CHAPTER III.

Summability of Fourier series.

3.1. Toeplitz matrices. An infinite matrix

Qany Qoiy voe Quny s
oy Aygy oo Byny o

oY =

Qngy Aigy oo Ainy o [

is' fzalled a Toeplitz matrix, or T-matrix, if the following three con-
~ditions are satisfied (i) ]i!}l =0, k = 0,1, .., (if) i Ay = 1,
(iii) Ni§ C, i=0,1,..., where Ai=an+an-F.., N;= | | “}ff |4
fmd C is independent of i, Given a sequence {81}, we ‘transforlﬁ".
it by‘the matrix 3, i. e, consider the sequence o, == a, s, iy S; ;‘lw
provided that the series on the right converge. If a, » S,’we «;ﬂ"s;
that the sequence {s,}, or the series with partial sums s, is sun-
mable »‘25[) to the value s. The expressions g, are called 1‘['—meuns.
. If VF is @ T-matrix and if s, - s, where s is Sinite, then o, »s1),
E fafz't, if sf=s+ &, €0, then o, = o} 4 a}}, where a, = A,s >
(S i131706(}111)21.”,(?nm any >0, suppose that [e.|<e¢/2C for k> k,
S 1% :eé()fGSO( (%o [+ o A @an | [on,]) + ([ @nngp | [engn | + 20,
N tenl(li tsu(r)n on ’fhe lrlght is less than C-&/2C = ¢/2, and
lorgs, 5 & s Osi ;)n m)(gy (1), it follows that | o) | <e/2-4-e/2=c¢ forn
i Iit 1sﬂlllsefu1 to note that, if s =0, condition (ii) is not neces-
'y In the proof. If s, depends on a parameter -and if s, » s
uniformly, then o, -+ s algo uniformly, o

) Toeplits [1].
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3.101. Condition (iii) is a consequence of (ii) if ¥ is positive
i. e. if all a; are non-negative. For such matrices we can prove the
following more general result:

lim s, < lim 0,< Iim 0, < lim s5.

To prove e. g. the first inequality we may plainly suppose that
lim s, =8> — co. Let @ be any number <s. Then s> o for 2>k, and
50, by (i), we have the inequality on > o(1)+(anpt1+..)a=0()+
+ a[An + 0(1)], and therefore lim o, > @, limo, > 5. In particu-

lar if s, > oo, then o, - cc. T T B
If 9 is not positive the result is not necessarily true, A mo-
ment’s consideration shows that, if lim s,=s, lim s,=s, lim N;=C,
in the interval

[ (s+35)—CE(s —8),5(s+ 9+ C{(s—9) In fact, we may put
Sa=54 -+ Sll, where s,=1% (s+5), lim|s}| = (s —s). Then d,=0,+aJ,
where o, > £ (s +5) and lim o < C 4 (s —9).

8.102. Let {p.}, {gs} be two sequences of numbers, and let
Py=py+ tn Q=g+t Gn 420, Qu—oco. If Su= pnlqn~ S,
then .on = PyJQu~s. In fact, on=(gyS + ¢, S, + . + 42 Sn)/Qns SO
that we have here a positive 7-matrix. In particular, if ¢, =1
for n=0,1,.., we obtain the classical result of Cauchy: if s,~S$,

then (s, + 8y + ... + sn)/(n+ 1)~ s.

3.11. Cesaro means. Given a sequence {s,} we put, for
n=0,1,.., Sp==Sm S = S s S =T ST L A
Similarly, let Ab=1 (2=0,1,..), Ay = A} + Al +.t-Ap, .., An= A
4+ A 4 A% . We shall say that the sequence {s,} is sum-
mable by the k-th Cesdro mean, or summable (C, k), £=0,1, ...,
to limit s, if S,’;’/Af',»s as nooo. It follows from § 3.102 that
summability (C, k) of a sequence involves summability (C, R+1)

to the same limit!). To find the numerical values of A% it is con-

) Les us define, for every k=0,1,.., the sequence hﬁ:(h’;“l—f—...;}—
+Iz:‘;_1)/(n—|—1), n=0,1,.., /z‘,l:s,l. {Sn} is said to be summable by the A-th
Holder mean, or summable (/, k), if hﬁas ag n-»es, The methods (C, k) and
(H, k) are known to be equivalent. Although the latter is logically simpler,
it is Jess usgeful in applications and its extension to the case of £ non-integral

much less easy. See Hausdorff [1].
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venient to use the following proposition, which is easily proved
by means of Abel’s transformation: If Ay == ay - oy 4= .o 4 @y, then

s

e
u
2, an x" == (1 o x) _}J An x”,
=0 )
provided that the series on the right is convergent. This permits
us to restate our definition as follows:

, A sequence {s,}, or a series U, -4 -~.. with partial sums

3 -4 (7 2— 4 o h

S, 18 sqmmable (C, 2) to .the value § if of = s3/Af v s, sy and A“
being given by the relations

. e
oa oy 24 Sﬂ }C" :_‘_\_J U,‘ x”
(1) 2 AZ Xt = (1 — JC)~C‘~]; Z S: XM e Y e T
n==( el (1 b x)“ (1 e )(;‘)“‘ 1
. In this definition o (% —1,-~2,..) is no longer a positive
fntfager. However it will appear soon that only the case oo«
is interesting. The following relations are consequences of (1)

@ A= (n+a)= @+ (atn o
n ! Iy

J841 n
@ s XAk,
Jg i)}

o '"/; - 1’ 2’ o

n
@ Ay =2 4i Ak,

n n
n
5) =V ol o a Xt el ca ya e
( ) g lf—:]oAn—ksk ZA”““/" Wy (6) All”":’z A 7Arz““A/n; ,1-“-1,4;? 17
240

R0

)

n
o o1 o o ot N
M =267 simsti=si @) JIAL[< o, w1, )
=0

(9) A% is positive for o> —1, i i '
, increaging for a>> 0, and de-

creasing for 0>a>—1. If a<—1, 4% i PR
sufficiently large, » An is of constant sign for n

3.12. The Gamma-function. In 3.1 )
_ . . A1(2) [ is the Euler
S)ars;m;-cf;?ac.tl(;na Ex_igpt hln Chapter IX, the reader is not expected
Inted with the theory of this function, and 1 t
‘ ] ) nay take
the relation 3.11(2) just as a definition (Gauss's definition) 0‘1?71 LIt

remains, then, only to show that i o o .
: at lim An/n” exist is diffe-
rent from 0. For this purpose we write ol s and is diffe

) See (2).
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log An = gl log (1 + %) =k§0 {—%+ 0 (k~%)}y=a(log n+C+e)+H(C'+n),

where C is Eulers constant (§ 1.74), &,7%,~0, and C' is the
sum of all the terms O (k~?). This completes the proof.

