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CHAPTER I

Trigonometrical series and Fourier series.

1.1. Definitions. Trigonometrical series are series of the
form

@

1) ¥ a +kE (@ cos kx + by sin kx),
=1

where the coefficients a,, a, vy by, by, ... are independent of the
real variable x. It is convenient to provide the constant term of
trigonometrical series with the factor 1/2. Except when otherwise
stated, we shall suppose, always, that the coefficients of the tri-
gonometrical series considered are real. Since all the terms of
(1) are of period 2=, it is sufficient to study trigonometrical series
in any interval of length 2=, e. g. in (0,27) or (— =,=).
Consider the power series

@) | fa,+ kz_i (ar — iby) 2*
on the unit circle: z=¢. The series (1) is the real part of (2).
The series
(3) kZ (ar sin kx — by, cos kx),
==

(with vanishing constant térm) which multiplied by i and added
to (1) gives the power series (2), is called conjugate to (1).

1.12. Summation of certain trigonometrical series.
The fact that trigonometrical series are the real parts of power
series facilitates in many cases finding the sums of the former.
For example, the series :

(1) Px) =} +k21 7% cos kx, Qu(x) =k21 r® sin kx,
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2 " Chapter I. Trigonometrical geries and Fourier geries.

where 0 <7 <1, are the real and imaginary parts of the series
L4+ 2z+2°4.., where z==re’*, and s0 we obtain without difficulty

1 —r? r8in x
@ "0 =4 1—~2rcosx—|—r”’ Q%) 1~ 2r cos x - r?
Similarly, from the formula log 1/(1 — 2) = 2 4 2%/2 - ..., we obtain
< cos kx 1
Pt r/ﬂ = 10 F vt st e s o

k% blog 1 - 2r cos x - /'2’

(3) - ginf )
S SI0RE vt RS
=k 1—rcosx

where 0 < r <1, arctg0=0. Denoting by pu(X), gn(x) the n-th
partial sums (1= 0,1, 2,...) of the series (1) with r == 1, we obtain
by the same argument

gin (n 4 3) x Co8 + X — cos (n -+ 4) X
sin(efdx oo cosix—cos(ntd)x

4 X) =
@ Pl 28int x 2 sin ¢ x

(A simple, although less natural, method of proving for example
the first formula in (4) would be to multiply p, by 2 sin4 x and to
replace the products cos kx. 2 sin 4 x by differences of sines; then
all the terms, except the last, cancel). From (4) we deduce that
pa(x) and ¢,(x) are uniformly bounded, indeed less than 1/sin}e
in absolute value, in every interval 0 <e <l x = 2w —c¢,

1.13. The complex form of trigonometrical series.
Applying Euler’s formulae to cos kx, sin kx, we may write the r-th
partial sum of 1.1(1) in the form

Su(x) = § &y + %k;l [(ar — iby) e A (@ -+ iby) e~#<].

If we define a, by for any integral k by the conditions a4 = s,
b_p = — by, (thus, in particular, b, == 0), we see that $, is the n-th
symmetric partial sum, i. e. the sum of 2r 4 1 terms with indices
not exceeding 7 in absolute value, of the Laurent series

e

1) Senettt (2 == ay — ib),

Rsim—ea

Here ¢ is conjugate to ¢,.. Conversely, any series (1) with this
property can be written in the form 1.1(1). Whenever we speak
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of convergence or summability of series (1), we shall always mean
the limit, ordinary or generalized, of the symmetric partial sums.

The series conjugate to (1) may be obtained from the latter,
replacing in it cx by — ic. sign &, where sign z = 2/|z| if 250, and
sign 0 = 0.

1.2. V Abel’s transformation:

n n—1 .
1) k~2 U Vg =k;‘ Ur (Wr — Urt1) — U1 U + Up s,

where 0 < m<Ln, Up=u,+u,+ ... +u if >0, U, =0. This
formula, which can be easily verified, corresponds to integration
by parts in the theory of integration, and is a very useful tool in
the general theory of series. We shall call a sequence v, vy, ... of
bounded wvariation if the series |v, — v, |+ |7, — v,]+ ... is conver-
gent. Without aiming at complete generality, we mention the fol-
lowing consequences of (1) in the case m = 0.

1.212) If a series uy(x) + u,(x) + ... converges uniformly and
{up} is of bounded wvariation," the series uy(x)v, + u(x)v; 4 ... con-
verges uniformly.

b) If uy(x) +u,(x)+... hasits partial sums uniformly bounded,
{vs} is of bounded variation and v - 0, the series u,(x)v, + u,(x)v; + ...
converges uniformly.

