CHAPTER II

Fourier coefficients. Tests for the convergence
of Fourier series.

2.1. Operations on Fourier series. We begin by pro-
ving a few theorems which show that certain formal operations
on Fourier series are legitimate.

Fos
If fQx)~ 2 cn €™ and u is
oo |
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More precisely: under the conditions of the theorem, (i) the func-
tion % (x) exists for almost all x and is integrable, (i) its Fourier
coefficients are cm d-n?). The formulae in (1) are obtained by
term-by-term integration of the product of the Laurent series for
G[f(x+1)] and & [g].

To prove (i) it is sufficient to suppose that f=0, g 0.
Let fa(x) = Min (f(x), n), ga(x) = Min (g (x), #), and let A.(x) be
the function obtained from f,, g» by means of (1). Using Iubini’s

H W.H Young [1]
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well known theorem on the inversion of the order of integration,
we have

Pl o

//z dx_fdx/f,,x+t)g,,(t)dt_
(2)

2 an ‘ plid 2
/ gult) [ | File 40 dx] dt = [ fux) dx [ gu(x) dx.

Since {fu(f) ga(x 4 £)} is increasing and tends to f(£) & (x + 1),
it follows that {/.(x)} is also increasing and tends to 4 (x). Hence,
making 7 - co, we find from (2) that % (x) is integrable, and, in
particular, finite almost everywhere.

Using Fubini's theorem again, we have

1. 2m 23’.
= [ &yem [/ f (x4 1) = imtd dx] dt=cnd_p.
0 0

We leave it to the reader to rearrange & [/] in the form
with real coefficients.

2.12. Differentiation of Fourier series. Suppose that
f(x) is an integral, i. e. is absolutely continuous. Integrating by
parts, we have, for m 5= 0,

27

1 7 .
Cp = - e~imx gy = ! gmims g =
" on -0/ ! 2nim O/ ! im’

0y

Or Cip =Imcy, ¢y being the Fourier coefficient of f'. Since f is
periodic, we find that ¢/=0. In other words, if &'[f] denotes
the result of differentiating & [f] term by term, we have
elfl=¢e[f '
Ao
fl~ i D) mey, ems = Z'Im (bm cos mx — a sin mx).

] m==

If fis a k-th integral, then W [f]=E&[f®)].

2.18. Suppose that f has a number of simple discontinuities
at points 0« x, < x, <..<<x, <2r and that it is absolutely con-
tinuous in the interior of each interval (x; xi41). Lef us put
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di = [f (% +0) — f (x: — O))/m.  Then & [f]—S|f] = dy D(x — x,) -
“+ o dy D (X — x3), where D (X) == { - cos X - cos 2x ... 1),

Let ¢ (x) be periodic and equal to (x — x)/2 for 0 <. x < 2,
0 (0) =¢ (2r) = 0. Since ;¢ (x —x;) has at x; the same jump
as f(x), the difference g (x) = f(x) — @ (x), where @ (x) =
=dio(x — x)+...+dvp(x — xx), i8 everywhere continuous,
indeed absolutely continuous., Moreover, except at the points
Ky g ~f'=(dy + .+ d)2=C. Now & [f] = & [P] + & [g]=
=@ [P+ E[g]=¢& [P+ E[f'+ () =C [f]+ &'[D] + C. Taking
into account the particular form of C and &[] (§ 1.8, 2 (iv)), the
result follows. ‘

2.14. Let F(x) be a function of bounded variation, so that,
if ¢y are the complex coefficients of & [dF], the difference F--c,x
is periodic (§ 1.45). Let Cy be the Fourier coefficients of the latter
function. Then, for m =4 0,

1 1 T ‘ ¢
Cn= " [ (F—cyx) e-ms dig=s = [gimid (F—gx)e=
27%/( ) onim. (F—cgx) =

L im

Let us agree to write

) o raea
S Cm : . L
F(%) ~ cox+Cy+ ' i €%, instead of F(x) — cox ~ G- i €™

Y

where ' denotes that the term for which m =0 is omitted, i. e.
we represent F as the sum of a linear and a periodic function.
Then & [dF] is obtained by formal differentiation of the former
series, that is, the class of Fourler-Stieltjes series, and that of for-
mally differentiated Fourier series of functions of bounded variation
are ldentical. ‘

2.15. Integration of Fourier series. Let f be periodic
and F an integral of f. Since F(x - 2r) — F(x) is equal to the
integral of f over (x, x + 2=), or, what is the same thing, over
(0, 27), a necessary and sufficient condition for the periodicity
of F is that the constant term of ©[f] should vanish. Suppose

1) The series D (x), which is very important in the theory of Tourier
series, diverges everywhere, However, it is summable to 0, for example by
Abel's method, if x=0 (mod 2w),
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this condition satisfied. Then € [f] is obtained by formal diffe-
rentiation of & [F], i, e.

Cm

im

o .
. Ay 8in mx — by, cos mx
eimx C‘I“Z m m .

oo
W F)~C+X -

m==1
Here C is the constant of integration and depends on the choice
of F. If ¢, =0, the periodic function F—¢,x is an integral of
f — ¢, and the series in (1) is & [F — ¢,x].

Example. Let fy(x), fi(X), ... fi(%X), ..., 0<x<2x, be the fun-
ctions defined by the conditions (i) f,(x) = — 1, (ii) fh(x) = fo_s(x),
(iti) the integral of f. over (0,2x) vanishes, £ =1,2,.. The

Feo e imx
reader will easily verify that fi(x) ~ Z'~(§-l%?—’);z—,ep—- In the interval
M= 4

(0, 27) the function fi(x) a is polynomial of order k.

2.2. Modulus of continuity. Let f(x) be a function de-
fined for a < x<{b; let o (8) = o (3;f) = Max | f(x;) — f (x,)| for
all x;, x, belonging to (a,b) and such that |x, —x,| <8 The
function o (8) is called the modulus of continuity of 1) and this
notion is very useful in the theory of Fourier series. The' fun-
ction f is continuous if and only if o (8) » 0 with &. If (8) <C8%
where 0 <a <1 and C denotes a number independent of 5, we
say that f satisfies the Lipschitz condition of order «, or f e Lip o,
in (a, b). The restriction « < 1 is quite natural, since if o (3)/3~0
with 38, f/(x) exists and is equal to 0 everywhere, so that f=const.

