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Local behavior and the Vietoris and Whitehead
theorems in shape theory

by

George Kozlowski and .iack Ségal* (Seattle, Wash.)

Abstract. THEOREM. For LC" paracompacta the shape sroups and the homotopy groups are
naturally isomorphic. As an application we have the theorem: For matric spaces a perfect map f XY
of X onto Y such that f~X(y) is AC" (approximately k- connected, Og k< n), for all y € Y, induces for
each x ¢ X an isomorphism of the n-th shape group of (X, x) with that of (¥, f (x)). Finally we con-
struct a movable continuum X* (based on the Kahn space X, one of its ANR-sequences, and the
map recently described by J. L. Taylor of X onto the Hilbert cube) which can be mapped onto
a movable continum of different shape by a Vietoris' (or CE) map. . '

Introduction. In Section 2 we show that for a LC" paracompactum X the rih
shape group 7,(X’, x) and the nth homotopy group x,(X, x).are naturally isomorphic.
As an application of this result we prove in Section 3 that for metric spaces X'and ¥
a perfect map f: X—Y of X onto ¥ such that f~*(y) is AC" (approximately k-con-
nected, 0<k<n), for all y € ¥, induces for each x € X an isomorphism of the nth
shape group of (X, x) with that of (Y,f (). In Section 4 we construct a movable
contipuum X* (based on the Kahn example X [7], one of its ANR-sequences, and
the map recently described by J. L. Taylor [25] of X onto the Hilbert cube) which
can be mapped onto a movable continuum of different shape by a Vietoris (or CE)
map. By a Vietorjs map f: X—Y we mean a map f for which the inverse'image of
each point in Y is of trivial shape. ) .

Section 1. Shape and shape groups. Let P be the category of ANR’s and homo-
topy classes of continuous maps bétween them. If X'is a (topological) space, then Iy
is the functor from P to the category of sets and functions which assigns to an ANR
P the set ITy(P) = [X,P] of all homotopy classes of maps of X into P and which
assigns to any homotopy class 0: P—~Q between ANR’s the dnduced function
04: [X, P1=1X, Q] which maps the homotopy class f: X—P into the composition
9f = 04(f) of the homotopy classes of f and 6. A natural transformation ¥ of the
functor ITy into the functor ITy assigns to each homotopy class f; X—P a homotopy -
class W(f): Y—P in such a way that for all homotopy classes f: X—P, g: X—0,
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and 6: P—Q such that §f = g we have 0¥ (f) = ¥(g). If f: X—Yis a map, then
there is a natural transformation f*: IIy—IIx which assigns tothe homotopy class

0: Y—P the composition 8[f]=f%(0) of the homotopy class [f] of f with 0.

A natural transformation @: ITy—ITy is also called a shape map from X to ¥
and Morg,(X, Y) is used to denote the collection of all such shape maps from X'to ¥
(i.e., Morgy(X, ¥) = Transf (H v» IIx)). Note that Morg, (X, ) is a set (see [14]).
If fis a map or homotopy class of 'a map, then e is, cal]ed the shape-map induced
by f. & will be used to denote the shape category, i.e.; the category whose objects
are lopological spaces and whose morphisms are shape maps. This is the category
considered by Mardegié in [14].

THE COMPOSITION CONVENTION. The composition of two shape maps ¢: X—7,
Y Y>Z is denoted by Vo, although as natural transformations we have

volhl = o [rD
for any homotopy class & Z—)P into an ANR.

Whlle ‘we will usually work with natural transformations it will sometlmes be‘

conceptually more helpful to use shape maps.

A natural transformation @: ITy—Ily is characterxzed by the property that
whenever o: ¥Y—P, f: Y=Q and y: P—Q are maps such that [yo] =
[71@[o] = D[B]. i

Instead of P one could use the category @ of all spaces which are dominated
by ANR’s and homotopy classes of maps between such spaces, because any natural
transformation @: IIy—ITy (defined for P) has a unique extension to a natural’
transformation ITy—IIy (defined for Q). By a well-known result of Milnor [20]
a space belongs to Q if and only if it is dominated by a CW-complex. We use 4 to
denote the index set for our inverse system. However, we surpress it unless needed.

