Hyperspaces of polyhedra are Hilbert cubes

by

D. W. Curtis and R. M. Schori (Baton Rouge, La.)

Abstract. Let 2^X be the hyperspace of nonempty closed subsets of a metric continuum X, and let $C(X)$ be the space of nonempty subcontinua of X, both with the Hausdorff metric. The main results of this paper are that if P is a nondegenerate connected polyhedron, then 2^P is homeomorphic to the Hilbert cube Q, $C(P) \times Q$ is homeomorphic to Q, and if P contains no principal 1-cells, then $C(P)$ is homeomorphic to Q. Proofs of these theorems are based on theorems of Schori and West (Hyperspaces of graphs are Hilbert cubes, Pacific J. Math. 53 (1974), pp. 239-251).

§ 1. Introduction. Let 2^X be the hyperspace of nonempty closed subsets of a metric continuum X, and let $C(X)$ be the space of nonempty subcontinua of X, both with the Hausdorff metric. In [4], we announced the following results.

Theorem 1.1. $2^X \cong Q$, the Hilbert cube, if and only if X is a nondegenerate Peano space (locally connected metric continuum).

Theorem 1.2. $C(X) \times Q \cong Q$ if and only if X is a Peano space, and $C(X) \cong Q$ if and only if X is a nondegenerate Peano space containing no free arcs.

In this paper, we introduce some techniques and apply them to prove the above theorems for polyhedra X. In [5], we apply these techniques to prove the above stated general theorems.

We refer the reader to [3], [4], [7], [8], [9] and [10] for background material and previous results on hyperspace problems. In particular, the proofs of the above theorems are based on the recent results of Schori and West [10] that $2^X \cong Q$ for every nondegenerate compact connected graph G, and $C(G \cong Q$ for every compact connected local dendron L with a dense set of branch points.

Certain relative versions of these theorems are also obtained. For $A \subseteq 2^X$, let $2_A^X = \{B \subseteq 2^X : A \subseteq B\}$, and for $A \subseteq C(X)$, let $C_A(X) = \{B \subseteq C(X) : A \subseteq B\}$.

Theorem 1.3. $2_A^X \cong Q$ if X is a Peano space and $A \neq X$, $C_A(X) \times Q \cong Q$ if X is a Peano space, and $C_A(X) \cong Q$ if X is a Peano space, $A \neq X$, and $X \setminus A$ contains no free arcs.

In §§ 2, 3 and 5, we develop some of the necessary tools (an inverse sequence approximation lemma, and techniques for obtaining near-homeomorphisms between hyperspaces of graphs). These are applied in §§ 4, 6 and 7 to hyperspaces of polyhedra, and will be applied in [5] to complete the proofs of the general results.

* Research supported in part by NSF Grant GP44959.
§ 2. Structure of the proof. A map \(f : X_1 \to X_2 \) between copies of a compact metric space is a near-homeomorphism if it is the uniform limit of (onto) homeomorphisms.

We shall construct inverse sequences satisfying the hypotheses of the following lemma.

Approximation Lemma 2.1. Let \(Y \) be a compact metric space, and let \(Q_1 \to Y \to Q_2 \to \cdots \) be an inverse sequence of maps and copies of the Hilbert cube in \(Y \) such that:

(i) \(Q_i \to Y \) (in \(2^Y \));

(ii) \(\sum_{j=1}^\infty d(f_j, id) < \infty \);

(iii) \(\{ f_1, \ldots, f_j ; j \geq i \} \) is an equi-uniformly continuous family for each \(i \); and

(iv) each \(f_i \) is a near-homeomorphism. Then \(Y \cong Q \).

Thus, for instance, we apply the Approximation Lemma (to be proved below) to the hyperspace \(2^Y \) of \(Y \) to construct an inverse sequence

\[
2^Y \to 2^Y \to 2^Y \to \cdots
\]

where \(\{ G_i \} \) is a sequence of compact connected graphs in \(Y \) converging to \(Y \) (thus, \(Y \cong Q \) and \(Y \cong Q \to 2^Y \)), and the maps \(\{ f_i \} \) are near-homeomorphisms satisfying conditions (ii) and (iii) of the lemma.

Each map \(f_i : 2^{G_{i-1}} \to 2^{G_i} \) is induced by a map \(\varphi_i : \Gamma \to \varphi_s(A), \) i.e.,

\[
f_i(A) = \bigcup \{ \varphi(A) : \alpha \in A \}.
\]

The particular type of map \(\varphi \), used for this purpose (a C-monotone piecewise-linear map) is discussed in § 3 and § 5, where it is shown that the induced maps \(f_i \) are near-homeomorphisms.

Proof of Lemma 2.1. If we denote \(\text{invlim}(Q_s, f_s) \) by \(Q_s \), then the fact that \(Y \cong Q_s \) follows from [1], Theorem I. As an aid to the reader we outline this proof.