Suppose now for simplicity that (a,b) coincides with (0, 2x)
and consider a periodic and integrable function f, not necessarily

T
continuous. Let «,(8) = 0,(3;f) = Max f |f(x+AB) — f(x)|dx for
Q

all 0<%k < 9. The function o, (8) will be called the infegral mo-
dulus of continuity of f.
2.201. For every integrable f, lim 0,(8; f) =0 as -0, Gi-

ven a function g, let /(g) denote the integral of | g| over (0, 2).
If for any €>0 we have f=/f, 4+ f,, where ®,(5 f;)~ 0 with 8§,
and /(f;)<<e, then o,(3; )~ 0. In fact: 0,(5; f) < o,(8; /1) + 0,3 fo) <
< o0 f)+21(f,) <38e if 0<3 <« (). Now the theorem is

) Lebesgue [1]

A. Zypgmund, Trigonometrical Series,
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certainly true when E is the characteristic functioxtf o.f a set 1)
consisting of a finite number of intervals, hence it is true alsﬂo
when E is an arbitrary open set, and consequently when £ is
measurable. It follows that the theorem holds .when f dssumes
only a finite number of values, hence when f is bounded, and

finally when f is integrable.
2.21. If cn are the complex Fourier coefficients of a fun-

ction f, then
1 r 1 TC# .
1) lem] < Fel—=)s lenl <zped,

Replacing x by X -+ #/m in the integral defining ¢n, we have that
2nc, is equal to

7} (x) e—imidx = — 0/ 1} (x + —;—)e~fnzx dx=%| | f(x)—f ( X -+ %)] —ims

and the last integral does not exceed either 7o (m/my or 4 w (n/m)
in absolute value.

-

/

0

2.211. The Riemann-Lebesgue theorem. The Fourler
 coefficients of integrable functions tend to 0. This fo.llows frpm
Theorem 2.201 and the second formula 2.21(1). A slightly sim-
pler proof runs as follows: f=f,+f;, where fi is bounded and
I(f,) <e (J(f) has the same meaning as in § 2.201). Cor-
respondingly, ¢m = € + ¢m, Where |em| < I(fy)/2m < g/2x and
¢k » 0 (§ 1.61, Corollary). Hence | cn| < ||+ [cn| <& for m=>m,.
2.212. If feLipe (0<a < 1), then cn = O (m=?)*). Here O
cannot be replaced by o (§ 2.9.3), except in the case = 1.~In thi.s
case, since f is absolutely continuous, the differentiated ©[f] is
still a Fourier series, so that ¢, =0 (m™?).
2.218. If f is of bounded wvariation, then |am| < Vim,
|bm| < VIm, m=1,2, .., where V denotes the total wvariation of f
over (0,2r). Suppose first that f is non-decreasing and > 0.
Using the second mean-value theorem we have
2 ‘ Q:rc
T =ff(x) cos mx dx = f (2n) / cos mxdx, 0<<&<2x,
0 . E

1) The function equal to 1 in a set £ and to 0 elsewhere is called the

characteristic function of E.
2y Lebesgue [1].
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and so |a.| < 2f (2=)/mm. In the general case, since f = f, — f,,
where fi, f; are respectively the positive and negative varia-
tions of f, we find that |a,|, and similarly | &, |, does not exceed
2 [f127) + fo@R)]/am = 2V/izm < Vim.

The result can also be stated in the following form: the
coefficients of S [df| form a bounded Sequence, The simplest exam-
ples show that this result cannot be improved (§ 1.8.2(v)). The fact
that it cannot be improved even when f is of bounded variation
and continuous lies much deeper. We state without proof the
following result, which will be established in' Ch. XL Let C be
the well-known ternary set of Cantor constructed on ©, 27). If f(x)
is any function constant in each of the intervals complementary to
C, but not equivalent to a constant in (0, 2%), the Fourier coefficients
of f are not o (1/n).

Taking f continuous and of bounded variation we obtain
the required example.

2.22. Fourier-Riemann coefficients. Theorem 2.211 is no longer
true for Fourier-Riemann series. Let

flx) = di (W eosl/x) 0<<v<lY, S()=} en” nPeinx

x n=1
It was shown by Riemann!) that the Fourier coefficients of the function f,
which is integrable R, are not necessarily o (1), and not even o(n(l_ﬂ‘“)”). It
can also be proved that the real and imaginary parts of the series Sx)
are both Fourier-Riemann series, if only 0 <{a<1, B<2/2?). We will give
here a stronger example, based on the fact that the integral of sin?nx over
(a, b) tends to (b—a)/2 as n—>rco.

2,221. CGiven an arbitrary sequence of numbers Lo, b, =0 (1), there
exists a function f integrable R, whose sine coefficients b, exceed }, for infi-
nitely many n?®).

Let 2, =-¢,n, ¢,-0. We shall define a sequence of non-overlapping in-
tervals I, == («,/2, a,), k=1,2, ..., approaching the point 0 from the right. Let
f(x)=¢,sinn,x in [, and f(x) =0 elsewhere in (— =, w). The positive coeffi-
cients ¢, and the integers n; < n,<C... satisfy a series of relations; in particular
(1) ny, are multiples of 4x, so that f is continuous for x=#0 and the integral
of f over I, vanishes; (2) ¢;/n, = 1/k—~0, which implies that f is integrable R
over (0,m). Let n,=4, ¢, =4, ;= (x/2,=) and suppose we have defined
nye,l;for i=1,2,..., k#—1 and consequently f(x) for ey 2<<x<m Put

) Riemann [1].
*) This is implicitly contained in Hardy [1].
% Titchmarsh [1].
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«, =4z/p, p being the smallest integer such that (8) «,<"1/m, ;. A little
attention shows that (3,) @, >Yn, . Let n, divisible by p be so large that
(4) the integral of sin?n,x over /, exceeds «,/8, (5) the integral of fsinn,x
over {a,, =) is less than 1 in absolute value, and, finally, (6) 4enk<1/16 kny, .
To investigate the behaviour of the integral, extended over (0,x), of the pro-
duct f(x)sin n,x, we break up this integral into three, extended over (0, AN
(24/2, &), (o, 7), and denote them by Ay, By, C,. We have | Cy | <1 (cond. (5)),
and, since sin 7,x is monotonic in (0, “k-l-l) (cond. (8)), the second mean-value
theorem shows that 4,—>0. In virtue of conditions (4), (2), (3,), (6) we have
B> c o8 =10, [8k >n,1/16 kny, > 4de, knk = 47~,Lk. Therefore we have

", = Ay Byt Cp>4h, —1—0(), i & by >4,

sult follows.

{or &£ large, and the re-

2222 Since integration by parts subsists for Denjoy’s integrals, both
special and general !), the argument of § 2.11 proves that Fourier-Denjoy
series, which are obtained by term-by-term differentiation of &|[F], with F
continuous, have coefficients o(n). This result cannot be improved, as Theo-
rem 2.221 shows.