DerNITION 1.1, The space ¥ and the inverse system {Yy, g5p} in the shape

category are said to satigfy a continuity condition, provided there is a family of shape
maps gp: Y— Y, such that gz = g5 and such that for any ANR P the natural
transformations g, induce a bijection

. dirlim {ITy,(P), qpp}—Ix(P) .

In the notation of shape maps this means that (1) for any homotopy class f: ¥—P
there is an index f and a homotopy class f: Yp—P such that

¥ =1 p% dp
and (2)if fp.: Yp—P and f5.: ¥p—P are homotopy classes satisfying f,,”," qp :.—_-f,,“,", qprs
then there is a f>f', f such that
Iy = Fitdpp -
The shape maps g,: Y—¥; are said to induce the continuity condition.
As the following examples show the inverse system in & is frequently derived

from an inverse system’in TOP. In these instances we shall write the inverse system
in TOP and omit the obvious modification of the cofresponding shape maps.

161, then
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ExampLE 1.1. Y is the inverse limit in TOP with projection maps g: -,
of the inverse system {¥}, gpp.of compacta. Then ¥ and the inverse system
{%, q,,ﬂ} s1t1sl'y a conumuty condition ([13 Theorems 3 and 4]).

ExAMPLE 1.2." ¥'is anarbitrary subset'of a metrizable space Z; and {¥y T}
is‘any cofinal family of open neighborlioods of ¥ ih Z'with all maps the-appropriate
inclusions. Then Y and the inverse system {¥;, q,,,,} satisfy -a ‘continnity condition
([13, Corollary 4.8]). . *

ExampLE 1.3. Y is a paracompact space, 4 is cofinal family of open covers
of Y, Yy is the merve of the corresponding open cover f € 4, gz is the shape map
induced by a projection ¥,— Y, of the nerve Y of a refinement ' of §, and g, is
the shape map induced by a barycentnc (also called “canonical”) map of Y into the
nerve Y. Then ¥ 'I.lld the inverse system {Yp, q,,,,} szmsfy a contmmty condmon
([13, Corollary 28]

The following theorem is a considerable generalization of a result of K. Morita
in On shapes of topological spaces, Fund. Math. 86 (1975), p. 256.

TueoreM 1.1 (Continuity). If the space Y and the inverse system {Y,,, G}
in& sansfy a continuity condition, then .

Morg, (X, Y)=invlim {Mors,(X, Yj), dgprs} -

If the shape maps qp= Y—>Y, induce the continuity condition, then the equtvalence of
the conclusion:is given by the assigiment of ¢ € Morg (X, Y) to the unique element of
the z’nvers‘e limit defined by the fomily. of shape maps qg¢.

Proof. We need to show that when a family of shape maps g;: ¥— ¥} induces
a continuity condition between ¥ and the inverse system {¥j, ¢z} (n &), then
the shape maps qp: Y— 1, represent Y as the inverse limit in & of the system
{¥;, gpp}- This means that if Z is any space and Yy Z— Y, are shape maps
such that

Qppp =Yy whenever - B<p,
then there is a unique shape map
vV Z-Y
such that
Yy =qpp forall .

This follows by an argument similar to the proof of Theorem 6 given in -[14].
Once this is shown the assignhment of ¢ € Morg, (X, ) to the family of shape maps
4y € Morg, (X, ¥p) is easily seen to define the equivalence of the theorem.

We now introduce a group structure on the natural transformations from
Mg 2 to M gn, 5. We simplify the notation by deleting the base points but we only
work in the pointed case.

