

Proof of Theorem 7.1. Let (X, x_0) be shape deformable into (A, x_0) , i.e. there is a shape map $f: (X, x_0) \rightarrow (A, x_0)$ such that

$$\underline{\underline{i}}\underline{f} = \underline{\underline{1}}_{(X,x_0)}.$$

Then, there is an ANR-sequence (X, A, x_0) and a representative $f: (X, x_0) \rightarrow (A, x_0)$ of f, such that

$$if \simeq \mathbf{1}_{(X,x_0)}$$

i.e. the system (X, x_0) is deformable into (A, x_0) . Hence, by Theorem 7.2,

$$\pi_n(A, x_0) \approx \pi_n(X, x_0) \times \pi_{n+1}(X, A, x_0)$$
 for $n \ge 2$.

Passing to inverse limits and applying 1.3, we obtain the condition (a) for shape groups. The condition (b) follows directly by (1) and 4.1. ■

Theorem 7.1 is an analogue of Proposition 5.2, p. 151 [2].

References

- [1] K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), pp. 223-254.
- [2] Sze-Tsen Hu, Homotopy Theory, 1959.
- [3] S. Mardešić, On the Whitehead theorem in shape theory I, II, Fund. Math. 91 (1976), pp. 51-64, 93-103.
- [4] Retracts in shape theory, Glasnik Mat. 6 (26) (1971), pp. 153-163.
- [5] M. Moszyńska, On shape and fundamental deformation retracts I, Fund. Math. 75 (1972),
- [6] Uniformly movable compact spaces and their algebraic properties, Fund. Math. 77 (1972), pp. 125-144.
- [7] The Whitehead Theorem in the theory of shapes, Fund. Math. 80 (1973), pp. 221-263.
- [8] Various approaches to the fundamental groups, Fund. Math. 78 (1973), pp. 107-118.
- 9] T. J. Sanders, Shape groups and products, Pacific J. Math. 48 (2) (1973), pp. 485-495.
- [10] H. Schubert, Categories, 1972.

Accepté par la Rédaction le 6. 11. 1975

en 1949 av 1950 til Verktyllen og 15. I Senten State til kanne videt og 1

On the Lusternik-Schnirelmann category in the theory of shape

by

Karol Borsuk (Warszawa)

Abstract. A modification of the notion of the Lusternik-Schnirelmann category gives a monotonuous shape invariant $\underline{\varkappa}(X)$ defined for all compacta X. Some properties of $\underline{\varkappa}(X)$ are established. In particular it is shown that if X is a continuum, then $\underline{\varkappa}(X) \leqslant \operatorname{Fd}(X) + 1$, where $\operatorname{Fd}(X)$ denotes the fundamental dimension of X.

1. Coefficients $\varkappa(X)$ and $\varkappa_M(X)$. By the Lusternik-Schnirelmann (absolute) category of a compactum X one understands (compare [1], [5] and [7]) the number $\varkappa(X)$ defined as follows:

If there exist natural numbers n such that $X = X_1 \cup X_2 \cup ... \cup X_n$, where X_i are (for i = 1, 2, ..., n) compacts contractible in X, then $\varkappa(X)$ denotes the smallest of such numbers n.

If such natural numbers n do not exist, then $\varkappa(X) = \infty$.

Observe that

(1.1) If compactum X homotopically dominates compactum Y, then $\varkappa(X) \geqslant \varkappa(Y)$.

In fact, assume that there exist two maps

$$f: X \rightarrow Y$$
 and $g: Y \rightarrow X$

such that fg is homotopic to the identity map $i_Y: Y \to Y$. If $\varkappa(X) \leq n$, then there exist compacta $X_1, X_2, ..., X_n$ such that $X = X_1 \cup X_2 \cup ... \cup X_n$ and that for i = 1, 2, ..., n there is a homotopy

$$\varphi_i : X_i \times \langle 0, 1 \rangle \rightarrow X$$

satisfying the conditions

$$\varphi_i(x,0) = x$$
 and $\varphi_i(x,1) = a_i$,

where a_i is a fixed point of X.

Setting $Y_i = g^{-1}(X_i)$ for i = 1, 2, ..., n, one gets compact $Y_1, ..., Y_n$ such that $Y = Y_1 \cup ... \cup Y_n$. It remains to show that Y_i is contractible in Y.