- 2.3. Formulae for partial sums. The object of the rest
of this chapter is to establish some conditions for the convergence
of Fourier series and of the conjugate series. It will be con-
venient to treat these two problems side by side. If

)

are ©[f]and © S[f] respectively, the n-th partial sums, $5(X) = S,(x; f)
and $x(x) —-S,,(x f), of these series can be written in the follo-
wing forms

% a, + E (ax cos kx + by, sin kx), é\?(ak sin kx — by cos kx)

)= o= [ 78 dt +

+-71t—2n(cos kx [F (t) cos kt dt + sin kx [ f(¢)sin bt df) =
k=1 — e

(2) = n "
=—71_:~ Jroe +k§ cosk(t—x)dt =1 ff(t) Dyt — x) dt =

T —

f f (¢ + x) Du(t) dt,

A[.—A

!) For the theory of these integrals we refer the reader to Sals's
Théorie de Pintégrale, Ch. X.
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- / /(¢ + %) Da(2) dt,

Sa() = —

? ff(t) (k;n: sink(t—x)) df = —

2sintu

cost

—cos (n+3%) u(§1 12).

where Dy(u) = 5
sint

3 D,,(u) =

The functions D, and D, are called ‘Dirichlet’s kernel’, and
‘Dirichlet’s conjugate kernel’ respectively. However, instead of
considering S, and s, it will be slightly more convenient to
consider the expressions s,,(x) = 5;(x) — (@ cos nx 4 b, sin nx)/Z
s,,(x).—su(x) (@ sin nx — b, cos nx)/2. Since the differences s,— s,
and s, —Ss, tend uniformly to 0, this is completely justified. Putting

Di(u) = Du(u) — % cos = ST,
i 2tgtu
Di() = Da(w) — } sin nu = 208 ",
2tgtu
and arguing as before, we have
* 1 = . . 1
@ i) =— [ F e+ D dt, S =— / ot B Dbt

If f=1, then sx(x) =1 for n > 0. Since D,(f) is even, Dn(¢) odd, we
have

/ £ ¢+ x) Dty at =L ‘/ Di®) dt =

—

—fx)=

AI»—L

sf,(x)

@) . ®

__Lf ?
Ty 2tgyt

1
e

where ¢ (£) = odt) = 9ult; £) = F (¥ + 1)+ F (x — 8) — 2f (), 0 (1) =
= 0lt) = 0ullts f) = f ( + 1) — f (x — 1),

sin nt dt,

Sa(x) = 4@ (1— cos nt) di,

2.4. Dini’s test. If the first of the integrals
l2:(8)] , l &1 4
1
& f 2tg i z,‘ 2 tgt t
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is finite, then & [f] converges at x to the sum f(x). If the se-
cond integral is finite, © [f] converges at the point x to the wvalue
which we shall denote by f(x),

o 17 4u(d)

2 X) = — — [ =L,
(2) Feo=—— 3 hi
For the proof it ifi sufficient to observe that, in virtue of 2.3(4),
the differences sy(x)—f(x) and sa.(x) —f(x) are respectively
Fourier sine and cosine coefficients of integrable functions.

Since 2tg 3¢~ 1 as £ 0, the denominators in (1) may be
replaced by ¢

The integrals (1) converge if ¢.(£)=0 (%), d.(t) = O (t%, o>,
as £~ 0; in particular if f'(x) exists and is finite. However, the
first of these integrals converges even when f is discontinuous
at x, provided that §uf) =% [f (¥ +£)+f (v — )] —F (%) tends
sufficiently rapidly to 0 with £. The second is divergent if only

Jf(x+0) 5= f(x —0) and, as we shall see later, S [f] will certainly
diverge at such points.

~ If feLipa,a >0, € /] and S[f] converge everywhere. Tt
is easy to show that the convergence is uniform, but this theorem
is contained in the more general result of § 2.71.

2.,5. Theorems on localization. If f wanishes in an in-

terval 1= (a, b), €[f] and & [f] converge uniformly in any interval

I'=(a+ ¢ b—c«) interior to I, and the sum of & [f] is 0 Y. If the
word ‘uniformly’ is omitted, the theorem becomes a simple corol-
lary of Theorem 2.4, since, if xe /', ¢x(?) and .(#) vanish for small ¢
and the integrals 2.4(1) are finite. We need the following lemma.

2.501.. Let f be integrable, g bounded (| g| < A), both periodic.
The ‘Fozmer coefficients of the function y (f) = Fx+1t) g @), de-
pending on the parameter x, tend uniformly to 0 2),

_ It is sufficient to show that ©(% %) » 0 with 8, uniformly
in x. We have

) Riemann [1], Lebesgue, Lepons sur les séries tri o )
Hobsoa [ gue,Lep r les séries trigonométrigques, 60,

%) Hobson [1]; Plessner {1).
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-
g

1@ +m =7 @1 dt < [If st +n—F s+ | g (¢ + b dt

+[1f 4Dl g+ —g @)t

If | 2] < 8, the first term on the right is less than Aw,(3;f)~0.
To prove that the second term tends uniformly to 0, we put
|f|=f,+f, where f; is bounded (0 <f; <B) and the integral
of fy over (—m,%) is less than /4A. The term considered is,
obviously, less than B (3; g) 4+ 24 -¢/4A <e, for ¢ sufficiently

small, and the lemma follows.

2.502. From the conditions of Theorem 2.5 we see that
fx+1t)=0 for x e I', [£;<e. Let }(Z) be equal to 0 for [2]<e
and to 1 elsewhere. Using 2.3(8) we find that s.(x) is equal to

1|

<l

1 j F(x + 1) g () sin nt dt,

—
[
g

F YO

X+t ———sinnt di=
‘_Lf( ke
where g=A/2tg £ In virtue of Theorem 2.501, sn(x) tends uni-
formly to 0 if xe/'. Similarly, if f(x) is given by 2.4(2), and
xel, Sn(x) — f(x) tends uniformly to 0.

2.51. The results of the preceding paragraph may also be
stated in a slightly different form. Two series #, + #; + ... and
v, + v, +... will be called eguiconvergent if their difference
(4 — vp) + (u; — v;) + ... converges and has the sum 0%). If the
difference converges but not necessarily to 0, the series in que-
stion will be called equiconvergent in the wider sense.

If two functions f, and f, are equal in an interval I, then
S |f) and E|fy) are uniformly equiconvergent in any interval I'
interior to I; S[f,] and S[f,] are uniformly equiconvergent in I
but in the wider sense. ,

For the proof we consider the difference f=f; — /5.

Considering, for simplicity, convergence at a point, we may
also put our results in the following form: The convergence of
[/l (f] and the sum of S[f] (but not of S[f]) at a point X,
depend only on the behaviour of f in an arbitraily small neigh-
bourhood of x. (‘Riemann’s principle of localization’).

1) Szegd [1].
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2.52. Approximate formulae for s,.
convenient to use the approximate formulae

It is sometimes

sin IZ/f

su(x) = —/f( x + ) dt + o(1),

1)

sin nt

™
sn(x) — f(x) = —{ 9(2) dc+o(1).

In the first of them the error tends uniformly to 0, in the
second it tends to O for every x, and uniformly in any interval
where f is bounded. For the proof of the first result we observe
that the dlfference of the integral on the right and the integral
defining s, is the Fourier coefficient of the function e+t e@),
where g=1/t—{ctgit is bounded in (—=, =). In the second
case we encounter the Fourier coefficients of the function equal to

[fe+D)—=f()]g @Y.

