/u oo, such that ¢ (|fDel].

11. Let f(r,x) =Y%a,+(a,cos x+ b, sinx)r+.. A necessary and suf-
ficient condition that f(r, x) should be a difference of two non-negative
harmonic functions is that M [|f(r,x)|]=0(1) as r—>1.

12. Let ¢ (1) be convex, nom-negative, and inereasing, and let %a,+
-+ (a,coBx--b;sinx)--... be a S[dF]. A necessary and sufficient condition
that the positive variation P (x) of F(x) should be absolutely continuous, and
that P’(x) should belong to L o 15 e {/ T, 1= 0 (1) as r > 1, where 7(r, x)
has the same meaning as in the previous theorem.

13. If fel? and ¢, are the complex Fourier coefficients of f, then the
o

~ TDG .
function /i (x) ==-2—1; / flx 4B f(@)dt is continuous, and & (x) ~ E [en 2™
T. N=—oa
[t}

(§ 2.12). Show that Parseval’s theorem is a simple corollary of this result.

14. Let s;(x), r >0, be the r-th Cesaro means of a trigonometrical series.
A necessary and sufficient condition that the series should belong to pr is

i G;LH(D: O (1). If the series is a &{f] eL?D then |jf— :;['@—»O as n—ree,

15. Let X be the set of all functions x (f) which are the characteristic
functions of measurable sets contained in (0, 2x). If the sequence 4.56(2), where
(a, b) = (0, 2r), is bounded for every xe X, then M [y,]=0(1). Saks [1].

[The proof runs on the same lines as that of § 4.55. If we put ||x;,—x.|=

an
= / | %,(t) — xu(f) | df, X becomes a metric and complete space. X is not a li-
0
near space but it has the following property which may in most cases be
used instead of linearity: let S(wp), p >0, be an arbitrary sphere; for any
xeS(0,p) there exist two points x; and X, belonging to S(u,¢) such that
x=x, — X, It suffices to put x,(&) = u(t)+x () [1—u @), x () =u () [1—x @]

16. There exists a functien feL and a measurable set £ such that
& [f] integrated formally over £ diverges.

[This follows from the previous theorem and from the results of § 5.12].
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