1.22. A corollary of Abel’s formula. If vn, Vni1, ... Un
are non-negative and non-increasing, the left-hand side of 1.2(1)
does not exceed 2v, Max |Us| (m —1 < k < n) in absolute value.
In fact, it does not exceed Max | Ux| multiplied by (0n — Umis)+...
+ (Wp—1 — Vn) + Um + Un = 2Um,

1.23. Convergence of a class of trigonometrical
series. The problems of convergence of 1.1(1) are, except in the
trivial case when |a,|+|b |+ ]|ay| 4|8, ]|+ ... < oo, always delicate.
Some rather special but, none the less, important results follow
from Theorem 1.21. Applying it to the series

o2 oo
O La,+ > aicos kx, D ajsin kx,
k=1 k=1

and taking into account the last remark in § 1.12, we obtain:

If {an) is of bounded wvariation and a,- 0, in particular if ay
monotonically decreases to 0, -the series (1) converge uniformly in
any interval 0 <e < x < 2r —e, .
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As regards the neighbourhood of x =0, the behaviour of
sine and cosine series may be quite different. In particular, the
former always converge for x =0, whereas the convergence of
the latter is equivalent to that of 4 a, -+ a; + ... %),

Transforming the argument x we may present the last theo-
rem in other, equivalent, forms. We shall be contented with the
following statement. '

If {a} is of bounded warlation and ap- 0, then the series
+a,—a;, cos x4+ a, cos 25 — ..., a, sin X — a, sin 2x -+ ... converge
uniformly in (0, 2m), except in arbitrarily small neighbourhoods
of x =m,

For the proof it is sufficient to replace in (1) x by x +=.

1.3. Orthogonal sysiems of functions. Fourier series.
A system of real functions ¢u(x), (%), ... , ¢n(X), ... defined in an
interval (a, b) is said to be orthogonal in this interval if
(m = n)

(m=n)

1 =0

Joamar_, mn=0,1, ..

1
In particular, no ¢, vanishes identically. If A=A = ..==1,
the system is said, in addition, to be normal. 1f {p,} is orthogonal,
{o./\} is orthogonal and normal. The importance of orthogonal
systems is based on the following fact. Suppose that a series
¢, Po(%) + €, 0,(x) + ..., where ¢y, ¢y, ... are constants, converges in
(a,b) to a function f(x). Multiplying both sides of the formula
F (%) = ¢y 94(%) + ... & Cn @n(x) - ... By @a(x) and integrating over the
range (¢, b), we find, in virtue of (1), that

b '
@) tn = ; ] Fondx  (n=0,1,.).

This argument is purely formal, but in some cases, for exam-
ple if the series defining f converges uniformly, ¢. are conti-
nuous and (2, 5) is finite, it is easily justified: It suggests the
following very important problem. Suppose that we have a func-
tion f(x) detined (a, &), Having formed the numbers ¢, by means
of (2), we write, quite formally,

f(x) ~ €y 9o(X) + ¢y 9y(X) “l‘

1) See also Chapter V.
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and call the series on the right the Fourier series of f(x), with
respect to the system {¢,}. The numbers ¢, are called the Fourier
coefficients of f. The sign ~ in (8) only means that the num-
bers ¢, are connected with f by the formula (2) and does not
imply in the least that the series is convergent, still less that
it converges to f. Now, what are the properties of this series?
In what sense does it ‘represent’ f?

This book is devoted to the study of one, very special but
extremely important, orthogonal system, viz. the trigonometrical
system, and so we shall study the general theory only in so far
as it bears relation on this system ?).

If an orthogonal system is to be at all useful for the deve-
lopment of functions, it should be complete, that is, whatever fun-
ction ¢ is added to {¢n}, the new system ceases to be orthogonal.
In fact, otherwise there would exist a function, just the function ¢,
not vanishing identically, whose Fourier series with respect to {¢s}
would consist entirely of zeros.

