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Proof of Theorem 7.1. Let (X, x) be shape deformable into (4, xo), i.e. there
is a shape map f: (X, x)—(4, x,) such that

€8] ' 1= Lexso) -
Then; there is an ANR-sequence (X, 4, xo) and a representative f: (X, xo)— (4, xo)
of f, such that
2Ly
i.e. the system (X, x,) is deformable into (4, Xo). Hence, by Theorem 7.2,

(A, X)X, X0) X T4 1(X, 4, %) for nx2.

Passing to inverse limits and applying 1.3, we obtain the condition (a) for shape
groups. The condition (b) follows directly by (1) and 4.1, o
Theorem 7.1 is an analogue of Proposition 5.2, p. 151 [2].
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On the Lusternik-Schnirelmann category
in the theory of shape

by

Karol Borsuk (Warszawa)

Abstract. A modification of the notion of the Lusternik—Schnirelmann category gives a mon-
otonuous shape invariant % (X) defined for all compacta X. Some properties of % (X) are established.
In particular it is shown that if X is a continuum, then x(X)<Fd(X)+1, where Fd(X). denotes
the fundamental dimension of X.

1. Coefficients »x(X) and 3,(X). By the Lusternik-Schnirelmann (absolute)
category of a compactum X one understands (compare [1], [5] and [7]) the
number »(X) defined as follows:

If there exist natural numbers 7 such that X = X; u X, v ... U X, where X;
are (for i = 1,2, ..., #) compacta contractible in X, then »(X) denotes the smallest
of such numbers #.

If such natural numbers n do not exist, then %(X) = co.

Observe that

(1.1)

If compactum X homotopically dominates compactum Y, then »(X)>=(Y).
In fact, assume that there exist two maps

fi X-Y and g: YoX

such that fg is homotopic to the identity map. iy: ¥Y—Y. If x(X)<n, then there
exist compacta X;, X;, ..., X, such that X =X; U X, u.. U X, and that for
i=1,2,..,n there is a homotopy

o X% <0, DX
satisfying the conditions )

ofx,0) =x and ofx,1)=a,

where- a; is a fixed point of X.

Setting ¥; = g~*(Xy) for i =1,2,..,n, one gets compacta ¥y, ..., Y, .such
that ¥ = Y, U ... U ¥,. It remains to show that ¥; is contractible in Y.
3%
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The relation fg=~iy means that there exists a homotopy
9: ¥Yx{0,1>-»Y
such that 8(»,0) = y and 9(y, 1) = fg(») for every y e Y. Setting

8(y,21) for yeY, Oxi<i,

ViD= roulg(), 2011 for. ye ¥, 3<i<I,

one gets a homotopy
Y Yix<0,1>-Y

such that (¥, 0) = yand (v, 1) = f(a) forevery y € Y,. Hence Y, is contractible
in Y and the proof of (I.1) is finished.

It follows by (1.1) that x(X) depends only on the homotopy type of X. One -

sees easily that if X is an ANR-set, then %(X) is finite.

1t is clear that %(X) is not a shape-invariant (concerning notions belonging to
the theory of shape, see [3]), because if X is a continuum which is not arcwise con-
nected, then %(X) = oo, though there exist continua with trivial shape, which are
not arcwise connected. :

However it is easy to modify the notion of the Lusternik-Schnirelmann category
in order to obtain a shape invariant. In order to do this, consider a space M e AR
contajning the given compactum X. Denote by (X)) the number defined as follows:

It X =@, then xp(X) = 0.

If X # O and if there exist natural numbers » such that

(1.2)  For every neighborhood U of X in M there exist compacta Xy, X5, ..., X,

contractible in U and such that X = X, v X, v.. v X,

then %5,(X) denotes the smallest of all such numbers 7.
If X # & and if no natural number n satisfies (1, 2), then (X)) = 0.

2. Coefficient %(X'). Now let us prove that

(2.1) If X is a compactum homeomorphic to another compactum Y and if

XcMeAR, YoNe AR, then xy(X) = xy(Y).

Proof. It suffices to show that if 3,/(X)<n, wherer is a natural number, then

#y(Y)<n.
Let h: X :T»Y be a homeomorphism. Then there exists a map
nto

g: M-N
such that
g(x) = h(x)

Then for every neighborhood V of ¥ (in N) there is a neighborhood U of X
(in M) such that

for every xe X'.

sy,
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Since up(X)<n, there exist compacta X, X; 25 s X, satisfying (1.2). Let
;0 X;x40, DU
be a homotopy contracting X to a point a; € U, that is such that @i(x,0) = x
and ¢,(x, 1) = a; for every x e X,. Setting

Y; = k(X))
and
V(. 0) = ge(h(p),1) for (y,t)e ¥;x<0,1),

one gets compacta ¥y, ¥y, .., ¥, with Y=Y, u ¥, U ..U Y, and homotopies
Wit Yix40, H>g(U)eV ‘
contracting ¥; in ¥V to the point b; = g(a;), because

Vi(,0) = gh™'(y) = () = y
and

Vi(y, ) =g@)ev
Hence #y(¥)<xy(X) and the proof of (2.1) is finished.