The relation $fg \simeq i_Y$ means that there exists a homotopy

$$\vartheta: Y \times \langle 0, 1 \rangle \rightarrow Y$$

such that $\vartheta(y,0) = y$ and $\vartheta(y,1) = fg(y)$ for every $y \in Y$. Setting

$$\psi_i(y,t) = \begin{cases} \vartheta(y,2i) & \text{for} \quad y \in Y_i, \ 0 \le t \le \frac{1}{2}, \\ f \varphi_i[g(y), 2t-1] & \text{for} \quad y \in Y_i, \ \frac{1}{2} \le t \le 1, \end{cases}$$

one gets a homotopy

$$\psi_i: Y_i \times \langle 0, 1 \rangle \rightarrow Y$$

such that $\psi_i(y, 0) = y$ and $\psi_i(y, 1) = f(a_i)$ for every $y \in Y_i$. Hence Y_i is contractible in Y and the proof of (1.1) is finished.

It follows by (1.1) that $\varkappa(X)$ depends only on the homotopy type of X. One sees easily that if X is an ANR-set, then $\varkappa(X)$ is finite.

It is clear that $\kappa(X)$ is not a shape-invariant (concerning notions belonging to the theory of shape, see [3]), because if X is a continuum which is not arcwise connected, then $\kappa(X) = \infty$, though there exist continua with trivial shape, which are not arcwise connected.

However it is easy to modify the notion of the Lusternik-Schnirelmann category in order to obtain a shape invariant. In order to do this, consider a space $M \in AR$ containing the given compactum X. Denote by $\varkappa_M(X)$ the number defined as follows:

If
$$X = \emptyset$$
, then $\varkappa_M(X) = 0$.

If $X \neq \emptyset$ and if there exist natural numbers n such that

(1.2) For every neighborhood U of X in M there exist compact $X_1, X_2, ..., X_n$ contractible in U and such that $X = X_1 \cup X_2 \cup ... \cup X_n$,

then $\varkappa_{M}(X)$ denotes the smallest of all such numbers n.

If $X \neq \emptyset$ and if no natural number n satisfies (1, 2), then $\varkappa_{M}(X) = \infty$.

- 2. Coefficient $\kappa(X)$. Now let us prove that
- (2.1) If X is a compactum homeomorphic to another compactum Y and if $X \subset M \in AR$, $Y \subset N \in AR$, then $\varkappa_M(X) = \varkappa_N(Y)$.

Proof. It suffices to show that if $\underline{\varkappa}_M(X) \leq n$, where n is a natural number, then $\varkappa_N(Y) \leq n$.

Let $h: X \xrightarrow{\text{onto}} Y$ be a homeomorphism. Then there exists a map

$$g: M \rightarrow N$$

such that

$$g(x) = h(x)$$
 for every $x \in X$.

Then for every neighborhood V of Y (in N) there is a neighborhood U of X (in M) such that

$$g(U) \subset V$$
.

Since $\underline{\varkappa}_{M}(X) \leq n$, there exist compacta $X_{1}, X_{2}, ..., X_{n}$ satisfying (1.2). Let

$$\varphi_i: X_i \times \langle 0, 1 \rangle \rightarrow U$$

be a homotopy contracting X_i to a point $a_i \in U$, that is such that $\varphi_i(x, 0) = x$ and $\varphi_i(x, 1) = a_i$ for every $x \in X_i$. Setting

$$Y_i = h(X_i)$$

and

$$\psi_i(y, t) = g\varphi_i(h^{-1}(y), t)$$
 for $(y, t) \in Y_i \times \langle 0, 1 \rangle$,

one gets compacta $Y_1, Y_2, ..., Y_n$ with $Y = Y_1 \cup Y_2 \cup ... \cup Y_n$ and homotopies

$$\psi_i: Y_i \times \langle 0, 1 \rangle \rightarrow g(U) \subset V$$

contracting Y_i in V to the point $b_i = g(a_i)$, because

$$\psi_i(y,0) = gh^{-1}(y) = hh^{-1}(y) = y$$

and

$$\psi_i(y, 1) = g(a_i) \in V$$
 for every $y \in Y_i$.

Hence $\varkappa_N(Y) \leq \varkappa_M(X)$ and the proof of (2.1) is finished.