813, Ifo%~s, a>—1, k>0, then o:+h 5. We obtain
from 3.11(4) that o' = ( 3 A=l Ay c‘;;)/A‘;* "

k=0
T-matrix, and so the result follows. Also, more generally, the
limits of indetermination of offrh are contained between those

This is a positive

o
of on.

If uy+u+ ..
1, =o0(n"). We have u/A, = (’2 AT An cﬁ\)/Aﬁ (§ 3.11(4),

==

is summable (C,a), and if o>—1, then

B=—a—2). Suppose, as we may, that oy -+ 0. We need only
show that conditions (i) and (iii) of Toeplitz are satisfied (§ 3.1).
The former is obviously satisfied. As regards the latter, let us

suppose first o> 0. Then, A being non-decreasing, we have
N, <3 |A7% "= 0(). Tt —1<a<0, we obtain from 3.11(3)
k=0

that N, =2, since A% is negative for k> 0.
It is often useful to consider the difference

(1) §p— O = (1 + 2ty + oo + M)/ A1),

If it tends to 0, in particular if u,=o0 (1/n), the (C,1) sum-
mability of #, + 4; + ... involves the convergence of this series.

3.14. Abel’s method of summation. The series ug+1,+...
is said to be summable by Abel’s method (some say Poisson’s),
or summable A4, to sum s, if iy +ty X+ 1, x* 4+ ... is convergent
for |x| <1, and

1) lim Y upxt =1im (1 — x) X s x* =,
£-¥1 fe==0) X1 Je=0

where x tends to 1 along the real axis.

If ity 4ty + ... is summable (C, ), a>—1, to s, then (1) holds
as x-1 along any path L lying between two chords of the unit
circle which pass through x=1. Such paths L will be spoken of
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as not touching the circle. They are characterized by inequa-
lities |1 — x| /(1 —|x]) < const, x ¢ L,

To avoid the difficulty that the variable x in (1) changes
continuously, we consider an arbitrary sequence of points x,
lying on L and tending to 1. Since

oo o
Z u Xﬁ: (] - xu)“H z\_./ S;‘l; x/;‘l B (1 - x/l)m “.}; 0;: AZ r\":;‘l'w
k=0 R=l) Je )
we need only show that the matrix ¥ with @y —= Af (1 — x,)*1" &t
is a T-matrix. If x, 1 along the real axis, the matrix is positive,
so that the limits of indetermination by the method A are conta-
ined between those by the method (C, @),

3.2, As we shall see in Chapter VIII, there exist conlinuous
functions with Fourier series divergent at somo points. It is there-
fore natural to consider the summability of Fourier scries. Al-
though some older results, e. g. those of Poisson, in the theory
of trigonometrical series can now be recognized as applications
of methods of summability, the first deliberate step in this direc-
tion was made by Fejér (1902). The results proved in this cha-
pter, together with the examples of Chapler VIII, show that, it
we do not restrict ourselves to functions with rather spocial
differential properties, it is rather the summability than the ordinary
convergence which is important in the theory of representation
of functions by means of their Fourier series.

3.201. Let su(x) be the a-th partial sum of & [f]:
M F %) ~§a,+ ’gl(an CO8 11X + by sin nx),

and let .s,,(x) = 0,(x; /) be the first arithmetic means of {84},
Using the formulae 2.3(2), we see that

o) =L [ F (vt 8) Kty at,
® "

WD) =f) =1 [ot) k) at,

;h?ebas usual, ¢ (f) = ¢,(t) = f (x + O+ f(x—~1)--2f(x), and
thn _d( b+ Dy 4. + Dp)f(n + 1), Multiplying the numerator and

¢ denominator of Dy(t) by 2sin 4 ¢, and replacing the products
of sines by differences of cosines, we find that
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no . i 2
_wysink+9Hzt_ (sm (nj—})j_t) .

It is customary, in general, in the theory of Fourier series to call
the Toeplitz means of the series % - cos? -+ cos2¢ ... kernels.
The expression Ki(f) is called ‘Fejér’s kernel’ and has the follo-
wing properties:

() Kal®) >0, () — [Ku(Dydt =1, (ili) Mu(d)>0 as n-o0, for

every o >> 0, where M,(8) = Max | Ky(?)| =-Max K(t) for § <t <,
n=20,1, ..

Condition (ii) follows from the analogous property of D,,
and (iii) from the inequality M.(3) < 1/2(n 4+ 1)sin*1 8. Ker-
nels with such properties are called positive kernels. Kernels

satisfying, besides (ii), (iii), the condition (i')] [ K@) | dt < C will
be called ‘quasi-positive’. Condition (i') follows from (i) if (i)
is satisfied.

3.21. Fejér’s theorem?). [f the limits f (x+0) exist, E[f]
is summable (C,1) at the point x to the valne + [f(x+0)+f (x—0)).
In particular, if f is continuous at x, S|[f| is summable there to
the value f (x). If f is continuous at every point of an interval
I=(a, b))%, S[f] is uniformly summable in I.

The proof will be based only on the properties (i), (ii), (iii)
of K,. We may assume that 2f (x)=f(x+0)+f(x—0), so that
| pu(f) | < e for 0 £ < 8=0(c). From 8.201(2) we see that [ 6,(x) — f(x) |
does not exceed :

[ 8 = w =
. 1{r e [ Mo
1) —1~f[cp(t) |Kn(zf)dt=—_—(_/+‘/) \<\—:|/ szt—]———ﬁ—zi)/lcpl dt.
T o T\ 3 T 9 ™
Let us denote the last two terms by P, Q. We have P=¢/2
(cond. (ii)), Q>0 (cond. (iii)), so that P4 Q <e for n> ny = ny(s),
and, ¢ being arbitrary, the first part of the theorem follows.

Y Fejér [1]. '
%) We mean by this that f is continuous also at the points a, b.
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If f is continuous at every point of /, we can find a & such
that [g.(f)| <s for 0«7 <08, xe [, and o (1) holds for any x e/,
The integral in Q does not exceed

(4 i

Ofl (fOe+0) | +]f (=) [+2[f () |) dE **"a/'lf(!f) |dt+2m | [ (x)].

kid
Hence Q-0 uniformly in /, so that P-+Q<e for n -1y, x el

If, in particular, (@, b) coincides with (0, 2r), ou(x) converges
uniformly to f (x).

3.211. The theorem would be true even if K, were only
quasi-positive. In fact, K, in 8.21(1) should then be replaced by
| K:|. We should have P=Ce/2, Q »0, i. e, P--Q~.Ce for n.-mn,,

3.22. If m< f(x) < Min (0,2n), then m 7 oy(x) -~ M), i e
the Fejér means are contained in the same range as the funclion f,
(In particular o, > 0 if f>0), This follows from tho first for-
mula 8.201(2) if we replace f(x--£) first by m, and then by M,
and take into account conditions (i), (ii).