Dermarion 1.2 (Group structure). Let &, 'P': yx—1Is be natural transform-
ations from ITy to ITgn. We define the addition of natural transformauons

o+¥ =0

[
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by
‘ Of]=o[f1+¥[f]

where this latter additiont is just additien in Is(W), We Q, and 2 X—W.
‘We need only show that @ is a hatural transformation from Iy to ITg.. Consider
the homotopy commutative didgram
e . ¥
J S’

W——>W

(i.e., we have Ay [f] = [/'). From this and the fact that & and ¥ are natural trans-
formations we get A4@[f] = O[f'] or h4® = Ohy since .

Ohy[f] = Ohylf1+Phylf] = hyD[f1+hs ¥ [Sf]
= hy(P[f1+PLf]) = heOL[f].

So we have @hy = O and thus @ is a natural transformation from ITx to g,

Let the nth shape group of X at x (denoted by 7,(X, x)) be thd collection of na-
tural transformations from Iy to g with addition defined as above. A natural
transformation @: ITy—IIy (i.e., a shape map $: X—Y) induces a homomorphism
By 7, (X, X)o7, Y, y) given by &, (¥) = the composition ¥ of nhtural transform-
ations (composition convention). (A similar description is also given by J. Keesling
in Products in .the shape category and some applications, Symp. Math. Institute
Nazionale di Alta Matematica Roma (Rome, 1973).

The correspondence from 7,(X, x) to (X, x) given by [p]—¢™* for a map
I(f: S"—X is a homomorphism. This is because for any map f: X—W, We Q, we

ave

@+ 1= [Fo(@+W)] = Lfol + L] = o*[f1+V [ f].

ie, (p+P)* = o*+y* If /1 XY is a map, then we shall write fy: 7, (X, %)

—,(¥,f(x)) instead of (f*), . ‘
If f: X—Y is a map, then there is a commutative diagram

’IL',,(X, x) ~’>';tu(X’ x)‘ i

S T4

(¥, f () > (¥, f ()
involving these homomotphisms. ‘
_ I Xis homgtopy dominated by a CW-complex, then the natural homomor-
phxsm 7,(X, X)—m,(X, X) is an isormorphism. The proof of this results from a stan-

dard argument along with the fact that if X K-> X satisfies Ba=idy, then there is
a f': K—X such that p'acidgrelx.
If X' = §", then the equivalence of Theorem 1.1 is an isomorphism of groups.

icm
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Now we relate this natural transformation approach to systems and continuity
conditions. . ' :

Rem‘ark 1.2 (Systems). Let X and the system {X,, p,;} of ANR’s and maps
satisfy a continuity condition. Corresponding to the natural transformation
®: My—Xsn is a family of maps, {¢,} where ¢, S"—X, and such that p,;0,~0,
for a<p. Similarily for the natural transformations ¥': Ty—Is. and O: H,jf—d‘]s..
we have Y,! "X, and 0,: §"—X, satisfying p,,¥,~y, and p,,0,~0, for a<p.
By definition of the continuity condition we have &[p,] = [¢,], ¥[p.] = [¥.] and
@[p,] = [9.], and consequently, [0,] = @ (2] = 2[p.]+ ¥ [p.] = [9.]+ [¥.]. Accord-
ing to this, addition in 7,(X, x) is seen ta be accomplished by performing the usual
addition of hometopy classes in each coordinate m,(X;, x,) = 7,(X,, x,) and then
passing to the limit,

Section 2, The effect of local behavior on the shape groups. In this section we show
that for LC" paracompacta the shape groups are isomorphic with the homotopy
groups. This is analogous to the situation as tegards singular and Cech homology
on lc" paracompacta (see [17]).