1.831. The notion of orthogonality, and hence that of Fourier
coefficients and Fourier series, may be extended to the case of
complex ¢,. We need only modify conditions 1.3(1) slightly, by re-
placing the products ¢m . by ¢m¢s, or, what is the same thing,
by ©m@x 2). Similarly in (2) we replace fo, by f¢n '

1.32. Rademacher’s system. The following very instruc-
tive orthogonal and normal system was first considered by Ra-
demacher ®): @u(x) = sign sin 2"t zx) (0 < x < 1). The function
¢n(x) assumes alternately the values =1 in the interior of the
intervals (0, 2—71), (2=, 2.2—"1), ... The proof of orthogonality
is very simple and may be left to the reader. The system is not
complete, since e. g. the function ¢ (x) =1 may be added to it.

) We refer the reader interested in wider problems to a book by
Kaczmarz and Steinhaus which is to appear in this series.

?) We denote by "z = x — iy the number conjugate to z=x - iy. How-
ever the bar will also be used to denote the conjugate series, functions ete,
where the word ‘conjugate’ has a different meaning. No m1sunderstand1ng
will occur if the reader takes into account the context.

% Rademacher [1]. See also Kaczmarz and Steinhaus [1].
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1.4. The trigonometrical system. The system of func-
tions 1, cos X, sin x, cos 2x, sin 2x, ... , i, e. the trigonometrical system,

v e T '
let Iiyn, I« denote the corresponding integrals with cog mx sin nx
and cos mx cos nx. Integrating the formula 2 sin mx sinnx =
= ¢os (m —n) x — cos (m+ n) x and taking into account the perio-
dicity of trigonometrical functions, we find that /., =0 when-
ever m = n. Similarly lun =0, [ =0, the former result being
true even when m =n. The Ns are now 2, 7, %, .., and so, if
for a given f we put ‘

L4 ™
M) m=-" [F@)coshtdt, by=-2 [ ft)sinktdt,
T v T o
the Fourier series of f may be written in the form 1.1(1). Changing
the definition of the preceding paragraph slightly in the case of
a,, we shall call @, b, the Fourier coefficients of /. We shall denote
by © [f] the Fourier series of f and by € [f] the conjugate series.
It is obvious that, if p,, |1, are two constants, then & [p, f; + py fo] =
= S[fi]+pa O£l S

1.41. [f a series 1.1(1) converges uniformly to a function f(x),
{,‘he coefficients ay, by are given by the formulae 1.4(1). The proof
is the same as that which led to the formula 1.3(2).

- 1.42. 1If the function f is even, that is if f(— x) = f (x), the
coefficients b, vanish and the integral defining a, may be repla-
ced by twice the integral over the interval (0,x). If f is odd,
thatis if f(— x)=— f(x), then @, =0 and the second integral in (1)
may be replaced by twice the integral over (0, ).

1.43. The complex form of Fourier series. The sys-
tem of complex functions e** (k=0,:£1,:£2,..) is orthogonal in
(— =, ®). Putting

1
(1 Cp == o
) ! 2n

we may write the Fourier series, with respect to this system, in
the form 1.13(1). Let us suppose, as we always shull.'do, except
when it is stated otherwise, that f is real, and put 2¢; = ay ~ iby.
Then ay, bx are given by 1.4(1). and we see that this Fourier series
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is equivalent to the trigonometrical Fourier series. However the
complex form is very convenient and we shall frequenly use it.

1.44. It is also convenient to suppose that the functions
whose Fourier series we consider are defined not only in (—=, 7),
but for all real x by the condition of periodicity: f(x+2r)=f(x),
and, unless a statement to the contrary is made, we shall always
assume this. Hence, we assume, in particular, that f(—=)= f(®),
a condition which we may always suppose satisfied !). Whenever
we say that a series is the Fourier series of a continuous fun-
ction f, we mean that f is continuous in (— oo, + co).

It is obvious that if a function ¢ (x) is of period 2=, the in-
tegrals of ¢, taken over arbitrary intervals of length 2=, are all
equal. In particular, in 1.4(1) we may integrate over the inter-
val (0, 2%).

1.45. However, sometimes it is more convenient to consider
the trigonometrical system not in (0,27) but in another interval,
e. g. in (0,1). The system {¢****} is orthogonal and normal in the
latter interval, so that the complex Fourier coefficients assume
now the form

1
o= [F@®yermat  (k=0,71,%2,.)
0

1.46. Integration and Fourier series. The problems
of the theory of Fourier series are closely connected with the
notion of integration. In the preceding definitions we assumed ta-
citly that the products f cos kx, f sin kx were integrable. Hence we
may consider Fourier-Riemann, Fourier-Lebesgue, Fourier-Denjoy
series, according to the way in which the integrals are defined 2).
Except when otherwise stated, integrals are always Lebesgue in-
tegrals. It is assumed that the reader knows the elements of the
Lebesgue theory of integration. Proofs of results of a more spe-
cial character will be given in the text?®). .