If mfx)<M for xel=(a,b), then, for cvery 2= 0, there
exists an integer n, = ny(8) such that

1)y m—0<Lon(x) K M8, for xely= (a0, b~ 0a),n>n,

Break up the first integral 3.201(2) into three, extended over
(—m—28), (—85,3), (3, ), and denote them by o, o, oi'. If xe/j,
|£] <3, then x+7¢e/, and o} is contained between m and M,
multiplied by the integral -of K,(f)/x over (-8, 8). In virtue of
conditions (ii) and (iii) this last integral tends to 1. Since |o}]
and | o7 | do not exceed M,(2)/x multiplied by the integral of |f(£)]
over (—=,n), and so tend to 0, a moment’s congideralion shows
that (1) is valid.
__From (1) we obtain in particula < i
<Tim on(x) < M, for evory a<n< b that 1 < Iim el =
Given a function f(x) let M(a,b) and m (a,b) denote Lhe
lllppel‘ and lf>wer bound respectively of f in (2,b). For every x
,I?;eﬂ;fn(l’g: hmjgf (X —h, x4 k), m(x)=1lim m (x—h, x - k) as h>0.
e ers M (x), m (x) are called the maximum and minimum
spectively of f at the point x. From the last remark it follows

") More precisely m < s,(x) << M, unless £ const,

icm
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that, for every %, m(x)<lim ou(%) < lim oy (x) < M(x). If in
particular m (x) = M (x) = oo, then o(x) - .

3.23. Corollaries of Fejér’s theorem. (i) If S[f] con-
verges at a point where f is continuous, or has a simple disconti-
nuity, then it converges to % [f(x +0)+f(x— 0)]. In fact, if a
series converges to s, it is summable (C, 1) to the same value.

More generally, if x is a point of continuity of f, the interval
of oscillation of the partial sums S.(x) contains f (X).

(i) If f is of bounded wvariation, the partial sums of & [f]
are uniformly bounded. Since the ou(x; f) are uniformly bounded, it
is sufficient to observe that the Fourier coefficients of f are o(/n)
(§ 2.213) and to use the formula 3.13(1).

(i) If f is continuous and of period 2z, there exists, for every
¢ >0, a trigonometrical polynomial T (x) such that |f(x)— T(x)!|<e
everywhere. We may take for T (x) the expressions o,(x; f) with n
sufficiently large.

(iv) The trigonometrical system Ls complete (§ 1.5). If all
the Fourier coefficients of a continuous function f vanish, f (%),
as the limit of Fejér’s means, vanishes identically. For the case
of discontinuous f see the argument in § 1.5.

(v) Hardy observed that Dirichlet’s Theorem (§ 2.6) can be
deduced from Fejér’s by means of the following theorem from the
general theory of series: If u,+u; + .. is summable (C, 1) to a
sum s and |u,| < Aln, n=1,2, ..., where A is a constant, the series
is convergent).

Without loss of generality we may assume that §= 0, A=1.
Let p, p <n, be a fanction of » tending to + oo which we shall
detine presently. Since o5 -0, the relation

=S J: S Spti 51 snoglyes TH T8
n

in-+1 n-+1

If k<n, then |S,— Sk <{uk+1+...+zz,l[<1/(k+1)+.,.+1/n<
<(n— k)/k and so the last relation may be written in the form
(n—p) (n—p+1

, n—p 9-
0 ot 2p (1 + 1)

n—}—i

1y Hardy [5L
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where 0= 0(n, p) does not exceed 1 in absolute value., Put now
n—p=[en], i. e. p=n—[en], where 0 -e-71/2 is arbitrary but
fixed. Dividing both sides of (1) by (n - p)/(n 1), we see that
lim | s, | < e/2(1 — &) <75, that is 8, > 0.

Although the above argument is, on the whole, not simpler
than the direct proof of Dirichlet’s theorem, it is interesting ag
an application of the theory of summability to the convergence
of Fourier series.

3.3. Summability (C,r) of Fourier series. Iejér's the-
orem remains true if we replace summability (C, 1) by (C, r), r >0,

Denoting the (C, r) means of & [f] by on(x), we find from 3.11(h),

2.3(2) the formulae

o= [Fe kO Kty dt, -1 L [ ki,

"’ .
Kg(t) “M“]%/()An 11‘ Dle(t)/ i fu

and it is sufficient to show that the kernel Ky is quasi-positive,
We may suppose that 0 <~ <1. Condilion (ii) of § 8.201 is obvio-
usly satisfied. Conditions (i") and (iii) follow from the inequalities

@ Kt <20, |Ki®)|<<Cn "t for 1n- t-"x

H

which we will now prove; C is a constant independent of #, From
the formula defining Kj we obtain

W) = 1 @ g Knyyyr  n :
fele)= 247 sing £ 2 ATy e = ‘@r P V. ’
" B h==0 24, sin :% tan
(3)

[ T iy 5 4t e
=5 _ B i Y Lo
{2A,§ sin } ¢ [( ) - P

L
J

Since AZ‘;1 decreases steadily to 0, the last series convergoes
for £ -0 and its sum does not exceed 44T/ 1 = e~'| in absolute
valrue (8 1.28). And since |3 (2)|<|2|, we have that, for 0 ¢ =,
[ Ku(t)| does not exceed

{@sin§ £y~ + 4477} (2 sin FOAL < F C (b=t e o LYy,

) M.Riesz[1],[2; Chapman [1].
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Taking into account that nf? = n’ ¢! (nt)—" > n ¢! for
nt 2> 1, we obtain the second inequality (2). To prove the first, we
note that |Dy(t)| <t +1+4..+1=k+t<n+1 for 0<ELn,
and so, applying 3.11(6), we obtain from (1) that | Kx(¢) |<n+1<2n
(n>0).

It is of some interest to note that for =1 the formulae (2)
are consequences of 3.201(3).