We use the following conventions for pointed spaces. We will be considering
pointed spaces (X, x,) (usually paracompacta). In choosing open coverings % of
such a space we will always choose them so that exactly one element U, of % con-
tains x,. Therefore x, is carried to the vertex U, € K(%), the nerve of %, by any
barycentric map u: X—|K(%)|. If ¥ refines %, then x, € V= U, and 50 744(Vo) = Uy
and hence any refining function automatically gives a pointed map mgy: K(¥)—=K(X).
The full realizations ¢: |K(%)|—X are defined by vertex assignment and so we can
(and do) make the choice #(U,) = x,. Homotopies between contiguous base point
preserving maps atre taken to be linear homotopies which are then base point pre-
serving homotopies. Homotopies between close maps of an n-dimensional complex
into an LC" space are obtained through a familiar skeletonwise procedure and can
be taken to be base point preserving. The homotopy for ut=~= follows from the
“Contractible carrier lemma® [11, Lemma 6.4] and the proof of that lemma clearly
shows that we may take the homotopy to be base point preserving.

Lemma 2.1 ([11]). Suppose that

(1) 2, # and % are open covers of a topological space X, .

(2) P refines R, R star-refines U, and U is locally finite, and

(3) any partial realization in P of any n-complex has a full realization in &.

Then for any star-refinement V" of P there is a full realization t: |K"(¥)|—>X
of K"¥) in R such that for any projection n: K(¥)—K(%) and barycentric maps
u: X—|K(%)| the maps ut and 1:{ [K"(#")| are homotopic. Moreover, the map t can be
chosen so that for any simplex s € K "(¥°) the image t(|s]) is contained in uUst(Us, #).

LiemMa 2.2, Let X be a LC" paracompactum. Then there exist an open cover % and
maps u: X—|K(®@)| and t: |K"(W)|—-X such that’ for any map @: |Ki—X of a com-
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plex K. of, dimension. <n into ;X-and, any simplicial approximation . of e the relation
@t} holds. (Note that the image of A lies in |K"(%)| and that ASUPY i

Proof. Let #.be any open cover of X with: the propesty.thatany,two J#-close
jmzjmp's o_f;a- cqm}ile_;x: of ﬁiinehsiqu <ninto X arehomotopic (see [10D). Lot 22 be a star-
refinement of # and let 2 be an open.cover refining. # such that any partial realiz-
iatioﬁ, of an n-complex in & has a full realization in . Let % ‘be-alpcally finite-open

_co.ver'fwhich star refines £, -
- Now._consider

i

'

el

A kS AS k@) S e
_a'ndv le‘t_‘ﬂ:fl{' '—»\K(%) be the simplicial approximation to w:defined on some suitable
subdivision K’ of K ([26]). Then A(K'Ne|K"@)| and so c

Kk @) x

where ¢ is chosen as in Lemma 2.1, If p.e [K'| = [Kl, then A(p) € [so] of K () which
contains we(p) in its interior so ¢ (p) e N So- Therefore, there is a face s'of s, such
that A(p) € |5|. Now 4(p) & #(ls]). Therefore, ¢(p) and #A(p) are in USt(U) s, #)
which is contained in some member of #. So we have Q=tl,

COROLLARY 2.1. Let X be a 1.C* paracompactum and X be & complex of dimension

< If @y, 010 KX are maps such that ¢ = o, then Po=0;.

Proof. Take %, u, 1, etc. as in Lemma 2.2. Then o] = [up,] for i =0, 1.
Therefore, upq~up,. Since the approximation A; of ug, is homotopic to ug, for
i=0,1, we have

@ - L loiuwozu¢1zll .
Hence, by Lemma 2.2,
()] Qo=tAgtd ~p, .

THEOREM 2.1. Let X be q L.C* paracompdctum and K be o compl;ex‘ of dimen-
sion <n. Then for any natural transformation ®: y—ITy there is a map ¢ K—X
such that 9% = & and the homotopy class of ¢ is uniquely determined by this condition.