It follows by (2.1) that the number $\underline{\varkappa}_M(X)$ does not depend on the choice of the space $M \in AR$ containing X. Thus we can omit in the notation $\underline{\varkappa}_M(X)$ the index M writing shortly $\underline{\varkappa}(X)$ instead of $\underline{\varkappa}_M(X)$. Moreover (2.1) implies that $\underline{\varkappa}(X)$ is a topological invariant. Finally let us observe that

(2.2)
$$\varkappa(X) \leq \varkappa(X)$$
 for every compactum X .

Notice that

(2.3) The condition $\varkappa(X) = 1$ characterizes among all compacts X the FAR-sets.

This is a direct consequence of (2.1) and of the fact that a compactum X lying in the Hilbert cube Q is an FAR-set if and only if X is contractible in each of its neighborhoods (in Q). See [3], p. 262.

- 3. Case of ANR-spaces. Let us prove that
- (3.1) If $X \in ANR$, then $\varkappa(X) = \varkappa(X)$.

By (2.2) it suffices to show that $\varkappa(X) \geqslant \varkappa(X)$, i.e., to prove that if $X \in ANR$ and if $\varkappa(X) \leqslant n$ for a natural number n, then $\varkappa(X) \leqslant n$.

Assume that $X \subset M \in AR$. Then there is a neighborhood U of X in M such that there exists a retraction

$$r: U \rightarrow X$$
.

The inequality $x(X) \le n$ implies that there exist compact $X_1, X_2, ..., X_n$ satisfying (1.2). Thus for every i = 1, 2, ..., n there are a point $a_i \in U$ and a homotopy

$$\varphi_i: X_i \times \langle 0, 1 \rangle \rightarrow U$$

such that $\varphi_i(x,0) = x$ and $\varphi_i(x,1) = a_i$ for every $x \in X_i$. Setting $\psi_i = r\varphi_i$, one gets a homotopy

$$\psi_i: X_i \times \langle 0, 1 \rangle \rightarrow X$$

contracting X_i in X to the point $b_i = r(a_i)$. Hence $\kappa(X) \leq n$ and the proof of (3.1) is finished.

4. $\varkappa(X)$ as a monotonous shape invariant. The main aim of this note is to prove the following

(4.1) THEOREM. If X, Y are compacta with $Sh(X) \leq Sh(Y)$, then $\underline{\varkappa}(X) \leq \underline{\varkappa}(Y)$. Proof. It suffices to show that if n is a natural number such that $\underline{\varkappa}(Y) \leq n$, then $\varkappa(X) \leq n$.

We may assume that X and Y are subsets of the Hilbert cube Q. The hypothesis $Sh(X) \leq Sh(Y)$ implies that there exist two fundamental sequences

$$f = \{f_k, X, Y\}$$
 and $\hat{f} = \{\hat{f}_k, Y, X\}$

such that

(4.2)
$$\hat{f}f = \{\hat{f}_k f_k, X, X\} \simeq \underline{i} = \{i, X, X\}.$$

Then for any neighborhood U of X in Q there exists an open neighborhood V of Y in Q such that

$$f_k(V) \subset U \quad \text{for almost all } k.$$

Moreover, there exists a neighborhood $\hat{U} \subset U$ of X in Q such that

(4.4)
$$\hat{f}_k f_k / \hat{U} \simeq i / \hat{U}$$
 in U for almost all k .

The hypothesis $\underline{\varkappa}(Y) \leq n$ implies that there exist compacta Y_1, \ldots, Y_n such that $Y = Y_1 \cup \ldots \cup Y_n$ and that for every $i = 1, 2, \ldots, n$ there are a point $b_i \in V$ and a homotopy

$$\psi_i: Y_i \times \langle 0, 1 \rangle \rightarrow V$$

such that $\psi_i(y, 0) = y$ and $\psi_i(y, 1) = b_i$ for every $y \in Y_i$.

Since V, as open in Q, is an ANR, there exists for every i = 1, 2, ..., n a compact neighborhood $W_i \subset V$ of Y_i (in Q) and a homotopy

$$\overline{\psi}_i : W_i \times \langle 0, 1 \rangle \rightarrow V$$

such that $\overline{\psi}_i(y,0) = y$ and $\overline{\psi}_i(y,1) = b_i$ for every $y \in W_i$. Then the set $W = \bigcup_{i=1}^{n} W_i$ is a neighborhood of Y in Q. Hence

(4.5)
$$f_k(X) \subset W$$
 for almost all k .