Every integrable function f(x) (0 <X < 2r) has its Fourijer
series. It is even sufficient for f to be defined almost everywhere
in (0, 27), i. e. everywhere, except in a set of measure 0. Two

1y See § 1.46.

?) For a general discussion see Lusin (1], [2].

% The few passages in which the Denjoy integral is mentionned are
not essential and may be omitted. '
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functions f; and f, which are equal almost everywhere have the
same Fourier series and, following the usage of the Lebesgue the-
ory, we call them equivalent: fi(x) == f,(x) and do not distinguish
them from each other.

1.47. Fourier~Stieltjes series. Let 7 (x) be a function
of bounded varjation, defined in (0, 2r). Consider the series 1.1(1)
with coefficients given by the formulae
1 2 1 2m
) ah = / cos kt dF (t), by= J sin ktdF (1),

the integrals being Riemann-Stieltjes integrals. We shall write

$)) dF (x) ~ % a, +/1,}J“’l (o co8 kx - by, sin kx)
and call the series on the right the Fourier-Sticltjes series of dF.
It Fis absolutely continuous and F'(x) = f (x), then & [dF] = &[f].
It is convenient to define F(x) for all x by the condition
F(x+2r) — F(x) = F(2x) — F (0). We may then integrate in the
fox:mulae (1) over any interval of length 2z. A necessary and suf-
ficient condition for F to be periodic is: ma, = F (27) — F (0) = 0.

It follows that the function F (x) — a,x/2 is periodic.

L5. The trigonometrical system is complete. This result is
a simple corollary of theorems which we encounter later, but the
following elementary proof, due to Lebesgue, is interesting in
itself. Suppose first that there is a continuous and periodic f/ 0
whose Fourier coefficients all vanish. It follows that -

1) JF Ty ax =0

fo.r every trigonometrical polynomial T,!). We may suppose
without loss of generality that there exists a point x, and two
numbers e, 3> 0, such that f(x)>¢ for x¢ /= (o — 8, Xy - 8) 2).
It will be enough to show that there exists a sequence {T,z(x)}, such

') Trigonometrical polynomials of order s are finit 1
! nite sums of the form
% o+ (a; cos x - B, sin x) 4 ... (o, c08 nx - B, sin nx).
) xeAmeans: x belongs to a set A xed means: x

does not )
to A; ACBmeans: A is n subset of B. belong
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that (i) 7.(x)>1 in /, (ii) Tu(x) tends uniformly to +co in every
interval /' interior to /, (iii) 7.(x) are uniformly bounded outside
I (mod 2r). For the left-hand side of (1) is the sum of two integrals,
extended respectively over / and the rest of (—«, ). The first of
them exceeds | /'|. Max Tu(x) (x € I) > co!). The second is bounded
and so (1) is impossible for large n. We put 7, =", where
¢ (x) = 14+ cos (x — x,) — cos 8. In this case £ (x)>11in [, £(x)>1
in I' [t (x)| <1 for x &/ (mod 2m).

Suppose now f only integrable and let F (x) be the integral
of f over (—=,x). Hence F(—=)=0, and the condition a,=0
involves F (x) =0. Integrating 1.4(1) by parts we obtain A, =B; =
= A, =B, =...= 0, where 4,, 4,, By, ... are the Fourier coefficients
of F. Hence, for a suitable constant ¢, the continuous function
F—c¢ will have all its Fourier coefficients equal to 0, and so
F(x)=c. Since F(—=)=0, we obtain ultimately F(x)=0, i. e.
f=0. The reader will observe that the proof remains valid with
more general definitions of an integral than that of Lebesgue.

1.51. Corollaries. (i) If f, and f, have the same Fourier series
then f, = f,. (ii) If, for f continuous, &[f] converges uniformly,
it converges to f. Let g (x) denote the sum of &[f]. Then the
coefficients of &[f] are the Fourier coefficients of g (see § 1.41),
and so f=g.

