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following example. In complex notation f(E) = 0 except that f =1 =i
and f(2i) = 1.

Note added in proof (19 May 1976). A map f: E—~E is-a collineation COL if fx, fv, fz are colinear
whenever x, y, z are colinear. Carter and Vogt jointly and Barnes independently have proved that
every COL map with fE containing 4 points no 3 colinear is affine. Earlier it was proved [2]
that every continuous COL map with fE not a subset of a line is affine, and this result was used
to characterize the maps f: E—E for which there is an a>0 such that 4(fx,fy, fA<ad(x,y, 2)
for all x,y,zekE.

Note added in proof (18 October 1977). The conjecture from [1], that any TC self-map
of a real or complex finite dimensional Hilbert space has a fixture, has just been proved by
Dang Dinh Ang and Le Hoan Hoa.
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Fixtures for triangle contractive self maps
by

B. E. Rhoades: (Bloomington)

Abstrslxct. Tl:m. Banach contraction principle is generalized in [2] to maps which contract thr
olr more poiats, giving rise to self mappings of a Hilbert space which have either a fixed point, a fi e;
Jdine, or both. In this paper the definitions of [2] are extended to a much wider class gf m - 'Xe
For this Jarger class it is shown that most of the results of [2] remain true, wprne

. Let H bc.: a l—IilberF space. For y, z € H, the line L(y, z) passing through y and z
is tl_le collec?lon of points x = ay+fz for all scalars a, f such that «+f = 1. For
argaxtra)ry points x,y,ze H, let ¢ = x~y, b = y—z. Then the distance IT of x from
L(y, 2) is

flal i i

. y = Z’
o(x, L(y, = [
( (y Z)) ”%TI \/ﬂzbZW(ﬂ, b)(b, a) i y#z.

T]}e area of triangle x, y, z written 4(x, y, z) will be half the base ||b] times the
height IT, and will be the same whichever side of the triangle is used as the base.
(Thf: above terminology appears in [2]. It has been reproduced here for the con-
venience of the reader.) '

Let f: H—H. f will be called generalized triangle expansion bounded, written
GTEB, if there exists a positive constant A such that for every three poinis
x,¥,z€ H, cither

W) ACf, fo, fy<hmax{d(x, y,2), ACf5, [y, 2, 314 Ce,fo, D+ A(fx, 3, 2

or

(2)d gyl shmax{|x =y, lx—=fel, 1y=l, $Ux =yl +ly=rxl}.
an

i 1Ay szl <hmax{]|y—zll, |y =fyl, lz=72l, 2y =rfel + 2=}
. & !
I fox=fz]| S hmax{|x—z| , [x—fx], |z—=fzl, Fllx—fz] +]z=fxI1} -
. If £ is GTEB with 0<h<1, then f is called generalized triaﬁgle contractive,
written f is GTC., . S o '
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If f satisfies (2) for each triple of points, then f has a uniq}le' fixed point p, an.d
iteration from any point leads to p. (See, e.g. {1, p. 21]) In [3] it is shown that (2) is
one of the most general definitions for contractive type mappings.

Since the results of this paper extend those of [2] to GTEB or GTC mappings,
the same numbering scheme will be used.

" Lemma 1. Let f be GTC, p, g, r fixed points of f. Then they are collinear.

If p # g, then f does not satisfy (2). From m,
A(p’ q,r) = A(fpafq’fr)ghA(P5 q, r,

which implies 4(p, g, = 0; i.e., p, g, and r are collinear.

LemMa 2. Ler f be GTC, L a line with x,y e L such that fx, fy € L and f does
not satisfy (2) at x, y. Then L is a fixed line. Further, {f"w}—L for every we H.

Let zeL. Then A(x,y,2) =0, and from (1), 4(*x,fy,f2) =0, so that
FLGx, YeL(fx,fy) = L(x,y) and L is a fixed line.