It follows by (4.3), (4.4) and (4.5) that there is an index k_0 such that

$$(4.6) \hat{f}_{k_0}(V) \subset U, \hat{f}_{k_0} f_{k_0}/\hat{U} \simeq i/\hat{U} in U, f_{k_0}(X) \subset W.$$

It is clear that setting, for i = 1, 2, ..., n:

$$X_i = X \cap f_{k_0}^{-1}(W_i) ,$$

one gets a system of compacta $X_1, X_2, ..., X_n$ such that

$$X = X_1 \cup X_2 \cup ... \cup X_n$$

and that

$$f_{k_0}(X_i) \subset W_i$$
 for $i = 1, 2, ..., n$.

Since the homotopy $\overline{\psi}_i$ contracts the set W_i in V to the point b_i and since $\widehat{f}_{ko}(V) \subset U$, we infer that setting $a_i = f_{ko}(b_i)$, one gets the relation

(4.7)
$$\hat{f}_{k_0} f_{k_0} / X_i \simeq a_i$$
 in U for $i = 1, 2, ..., n$.

Moreover, it follows by (4.6) that

$$(4.8) \hat{f}_{k0} f_{k0} / X_i \simeq i / X_i \quad \text{in } U.$$

Relations (4.7) and (4.8) imply that $i/X_i \simeq a_i$ in U, hence the compactum X_i is contractible in U. Thus $\varkappa(X) \leq n$ and the proof of Theorem (4.1) is finished.

(4.9) COROLLARY. $\varkappa(X)$ is a monotonous shape invariant.

5. An addition theorem. Let us prove the following

(5.1) THEOREM. If $X = Y \cup Z$, where Y and Z are disjoint compacta, then $\varkappa(X) = \varkappa(Y) + \varkappa(Z)$.

Proof. We may assume that both sets Y and Z are not empty. Then each of them is a retract of X, hence $\mathrm{Sh}(Y) \leqslant \mathrm{Sh}(X)$ and $\mathrm{Sh}(Z) \leqslant \mathrm{Sh}(X)$. It follows by Theorem (4.1) that $\underline{\varkappa}(Y) \leqslant \underline{\varkappa}(X)$ and $\underline{\varkappa}(Z) \leqslant \underline{\varkappa}(X)$. We infer that if at least one of the numbers $\underline{\varkappa}(Y)$, $\underline{\varkappa}(Z)$ is infinite, then $\underline{\varkappa}(X) = \underline{\varkappa}(Y) + \underline{\varkappa}(Z)$.

In order to prove that

$$(5.2) \varkappa(X) \leq \varkappa(Y) + \varkappa(Z) ,$$

we may assume that both numbers $\underline{\varkappa}(Y) = m$ and $\underline{\varkappa}(Z) = n$ are finite. Assume that $X \subset M \in AR$ and let U be a neighborhood of X in M. Then U is also a neighborhood of Y and of Z and we infer that there exist compact $Y_1, \ldots, Y_m, Z_1, \ldots, Z_n$ contractible in U and such that

$$Y = Y_1 \cup Y_2 \cup ... \cup Y_m, \quad Z = Z_1 \cup Z_2 \cup ... \cup Z_n.$$

Then $X = Y_1 \cup ... \cup Y_m \cup Z_1 \cup ... \cup Z_n$ and consequently the inequality (5.2) holds true.

It follows that in the sequel we can assume that the number $k = \varkappa(X)$ is finite. Consider a sequence $\{U_{\nu}\}$, $\nu = 1, 2, ...$ of open neighborhoods of X in M shrinking to X. If we cancel in this sequence a finite number of sets, then we may assume that

$$U_{\nu} = V_{\nu} \cup W_{\nu}$$
 for $\nu = 1, 2, ...,$

where V_{ν} is an open neighborhood of Y (in M) and W_{ν} is an open neighborhood of Z (in M) and that $V_{\nu} \cap W_{\nu} = \emptyset$. Clearly $\{V_{\nu}\}$ shrinks to Y and $\{W_{\nu}\}$ shrinks to Z.