1.6. Bessel’s inequality. Parseval’s relation. We may
also be led to the notion of Fourier coefficients by the following
considerations. Let {¢,} be a system of functions orthogonal and
normal in an interval (a, #), and let f be a function such that f?
is integrable in (a,b). We fix an integer n >0, put T =7y @+
949, + . + 19 and then ask what values of the constants
Tos Ty --- Yn make the integral

b b ‘ b n n
1) Zz/ (f— T)zdx=af (F*—2f T+ TZ)dx:a/fzdx——Zk_é,lck'rk-i—kgng

a minimum, ¢, ¢;, ... being the Fourier coefficients of f. The last
two sums can be written as—1v, (2¢,—",) ... — s (2¢z — 1x) and
since the function # (¢ —u) assumes its maximum when &= a/2,
we see that the left-hand side of (1), which is called the quadratic

1) | E| denotes the measure of a set E.
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approximation to f by T, is a minimun when Y == ¢y (k=0,1,..n),
that is when T is the n-th partial sum of the Fourler series of f1).

Putting v = ¢, and taking into account that the integral on
the left in (1), is non-negative, we obtain the very important
_relation

@)

n

14
oo [
3 i< | 1 dx,
a

E

which is called“‘Bessel’s inequality’. Since n in (2) is arbitrary,

we have also:

@)

on 4
S [ .
Rz=) ‘(‘l
For some systems {¢,} the sign -« in (3) may be replaced by == and
the equation we then obtain is called ‘Parseval’s relation’.

Since the system 1/y/2m, (¢og x)/)/=, (sin x)/y/ ... is orthogonal
and normal, we obtain from (3), using the notation 1.4(1), that
1 2n

1 -|~}._>;I (@k+ ) < [ fdx,

T,
0

(4)

for any f with integrable square.
Corollary. 1f f* is integrable, then a;-» 0, b. 0.

1.61. The argument used in § 1.6 shows that, if € [f] con~
verges uniformly, in particular, if f is a trigonometrical poly-
nomial, there is equality in (4).

1.7. Remarks on series and integrals. It will be con-
venient to collect here a few elementary theorems on series and
integrals, which will often be used in the sequel. Let f (x) and
g(x)>0 be two functions defined for x> x,, We say that
f(x)=0(g(x)) it f(x)/g(x)~>0 as x-co, If f(x)/g (£) is boun-
ded for all x sufficiently large, we write f(x)= O (g (x)). The
same notation is used when x tends to a finite limit, or to — oo,
or even when x tends to its limit through a discrete sequence of
values. In particular, an expresion is o(1) or O(1) if it tends to 0
or is bounded, as the case may be.

) Toepler [1].
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Two functions f(x) and g (x) will be called asymptotically
equal in the neighbourhood of x, if f(x)/g(x)~1 as x- X, and
we write f(x) =~ g (x). If there exist two constants A >0, B> 0,
such that 4 < f(x)/g (x) < B for x sufficiently near x,, we shall
say that f and g are of the same order in the neighbourhood
of x, and  write f(x) ~ g(x). Similar definitions and notations
will be used for sequences.

Examples: x = O(x®) as o(x) as x-0,
logr=0 (|1—r|) as r>1, n=i=0(1) as n>co, n+yn=>=Vn as
n—co, exp N ~ exp (-4 sinn) as n—> o).

1.71. Let f(x) and g(x)>0 be two functions defined for
a < x<b and integrable in any interval (a,b—«). Let F(x) and G (x)
be the integrals of f, g over (a, x). If f(x)=o0(g(x)) and G(x)~ oo
as x - b, then F(x)= o0 (G (x)). Suppose that |f (x)!/g (x)<e/2 for
a<x, < x<b TFor such values of x we have the inequality

(FG)l < [1f1dt+ [ 171 dt < [|f] dé +— G (x). Since G () > <o,

the last sum is less than e G (x) for x > x; (x, < x; <)) and,
since ¢ is arbitrary, the theorem follows.

1.72. In the above theorem the role played by a and b can,
obviously, be reversed. If a =0, b= co, it has an analogue for
finite sums: Let fn and g, >0 be two sequences, Fy= fo+ . +fu,
Gp=_go + .. +8n If fn=0(gn), Gn~ oo, then Fn=0(Gn). The proof
is essentially the same as for integrals.

X = O, x2=

1.78. The proof of the following result is still simpler. If
the series f, + fi + ... & + & + .., g» > 0, converge and if,
Fo=Jfn+ fosa + ooy Gn= &n+ &nya + o5 then fn.=o0(gs) implies
Fr = 0(Gn).