2.53. A theorem of Steinhaus?). If at a point x, the deri-
vates of a bounded function p (x) are all finite, the series © [ef] and
p(x,) €[f] are equiconvergent at x,. Tn fact, the difference of the n-th

partial sums of these series is equal to — /f(xo-}—t)g(t) sin nt dt,
w2

where W) =g®)=1p (x+1t)—p(x)]/28in 4% and tends to 0,
because it is the Fourier coefficient of an 1111egrable function.
Suppose p (x,) = 1. The theorem shows that ‘slight’ modifica-
tions of f in the neigbourhood of x, that leave f(x,) unaltered,
have no influence either upon the convergence or the sum of
©[/] at x,. More generally

2,531, If p (x) is periodic and satisfies the Lipschitz condition
of order 1, the series & [pf] and p (x,) & [f] are uniformly equicon-
- wergent for all x,. Similarly © [of] and p (x,) © [ef] are uniformly

equtconfoergent in the wider sense.
- We need only prove that ,(3;7%)- 0 uniformly in x, where

% (@) = 7ut) = f (x + ) gt). Arguing as in the proof of Theorem

1) - If we replace sin nt by cos 72t —1 in the first integral (1), we obtain

an approximate expression for § (1), where the error tends uniformly to a conti-
nuous function.

*) Steinhaus [1].

icm
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2.501, it remains to show, since gu«(f) is uniformly bounded,
lg{t)| < M, that / g«(t + k) — g«t)| dt tends uniformly to 0O

with #. Break up thls integral into two, the first extended over
(— ¢/8M, ¢/8M). Since g.(f) is uniformly continuous outside this
interval, the second integral tends uniformly to 0, and the first is
less than 2.2M. /8 M = ¢/2, so that the whole is less than ¢, for 4
sufficiently small.

2.6. Functions of bounded variation. If f is of boun-
ded wvariation, S {f] converges at every point x to the walue
[f(x+0)+f(x—0)2. If f is in addition continuous at every
point of an interval I = (a,b), €[f] is uniformly convergent in I.
This theorem, due essentially to Dirichlet, is the first, chronolo-
gically, in the theory of Fourier series'). Its proof is elementary
and uses only the results of § 2.213. We may suppose that at any
point of simple discontinuity we have f(x)= [f(x+0)+f (x—0)]/2 ),
so that the first part of the theorem asserts that & [f] converges
everywhere to f(x). From 2.3(4) we have

(1) snx) — f (%) = [/+j+f] eld) sinnt dt =P+ Q+R,
0 wfn
where 7 will be defined in a moment. Since |sin nt| < nf < 2ntgkt,
we see that |P|<Max|ouf)] (0 <f<1/n) and so tends to 0.
For fixed 7, R is the Fourjer coeffxcxent of a function of bounded
variation and hence is O (1/n) =0 (1). By the second mean-value
theorem

I

; ] ou(t) sin nt dt, wjn < 7' <1,
n _/n

Since ©,(¢) is continuous for Z=0, and 9.(0) =0, the total variation

ﬁ

w}.—a

(2) Q= gectg

) Dirichlet himself considered only functions having a finite number
of maxima and minima, and in particular monotonic functions. Since, ho-
wever, functions of bounded variation are differences of such functions, it is
natural to associste Dirichlet's name with this theorem, which is only more
general in appearance.

2) The set of points where a monotonic function, and so a function of
bounded variation, is discontinuous, is at most enumerable.
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of the function equal to ¢«(f) in (zn/n,%) and to 0 elsewhere, is
less than ¢, if 7 is sufficiently small !). In virtue of Theorem 2213,
the second factor on the right in (2) is less than e/# in absolute
value, whence | Q| < e/r. Therefore is;":(x)——f(x) [<o()4e/nto(1)<e
for n>> 1, i. e. Sp(x) - f(x).

If f is continuous in /, then, for x e/, ¢«¢) is uniformly
small for small 7 and hence P-0 uniformly. For fixed v, the
total variation of the function ¢.(!)/2tgt¢ over (7, =) is uni-
formly bounded ?), and so again R~ 0 uniformly. If x¢/, |2]<3,
the total variation of f(x--£), and hence that of (), in a
small intervall will be small ), and this gives as before that
| Q[<<e/z for 7 small but fixed. This completes the proof %),

2.601. A sequence of functions f,(x) convergent to f(x) in
a neighbourhood of a point x, is said to converge uniformly af
the point x, if, for any ¢>0, there exists a 6=24(¢) and a p=p)
such that |f (x) — fu(x)| <& for | x — x,| <8, n>p.

If.f is of bounded wariation, S[f] converges uniformly at
every point x, where f is continuous. In fact, repeating the argu-
ment of § 2.6 it is casy to see that, if |x — x,| is small enough,
the expression |P|+4 | Q|+ |R| is uniformly small.

2.61. Young’s theorem. I/f f is of bounded variation,
a necessary and sufficient condition for the convergence of &[f] at
a point x is the existence of the integral

Fye L I0® T 1T
1 flo= ﬂa/2tg%tdt_£gﬁl[ n-,,/zhmtg-;-zdt}’

) The total variation of ¢ (f) in an interval o<t o/, 0 << a<lal, tends
to 0 if />0, for otherwise there would exist a sequence of non-overlapping
intervals (s, a},) tending to 0, on which the total variation of ¢ would exceed
a 8>0, and so ¢ would not be of bounded variation.

?) This follows e. g. from the obvious fact that if Vi M; denote respec-
tively the total variation of g; and Max|g;|, the total variation of 8182
IsCM Vy 4+ M, V,.

%) The total variation is continuous wherever the function is conti-
nuous.

*) The decomposition of 8, — finto three parts P, Q, R wasnot necessary,
since it was not difficult to prove that P4 Q is small for small 7 (see the
usual proof of Dirichlet’s theorem in textbooks). However, the argument of
the text can be applied to some other theorems,
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which represents then the sum of E[f]Y). In virtue of Theorem 2.63
it is sufficient to consider only the points of continuity of f. Let
f (x, 1) denote the value of the integral (1) with the lower Iimiﬁ h
instead of 0. Using the formula 2.3(4) we see that s,(x) — f (x, =/n)
may be represented as the sum of three terms. Two of then% are
analogous to Q, R from the preceding section, with o.(f) sin nt
replaced by ¢.«(f) cos nf. The same proof as before shows that
they tend to 0. The absolute value of the third is less than

1 7:/‘11

~/

T 0

wjn

1—‘39L”td¢\<_.§:/'gq;x(z)gzdt:oa).
T

Doty | =
ROl
It follows that Efi(x) —f(x, =/n) > 0. In order vto complete the
proof it is enough to show that f(x,/7)—f(x, rn) =0 a,s n - oo,
it =/(n+1) <k <=/n. But ]f(x,’h) — f(x, =n) | < [=/n — =z/(n + 1)]-
Letgd e Max | (8] (0 <t < wfn)=0(1/m)=0(1).