Since $\kappa(X) = k$, there exists for every $\nu = 1, 2, ...$ a system of compacta $X_{v1}, X_{v2}, ..., X_{vk}$ such that X_{vi} is contractible in U_v for i = 1, 2, ..., k. It is clear that every set X_{vi} is contractible in only one of the sets V_v and W_v . Thus we can assume that there exists a natural number m_{ν} such that $X_{\nu 1}, X_{\nu 2}, \dots, X_{\nu m_{\nu}}$ are contractible in V_{ν} and $X_{\nu,m_{\nu}+1}, X_{\nu,m_{\nu}+2}, ..., X_{\nu,k}$ are contractible in W_{ν} . Setting $n_v = k - m_v$ and $Y_{vi} = X_{vi}$ for $i = 1, 2, ..., m_v$ and $Z_{vj} = X_{v,m_v+j}$ for $j = 1, 2, ..., n_v$ we get a system of compacta

$$Y_{v1}, Y_{v2}, ..., Y_{vm_v}, Z_{v1}, Z_{v2}, ..., Z_{vn_v}$$

such that $m_v + n_v = k$, $Y = Y_{v1} \cup ... \cup Y_{vm_v}$, $Z = Z_{v1} \cup ... \cup Z_{vm}$ and that Y_{vi} is contractible in V_{ν} for $i = 1, 2, ..., m_{\nu}$ and $Z_{\nu i}$ is contractible in W_{ν} for $j = 1, 2, ..., n_{\nu}$.

It is clear that there exist natural numbers m and n such that m+n=k and that for an increasing sequence of indices $v_1 < v_2 < ...$

$$m_{\nu_l} = m, \quad n_{\nu_l} = n \quad \text{for} \quad l = 1, 2, ...$$

If we recall that the sequence of neighborhoods $\{V_{\nu_l}\}$ shrinks to Y and the sequence of neighborhoods $\{W_{\nu_i}\}$ shrinks to Z, we infer that $\varkappa(Y) \leq m$ and $\varkappa(Z) \leq n$. Hence

$$\varkappa(Y) + \varkappa(Z) \leq k = \varkappa(X)$$

and the proof of Theorem (5.1) is finished.

A simple consequence of Theorem (5.1) is that if X has an infinite number of components, then $\varkappa(X) = \infty$. Thus one gets the following

- (5.3) COROLLARY. If $\{X_{\mu}\}$ is the class of all components of a compactum X, then $\underline{\varkappa}(X) = \sum_{\mu} \underline{\varkappa}(X_{\mu}).$
- 6. A relation between $\varkappa(X)$ and $\mathrm{Fd}(X)$. We denote by $\mathrm{Fd}(X)$ the fundamental dimension of X. Let us prove the following
 - (6.1) THEOREM. If X is a continuum, then $\varkappa(X) \leqslant \mathrm{Fd}(X) + 1$.

Proof. We can assume that Fd(X) = n is finite. Then there exists an *n*-dimensional compactum Y such that $Sh(X) \leq Sh(Y)$. We may assume that Y lies in the Hilbert cube Q. If V is a neighborhood of Y in Q, then there is a homotopy

$$\varphi: Y \times \langle 0, 1 \rangle \rightarrow V$$

such that $\varphi(y,0) = y$ for every $y \in Y$ and that $P = \varphi(Y,1)$ is a connected polyhedron of dimension $\leq n$. One knows [2] that there exists a system of contractible in itself polyhedra $P_1, P_2, ..., P_{n+1}$ such that

$$P = P_1 \cup P_2 \cup ... \cup P_{n+1}.$$

Let Y_i denote (for i = 1, 2, ..., n+1) the set consisting of all points $y \in Y$ such that $\varphi(y, 1) \in P_i$. It is clear that $Y_1, Y_2, ..., Y_{n+1}$ are compacta such that

$$Y = Y_1 \cup Y_2 \cup ... \cup Y_{n+1}$$

and that the homotopy

$$\varphi/(Y_i \times \langle 0, 1 \rangle): Y_i \times \langle 0, 1 \rangle \rightarrow V$$

carries Y_i to the polyhedron $P_i \subset V$, Since P_i is contractible in itself, we conclude that Y_i is contractible in V. Hence $\varkappa(X) \leq \varkappa(Y) \leq n+1$ and the proof of Theorem (6.1) is finished.