Since (1) must hold,

3 e~ (/" w, L)
=A(fx, . 1"HW) ‘
<hmax{4(x,y,f"™), A(fx, [y, f"w), +[4 G S, S W)+ A%, v, W]}

By hypothesis, L(x,y) = L(fx,fy) = L(x,f) = L(fx,y), so that the above
inequality becomes

&) I =1 IS w, Ly<hMI(f'w, L) ,

where M = max{]x, 3|, | fx, /7], 2lx~fy] +1y—£xI1. ‘
¥ M = | fx—=fyl, then, from (3), T(f"**w, LySAI (f"w, L). It M # || fx—/f,
then, since f does mot satisfy (2) at x,y, [[fx—/yl>kM so that, from (3),
IO(f**tw, Ly<I(f"w,L). In either case {II(f"w, L)} converges. Call the limit d.
Suppose d>0. Then (3) implies || fx—fyl| <hM. M = || fx—=fy|| leads to a con-
tradiction, since h<l. If M # || fx—fy|, since f does not satisfy (2), we have
" =Pl <hM<| fx—fy|, a contradiction.

The proof of Lemmas 3~8 are similar to their counterparts in [2], so they have .

been omitted. For completeness we list Theorem 2.

THEOREM 2. Let f be GTC. If two different fixed lines of f meet at a point p, then p is
a fixed point. If f has no fixed points, then it has at most one fixed line and if it has
one such line L then {f"w}—~L Jor every we H. If I has exactly one fixed point p,
then its fixed lines, if any, all pass through p. If f has two or more fixed points then
they all lie on a fixed line L. Moreover, any other fixed line M will intersect L and
{f*"w}—L for every we H.

Theorem 3 of [2] cannot be extended to GTEB functions.

For-an example, define f: R*—R?* by f(x,y) = (x+1,2y), (x,) # (0,0),
and £(0,0) = (0,0) = g, say. Then f is not continuous at ¢ and satisfies (2) for
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h=2. Let %, =y, =1n L=L(f(x;,5),q). Let z=(x,x)eL Then f(z)
= (x+1,2x)¢L for any x # 1, and L is not a fixed line.

Lemma 9 cannot be extended to GTEB maps. Let f (%, ») = (x+1,2y),
=", r>\/3. Note that if [(x,») —p|<8, then each point (g, ),
with |y—371<3(*~3)"" satisfies || £(¢,)—pI<](g,3) ~pl. Let L = L(p, o),
z=(x,y)eL. Then f(2) = (x+1,2y) and 2y # r(x+1~g), so that L is not
a fixed linc.

‘We can prove Lemma 9 for f a GTC map.

Lomma 9. Let f be GTC, p a point such that every neighborhood of p contains
a point x and its image fx. Then either p is a fixed point or L(p, fp) is a fixed line
containing fH.

Suppose p 5 fp. Let L = L(p, fp). Suppose also that ze L but fz ¢ L. Choose
sequences of points {x,}—p and {fx,}-p. Thus 4(x,, p, 2)—~0 but A(fe,, /v, f2)
= 4(p,fp,fD)>0, and |x,~p|—0 but | fx,—fpl—[p—1p]>0.

It fsatisfies (2) for an infinite number of values of 1 we get || fx,—/fpl <kl p—fol,
a contradiction. Therefore f satisfies (1) for an infinite number of values of 7. But

A(fxus fo, f2)shmax {4 (x,, p, 2), 4(f%,, F, 2), $[4 (%, 10, D)+ A(fx, 2, D]} 0,
a contradiction.

Lemma 10 remains unchanged, and the proof of Lemma 11 parallels that in [2].
We state Theorems 5 and 6. Their proofs parallel their counterparts in [2].

THEOREM 5. If f is GTC and there is a sequence of points {x,} in a finite dimen-
sional H with |x,~/x,| =0 then f has a fixture. :

THEOREM 6. If H is finite dimensional, f is GTC and has a sequence of iterates
which converges to a line then f has a fixture.

Lemma 12 is not true for f a GTC. Let 0<e<%, f: R*—R® defined by
fx,»,2) = (%,7,%), where %, J, Z is & if the corresponding coordinate lies in
D = [0, 4] and 0 otherwise. Then it can be shown that f satisfies (2) with s = 2s.