2.62. Corollaries. Let f be of bounded wariation in an in-
terval I = (a,b). Then (i) € [f] converges to [f (x—}.— 0) +f.(x—9)];’2
at any point interior to I. If, besides that, f is coiztmfz'ous in I, E[f]
conwerges uniformly in every interval (a4 0,5 — o:), (i) a tzece§sary
and sufficient condition for the convergence of Z[f] .at a point x
interior to I, is the existence of the integral 2.61(1), which represents

the sum of S[f}
This follows immediately from Theorems 2.6, 2.61 and 2.51.

Proposition (i) is known as ‘Jordan’s test’.

2.621. Integrated Fourier series. Let F be the indefinite
integral of f and let the first series in 2.3(1) be E[f]. Then we
have, for — oo < x < oo,

M

the series on the.right being uniformly convergent *). For .the pro‘of
it is sufficient to observe that the series on the right, without -1ts
linear term, is the Fourier series of the function F — a,x/2, which
is continuous and of bounded variation. If follows also that for

every o, 3 we have

F(x) = "% 4 C+ 3 (@ sin nx = by cos ns)jn

n=1

) Young [2].
) Lebesgue, Lefons, 102.
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8 B - N 8
/fdx = [a_;’f +> [a,, Sin 11X — 608 nx], i. e. Fourier series may be
- dy n=1 n

o o

integrated term by term over any interval (z, B). From (1) we have:

If the first series in 2.3(1) is a © [f], the series b1 + by/2+ ...
converges. This may be false for the series a;/1 + a,/2 4+ ... (See
Chapter V).

2.622. If f is of bounded wariation, the partial sums of ©|[f]
are uniformly bounded. We postpone the proof till § 3.23.

2.63. Conjugate series at points of discontinuity.
We have seen that simple discontinuites are, in principle, no
obstacles for the convergence of ©[f]. For the conjugate series
the situation is different: If f(x 4 0) — f(x — 0) = [ >0, then S[f]
diverges at x to — oo 1),

This is contained in the following, more precise, result 2).

2.631. If f(x+0)—f(x —0) =1, then sy(x)/log n - — U=,

Since f(x+ 1) —f(x —t)=1+c¢ (), e (f)» 0, we may write
(1) Sn(x) =— L f Di(t) dt — 1 / e (£) Dy(t) dt.

o 3§

To find the first of the integrals on the right, let us denote them
by I., I» and consider the function f () = (z —£)/2 (0 <t <2x). Here
L=f (H0)— f(—0)=r, € (t) =—¢, 5p(0)= —1—1/2 —...—1/(n—1)—1/2n=
= —logn+0(1). Substituting this in (1) we find that /,= log n+0 (1)
~ log n. Now we will show that /, = o0 (log ). We break up this
integral into two, the first of which is extended over (0, 8), where
8 is so small that |z (#)|<7/2 for 0<¢ <% Since D'> 0, the
first term is less than % /,/2. The second term is bounded, and
so less than v /,/2 in absolute value for n>n, It follows that
| <l n>ny), i e. Ih=0 () =0 (log ). This completes the
proof. ‘

This theorem gives us a means of determining the simple
discontinuities of functions from their Fourier series.

2.632. Corollaries. (i) If the Fourier coefficients of a fun-
ction f are o(1/n), f cannot possess simple discontinuities, In

) Pringsheim [1].
) Lukacs [1].
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fact, for such functions Sh(x)=o0 (log #) uniformly in x (§§ 1.72,
1.74). In particular, if the Fourier coefficients of a function f of
bounded wvariation are o (1/n), f is continuous.

(i) If f is continuous at a point x, then su(x) = o(log n).
If f is continuous in an interval (a, b), then E,(x) =0 (log #), uni-
formly in every interval (a+3, & —9).

2.7-
n = =M.
We begin by proving the following lemma,

Lebesgue’s test. Let o(f)=o0.(), v (H)=0)2 tg 1¢,

9.701. For every X, © |sn(x) — f (x)| is less than

g _ j 2
) [LEO=2EED a4 gy [LE DLt 1 on[lo 0] o),
ki 0

h

where A is an absolute constant. The last term on the right tends
to O uniformly in any interval where f is bounded. Applying the
device of § 2.21, we see that =[s.(x) —f (x)] is equal to

™ "1 ﬁ——‘q
[ sinnt dt — [7.(¢+n) sin nt dt = [Tt — 7. (¢+)] sin nt d +
0 = 1

b N 2
+ [.(¢) sin nt dt + [ (¢) sin nt ¢ + [ (¢) sin nt dt.
T 0 0

Let us denote the integrals on the right by 1y, I, /;, I, respe-
ctively. The sum |/;| +|/,] is less than the third term in (1). We
may assume that |y () sin nt| < |o ()| < If (c+D+ 1 f(x—]+
+12f (x)| for ¢ e (= —m,®) and, since an indefinite integral is a
continuous function, we see that /,~ 0. Finally, |/;| is less than

i i 1 1
le ) —¢ ¢+ [ _ ]ﬁ
.qf 2tg L (t+mn) dt+,]fw(t)].2tg%f 2tg 3 (¢ +m)

The difference in square brackets is equal to the expression
sin £ 7/sin 4 £ 8in 4 (¢ 4+ n) < An/E.

This completes the proof.

2.702. Let @ (k) = @.(h) be the integral of | ex(t)| over (0, /).
Lebesgue’s test may be formulated as follows: &[f] converges
to the value f (x) at every point x at which
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U
asn~ 0. Using Lemma 2.701, it remains to show that the second
term in 2.701(1) is o (1). Integrating by parts, we find for’it the

value A7 {[@ (&) t=7; +2 [ @ (8) t=3 dty = 0 (1), since @ (£) = o (1
'f] ’

(§ 1.71).

.2..703: An important discovery of Lebesgue is that the first
condition in 2.702(1) is satisfied almost everywhere. The result
may be stated in the following form. ‘

h
Let Fy(h) = / \f(x+1) — f(x)|dt. Then, for almost cvery }c,

0
we have Fu(h) = o (k) as b~ = 0. This proposition represents a ge-
erralization of the well-known theorem on the differen’tiabilify of an
%ntegr-al, to which it reduces if we omit the sign of absolute va.lue
in the definition of F. Les us denote by E,, where « is rational,

. h
the set of x for which the relation%— [|f(x—{—t) —a|dt —|f(x)—a]
{

. )
fioes not hold. In virtue of the theorem just mentionned, any £,
is of mesure 0, and so the sum £ of all E, is of mesure 0. Wg

will prove that Fy(k)=o (k) for x<E. Suppose that >0 is

given and let B be a rational number such t -
In the inequality v such that | f(x) — B[ < e/2,
h a

F) < [ 17+ 0—plat+ [ |8 —Feo)at,
0

Xhﬁ:e{ fo}f simplicity, 2> 0, the ratio of the first inlegral on the

Fg(k) <0E * 2’cends}zto [ f(x)—B|<e/2. Hence, for small #, we have

P /2+<ch/2=c¢ch, and, ¢ being arbitrary, the result follows.