7. Final remarks. As has been proved by L. Schnirelmann ([7], p. 134), if T. denotes the Cartesian product of n circles, then $\varkappa(T_n) = n+1$. Since $T_n \in ANR$, we infer by (3.1) that $\varkappa(T_n) = n+1$. Since $\mathrm{Fd}(T_n) = n$, we infer that for every natural number n, $\varkappa(T_n) = \operatorname{Fd}(T_n) + 1$. This shows that the inequality given in Theorem (6.1) can not be replaced by any more restrictive one.

Consider now in the Hilbert cube Q a sequence $\{X_n\}$, where X_n is homeomorphic to T_n , the diameters of X_n converge to zero and there exists a point c such that for $m \neq n$ the common part of X_m and of X_n consist of only one point c. It is clear that the set

$$X = \bigcup_{n=1}^{\infty} X_n$$

is an infinite-dimensional continuum such that X_n is a retract of X for every n=1,2,... Hence $Sh(X) \geqslant Sh(X_n)$ and we infer by Theorem (4.1) that

$$\varkappa(X) \geqslant \varkappa(X_n) = n+1$$
 for $n = 1, 2, ...$

Hence X is a continuum for which $\varkappa(X) = \infty$. Observe that

(7.1) The homology groups and the fundamental group of a compactum X do not determine $\varkappa(X)$.

In fact, the well known Case-Chamberlin curve (see [4]) X is a compactum for which all homology groups and also the fundamental group are trivial, but X is non-movable (see [6], p. 653), hence X is not an FAR-set, and we infer by (2.3) that $\varkappa(X) > 1$.

- (7.2) PROBLEM. Do there exist two movable compacta X and Y such that:
- 1^{0} All homology properties of X are the same as homology properties of Y.
- 2° There exists a one-to-one function $f: X \rightarrow Y$ such that for every point $x \in X$ and for every n=0,1,... the fundamental group $\pi_n(X,x)$ is isomorphic to the fundamental group $\pi_n(Y, f(x))$.

$$3^0 \varkappa(X) \neq \varkappa(Y)$$
?

K. Borsuk

42

Observe that a slight modification of the definition of $\varkappa(X)$ leads to another topological invariant $\lambda(X)$, which however is not a shape-invariant.

Let X be a compactum lying in a space $M \in AR$. A compactum $Y \subset X$ is said to be weakly contractible in X if it is contractible in every neighborhood of X in M. It is clear that the choice of the space $M \in AR$ containing X is here immaterial.

Let $\lambda(X)$ denote the number defined as follows:

If there exists a natural number n such that X is the union of n weakly contractible in X compacta, then $\lambda(X)$ denotes the smallest of such numbers n.

If a such natural number n does not exist, then $\lambda(X) = \infty$.

It is clear that $\lambda(X)$ is a topological invariant of X and that

$$\varkappa(X) \leqslant \lambda(X) \leqslant \varkappa(X)$$
.

It follows by (3.1) that if $X \in ANR$, then $\lambda(X) = \varkappa(X)$. However this last relation does not hold true if one omits the hypothesis $X \in ANR$. In fact, if A denotes the well-known universal plane curve of Sierpiński, then $\lambda(A) = \infty$, because for every finite decomposition $A = A_1 \cup A_2 \cup ... \cup A_n$ of A into compacta, at least one of A_i contains a simple closed curve and consequently it is not weakly contractible in A. On the other hand, $\varkappa(A) = 2$, because of Theorem (6.1). Observe that this example shows also that $\lambda(X)$ is not a shape invariant of X. In fact, there exist in the plane E^2 two dendrits D_1 , D_2 such that $B = D_1 \cup D_2$ is a curve decomposing E^2 into an infinite number of regions. Hence Sh(A) = Sh(B) and $\lambda(B) = 2 \neq \lambda(A)$.