3381, S[f] is summable (C,r), r>0, to the value f(x) at
every point x where @t) =0 (¢8)Y) and so, in particular, almost
everywhere (§ 2.703). This theorem is a simple consequence of
3.8(2). In fact

1n

dM%JwH<M+fwMMU@mﬂ=P+Q

0 1jn

-
i

From the first inequality in 3.3(2) we see that P<{2n @,(1/n)~ 0.
Integrating by parts we find that Q < Cn7[D({) t“’—l]]'_},l +

+CA+rnT / D)t 2dt=0)+CA+r)nT /;o (1) dt = o(1)
1jn : 17n
(§ 1.71). :

3.32. Summability (C,r) of conjugate series. Let o,

denote the (C, r) means of  [f].
For almost every x the difference

1/%méagwd¢ 0<r <1,

T in

) am—k

where $,(t) = f(x+E8)—f(x—1¢), tends to 0 as n-oco. This is
in particular true for every x where Wy(t)=o (t) (§ 2.703)%). The proof
is, roughly, the same as in Theorem 3.31. We have

1n

am=—%.%mmmw=—iU+fyﬂ+&
T 0 T\ 1/n

(2) . . 1
Rity =~ $ a7 Bty =petght—— Sam s EEDL
n k=0

n k=0 2 Sin "%j t

1) See Lebesgue (8] for r=1, Hardy [2] for the general case.

*) See Privaloff [2), Plessner [2] for r=1, Hardy and Li-
ttlewood [4], Zygmund [2] for the general case.
4

A. Zygmund, Trigonometrical Series,
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Exactly in the same way as in § 3.8 we show thal [A5()|- 2n,
so that A -0, and the difference (1) is equal to

™

L [ty 113t) dt 4 0(1),

T 1in

3

where Hy(t) denotes the last sum in (2). For /7;(I) we obtain
the expression 8.3(3) with X replaced by M. It follows that /1(f)
satisfies the second inequality in 3.8(2), which, as we have shown
in § 8.31, is sufficient to prove that (8) tends to 0.

3.321. The result of the preceding section shows that, for
almost every x, the summability (C,r), r >0, of €[] is equiva-
lent to the existence of the integral

™

) ~-§_- _/: Oty dctg bt at =

™
lim(w1 [ ) 4 ety .‘};tdt) .

® b 0 T n .

The problem of the existence of this integral is very delicale.
We shall show in Chapter VII that it exists almost everywhere,
for every integrable f. Taking this result here for granted, we
obtain that ©[f] is summable (C,r), r >0, almost everywhere,
to the value f (x) given in (1).

3.4. Abel’s summability.

In connection with 8.201(1)
we put, for 0 {r <1,

f(ryx)=1%a,+ ,}]l (an cos nx -+ by, sin nx) r,
P

o0

fr, x)= ZZ (@ sin nx — b, cos nx) re,
n=

Taking into account 1.12(1) and 1.12(2), we easily find that

17 ;
18 == [T+t POt 1, 0—f @)=L [outt) Pty a,

1) _ 1 F
Flrx) === [ 4t) Q) at.

T %

)_If f(x, h) denotes the second integral in (1), and il1/(n 4 1)< A~ 1/n,

then = | f (x, h) — f (x,1/n) | < (n-1) V' (1in) >0, a8 n-ses,
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Abel’s summability.

The functions
P () =3 (1—r?)]4,(t), Q(t)=r sint/4(2),

@
' where 4,(f)=1-2rcost+r2, 0 L r<1,

are called, for historical reasons, Poisson’s kernel and Poisson’s
conjugate kernel. The expression on the right in the first for-
mula (1) is called Poisson's integral. It is not difficult to see
that P«(f) is a positive kernel,i. e. satisfies the conditions (i), (ii),
(iii) of § 3.201. That r, which now plays the r6le of the index n,
is a continuous variable, is irrelevant. Condition (i) follows from
the inequality 4.(¢) > 0. Condition (ii) may be obtained integra-
ting both sides of 1.12(1) over the range (— =, %). Since 4.(f) =
= (1—r)+4r sin? L £, we see that M, (8)=Max P,(f) for 0<8 Lt < =
is (1 —7r*)/8rsin?td-0 as r~1, so that condition (iii) is also
fulfilled. Hence ‘

Theorem 3.21 remains true if we replace summability (C, 1) by
summability A. The reader has, no doubt, noticed, that this theo-
rem is a consequence of Fejér’s theorem and of Theorem 3.14, but
a direct study of Poisson’s kernel is interesting in itself.

8.41. The functions f (r, x), f (#, X), as the real and imaginary
parts of a function analytic inside the unit circle (§ 1.12), are
harmonic, that is, when treated as functions of rectangular co-
ordinates &, v, they satisty Laplace’s equation 0%z/0g? 4 0%u/dv? = 0.
Let us denote the polar coordinates of points in the unit circle
by r,x (0 <7 <1, 0 < x<2r), and let f(x) be a continuous and
periodic function of x. The function f(r, x) defined by Pois-
son’s integral tends uniformly to f(x) as r - 1. In other words,
Poisson’s integral gives a solution (or rather, as it is well-known,
the solution) for the case of the unit circle of the following
very famous problem (‘Dirichlet’s problem’): Given (1) a plane
region G, whose boundary is a simple closed curve L, (2) a func-
tion f(p), defined and continuous at the points pel, to find
a function F(p), harmonic in G, continuous in G+ L, and coin-
ciding with f(p) on L. However, in this special case of the unit
circle, Poisson’s integral gives a solution of a more general
Dirichlet’s problem, viz. when the limit function is an arbitrary
integrable function (§ 3.442).

342, If mLfx) < M then m L flr,x) <M. If mLf(x)<M
for x e« I=(a,b), then, for every >0, there exists a number r,
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such that m— o< f(r, x) < M- for x € (a3, b~ By Fo TP,
The proof is essentially the same as in § 8.22,

If M(x,) and m(x,) are the maximum and minimum of f at
a point x, (§ 8.22), and if L is an arbitrary path leading from inside
the unit circleto the point (1, x,), the limits of indetermination of f (r, x),
as the point (r, x) approaches (1, x,) along L, are contained between
m(x,) and M(x,), In fact, given an &> (), there exists an A such
that m (o) — e < f(x) < M (%) +¢ for |x—x,| <7/ Supposing,
as we may, that #<e, let us apply the preceding theorem with
(a,0)=(xy —hy x,4+h), 0=~/2. Then, if (#,x) belongs to the
curvilinear quadrangle (Q) r, <r <1, |x— x,|< A4/2, f(r, x) is
contained between m (x;) — e — £/2 and M (x,) - - £/2, and
i fortiori between m (x,) —3¢/2 and M(x,)+8¢/2. Since, from some
point onwards, L lies entirely in Q, and e is arbitrary, the theorem
follows'). In particular, if / is conlinuous at x,, lim f(r, x) along
L exists and is equal to f(x,).