Proof. Let #.be any open cover of X such that any two #-close maps of a com-~
plex of dimension < into X are homotopic. Let % "be an open cover of X which
star-refines 2, )

Let {%,} be a cofinal family of locally finite open covers of X Lét 2, be star-
refinement of %" and %, and let 2, be an open cover refining 22, such that any partial
realization of a complex of dimension. Kn+1in &, has a full realization in R,
(see [6, Sections 4.1 and 4.4]). Then, for each o, Py, Rys U, are open covers of X
satisfying (2) and (3) of Lemma 2.1 with n replaced by n-+1. Tt ¥, is a star-refine-
ment of Z,, then by Lemma 2.1 there. is a full realization #,: |K"**(#" )X of
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K" () in &, such that for any projection m,: K )~K®#,) and barycentric
map u,: X—|K(%,)| we have

(1) tt 2 || KT
and for any simplex s e K"**(¥",) the image %(Is]) is contained in {J St(U s, 4,).
Consider the homotopy-commutative diagram -
X »
”ﬂ/ \”u
v
[K(#)) I;—;lK(“/’a)l-

@

Since @ is a natural transformation we have the homotopy-commutative diagram

K]
)V N

[K(”/”p)lxﬁlK("V 2l -

3)

where i, = @[,]. We use 7,5 for m,5[K"*1(#;) in the following. Using simplicial -
approximation we may replace ¥,, Y, by maps ¢, @g, respectively, such that the
following diagram is homotopy commutative.

IX]

?p Pa

@ |
K0 Dl ).

For any simplex s of K"**(¥7,) we have

&) tlsh= U St(U s, )

and

© tymg(ls) = U St (U my(s), 2,)
Since ¥, refines 77,

W) UseU Tp(8)

and, since %, refines 4,

® U St(U s, B5)=St(U mep(s), o) -

Since my(s) is a simplex of K"**(¥7), my(s)=St(V, ¥",) for some Ve¥", and,
therefore, () m,p(s)= W for some We# . Since &, refines #7, {J st(U ?t,,,(s), )
is contained in {J St(W, #") and therefore in a member of 5#. Thus, for any simplex s of
K™ (7)) the images #,(]s|) and 2,7,(s) are contained in a member of # and hence, -
5 — Fundamenta Math, XCIX
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the maps £, and 1,7, ¢, are # -close. Since dim K<n, 1,7, Qg =159, and, there-
fore, by (4) :

© 1 Pu ™l Tap Py 1y Pp

So all the maps f,¢, belong to a single homotopy class of [K|—X. Claim:
[t,0.J¥ = ®. Consider the diagram ‘

KK X

=l

K ()] == 1K (%)= P

First we have

an OLf] = [fam] @] = [fuma]
(where m, = m||[K" (¥ )|: K™Y )K" (@) and
(12 (10" [£] = [ftupa]

Then it follows from (1) that
(13) A Pt oty 1, 00 TP

K. Kuperberg [12] has attained the following corollary in the compact metric
case.

COROLLARY 2.2.° If X is an LC® paracompactum then the homotopy groups
(X, X) and the shape groups n,(X, x) are isomorphic under the natural homomorphism
given in in Definition 1.2. '

Section 3. A Vietoris theorem for shape groups. The following definition is due
to Borsuk [3] who also showed the property is a shape invariant.

DermNiTION 3.1. A pointed compactum (X, x) contained in an ANR (Q, x)
is said to be approximately k- connected, if for every neighborhood U of X in Q there
is a neighborhood ¥ of X in Q such that each map f: (S¥, @)—(¥, x) is null homotopic
in (U, x). A compact X contained in an ANR @ is said to be approximately k- con~
nected, if (X, x) is approximately k-connected for every x ¢ X. These definitions do
not depend on the choice of containing ANR.

DerNviTioN 3.2. A pointed compactum (X, x) is said to be AC" if it is approxi-
mately k-connected for 0<k<n.