It follows by (2.1) that the number x,,(X) does not depend on the choice of the
space M e AR containing X. Thus we can omit in the notation xy(X) the index M
writing shortly %(X) instead of sy(X). Moreover (2.1) implies that »(X) is a topo-
logical invariant. Finally let us observe that T

(2.2 #(X)<x(X) for every compactum X .
Notice that

for every ye ¥;.

(2.3)  The condition %(X) = 1 characterizes among all compacta X the FAR-sets.

This is a direct consequence of (2.1) and of the fact that a compactum X lying
in the Hilbert cube Q is an FAR-set if and only if X is contractible in each of its
neighborhoods (in Q). See [3], p. 262. -

3. Case of ANR-spaces. Let us prove that
(3.1) If Xe ANR, then x(X) = %(X).

By (2.2) it suffices to show that x%(X)>x%(X), i.e., to prove that if X € ANR
and if %x(X)<n for a natural number n, then »(X)<n.

Assume that X< M e AR. Then there is a neighborhood U of X in M such that
there exists a retraction

r: U-X.

The i,néquality %(X)<n implies that there exist compacta X, X5, .., X,
satisfying (1.2). Thus for every i = 1, 2, ..., nthere are a point a; € U and a homotopy

o Xix<0, 15U
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such that @ (x,0) = x and @ (x,1) = a; for every x € X;. Setting ¥, = ro;, one
gets a homotopy

¥ X %<0, 1>-X
contracting X;, in X to the point b; = r(a,). Hence »(X)<n and the proof of (3.1) i
finished. ,

4. %(X) as a monotonous shape invariant. The main aim of this note is to prove
the following

(4.1) Tueorem. If X, Y are compacta with Sh(X)<Sh(Y), then »(X)<x(Y).

Proof. It suffices to show that if n is a natural number such that x(Y)<n,
then »(X)<n.’ 4

We may assume that X and ¥ are subsets of the Hilbert cube Q. The hypothesis
Sh(X)<Sh(Y) implies that there exist two fundamental sequences

[={fuX. Y} and F={f, V. X}
such that
(4.2) ff = {Fefe X, X}~i = (i, X, X} .

Then for any neighborhood U of X in Q there exists an open neighborhood ¥
of Yin Q such that

4.3) MU  for almost all k.
Moreover, there exists a neighborhood UcU of X in Q such that
4.4 FfJO=i/0 in U for almost all k.

The hypothesis x(Y)<n implies that there exist compacta Yi, ..., Y, such that
Y =Y, U..u Y, and that for every i = 1,2, ..., n there are a point b; e ¥ and
a homotopy

Y ¥yx<0, 1>V

such that Y(»,0) =y ahd Vi(y,1) = b; for every ye Y.
Since ¥, as open in O, is an ANR, there exists for every i = 1, 2, ..., n a com-
pact neighborhood W=V of ¥; (in Q) and a homotopy

Vi Wix{0, >V

such that (¥, 0) = y and §(», 1) = b, for every y € W,. Then the set W = L") Wi
is a neighborhood of ¥ in Q. Hence i
4.5) . X)) ew  for almost all k.

It follows by (4.3), (4.4)-and (4.5) that there is an index k, such that

(4.6 JMN<U, " Jiufiol0il0 in U, fi(X)=W.
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It is clear that setting, for i= 1,2, ..., n:
X, =Xnf'(W),
one gets a system of compacta X, X,, ..., X, such that
X=X, uX,u..uX,
and that
SoXpeW, dfor i=1,2,..,n.

Since the homotopy ¥, contracts the set W, in V to the point b; and since
Fie(P)=U, we infer that setting a; = fi,(b), one gets the relation

4.7 oS/ Xia, in U for i=1,2,..,n.
Moreover, it follows by (4.6) that
4.8) JraSol Xi=i/X; in U.

Relations (4.7) and (4.8) imply that i/X; ~a; in U, hence the compactum X is
contractible in U. Thus x(X)<n and the proof of Theorem (4.1) is finished.
(4.9) COROLLARY. %(X) is a monotonous shape invariant.

5. An addition theorem. Let us prove the following

(CB)) TreorEM. If X = YU Z, where Y and Z are disjoint compacta, then
%2(X) = x(¥)+x(Z).