3.43. Let x, be a point of simple discontinuity for /. To
determine the belaviour of f (#, x) in the neighbourhood of (1,x,),
suppose that £,=0, 2f(0) =/ (+ 0) + f (=0), d= f (4-0) — f (—0) 7 0.
Let &(x) denote the periodic function equal to (z=--x)/2 for
0 <x <2r. The difference g (x) = f(x)— & (x)d/= is continuous at
x=0,and g(0)=7(0). If g(r, x) and &(r, X) are Poisson’s integrals
for g and 8, then f (r, x) = g(r,x)+0(r, %) d/x. Let a be the angle at
which a path L meets the real axis at the point (1,0), that ig & == lim B,
where § is the angle of the vector (1,0)(r, x) with the real axis.
Since & (r, x) + g (0) = f (0), and & (r, x) = arctg {r sin x/(1—r cos x)}
(§ 1.12(3)), we see that f(r, x) tends to F0) -+ ad/r, i o. the limit
Is a linear function of the angle at which L meets the radius at the
point (1, x,). It is plain that if « = lim B does not exist, J(r, x)
oscillates finitely as (r,x)- (1, x,) along L.

‘3.44. thpu’s theorems?). Let F(x) be a function with
Fourier coefficients A, By If [F(x 4+ £)— F(x — £)]/2¢ > as
-0, where | is not necessarily finite, then & [F] is summable A at
the point x to the value I, i, e.

" };)0 ’f}l:e lt‘:ori;esp;mdzng result for Fejér's means is us follows: for every

n , the limits of indetermination of {a (x, <}/ \ t

Wl the Lo, +11,)} are contained betwooen
*) Fatou[l]. See also Grosgz [1].
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0 F(r, x)
Jx

More generally, if [, I, are the limits of indetermination
of the ratio [F(x+ 1) — F(x —t))/2t, as £~ 0, the limits of inde-
termination of the expression in (1) are contained between I
and [,1). We have

2, n (B, cos nx — Ay, sin nx) rt = »1lasr-1.

n=1

(1)

F(r, %) = 3_-‘/: F(t) Pt — x)dt,
(2) e
0F(rnx _ _ 1 "t —
= n__/, F () Pt — x) dt,

where ' denotes differentiation with respect to £, and, since P} is odd,

OF(rx) _

{7
— = [y () 2sint Pt) dt,
o — /7@ 2sint Pt

where 7 (f)=[F(x+1t) —F(x — £)]/2sin¢. Then, in order to
prove the theorem, it is sufficient to show that the even funclion
— sin ¢ Pi(t)/r=(1 — r?) sin¢/4}(t) possesses the properties of posi-
tive kernels. Conditions (i) and ¢iii) of § 8.201 are obviously
satisfied, and we verify (ii) by substituting x =0, F(f) =sin¢,
ie y()=1.

3.441. If F'(x,) exists and is finite, then OF (r, x){0x— F'(x,)
when (r, x) » (1, x,) along any path L not touching the circle. Sup-
pose, for simplicity, that x, =0, F(0)=0, and let r=r(a), x=x(a),
0<u<1, r(1)=1, be a parametric equation of L. Put—sint P/(t—x)=
= A,(¢) for (r,x)el. The theorem will be proved, when we show
that A.(t) satisfies the following conditions

O [1Add)]dt= 0, () = [ Aydes1,

(iii) M.(®)=Max | A, ()|(0 < & <t L x) tends to 0, as u -1,
i. e. that A,(f) is, essentially, a quasi-positive kernel. In fact, put-

1) I, and l, are contained between the smallest and the largest of the
four derivates of F at the point x. :
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ting F(t)/sin £ — F'(0) = G (), and denoling by 0 (#) the left-hand
side of (ii), we deduce that

“

f; ”

—0(x) F'(0) _i/ G Aty dt = [+ [+ [.

ki f

9F(r, %)
0x
The last two integrals on the right tend to O for fixed & (cond.
(iii)), and the preceding term is small with & (cond. (i)).
Now relation (ii) follows from the second formula B8.44(2)
it we put F(f)=sinf. The left-hand side of (i) is equal to
™

LE " .
—:/]sm(t + x) Pi(t) |dt < 2| sin x|_/iP}(t)|dt - 2_/ sin ¢ | Pty | dt,

T _r (0]
Since Pi(f) <20 in (0, x), the first term on the right i g the

V , ght i less than
:2x P(0) < 2x/(1~r) = O(1), if (r, x) € L. The last term on the right
is also bounded, — 2 sin¢ Pi(£)/r being a positive kernel. Condi-
tion (iii) is obvious.

3.442. Corollary. Let F be an integral of £ For
where f (x,) s finite and equal to F'(x,), wp; have f”(r, )(C))/“:z}g(/x:;(,
as (r, x? ~(1, %) along any path not touching the circle. In fagt’
supposmg}or simplicity that the constant term of & [f] vanishes’
we have ©[f]= & [F], and the result follows from Theorem 3.441f

345. At any point x where f is finite and is the diff. /
: re [ IS fin [ is the differenti
coefficient of its integral F, we have erentiat

M Fe,x)— (__ ,}E_ /[(x+;)t—{t(x~f) dt) >0, asr1Y
" ) ’

where the mzmbezr =1 (1), 0<n <=/2, is the root of the equation
;:osx =2r/(1+r ).. It is plain that 10 as #->1. More proecisely
rom the formula sin = (1—7r) (1 -+ r)/(1 +r?) we find that Nl — ,.a)f

: - p
The last formula in 3.4(1) gives us = f(r, x) = — / bu(t) Q(f) dt +
i

- qf 9(8) [Qr(E) — Q, ()] at -f bu(f) Q, (£)df, and we have only
K

") Privaloff'[9], Ples }
sner [2],

. *) The theorem h(;]ds .
irrelevant for our purposes,

° See also Fatou [1).
true if we veplace g by 1—r In (1), but this is
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to show that the first two terms on the right are o (1). Let B(h) = o (k)
be the integral of ¢«(f) over the range 0 < t < k. From the formula
for QN(t) we see that Q.(f) is monotonically increasing in (0, 7).
Hence, applying the second mean-value theorem to the first term,
we find that it is equal to Q.(%) [B(n)—B (t)] =0(1), since 0<e<r
and Q) <r+r+..<1(1 —r). It is easy to verify that
Qit) — Qut) = — (1 — r)? Q(¢)/2 (1 — cos ). Applying the same
mean-value theorem to the second term in question, we find that
it is equal to the expression (1 —1)* Q{(7)/2 = O (1 —r) multiplied
by the integral

3 . & .
____”']gx(t) dt = [__‘_B__(,li),__jl" + /Aﬁ_(t_)s_lﬂ.é dt (p<g<m).

2 ~
@) :,{ 1 —cost 1 —costlr ' (1—cos £)?

Since B (5)/(1—cosz)=0(:"") = o(7™?), and the last integrand
is o (t7?), the left-hand side of (2) is o (7)) =0 —ry?* and this
completes the proof.