DermNITION 3.3. Amap f: X—Yis said to be strongly LC", provided that every
neighborhood U of an arbitrary point y € ¥ contains a neighborhood ¥ of y such
that for k = 0,1,2,..,n any map S*—f~1(V) extends to a map B*1—f~1(U).
(Such a map is called a strong local connection in dimension » in [10].)
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LeMMA 3.1, Let f: X— Y be strongly LC" and map X onto a dense subset of a para-
compactum Y, and let K be an (n+1)-complex with subcomplex L. Then a map
g: |L|—X has an extension h: |K|—>Y.

Proof. This result is a consequence of Lemma 1 of [10] after achieving a suitable
subdivision of K. .

THEOREM 3.1. Iff: X— Y is a strongly LC" map of X onto a dense subset of a metric
space Y, then Y is LC" and for k =0,1,2,...,n and for every xe X the induced
homomorphism

S mdX, x)-*ﬂk(yaf (x))
is an isomorphism.

Proof. By Theorem 1 of [10] ¥ is LC" and fi: m(X, x)-m (¥, (x)) is an
isomorphism for 0<k<# and an epimorphism k = n. To verify that f, is a mono-
morphism let |K| = S"x Iand |L| = S§"x {0, 1} U {¢} xIin Lemma 3.1 to conclude
that: any two maps g, g,: (S d—(X, x) such that fg, ~fg, (relative to qd) are
already homotopic (relative to a).

DesINITION 3.4. A map f: X—Y is said to be perfect if fis (1) closed, (2) sur-
jective and (3) f~*(y) is compact for all ye Y.

THEOREM 3.2. For metric spaces and a perfect map f: X—Y of X onto. ¥ such
that f~2(y) is AC" for all ye Y the induced homomorphism

f#: ;En(X: x)_’;tn( Y:f(x))

is an isomorphism for each x € X.

Proof. Consider X as a closed subset of an ANR P. (This is possible due to the
Kuratowski-Wojdystawski embedding theorem). Let O be the adjunction space
P U, Y and let F: P—Q be the composite of the inclusion of P in P+ Y (free union)
and the projection of P+ Y onto Q.

Denote by {¥,} the family of all open neighborhoods of ¥ in Q and let
X, = F~*(¥,). Then {X,} comprises a cofinal family of open neighborhoods of X
in P. Let f, = F|X,: X,~Y,. So
(X, x) <= (X, %)
) B !
(Yo ¥ <= (Y,7)

where y = f(x), ¥, = X, Yo = y. Further, we have the:;diagram

. ﬂk(X,“ xg)—z";fk(Xaa xz)
(2) Sadt | & Sad

TCk( Ya > ya)’;);rk( Yzz H yn:)
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for all @ and k& =0, 1, ..., n. Applying Corollary 2.2 we have that the top arrow
is an isomorphism since X, is an ANR; the bottom arrow is an isomorphism since 7,
is LC", The left arrow is an isomorphism by Theorem 3.1. Thus we have

(3) ﬁ#: ;rk(Xru xa)'—};zk( Yma yn) v

is_an isomorphism for k = 0,1, ..., n.
Finally, we have
;rk(X s X) ;flu(X > X)
O] Jag | ® R
(Yo ¥ (Y, 9)

for all . Therefore, since f is a limit of isomorphisms
(5) f# . ;Ek(X3 x)—*;zk( Y: J’)

is an isomorphism for £ = 0,1, .., n

) Remark. Bogatyl [I] and [2] outlines such a resilt for metric compacta,
K. Kuperberg [12] also obtained this result in the compact metric case.