Proof. We may assume that both sets ¥ and Z are not empty. Then each of
them is a retract of X, hence Sh(Y)<Sh(X) and Sh(Z)<Sh(X). It follows by
Theorem (4.1) that %(¥)<x(X) and %(Z)<x(X). We infer that if at least one of
the numbers %(Y), x(Z) is infinite, then %(X) = %(¥)+x%(2).

In order to prove that

(5.2) #(X)<x(V)+x(2),

we may assume that both numbers x(¥) = m and %(Z) = n are finite. Assume that
XeMe AR and let U be a neighborhood of X in M. Then U is also a neighborhood
of Y and of Z and we infer that there exist compacta ¥y, ..., Y, Z1, .- Z, contract-
ible in U and such that

Y=Y, uY,u.uY, Z=Z;UZV..VZ,.

Then X' = Y v ..U ¥, UZ V..V Z, and consequently the inequality (5.2) holds
true. .

1t follows that in the sequel we can assume that the number k = %(X) is finite.
Consider a sequence {U,}, v=1,2,... of open neighborhoods of X' in M
shrinking to X If we cancel in this sequence a finite number of sets, then we may
assume that

Uy=V,uW, for v=12,.,
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where ¥, is an open neighborhood of ¥ (in M) and W, is an open neighborhood
of Z (in M) and that ¥, n W, = @. Clearly {V} shrinks to Y and {W,} shrinks
to Z.

Since %(X) = k, there exists for every v = 1,2,.. a system of compacta
X1 Xias e, X, such that X, is contractible in U, fori=1,2,..,k. Itis clear
that every set X,; is contractible in only one of the sets ¥, and W,. Thus we can
assume that there exists a natural number , such that Xy, Xyz, s X, 81€ con-
tractible in ¥, and X, 41, Xymas -» Xyp 218 contractible in W,. Setting
n, = k—m,and Y, = X, fori=1,2,..,m, and Z,; = Xym+jforj=1,2,..,m,
we get a system of compacta

Yv1a le: ey vav:thZvZ: "'>Zvnv

such that m,+m, =k Y=Y, U.. O ¥y, Z=Zy U u U Zy, and that Y, is

contractiblein V, fori= 1,2, ..., m, and Z,;is contractible in W, for j = 1,2, ..., m,.

1t is clear that there exist natural numbers m and # such that m+n = k and that
for an increasing sequence of indices vy <v,<...

m,=m, mn,=n for [=1,2,..

It we recall that the sequence of meighborhoods {¥,} shrinks to Y and the
sequence of neighborhoods {W,} shrinks to Z, we infer that % (¥)<m and %(Z)<n.
Hence

#(X)+x(Z)<k = #(X)
and the proof of Theorem (5.1) is finished.

A simple consequence of Theorem (5.1) is that if X has an infinite number of
components, then x(X) = co. Thus one gets the following

(5.3) CoroLLARrY. If {X,} is the class of all components of a compactum X,

then %(X) =.’2 2 (X)

6. A relation between x(X) and Fd(X). We denote by Fd(X) the fundamental
dimension of X. Let us prove the following

(6.1) TurorEM. If X is a continuum, then %(X)<Fd(X)-+1.

Proof. We can assume that Fd(X) = » is finite. Then there exists an n-dimen-
sional compactum ¥ such that-Sh(X)<Sh(Y). We may assume that ¥ lies in the
Hilbert cube Q. If ¥ is a neighborhood of Y in Q, then there is a homotopy

St Y0, 1>V

such that ¢(y,0) = y for every ye ¥ and that P = (¥, 1) is a connected poly-
hedron of ditmension <n. One knows [2] that there exists a system of contractible in
itself polyhedra Py, P,, ..., P,., such that

P=P,UPyU...UP .
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Let ¥, denote (for { = 1,2, ..., n+1) the set consisting of all points y & ¥ such
that ¢(y, 1) e Py. It is clear that Y, Y,, ..., ¥,., are compacta such that

Y=YiuY,u.. 0¥,
and that the homotopy

o/(¥;x<0,13): ¥;xL0, DV

carries Y; to the polyhedron P;=V, Since P, is contractible in itself, we conclude

that ¥;1is contractible in V. Hence % (X) <x(Y)<n+1 and the proof of Theorem (6.1)
is finished.

7. Final remarks. As has been proved by L. Schnirelmann ([7], p.k 134), if T, de-
notes the Cartesian product of n circles, then %(7T},) = n+1. Since T, € ANR, we
infer by (3.1) that %(T,) = n+1. Since Fd(T,) = n, we infer that for every natural
number 7, %(T,) = Fd(T,)-+1. This shows that the inequality given in Theorem (6.1)
can not be replaced by any more restrictive one.