2.71. The Dini-Lipschitz test. f f i :
> D : . S is continuous and it
;}}Zodujus of continuity s.atzsfies the condition w (3) log 1/3 -0, as 6>l OS
) e(f;)&i[f]tconwerges uniformly. This follows from Lemma 2.7’01. Sin‘ce,
? <P(+‘f7)|<If(x+t)~f(x+t—kn)l+|f(x-f)—-f(x—l‘—~'f1) <20 (),

') The upper limit

§ 2.200). of integration = may be replaced by any fixed «>0
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the first term in 2.701(1) is < 20 (1) log =/7 ~ 0. Similarly, since
© (¢) - 0 uniformly in x, the remaining terms in 2.701(1) tend uni-
formly to 0 (§ 1.71).

The result holds in particular if fe Lip « (@ > 0).

In virtue of the theorems on localization, we conclude that
if f is continuous.in an interval I=(a,b) and if the modulus of
continuity of f in this interval is o (log 1/2)7, S|f] converges uni-
formly in every interval (a+e,b—c¢). This test is known as the
Dini-Lipschitz test and is primarily a condition for uniform
convergence. We shall see in Chapter VIII that the condition
f (%o + k) — f(x;) = 0 (log 1/ k|)~* does not ensure the conver-
gence of S[f] at x,.

2.72. In the preceding section we proved that, if in an in-
terval (a, b) the function f satisfies a Lipschitz condition of posi-
tive order, then € [f] and Z[f] converge uniformly in every
interval (a +¢, b —¢). We wiil now prove a slightly more precise
result, which completes that established in § 2.4.

If f(x)eLipe, >0, in an interval (a, b), and if, moreover,
[f(b+1)—f(b)] < At If@)—fla—t)| <A, 0<t <A where
A is a constant, then & [f] and Z [f] converge uniformly in (a, b)%).
There exists a constant B> 0, such that |f(x 4 7)—f (x)| < Bt*,
if only a < x < b, |t]| <4 and so, in the equation

s -1 = ‘
Sn(x) — f () = %{/—k([ﬂt/ )j’[f (x + ) — F ()] Dty dt = P+ Q,

where 0 < o < &, the integrand of P does not exceed B 1% in
absolute value. Hence, taking o small enough, we have 1P <2,
uniformly in (g, b). Since Q is the Fourier coefficient of the fun-
ction [f(x+1)— f(x)] g(8), where g(t)=}etght for s<1t1<7,
g (t)=0 for |¢|{<o, we see, by Theorem 2.501, that Q » 0 uniformly
as n - oc, so that | Q] <<¢/2, |P+Q: <5, for n > ng, a_\gxgb_. In
the same way we prove the uniform convergence of sa(x) — f (x).

Let o (3) denote the modulus of continuity of f in the inter-
val (a,b). If o(@)/d is integrable in a neighbourhood of ¢=10,
and if |f B+ —F(B)[<Ao®), [f@—Fla—t)[<Au (D), 0<t<A,
then € [f] and Z [f] converge uniformly in (a, b). The proof re-

) Hobsomn, Theory of Functions, 2, 535.
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mains the same as above. The result holds, in particular, if
0 (3)=0(log1/2)™"% e>0. For e=0 the argument fails, and,
as we shall see later, the theorem itself is false.

2.73. As we shall see in Chapter VIII, the partial sums of
& [f] may be unbounded almost everywhere. However

If at a point x, we have Dy(h)= o0 (h), then s,(x)= o (log n), and,
if Wi(h) = o (h), then s.(x) = o(log n) ). We know that Dy(h) =0 (h),
Y(h) = o(h) almost everywhere. From 2.3(4) we see that the ex-
pression 7| s,(x) — f (x) | does not exceed

1/n K . b
n/M@NM+ffwwawhm®amruwwwﬂwﬁ/¢awﬂw.
0 n [
The first two terms on the right give @ (z)/z = O(1) = 0 (log n),
the third, in virtue of the relation @ (£) = o0 (¢), is o (log 1) (§ 1.71).
We proceed similarly with [su(x)|, taking into account that
| Du@)| < n for 0 £ 1/n, and | Du(t)| < 2/t it 1/n <t <
If f is continuous in (a, b), then sy(x)/log n and s.(x)/log n tend
uniformly to 0 for xe(a-+8b6—28) (2>0). The proof is still
simpler since in the inequalities for |s,| and |sw—f| no inte-
gration by parts is necessary. ‘

2.74., Lebesgue’s criterion has an analogue for conjugate
series. Let ¥.(%) be the integral of |¢.(f)| over (0, 4) and let f (x, h)
have the same meaning as in § 2.61. Then, the conditions

@ wm=om, [HOZLEEDIy o g0
M

involve the relation :s':(x) ~ f (x, ©/n) > 0. In other words, under the
above conditions, & [f] converges at a point x if and only if the
integral 2.61(1) exists ?). The conditions (1) will certainly be sa-
tistied if f satisfies the Dini-Lipschitz condition in an interval
containg x. The proof we leave to the reader.

If feLip o, then &[f] converges uniformly. This follows from
the fact that s:(x)—7 (x,n/n) tends uniformly to 0 and that the
integral f(x,7) converges uniformly.

) Hardy [2]; Young [3].
/(1) <h << njn, then |7 (x, k) — F(x, n/n) | < (1) ¥ () [n2 >0,
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28. de la Vallée Poussin’s test. If the Junction () =
t
7:(t) = %/ o|u) du is of bounded wariation in an interval to the
0

right of t =0, and if 7 (t)~>0 as -0, then & [f] converges at x
to the walue f(x)1). )

The convergence of [f] at x to f(x) is the same thing as
the convergence of & [¢] at the point £ =0 to the value 0. Now
¢ (t) = t7'(t) + 7 () and, since the derivative of a function of boun-
ded variation is integrable, ¢ is the sum of two functions, the
first of which satisfies Dini’s condition at # = 0 and the second is
of bounded variation.

2.81. Young’s test ?). S[f] converges at the point x to the
value f(x), provided that (1) o(t)~0 as -0, (2) the function
9 (4) = tou(t) is of bounded wariation in an interval to the right of
t =0, and (3) the total variation v (k) of 8 over (0, h) is < Ak for
small h, where A is a constant,

Consider the decomposition of the integral 2.52(1) defining
s, — f into three integrals P, Q, R, extended over the intervals
0, &/n), (k/n,7), (v, =), where k is large but fixed, and % is defined
by the condition that 6 is of bounded variation in (0, 7). We have
|P| < n®Akjn) -+ 0. Similarly R~0. Q is the sine coefficient of
a function g (f) = t.(#) of bounded variation, and the theorem will
have been proved when we have shown that the total variation
of ¢ over (0, =} is less than €2 (e arbitrary > 0), if only % is made
large enough %). Since & (k/n) =0 (n), (7)) = O(1), & (£) =0 outside
(%/n, 1), it is enough to prove the same thing for the variation
of & (f) = 0 (£)/¢® over the interior of (k/n, 7).