Section 4. In [7] D. S. Kahn constructed an acyclic oo -dimensional continuum X
which could be essentially mapped onto spheres of arbitrarily high dimension.
Recently, J. L. Taylor [25] has shown the existence of a Vietoris map (i.e., a proper
map such that the inverse image of each point has the shape of a point) of X onto
the Hilbert cube Q and thereby gave an example of a Vietoris map which was not
a shape equivalence. In this section we show that a construction described in [24]
can be used to obtain a movable continuum X* which can be mapped onto a mov-'
- able continuum by a Vietoris map which is not a shape equivalence. This shows
that the Whitehead theorem fails in the co-dimensional case even for movable
continua and maps. Thus we answer questions raised by several authors on the di-
mension restrictions which appear in various versions of the Whitehead theorem
(see for example, [21], [15], [16], [8], and [12]). ]

Remark. A similar result has been obtained independently by J, Draper and
J. Keesling in their paper An example concerning the Whitehead theorem in shape
theory, Fund. Math. 92 (1976), pp. 255-259.

For each odd prime p, which we suppose fixed, Kahn, constructs a continuum X
as the inverse limit of a system

« oz a3
XoeX Xy

with the following properties:
(i)‘X0 is a (2p+1)-dimensional, (2p—1)-connected, finite complex.

(i) X,y = Z?P72X,, the (2p—2)-fold suspension of X, and o,,, = 2"~ %¢
for all n30. '
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(iif) There is a map «: X;—S® such that the compositions ac; ... o, X,—S3
are essential for n>1.

As shown in [5] X is not movable. Now we modify the construction of X so
as to obtain movable continua X* and X* U Q and a Vietoris map F between them
which is not a shape equivalence. First let x = (x,) € X' = Invlim{X;, «,}. Then
define another ANR-system {X,, o)} where X, is the one-point union of
Xy, X1, oos X, with each X; attached at x;, i =0,1,..,m, and o1 ;: X, pi—Xn
is given by

it Xy = 0peq ond oy | Xy =idy,, iSH.
Finally let X* = Invlim{X}, «}. Clearly {Xy, ¢y} is a movable sequence since we
can take r™*1: X* X% | to be the inclusion and have
*
n

o

%
rnn+1 — ldX..

Hence X* is a movable continuum.

Now we construct the map F of X* onto X* u, 0 (X* attached to Q by f)
which we will show is also a movable continuum, Let k: X*—X*+Q be the in-
clusion of X* into the free union of X* and.Q and let p: X*+ 0—X* u,Q be the
projection of X*+-Q onto the adjunction space X™* U,Q. Define F: X*—X* U0
to be the composite pk. Then clearly F is also a Vietoris map. '

To show that X* U ;Q is movable we verify the condition of uniform movability
in [11] which agrees with the other versions of movability on metric. compacta.
A compactum ¥ is movable provided, that for eech map A: Y—P of Y into a poly-
hedron P, there exists a polyhedron R, maps g: Y—R, ¢: R—P, and a natural
transformation @: ITy—Ilg such that gg=h and &[4] = [¢]. So consider any map h
of X* U ,Q into a polyhedron P. Then | Q=20 and by the Neighborhood Extension
Property there is a neighborhood N of Q in X* U,Q such that | N==0. Then there
is an integer m such that for nzm, X,cN and h|X,~0. Let the polyhedron R_be
Xk, g: X* U QX be given by g| Xy = idg, and ejsewhere g maps ew{exythl.ng
to x, and @: X*—P be given by ¢ = h|Xp. Let i+ Xy—X* U0 be the 1nc1usxon
and let @ = i* be the natural transformation determined by i Then ¢g = A and
B[k] = i*[h] = [hi] = [h]X] = [0]. o

We now show that the map F: X*—X* U0 is not a shape equivalence in splte
of the fact that it is a Vietoris map between movable continua. The follow1ng
diagram

X* <> Xn
F lle,.=idX"

X*u, 0> X,
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induces the commutative diagram

[X*u,0, S*-[X,, 8% *
7

[x* 8 —[x,, S%.

If Fwere a shape equivalence, F* would be a bijection. We shall show that F* is not
surjective. There is an essential map of X* onto S3 such that its restriction to
each X, is an essential map of X, onto S3 [10]. However, as we have seen any map
of X* U, Q into S* when restricted to X;,, for n sufficiently large, is an inessential
map of X, into S3.
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