Since 7 (r) tends continuously to 0 as r-1, we see that
a necessary and sufficient condition for the summabilily A of E[f]
at the point x, is the existence of the integral 3.321(1), whick re-

presents then the sum of Z[f]. ‘

3.5. The Cesaro summation of differentiated series
According to Theorem 3.442, € [f] is summable A at any point x
where f is the finite derivative of its integral, whereas to prove
the summability (C,1) we used a somewhat stronger condition,
viz. @) =o (). Indeed it may be shown that the former con-
dition does not ensure the summability (C, 1) of &[f]. We will
now prove that.

(i) At every point x where F(x)=1lim [F(x-+h)— F(x— b2k
exists and is finite, S(F) is summable (C,7), r>1, to the wvalue
F'(x) (ii) At every point x where f is finite and is the differential
coefficient of its integral, S[f] is summable (C,r), +>1, to the
value f(x) ).

To prove (i), of which (ii) is a corollary, it is sufficient
to show that L7(f)=sin ¢ [Ki(t)]' is a quasi-positive kernel if 7>1 ?),
This will be a consequence of the inequalities

) Lebesgue [3] for »=2, Privaloff [2], Young [6] in the ge-
neral case.
%) The sitnation is the sume as in § 8.44, except that sin ¢ Pi(t) is a po-

sitive kernel.
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) | Lut) | <Cntor 0t n, ) | La(®)| -~ Clut Ve for 1/n - "t ¢

y

valid for 1<r<2. Cis a constant independent of 7 and £,

Let D, be Dirichlet’s kernel. Since [D)] =71 42 ... 4k - p2
for 0 < k< n, we find that [[Kn)' |- #% 1. e |L(B)| -7 n L n for
0 <t < 1/n, and the inequality (1) is established. ‘

) , . n )

Using Abel's transformation, we verify the formula ¥ A} git—

ey

n T/
= “ ol %=1 | | i . .
= [‘ An 0! ‘i"EAk e ”. /’(1 —e'), Applying this formula twice to

i)

the last expression but one in 3.3(3), we find that

j et 3,0
2 45 sin § ¢l
sin [ (n+f+ttr) t— ;: r"

= ;z(2 Sin%t)“2+-~v-«~:~-'.. e
A2 sin byt

NAL i
— ,'/) ,»__/e Al ll o

Ki(ty=Cy(2sin} £)—243 : |
(1 — e ity

- , Pl )1 :

Ly . P
> r . “ P f’l 3 e it
An@sing 850 ,

where C, = A;7/AL+ A" 24, = O(1/n). Let P, Q, R denote the
three terms in the last formula for Ki. Then P} = O(1/nt%)
Qu= 0(1/n tr+?) + O(A/nr ¢+ = O (1/nrt ) i omt e 1, Let,'
o (t) = exp [(n+3/,)t/(2sin £ £)* and let B (£) be the sum wfo]lowing
o.(t) in R. Using Theorem 1.22, we see that IBE 24 AR/ 1=t
=0@=3t), [8()| ) <4 (n+1)[ ALl 11— e | = O */t). Since
on the other hand, o (f) = O (¢-), o/(¢)= O (/) - O/tY == 0 (/z/t“;
if nt > 1, we find that |R}| < |a/B--fa /AL == O (n*t 1)
Collecting the results, we obtain that [KI(£)] = C : £ -

+ 0 (1w fr+1) + O (n—2 Y =0 (1/mr=-tgrt) [i'l,' ‘(Il)t] 10 (1'1/"12121)102
we have Ln(f)= O (n'~"t=r) if ¢ = 1/n, 1<r<2, and this (com-
pletes the proof. ‘ ’ )

Let G (h) be the integral of
; PO =F (48 +f (v — ) = 2f (x
%VEI];] ’;lsaes ul’:::’tne;;rgl( g <) t <> /i. rApplying (ii) to S [9], we see {ha{
L), ¥ f ' he sum
5 Gyt O at the point x and has the sum f(x),

Essentially the same
. proof shows that wunder the hypothesi
of Theorem (ii), we have the relation 8.82(1), for 1 < r <. évpo s

") The series defining # converges for £ 0 if reco,

L
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3.6. Fourier sine series. Let f(x) be an odd function.
From the first formula 3.4(1) we deduce that

M feR=—[FOP—t)— PleoldL

() If f(x)==0 is odd and non-negative in (0, %), the function
f(r, x) is positive for 0 < x <= More generally, if f(x)== const.
satisfies an inequality m < f(x) < M for 0 <x <=, then

@) mp(r,x) <f(r,x)<Mp(r,x) for 0<x<m 0<r<1,

where . (r, x), which is positive for 0 <x <=, is the Poisson inte-
gral for the function p.(x)=signx (|x|<%).

The first part of the theorem follows from (1) if we note
that Pi(x — £) > Pix + 1) for 0 <x <%, 0<f<=. For this reason
we have also

m MT
'ﬂ—f[P,(x — )= P(x+0)]dt<f(r, x) <*:_:/ [P(x—t)—P{x41)] dt,

which is just (2).

(i) Theorem (i) remains true if we replace summability A by
summability (C,3) V). In particular, the inequality (2) should be repla-
ced by mpi(x)<oi(x)< Mpi(x), where o, and p. denote the (C, 3)
means of &|[f] and & [p].

For the proof it is sufficient to show that the kernel Ka(®)
is a strictly decreasing function in (0, %), or, K>(t) being a trigo-
nometrical polynomial, that [Ku(®)] < 0 in (0, %). The last expres-
sion is the Cesiro mean si(f)/A of the series +-cos £+ cos 2f+-...
differentiated term by term. Thus from 3.11(1) we conclude
that

g, s nz_[ 1—1r2 ]2_4rsint
2,507 2(1—rPd(t)] 1—1r
where 4,(t) =1—2r cost-r% Using the formulae 8.11(1) again,
we see that the expression in square brackets is the power series

K@) + 2K r+ ... +(n+ 1) Ku(t)r" + ..., where the coefficients
Kn(t) >0 are Fejér’s kernels. Since r/(1—r*)=r+ r3 -+ ... has also

1y Fejér [4].
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non-negative coefficients, we see that si(£) « 01) in (0, %), and this
completes the proof.