Let (a,b)=(k/n,n), a (f)=1"2 B (&) =9(), u(f) = the total
variation of a over (g,£), v (f) = the total variation of § over (g, £),
and let a=1,<t <..<{f,=05b be any subdivision of (g, b). If
we add the obvious inequalities [a (£) B () — « (fim1) B (tr) | <<
L{a@)] [BUE) =B [+H[BE) | [2(@E) —2 (i) | < [ (@) |[v(8) —
— U (t)] + B | [u@) — w(tin], i=1,2,..,m, we find that
the total variation of «f over (a, ) does not exceed

) dela Vallée Poussin [1].
?) Young [4]; Hardy and Littlewood [1].
3) The argument is similar to that used in § 2.6,

A. Zygmund, Trigonometrical Series. 3
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b b ! "
[la®| dw@+ [16@)]dut) -—_;_// £ do (f) + 2,;/' 0 ()| £ dt.

Since |0(¢)| =0() —90 0)| < v(f) < At, the last integral is less
than 2An/k. An integration by parts shows the preceding inte-
gral to be less than [v (1) w2 — v (k/n) (k[ny~? 4 2A njk. Altogether
the two integrals yield less than O) + 4 Anjk <en, if k is large
enough.

2.82. The following theorem, in which f(x, 1) has the same
meaning as in § 2.61, is an extension to the case of conjugate
geries of the results proved in §§ 2.8, 2.81.

The difference si(x)—f (x,n/n) tends to 0 as n- oo, if one
of the following two conditions is satisfied:?).

14
(i) the function x(t):%./ () du s of bounded warlation
0

in an interval to the right of t =0,

(i) «(t) ~0 with t, tb(f) is of bounded wvariation In an

interval to the right of t=0, and the total wvariation of t{ (f)
over (0, k) is O (h).
_ To prove the first part of the theorem we observe that
€[f] at the point x is the same thing as £ ©[¢] at £ =0. Now
PO =4O+ 00, 4@ =17 ®E¢) =y and so we have
25n(c%s £) — F (% 7/m)] = 52005 §) — & (0, 5/n) = [a(0; 1) — (05 /)] +
+ [5(0; q’z): b, (0, ©/m)].

Since §;(0,7/m)—b; (0); 5a(054,)~$4(0) (§2.4), Su(0; b)—ba(0,7/1)0
(§ 2.61), we obtain that s.(x)—f(x,%/n) >0 and this gives the
first part of the theorem.

The proof of the second part is much the same as that of
Theorém 2.81.

_ 2.83. The Hardy-Littlewood test. This test is interes-
ting because it takes into account not only the behaviour of the
funection, but also that of the Fourier coefficients.

Y Youn g [5].
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S [f] converges at the point x to the walue f(x), if the follow-
ing two conditions are satisfied () f(x+h) —f(x)=o0 (log 1/1R ),
(ii) the coefficients of S[f] are O@7?),e>01.
Since instead of S[f] we may counsider  [¢], let us assume
that x=0, f(0)=0, f()=f(—x), |a.|<n7? 0<8<1 Itis
also convenient to suppose that o, = 02). Let r=28/2. We have

k] al g7 =
27 sin nt roT
: e t — dt:’—‘ —— .
sil0) :a/ f()2’rg%t 6/_*_,{—{1‘*:,‘—/:- PrQ+R

Since f is continuous at the point 0, P+0 as n-oco. If e(f)=
=Max {|f(#) log 1ju} for 0 <z < {, then
—T

g "eodt
ol e(n—r
Qi< )_/1 tlog 1)t

=& (r7) log 1/r + 0,

and it remains only to show that R - 0. Using the theorem (which
will be established in Chapter IV) that Fourier series may be inte-
grated term by term after having been multiplied by an arbitrary
function of bounded variation, we have

=

Rz}_}akg /'im ntcosktdt.
=1 2igit

L

Replacing the products cos kf sin 7t by differences of sines,
and applying the second mean-value theorem to the factor % ctg L1,
we see that the coefficient of ag, k£==n, does not exceed 4n"/z |k — 1|

in absolute value, and so
—3 ur n—1 oo

R<o+ETET o+ 34 3 =0 +R+R,

iz k—n| k=1 E=ntl

|

where ' denotes that the term k2 = r is omitted. Now

- r onl n—1 3 3
IR<E Y k(g N 1 =0 7)+0(n zlogm)=o0(1)
4 = fnk= r=lhnl+in — R :

- 21 s —3 3 [
—R,<n¥ > L +n > L O(n zlogn)+O(n 2)=o0(1),
4 k=n+l kB — 1 e=mt1t R

and this completes the proof. The same argument shows that
Under the conditions of the above theorem, sa(x) — f (%, =/n) > 0.

1) Hardyand Littlewood [2], [3].
2) We can secure this by adding —1%a;(1 — cos x) to E[f1
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2.84. Relations between tests '). We shall consider only
tests for the convergence of Fourier series.

Dini's and Jordan's tests are not comparable?), Let [(x),
g(x) be even and let f(x)==1/log (x/2%), g0 = x"win1/x (0 ~lw 1)
for 0 <x < m At the point 0, f satisfies Jordan’s condition but
not Dini’s, and conversely g satisfies Dini’s condition but not
Jordan’s.

de la Vallée Poussin's test includes both Dinl's and Jordan's,
Let @ () be the integral of 9 over (0,%), and let v (£) == & ()1,
It ¢ is positive and non-decreasing, o is 7. If 9 is of bounded
variation, i. e, it ¢ = ¢, —®,, where ¢, ¢, are positive and non-~
decreasing, then 3 ==y — 7, is also of bounded variation. Thiy
proves the second part of the theorem. To prove the first, lel
() be the integral of ¢ (u)/u over (0,£). A simple caleulation

shows that 1

!

1 . v

+. [ o @ du=p. (&) 1 [ vy du,
0 0

and if p is of bounded variation the same iy true for the ex-

pression on the left.

de la Vallée Poussin's and Young's tests are not comparable.

The total variation of xg (x) over (0, %/n) is exactly of order n~™
It follows that, if 0 <a <1, x=0, g satisties Dini’s condilion but
not Young’s. Thus Young’s condition does not include Dini’s,
and, a fortiori, de la Vallée Poussin’s.

Let /2(x) be even and equal to (—1)"B, in the interval (x 27 1, z2 ny,
n=0,1,2,.., where 1>8,>8,>...-0. A simple calculation shows

that the total variation of H(x)=x—" / h (¢) dt over (m2-n—i 1 2-n) ig
% y »

equal to [Ba/2 + Bn1/22 — Buya/28 4 Bppy/2t — w] > Bu/2, so that, if
{31—}-'{3,{—&—.,.:&, h(x) does mnot satisty de la Vallée Poussin’s
' condition at the point x=0. From the graph of the curve
y="0(x)=xh(x) we deduce that, if = 2-"~t P L n 2= the total

:; %ardy [8]. See also Gergen [1], Pollard [1].

e say that f satisties Jordan’s condition at a solnt i

. s 0 ' " ll ‘ ‘ ’ ! ‘
bounded variation in a neighbourhood of Xy (§ 2.62). : o A7 ol

icm

[2.85] Poisson’s formula. 37
variation of 0 over (0, x) is less than o (x)+2% [Bs 27"~ 4 Buy1 27"
+ ..] < 0(x)+ B 7 2'-"=0(x), and so Young’s condition is satisfied.