Consider now in the Hilbert cube Q a sequence {X,}, where X, is homeomorphic
to T, the diameters of X, converge to zero and there exists a point ¢ such that for
m 5 1 the common part of X, and of X, consist of only one point ¢. It is clear that
the set :

X =

X,
1

1C ¢

is an infinite-dimensional continuum such that X, is a retract of X for every
n=1,2,.. Hence Sh(X)>Sh(X,) and we infer by Theorem (4.1) that

Zf(jf)Zﬁ(X,D =n+l1 for n=1,2,..

Hence X is a continuum for which x(X) = oo.
Observe that

(7.1)  The homology groups and the 'ﬁmdamenmf group of a compactum X do not

determine %(X).

In fact, the well known Case-Chamberlin curve (see [4]) X is a compactum for
which all homology groups and also the fundamental group are trivial, but X is
non-movable (se¢ [6], p. 653), hence X is not an FAR-set, and we infer by (2.3)
that %(X)>1. .

(7.2) PROBLEM. Do there exist two movable compacta X and Y such that:

19 A4ll homology properties of X are the same as homology properties of Y.

2° There exists a one-to-one function f: X—Y such that for every point x € X
and for every n = 0, 1, ... the fundamental group m,(X, x) is isomorphic to the funda-
mental group w,(Y, f(x)).

3° %(X) # x(¥)?
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Observe that a slight modification of the definition of %(X) leads to another
topological invariant 1(X), which however is not a shape-invariant.

Let X be a compactum lying in a space M e AR, A compactum Y <X i8 said

to be weakly contractible in X if it is contractible in every neighborhood of X in M.
1t is clear that the choice of the space M e AR containing X is here immaterial.

Let A(X) denote the number defined as follows:

1f there exists a natural number 7z such that X is the union of z weakly contract-
ible in X compacta, then 1(X) denotes the ,smallest of such numbers 7.

If 2 such natural number z does not exist, then A(X) = co.

It is clear that A(X) is a topological invariant of X and that

#(X)<AX)<%(X) .

It follows by (3.1) that if X' e ANR, then A(X) = %(X). However this last relation
does not hold true if one omits the hypothesis X' ANR. In fact, if 4 denotes the
well-known universal plane curve of Sierpifiski, then A(4) = o0, because for every
finite decomposition 4 = A, U4, U ..U 4, of 4 into compacta, at least one
of A4, contains a simple closed curve and consequently it is not weakly contractible
in 4. On the other hand, %(4) = 2, because of Theorem (6.1). Observe that this
example shows also that A(X) is not a shape invariant of X. In fact, there exist in
the plane E? two dendrits Dy, D, such that B = Dy U D, is a curve decomposing E>
into an infinite number of regions. Hence Sh(4) = Sh(B) and A(B) = 2 # A(4).
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Triangle contractive self maps of the plane
by

D. E. Daykin (Reading)

Abstract, Let E be the real Euclidean plane. A vmap f: E—E is triangle contractive TC if
0<a<1 and for each x,y, ze E cither

O |l fe—pli<allx—yll and [|fy—fzll<elly—2|| and || f—Fxll<al|lz—x] or

< (i) A(fx, fr, fA<ad (x, y, z) where 4(x, y, z) is the area of triangle x, ¥, z. We prove that
every TC map f: E~E has a fixed point p = fp or a fixed line L 2 fL.

1. Introduction. Let E be the real Buclidean plene and f: E—~E. We callpe E
a fixed point of fif fp = p. Also a line L of E is called a fixed line of f if fL=L. By
a fixture of f we mean either a fixed point or a fixed line.

We say that f is rriangle contractive TC if there is a coefficient o in O<a<1
such that for each x, y, z e E either )

@) I fx-pl<alx—y| and |fy—fel<aly—z| and | fa—fx|<alz—x| or

() A(fx, v, fH)<ad(x,y,z); where A(x,y,z) denotes the area of the
triangle x, ¥, z. Such maps were discussed in [1] where it was conjectured that every TC
self map of a Hilbert space has a fixture. The object of this note is to.present

TueoreM 1. Each triangle contractive self map of the real plane has a fixed point
or a fixed line. : ) '

The author would like to thank his friend J. K. Dugdale for the benefit of many
helpful discussions.

2. Proof of Theorem 1. Let f: E—E be TC with coefficient a. We will
assume f is continuous, because otherwise fE is contained in a fixed line ([1], The-
orem 3). Also we will assume that every circle C contains a point w with fw outside C,
otherwise f has a fixed point by the Brouwer theorem. So for.n = 1,2, .. let w, be
a point inside the circle C, of radius » centred at the origin with fw, outside C,.
If the sequence {w,} had an accumulation point g then f would be discontinuous
at g. Hence {w,} is unbounded and we can chioose a subsequence {x,} of {w,} such
that 0<|[x,[|— 0.

Let us write /x for the principal angle subtended at the origin by x. Then
{£x,} has an accumulation point. We take a subsequence {y,} of {x,} such that
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