3.7. Convergence factors. A sequence hy, Xy, .. i8 said to
be convex if 42, =0, n=10,1, .., where 4l =Xy~ hyp1, N, =
= AN\ — dX 1. Suppose, in addition, that {} is bounded. Since,
for {)\,} convex, 4X, is non-increaging and cannct be magﬂ‘tiV(;
for any value of n (for otherwise we should have %, »~), wé.
have 4k, 2> 0, i, e, My 2> Mgy > A 2> — o0, In the equation X, — X =
=)+ 4 + ... the terms on the right are steadily decreasing, and
s0, by a well-known theorem of Abel, ndX, » (. Taking this into
account, and applying to the series 1. 4l 1. 4N\ ... Abel’s
transformation, we obtain: [f {}.} Is conwex and bounded, then .,
decreases, ndh, »0 and the series ’ o

M S (1) 4,

fea)
converges-to the sum Ay — lim X,

If a function ) (x) is twice differentiable and )'(x) > 0, the
sequence {A,} ={\(n)} is convex. In fact, by the meém—\;alue
theorer.n, A= = Mgy =—N(0,) +N(B41) =0, Where 1< 0, < n-1.
In particular, if we put \,=1/log n for n =2, 8, ..., and choose fér-
ho, &, suitable values, {A,} will be convex.

We need the following lemma:

Let s, and o, denote the partial sums and the first aritmetic
means of a series uy+u, + ... If {04} converges and Spe=0 (1/pn)
where {p.} Is convex and tends to 0, the series Wyl = 11,0 ml\» :
converges. Applying twice Abel’s transformation to the lplarti:{i
sum ¢, of the last series, we find that it is equal to o (

n—32

v Do
= (e + 1) o1l + non—y Aprs + S0y “UZ (k1) o L.
=0

Ren?ark. A sequence {M} will be called a gquasi-convex se-
(S;ll:sn‘c: f]f the series (1) converges absolutely. The lemma will
sist for quasi-convex {p.} if we prove that ndpy 1 0. But

- |
ZIAEP%

|Al"n—1i = lim_
N—yoo

==p] -

St X (k1) | P = 0 (n ),

) The first two coefficients
- nts of the series [Kj-|- 2K, r-fe..|? e 1 /|- 0K, ref
Aare positive for 0 <{t<x, and this shows that s,‘i(t)«;‘(l) l‘clrv Ol»z.:t*lfllt ke
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As a corollary we have the following theorem.

8.71. If ay, b, are the Fourier coefficients of a function f, the
series ‘

= g, cos kx4 by sin kx Z"j ay sin kx — by cos kx
Gr COS5 rAT 7R DI -
ooy log k& oy log &

converge almost everywhere ') (§§ 2.73, 3.81, 3.321).
It is not difficult to deduce that if f is continuous in (a, b),
the first series converges uniformly in every interval (a 4+ 8, b — 9).

3.8. Summability of Fourier-Stieltjes series 2), Let F (x), 02,
be a function of bounded variation. From Theorems 2.13 and 3.5 we see that
S [dF] is summable (C,r), r>1, at almost every point and has the sum F'(x).
We will now prove a stronger result, viz.

Let s7(x) and 5h(x) denote the r-th Cesdro means of €[dF] and EdF].
If 0<<r <1, then )

_ 1 [F ) F(x—1) — 2F (.
() 5, (x)>F/(x), (1b) a,’,(x)—-{_;}l (x+ H; Si(; 1/t) (z)} a0,

for almost every X.
We shall only sketch the proof, which is similar to that of Theorems

3.31 and 8.32. First of all we need the following lemma, analogous to the
result of § 2.703. Let

Ff:(t) =F(x+8—F(x—8—2F(x), Gi(t) =F (x+1) - F(x — t) —2F (x),
and let DR), WiAh) be the total variations of the functions Fit), Gy(t) over the
interval 0 <C t < h. Then, for almost every x we have (Dj;(h) = o(h), '}’f’;(h) = 0 (h).

Let « be an arbitrary number, and let V() be the total variation of the
function F(f) —at. For almost every x we have Vi) = IF'(x) —a|, i e

h
17 ,
L [ladr wto—af> P —a] as koo,
V]

where the suffix ¢ indicates that the variation is taken with respect to the
variable ¢. Considering rational values of « and arguing as in § 2.703, we
prove that, for almost every x, we have
h
@ [ 14 APt —t P} =0,
(] A
[1a, G0 1=o0.

1]

nh
and hence / | d; Fj(t) l=o(h),
0

1y For the first part see Hardy [2], for the second Plessner [2l.
?) Young [8], M. Riesz 2], Plessner [2]
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Now it is easy to prove the theorem. Irom the formulae 1.47(1) we
obtain that
™

=l [Ki—paF =2 [ KO dAF 4t —F (e},
. i I
™

w2 ®y
oh)—F0) =1 [ K0 d,Fye); | o —F ()| : VKR Py |
~ 0

v
0

) 1/n " ""

Suppossing that dﬁ(h)zo(h), we obtain, in virtue of the inequalities
3.3(2), that the first term in the lagt sum is - " 21 rl)f(‘l/n)/v: =20 (1). Integrating
by parts, we find that the second term does not exceed

C v gt G -1 ; o g :
,I,.;i (D)t | 1in + on 1}‘4 MO die=o(1),
alndtthis gives the first part of the theorem. To obtain the second we obrerve
tha
13 ™
W) = — L R A, F (o 1) - F (s L ke, 6
nt) == [ A gl F )+ F(x— )] o= — / K, d, G0,
" h K]
T 1n ]
" dy G () !
c’(x)"_(_q}_ ‘L"’{’“) =L Kt d, G (¢ 1 (¢ Fo(f
n ) 2tgl s - h/ () d; Gy )”i““f_ 175 Hy(t) dy G(6)
(§ 3.32'). From the lefnma we easily deduce that each of the torm}x on the
right is 0 (1). Integrating by parts we verify that the left-hand side of the

last equation differs from the left-hand side of (1h) 1
)y a term Le
as n-»ee. This completes the proof. roy m tonding o 0

. 3.81. The lemma proved in the preceding section i of fundamental
1mportan'ce for the thegry of Fougi_er-Stieltjes gerles. Yrom it wo deduce tvhvnt‘
tsl}e-pifmal sums of &[dF] and &[dF] are o(logn) at almost every point.
imilarly, taking for granted the regult that € [dF] is summable (©,1) almost
everywhere, we verify that Theorem 3.71 holds true for F()lll‘i&l‘-Sl:iQi'ileH geries,

?.Q.L lt\llgi;sellaneous theorems and examples.
. Le X=0 (1), y=4 (), 0Tt <L 2n, be a closied and con
) o Eed a ronvex curve, If
?nff)gllld b, ({) are theF'e]érmeans of € [¢] and € [4], the curves x=y (), y==i 0]
n==10,1,..., lie in the interior of the region limited by L. Kejér l':")J o
[t 4,B,C are constants ‘ g -
—[—Btl)n(t)+C’>0]. »oand Ae @) - B ) C -0, then A () -
2. Let Fu(ry %) be the n-th part
partial sum of the series f(r ¥) (§ 8.4), It
m . 3 o O o)
sa;?lf(x)<M, 0\<~x~_::.2n, then m < f(r )< M for 0=, but not necos-
yfor r>% Fejér 121, S - eees
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122" [cos (n+1) x—rcosnx]
2(1—2rcos x4 %)
is non-negative for r <{1/2. The sum %-}cos x is negative for x = =,if r>1].