Define \(h : Q_s \to Y \) as follows. For \((q) \in Q_s \), the sequence \((q) \) in \(Y \) is Cauchy by Condition (ii) and hence converges to a point \(q \in Y \). Let \(h(q) = p \). Condition (ii) also implies that \(h \) is continuous. With an easy proof by contradiction, Condition (iii) implies that \(h \) is one-to-one and Condition (i) implies that \(h \) is onto. Thus, \(h \) is a homeomorphism and hence \(Q_s \cong Y \).

Since each \(Q_s \cong Q \) and each \(f_i \) is a near-homeomorphism, it follows by Morton Brown's theorem [2] that \(Q_s \cong Q \) and hence \(Y \cong Q \).

§ 3. Piecewise-linear induced maps on hyperspaces of graphs. Let \(\Gamma \) be a compact connected graph and for every compact connected subgraph \(S \) of \(\Gamma \) let \(q_S \) be the minimum-path-length metric. For \(D = \text{diam}(S, \varphi) \), let \(e_S : C(S) \times I \to C(S) \) be the expansion homotopy defined by \(e_S(A, t) = \{ x \in S : q_S(x, A) \leq t \} \). Thus \(e_S(A, 0) = A \) and \(e_S(A, 1) = S \) for each \(A \in C(S) \). In the following \(\Gamma \) will always denote a compact connected graph.

Definition 3.1. A map \(\varphi : \Gamma \to C(\Gamma) \) of length \(\varphi \) is simplicial if for each vertex \(v \in \Gamma \), \(\varphi(v) \) is a connected subgraph (possibly degenerate) of \(\Gamma \), and for each edge \(e \in \Gamma \), either:

(i) \(\varphi(e) \) is a linear map onto an edge of \(\Gamma \), or

(ii) \(\varphi(e) \subseteq \varphi(e) \subset \varphi(v) \), where \(\varphi = \{ v, w \} \), and \(\varphi(e) = \varphi(e) \subseteq \varphi(v) \), for every \(e \in I \).

Definition 3.2. A map \(\varphi : \Gamma \to C(\Gamma) \) is piecewise-linear if there exist triangulations of \(\Gamma \) and \(\Gamma \) with respect to which \(\varphi \) is simplicial.

Remark. If \(\varphi : \Gamma \to C(\Gamma) \) is piecewise-linear, then there exist arbitrarily fine subdivisions of \(\Gamma_1 \) and \(\Gamma_2 \) with respect to which \(\varphi \) is simplicial.

We are now ready to introduce C-monotone maps. Let \(\Gamma_2 \to C(\Gamma_2) \) be the collection of degenerate subcontinua, and let \(\varphi_1 \) is a monotone map onto \(\Gamma_1 \).

Definition 3.3. A piecewise-linear map \(\varphi : \Gamma \to C(\Gamma) \) is C-monotone if:

(i) \(\varphi(\Gamma_1) \) is a monotone map onto \(\Gamma_2 \), and

(ii) for each \(x \in \Gamma_1 \) there exists a subcontinuum \(C_x \) such that for all \(x \in C_x \), \(C_x \cap \Gamma_1 \not= \emptyset \), and \(\varphi(y) \subseteq \varphi(x) \) for each \(y \in C_x \).

C-monotone piecewise-linear maps \(\Gamma_1 \to C(\Gamma) \) may be regarded as generalizations of monotone piecewise-linear maps \(\Gamma_1 \to \Gamma_2 \). The following examples may serve to clarify the above definitions.

Fig. 1
Every map \(\varphi: \Gamma_1 \to C(\Gamma_2) \) induces hyperspace maps \(f: 2^{\Gamma_1} \to 2^{\Gamma_2} \) and \(g: C(\Gamma_1) \to C(\Gamma_2) \). Furthermore, if \(\varphi(p) = q \in \Gamma_2 \), then \(\varphi \) induces relative hyperspace maps \(f_p: 2^{\Gamma_1}_p \to 2^{\Gamma_2}_q \) and \(g_p: C(\Gamma_1)_p \to C(\Gamma_2)_q \).

Theorem 3.5. Let \(\varphi: \Gamma_1 \to C(\Gamma_2) \) be a C-monotone piecewise-linear map. Then all induced maps \(f, g, f_p, g_p \) stabilize near-homeomorphisms (i.e., \(f \times \text{id}_{\Gamma_2}, f_p \times \text{id}_{\Gamma_2}, g_p \times \text{id}_{\Gamma_2} \) are near-homeomorphisms).

The proof of Theorem 3.5 that we give is relatively short but uses a good deal of recently established and powerful apparatus. Our original proof of Theorem 3.5, on which our announcement in [4] was based, was more elementary but much longer and used rather involved constructions of \(Q \)-factor decompositions.