We state without proof the following result: de la Vallée
Poussin's and Young's tests are both included in Lebesgue’s test?),
which, consequently, turns out to be the most powerful, although
not always the most convenient, of all the tests discussed in this
section.

2.85. Poisson’s formula. Let g (x) be a function defined
for —oo < x < co, tending to 0 as x -+ oo, and integrable in any
finite interval. Suppose, moreover, that the series

‘ -
Eg(k—}—x): G (%),

= —0a

M

~ whose symmetric partial sums we denote by Gu(x), converges uni-

formly ?) for 0 < x < 1. The sum G (x) is of period 1, and its

© Fourier coefficients ¢, with respect to the system {exp 2mivx} are

1 ) N+1 . Jroo .
(2) lim / Gy e ™ dx = lim [ ge i dx = [ g (x)e " dx.
o= Noeo Ly e

Hence, supposing that, at the point x =0, G satisfies one
of the conditions ensuring the convergence of &[G] to the value
G (0), we obtain immediately the Poisson formula

foo  to

i .
2 e®=23 |g@erdx

Y=—00 oo

@)

This formula is true if, for example, g is of bounded varia-
tion over (— oo, o0),2g(x)="g(x+0)+ g(x—0), and if the
series (1) converges at a point. In fact, let v be the total varia-
tion of g (x) over (k,k--1). Since the oscillation of g (x+#%) in
(0,1) does not exceed g, and ...+ v + 7, 4+ v; + ... =V <co, the
series in (1) converges uniformly. G (x) is of bounded variation
since its total variation over (0,1) does not exceed V. Moreover,
it is easy to see that 2G (x) =G (x 4+ 0) + G (x — 0).

An additional remark on the Fourier coefficients of the fun-
ction G (x) in (1) will be useful later. It may happen that Ga(x)

Yy Hardy [8: Hobson, Theory of functions, 2, 533.
%) This condition might be relaxed.
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itself does not tend to any limit, but that-there exisls a sequence
of constants K, such that the sequence [lu(x) = (u(x) -~ [ docs
tend, uniformly, to a limit £/ (x). Changing, if necessary, the va-
lues of K, we may suppose that the integral of 1 over (,1)
vanishes, so that, if now ¢v are the complex Fourier coeflicients
of H, we have ¢, =0. Taking into account that the integral of
K, exp (— 2mivx) over (0, 1) vanishes, and replacing in (2) Gy by [y,
we find the same formula as before for ¢, In other words, since
K, may be taken as the mean-value of U. over 0,1), we may
write

. r | T i [ o
@ im0, [ 0up de} ~ S [ e o,
n-yoo 6 Vi ot ‘

where ' denotes that the term v ==0 iy omitled.

wltsta

Example. Let g (x)=x"" for x=0, g (x)=0 elsewhare, 0-7a<1,
Here Gn(x)=x"%4(x-+1)"% .. (L -1) % Kym= - 1)" 41— a),
Therefore, since (741)""%—n*"%-»0, the numbers ¢, = / X% et Y x

K}

are the Fourier coefficients of the function

,}lfﬂ (7% (1) o (4 1) — 2 (1 a)] (0 < x < 1),

2.9, Miscellaneous theorems and examples.

1. If 0,8 f)==0(0), then f==const. Titehmarsh, Theory of functions, 872,
Xy

[Consider /
Xy

[F(t-+ 1) —f(B)] 41,

2. Given an arbitrary sequence ,~ 0, ¢, >>0, there exists a continuous
f such that |a,|4-|b,|>>¢, for infinitely many n. Lebesgue [I].

[If ny<n,<.. and en.+En,+"' < o5, put f(x):s,,‘ cos n,,xw«{we,,n cos nyx--..].

3. Let f(x)=acos bx - a* cos b2k -F ... =~ a" co8 V"% |~ .., 0 < @ <1, ab>1.
Show that (i) feLip«, where a=loga™/logh, (i) the Fourier coefficients
of f are O(n—%), but not o(nf“) (iii) if ab=1, then w(®; f)==0( log 1/8). Har dy[4].

[Let v==v (%) be the largest n such that b"h«"1, In thé formula .

f(x—}—h)-f(x—h)=-—§2a"smb"hsmb” S
‘ ’ e ST s ) e
=1 V;%:L Lx%| T“ ! | ¢

the ’Lerms of do not exceed 2 "yt o
1 1 - ,' 4 ¥ Ter
< , P ' a b f ; BO t ]ﬂ‘ }C () ( 1 ) r.[hﬁ Lﬂ““ﬂ 01 Q
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[
4. Using Theorem 2.622 and the equation 2 (a,, 8in nx — b, cos nx)/n =
X

i
[
1 nx—t
=-;/f(f)§ -E-’-m—-%—*ldt, prove Theorem 2621 and the formula
b

27
o< b 1 w—t
2—’;=;—ff(f)——§-—dt.
n=1 -0

5. The pumbers Cr=1-4 g% gL+ L, B=1,2,38..,

are all rational multiples of w2k,
[Integrate the series sin x -7 sin2x--... an 0dd number of times].
6. If f(x) has k derivatives, the Fourier coefficients of f satisfy the

relation | ¢, | < w (v f®)/2n*, n>0. If 7® is of bounded variation, then
e =0 B
7. If f(x) vanishes in (a,0), the function F(x) defined by 2.4(2) has

derivatives of any order for a<Cx<b.
8. Considering & [cos « x], prove the formulae

sinom — 112 ) é‘——kﬁ' Y
k=1 k=1
9. If 9,(f) increases monotonically to e as -0, 0<{E <ty &[f]
diverges to -}-=- at the point x. :
[Let ¢ ()/t =7y (). Then

oo

on ctg am =1 4 24 (aF0,+1,..).

n/n win
[ simnsdtow >rai> [O—nE+ ] smntdio®) >
0 ’ [}

w/n

>4 [ 2@ sinntdt o).
§

10. If (@) ¢, ~0 with £ (i) to'(t) is absolutely continuous except at
t=0, (iii) t¢'(t)>—A4, A>>0, for small t>0, then &[f] converges at x. To-
nelli [1]; Hardy and Littlewood [3].

[Apply Young's test].

11. &[f] is convergent at the point x, provided that (1) the integral
2.61(1) exists and (2) the total variation of ty () over (0,h) is O (k). See
Prasad [1].

[The proof is analogous to that of Theorem 2.82 (ii) except at one point:

k[n

to estimate P=/ b (t) E; (t) dt we cannot use the fact that ¢ ()~ 0, but inte-
0

grating by parts and applying condition (1) we find that P -0].
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