8. Let F (h) and @ (4) denote the integrals of ¢.(f) and |¢,(f)] over the
interval 0<{¢<{h. Neither of the conditions (i) F (k) =o(h), (i) @.(h)=0(h)
necessitates the summability (C,1) of €[f] at the point x. Show that if both
of them are satisfied, then &[f] is summable (C,1) at the point x, to the
value f(x).

[The argument is analogous to that of § 3.81, except that now we con-
sider the integrals of ¢ (f) K, (t) over intervals (0, 2/n), (k/n, =), where % is large
but fixed. In virtue of (ii), the second integral is small with 1/k. The Fejér
kernel has a bounded number of maxima and minima in (0,%/n), and so, em-
ploying the second mean-value theorem?) and the relation (i), we obtain that
the first integral tends to 0. ; ,

This generalization of Theorem 3.31 is typical and many other theorems
may be generalized in the same way. The theorem is due to Hardy and Li-
ttlewood [5]]

4. Let {r/-,,} be au arbitrary sequence of numbers such that o, = 0 (1/n),
and let /(x) be the r~th Cesaro means of &[f], »>0. At any point x where
@, (F)==o0 (h), we have o (x+ a,) = [ (x).

[This is an analogue of Theorem 8.441. The proof is similar to that of
Theorem 3.3].

5. Let s:(x) be the modified partial sums of &[f] (§ 23). A necessary

[The expression Y%-+r cos x—...+r" cosnx=

oa ¥
S —
and sufficient condition for the convergence of the series (S) 2 kk f at a
k=1
. . : , F g
point x where @ (h) = o0 (h), is the existence of the integral / T
¢ 2sin¥t

[Let uz,(x) be the n-th partial sum of the series sin x 4% sin 2x 4-... =
= (r —x)/2, ry(x) = (= —x)/2 — u,(x). Tt is plain that |u,(x)! <nx, and making
Abel’s transformation we obtain that r,(x) = O (1/nx). Let S (x) be the n-th
partial sum of S. We have

3 1/n K
1 1 et 17,1
S0 =" [ Jemrria® di=— -I*—;f:A—}—B.
0 [ 1/n
Now A-0, and, in virtue of the inequality for r,, we obtain that
509 —— / 00 F Tt 0. See also Hardy and Littlewood [4]
2() == [ o——— ——dt=>0. See also Hardy an i ewo .
A 2sinlt 2

6. Let s,(x) be the n-th partial sum of €[f]. It felipe, 0<<a <],
then |§,(x) —f(x)|=0(n"%logn), (Lebesgue [1}.

1) Instead of this we may integrate by parts. The latter argument holds
true for the method (C,r),r >0.
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[See the expression 2.701(1), where the last term is now O ™ B
has been shown by Lebesgue (l. ¢,) that the logarithm in the term O (n - “log n)
cannot be omitted].
7. Let o, (x) be the first arithmetic means of S[f|. H felLipao,
0 <a<1, then o,(x) —f(x)=0 ("%, If w1, then g, (x) -~ (&)= O (Qog n)/n,
S. Bernstein [1]
™ 1/'/.1 ktr

=] 5, — f;s;‘/*wx(t)m,,(t) rlt.-—:_f.n./ 0 (t?f-)dtwfm; ~ / O (%) dt].

0 i I/n

8. That the previous theorem cannot be strenghtened for «:==1, may
be seen from the following result. If at a point & the right-hand side and
the left-hand side derivatives exist, and f'(x -}~ 0) ~— f/(x~ 0) == g, then we have
S (0)—F(x) = 2g (logn)/mn. Szasz (1], Alexite [1], Jacob [1].

[Let g=1. We have then ¢(f)==4 (1-}c () sinlf, wlere « (£« o(1),

K ™

o (8) — F () =~ / 1—cos(n--1)t
n

e . AL eon (-] 1) ¢
_ﬂ:(ll-i’*l)b gin ¥ ¢ dt-| (|- 1)(/ ®

min it dt

The first term on the right is =~ 2(logn)/mn, and the second is o (log my/n
(§ 2.631)].

9. If f is integrable in the sense of Denjoy-Perron, then, for almost
every x, €[F] is summable (C,#), r>>1, to the value F(x) Privalolff [1].

[This is a corollary of Theorem 38.5].

10. I £ == f(x40)—f(x— 0) exists and is finite, the sequence nl,(x) ==
=n (b, cos nx—a,sinnx) is summable (C,r), #>1, to the value ln, Il f i of
bounded variation, the theorem holds true for r>» 0. Fajar [8].

[The proof of the first part is similar to that of Theorem 3.5].

11. The sequence {sy} is said to be sumwable by the firat logarithmic
mean, to the value s, if ¢, = (s, 4 ¢,/2 ... - Sy/mflog nors a8 norea, If {S\,} ig
sammable (C,1) to s, then =, s,

[For the theory of the logarithmic means see Har dy and Riesgz,
Dirichiet's series),

12. The method considered in the previous problem may he sometimes
effective if the sequence is summable (Cy1-4¢) for any e>0, but not for
¢=0. An instance in point is Theorem 2.631, which may be interpreted in
the sense that the sequence n (a, sin‘nx--b,, cosue) is summable by the first
logarithmic mean (see also § 8.9.10). Theorem 8.5 may be completed in the
same way: If F/(x) =1lim (F(x~h) = F(x—h))/2h exists and is finite, then
€'[F] is summable at the point x by the first logarithmic mean and has the
sum F'(x). Zygmund [1), Hardy [6].

. 13.~’Lef f be integrable, ¢ (f) = f (x F 8 - f (g —1) — 27 (%), The summa-
bility of €'[f] is closely connencted with the existence of 1tm/(x, /), where
T30
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™
0,(£)

1
T(x, )= ——
) 47-‘1;/ sin® Yt

(in particular at any point where f'(x) exists and is finite) we have relation

P
dt. More precisely, at any point x where (*)_/ 2. (t) di = o(h?)
0

Q?;a(f’_’ﬂ_!(x.i —r)—>0as r-1Plessner [2].
x

14. A result analogous to the previous theorem holds for Ces'&ro
means of order r>>1, or for the first logarithmic mean'). The proof is similar
to that of Theorem 3.5.

15. In Theorem 8.6 (ii), summability (C,3) cannot he replaced by summa-
bility (C,2). Fejér [4].

KA} is positive, if sin (n-3/)t =0, cos (n 4 3/) t= — 1, cos ht<4].

1y In the condition (*), v,(t) must be replaced by | 9.8 1.
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