References

- K. Borsuk, Über den Lusternik-Schnirelmann Begriff der Kategorie, Fund. Math. 26 (1936), pp. 123-136.
- Sur la décomposition des polyèdres n-dimensionnels en polyèdres contractiles en soi, Comp. Math. 3 (1936), pp. 431-434.
- [3] Theory of Shape, Warszawa 1975, p. 379.
- [4] J. H. Case and E. R. Chamberlin, Characterization of tree-like continua, Pacific J. Math. 10 (1960), pp. 73-84.
- [5] L. Lusternik, Topologische Grundlagen der allgemeinen Eigenwerttheorie, Monatsh. Math. Phys. 37 (1930), pp. 125-130.
- [6] S. Mardešić and J. Segal, Movable compacta and ANR-systems, Bull. Acad. Polon. Sci. 18 (1970), pp. 649-654.
- [7] L. Schnirelmann, Über eine neue kombinatorische Invariante, Monatsh. Math. Phys. 37 (1930), pp. 131-134.

Accepté par la Rédaction le 20. 11. 1975

Triangle contractive self maps of the plane

by

D. E. Daykin (Reading)

Abstract. Let E be the real Euclidean plane. A map $f: E \rightarrow E$ is triangle contractive TC if $0 < \alpha < 1$ and for each $x, y, z \in E$ either

- (i) $||fx-fy|| \le \alpha ||x-y||$ and $||fy-fz|| \le \alpha ||y-z||$ and $||fz-fx|| \le \alpha ||z-x||$ or
- (ii) $\Delta(fx, fy, fz) \leqslant \alpha \Delta(x, y, z)$ where $\Delta(x, y, z)$ is the area of triangle x, y, z. We prove that every TC map $f: E \rightarrow E$ has a fixed point p = fp or a fixed line $L \supset fL$.
- **1.** Introduction. Let E be the real Euclidean plane and $f: E \rightarrow E$. We call $p \in E$ a fixed point of f if fp = p. Also a line L of E is called a fixed line of f if $fL \subset L$. By a fixture of f we mean either a fixed point or a fixed line.

We say that f is triangle contractive TC if there is a coefficient α in $0 < \alpha < 1$ such that for each $x, y, z \in E$ either

- (i) $||fx-fy|| \le \alpha ||x-y||$ and $||fy-fz|| \le \alpha ||y-z||$ and $||fz-fx|| \le \alpha ||z-x||$ or
- (ii) $\Delta(fx, fy, fz) \leq \alpha \Delta(x, y, z)$, where $\Delta(x, y, z)$ denotes the area of the triangle x, y, z. Such maps were discussed in [1] where it was conjectured that every TC self map of a Hilbert space has a fixture. The object of this note is to present

THEOREM 1. Each triangle contractive self map of the real plane has a fixed point or a fixed line.

The author would like to thank his friend J. K. Dugdale for the benefit of many helpful discussions.

2. Proof of Theorem 1. Let $f: E \to E$ be TC with coefficient α . We will assume f is continuous, because otherwise fE is contained in a fixed line ([1], Theorem 3). Also we will assume that every circle C contains a point w with fw outside C, otherwise f has a fixed point by the Brouwer theorem. So for n = 1, 2, ... let w_n be a point inside the circle C_n of radius n centred at the origin with fw_n outside C_n . If the sequence $\{w_n\}$ had an accumulation point f then f would be discontinuous at f. Hence f is unbounded and we can choose a subsequence f of f is unbounded and the can choose a subsequence f of f is unbounded and the can choose a subsequence f of f is unbounded and the can choose a subsequence f and f is unbounded and the can choose a subsequence f and f is unbounded and the can choose a subsequence f and f is unbounded and the can choose a subsequence f and f is unbounded and the can choose a subsequence f and f is unbounded and the can choose a subsequence f and f is unbounded and the can choose a subsequence f and f is unbounded and the can choose a subsequence f and f is unbounded and the can choose a subsequence f is unbounded and the can choose a subsequence f is unbounded and the can choose a subsequence f is unbounded and the can choose a subsequence f is unbounded and the can choose a subsequence f is unbounded and the can choose a subsequence f is unbounded and the can choose a subsequence f is unbounded and the can choose a subsequence f is unbounded and the can choose a subsequence f is unbounded and the can choose a subsequence f is unbounded and the can choose a subsequence f is unbounded and the can choose a subsequence f is the can choose a subsequence f is the contain the can choose a subsequence f is the can choose a subsequence f is the can choose f is the contain the can choose f is the contain f is the contain f is the contain f is the contain f is the conta

Let us write $\angle x$ for the principal angle subtended at the origin by x. Then $\{\angle x_n\}$ has an accumulation point ψ . We take a subsequence $\{y_n\}$ of $\{x_n\}$ such that