1.74. Let f(x) (x> 0) be a positive, finite, monotonic function.
Let F(x) be the integral of f over (0, x) and Fy = fO)+f () +..+f(n).
Then (i) if f is decreasing, F(n)— F, tends to a finite limit C,
(ii) if f increases, then F(n)<Fn< F(n)+f(n). In order to prove
(i) we observe that,from geometrical considerations,we may write
fk) <F(k)—F(k—-1)<f(k—1) or what is the same thing,
0L F(h)y—Fth—1)—f(k) < flk—1)—f(k), k=1,2, ... Since

1) expx means e*.
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the series with terms f(k — 1) — f(k) converges, the same may
be said of the series with terms F (k) — F(k — 1) — f (k) and partial
sums F (1) — Fu + f (0).

For example, the difference 14 1/2 4 ..-+1/n—lognr tends
to a constant C, usually called Euler’s constant.

To obtain (ii) we proceed similarly, summing the inequalities
fte—1) < F(R)—F(k—1)<f(k) from £ =1 to .

1.741. [f either f(x) decreases and F (x)~+ oo, or f(x) incre-
ases and f (x)/F (x) - 0, then F, 22 F (n).

1.742. If f(x) > 0 is decreasing and integrable over (0, cv),
F(x) denotes the integral of f over (x, o), and F,==f(n)-+f(n+1)...
then 0 < F,— F(n) =, f(n). In particular, if f(x)/F(x)»0, we
have F, = F (n).

In cases when F(rn) can be easily obtained, the above theo-
rems give us approximate expressiong for F,.

_B”|‘
2 ER o~

(o T
k==n 1 (

n /.-[
Examples: ké; k* == »” —1, B 1),

1.8. Miscellaneous theorems and examples.

1. Show that sin x -1/, 8in 2x -} !/; 8in 8x - ... converges to (m— x)/2 in
the interior, and to 0 at the ends, of (0, 2x).

2. Let (i) fi(x), | x| «I=, be even, equal to 1 in (0,4) and to 0 in (4, =),
0<h<m, (ii) fal%), | £| <<, be even, continuous, vanishing in (24, ), 0 < /i = 7/,
equal to 1 at x = 0, and linear in (0,2h), [(il}) fy(x) = signx, |x| < =

(iv) ¢ (¥) = (r—2)/2, 0 < x < 2, (v) F (x) = [x/2n] 1), Show that
~ 2 S (sinnk) 2h = gin k)2 '
he ® [‘% +n§1 (H-nh) cos ”-x] R % + //)1( nh ) o nxhl ’
~ 2 ynlnt s ~ 5 S
Sa(x) - §] o -1 . @ (%) ’é n
dF (x) ~ % - > cos nx, | sinx|= 8 2 sin? nx

=1 T e ant—1’

3. Let f(x) 3£0 be even, g(x)7#0 odd, both non-negative in (0, w), and
let ag ayy .y by, by, ... be the Fourier coeﬂ?lcmnts of f and g respectively, Show
that |a,,|<aq |b,|<nby m=1,2 .., n=93, ..

[Prove, by induction, the inequality |sinnat|..
dory [1], Rogosinski [1]].

‘nlsiné]. Carathéo-

) [y] denotes the integral part of y.
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Miscellaneous theorems and examples.

4. Each of the systems 1, cos x, cos 2x, is ortho-
gonal and complete in (0, =).
5. Let {npn} denote Rademacher’s system. Put y(f) =1, 7y(f) = 9, (£) 9,,(1)...

apnk(t), if N==2M4-2" 1 . 42", Show that the system {#x} is orthogonal

normal and complete in (0, 1).

.. and sinx, sin2x, ..

1 n
[If ff (t)[[ (1~ 9,(x) 9,(t)) dt = 0 for every x and n, and if F is an integral

of f then F'(x) =0 at almost every x. The system {/N} was first considered
by Walsh [1); see also Kaczmarz [1], Paley [1]).

6. Orthogonal and normal systems may be defined also in spaces of
hlgher dimensions, the interval of integration being replaced by any measu-
rable set. Show that if {(pm(x)} and {r!),,(y)} are orthogonal, normal and com-
plete in the intervals a < x <[b, ¢y <{d respectively, then the doubly infi-
nite system {rpm(x) «l:,,(y)} is orthogunal normal and complete in the rectangle R
with opposite corners at the points (a,c), (&, d).

[If //f(x,y)'pm(x)y”(y)dxdy==0 for all m,n, the functions f,(y¥)=

b
/f(x,y) ¢m(*) dx vanish for almost every y, and so0 f(x,y) vanishes almost

a
everywhere on almost every line ¥ = const].
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