Consider the sequence {w,} = {(*,, ¥ 2} defined by xs, = 3—1/n, ys,= za,
=341, Xapey = Zagrr = Yap> Pant1= X3pr Xawiz = Vansz = Vans Zagsz = Xap:
Then w,~4(1, 1, 1), and |lw,—fw,| =% 2+ —28%)"*>0, so that f satisfies the
hypotheses of Lemma 12. However, f(wy)—(e, 0,0), f(Wau+1)—(0,2,0) and
S Wa02)=(0, 0, £), and {fiw,} has three distinet cluster points.

Lemma 13 does not hold for fa GTEB. Define f: R—»R by f(x) = 4, 0<x<4,
JG) =0, [x]>%. Then f satisfies (2) with / = 1. Let x,, = %~+1/n. Then [[x,—/fx,|
W)%‘>0‘ A(x,,,]:\‘,,,_/'zx,,) = A(%"" 1/”9 0, %)”’01 and [I fxn*fzxnll = %>0' f has
no fixed line through 4.

We simply state Theorems 7 and 8 since their proofs parallel those in [2],

THEOREM 7. If H is finite dimensional, f is GTC and {x,} is a sequence of iterates
such that Yninf |, —x, .|| is finite and A(x,, Xy4qs Xy42)—0 then f has a fixture.

TrEOREM 8. If H is finite dimensional, f has a bounded sequence of iterares
and f savisfies (1) for all x,y, z e H whete 0<h<l, then f has a fixture.

4 — Fundamenta Mathematicae XCIX
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Partitions of pairs of reals
by

Alan D, Taylor (Schenectady, N. Y.)

.

Abstract. We prove that there is essentially only one simple counterexample to the partition
. 8 No 2 - . 8 No,2 . .
relation 2" °~>(2" )No. The partition relation 2 °—+(2"°)§, is also considered, and some indepen-
dence results concerning it are derived from some known independence results in set theory.

1. Introduction. Despite the title of this paper, we will primarily work with the
set 2 of all functions from the set w = {0,1,2,...} into the two element set
2 = {0, 1}, rather than work with the real line R itself. The set “2 can be endowed
with a topology and a measure in a natural way be regarding it as a countable prod-

“uct of the two element set 2 where 2 is equipped with both the discrete topology

and the probability measure that assigns both {0} and {1} measure one-half. By
considering the binary expansion of a real number, it will be clear that all our results
stated in terms of ®2 carry over to the real line R. We will also identify [“2]* with
{(x,y)e®2x “2: x<y} where < denotes the usual lexicographic ordering. This
not only equips [“2]* with a topology and a measure, but gives meaning to assertions
such as “d x B<[X]*”. For all relevant topological notions (e.g. analytic set, re-
stricted property of Bairc) we refer the reader to [4] or [S].

Our starting point is the following observation of Sierpifiski. If we let < be the
usua) ordering of R and @ be a well ordering of R of type2™ and define f: [RP—2
by declaring that f({x, »}) = 0 iff the two orderings agree on {x, y}, then there is
no uncountable set X SR that is homogeneous for f (i.e. such that f is constant
on [X]3), Thus, using the arrow notation of Brdés-Rado [2], this example shows
that 2%4-(x,)2. Since this counterexample makes heavy use of the axiom of choice,
it is natural to ask if it can be replaced by a constructive counterexample. Silver
observed that by combining a special case of a theorem of Mycielski [7] with a special
case of a theorem of Galvin (unpulished) one obtains the following.

Temorem 1.1 (Galvin, Mycielski, Silver). Suppose f: [°2]*~2 and f “{Eh
has the property of Baire for all i<2. Then there exists a perfect set Pc®2 that is
homogeneous for f.

This theorem was first brought to our attention by Baumgartner, who rediscov-
ered it independently of the work of Galvin, Mycielski and Silver. It has since bt?en
rediscovered by Burgess [1] and probably by others as well, Actually, the Galvin—
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