A closed subset of the Hilbert cube has trivial shape if it is contractible in each neighborhood of itself, and a surjection between Hilbert cubes is cell-like if each point inverse has trivial shape. The next theorem is a powerful theorem originally proved by T. A. Chapman with a more direct and shorter proof supplied by A. Fathi in [6].

Theorem (Chapman). A cell-like map between Hilbert cubes is a near-homeomorphism.

Proof of Theorem 3.5. By the previous theorem, it is sufficient to show that each point-inverse has trivial shape, but we shall show that each point inverse is contractible. For each \(K \in C(\Gamma_1) \), let \(K^* = \{ x \in \Gamma_1 : \varphi(x) = K \} \). Then by condition (i) of Definition 3.3, \(K^* \cap \Gamma_1 = \{ x \in \Gamma_1 : \varphi(x) = K \} = \{ \varphi(\Gamma_1)^{-1}(K) \} \) is connected, and by Condition (ii) each component of \(K^* \) meets \(K^* \cap \Gamma_1 \). Thus \(K^* \) is connected. Now consider \(A \in 2^{\Gamma_1} \), and let \(K(A) \) be the set of components of \(A \). It is clear that \(\{ K^* \cap \Gamma_1, K \in K(A) \} \) is the set of components of \(A \).

For each \(E \in 2^{\Gamma_1} \), if \(f(B) = A \) we have \(B \subset A^* \) and \(B \cap K^* \neq \emptyset \) for each component \(K^* \) of \(A^* \). Thus there exists an "expansion homotopy"

\[
E: f^{-1}(A) \times I \to f^{-1}(A)
\]

such that \(E_0(B) = B \) and \(E_1(B) = A^* \) for each \(B \in f^{-1}(A) \). (Specifically, we can set \(E_0(B) = \{ x \in A^* : \varphi(x) = K \cap \Gamma_1 \} \), where \(\varphi(x) = K \cap \Gamma_1 \).)

Recall that \(B \) must meet each component of \(A^* \). The same argument shows that the other induced maps are also cell-like.

§ 4. Hyperspaces of polyhedra. In this section, we state the Subdivision lemma, postponing its proof to Section 5, and use it to prove our main result for polyhedra. By a geometric cell complex \(K \) we mean a finite collection of convex cells intersecting only along common faces. For \(i \geq 0 \), the \(i \)-skeleton of \(K \), \(K_i \), is the collection of all \(i \)-dimensional faces of \(K \). This should not be confused with the earlier use of the notation \(K_i \), in the proof of Theorem 3.5.

Subdivision Lemma 4.1. If \(K \) is a cell complex and \(s > 0 \), then there exists a subdivision \(L \) of \(K \) and a C-monotone piecewise-linear map \(\varphi: L \to C(K) \) such that

- (i) \(\text{mesh} L < s \);
- (ii) \(\varphi(x) < s \) if \(x \in P \), a cell of \(K \); and
- (iii) \(\text{diam} \varphi(R) < s \) for each cell \(R \) of \(L \).

(Here we consider \(\varphi(R) = (C(K), d^*) \) where \(d^* \) is the induced Hausdorff metric.)

Theorem 4.2. If \(K \) is a nondegenerate connected compact polyhedron, then \(2^K = \emptyset \) and \(C(K) \times Q = Q \).

Proof. As remarked earlier, we apply the Approximation lemma 2.1 by inductively constructing a sequence \(\{ \varphi_i: \Gamma_{i+1} \to C(\Gamma_i) \} \) of C-monotone-piecewise-linear maps, where \(\Gamma_1 \) is the 1-skeleton of \(K \). We use an arbitrary metric \(d \) on \(K \) and the induced Hausdorff metric \(d^* \) on \(2^K \).

Suppose that subdivisions \(K_0, \ldots, K_i \) and the corresponding C-monotone maps \(\varphi_0, \ldots, \varphi_i \) have been constructed, with mesh \(\text{mesh} K_i < 2^{-i} \), for each \(i \). Let \(f_1, \ldots, f_i \) be the hyperspace maps induced by \(\varphi_1, \ldots, \varphi_i \), respectively. For each \(i \leq m < n \) define \(f_m = f_n \circ f_{n-1} \circ \ldots \circ f_{i+1} \). Choose \(\delta < s \) such that for \(A, B \in 2^K \) with \(d^*(A, B) < \delta \), we have \(d^*(f_n(A), f_n(B)) < 1/n \) for each \(n \). By 4.1, take a subdivision \(K_{i+1} \) of \(K_i \), with respect to \(s \) minimum \(2^{-i+1} \), and this completes the inductive construction.

Obviously, this construction of the inverse sequence

\[
2^{\Gamma_1} \overset{f_1}{\to} 2^{\Gamma_2} \overset{f_2}{\to} \ldots
\]

satisfies Conditions (i) and (iv) of the Approximation lemma. For \(x \in \Gamma_{i+1} \), we have \(\varphi(x) < s \) where \(P \) is a face of \(K_i \), containing \(x \), and since mesh \(\text{mesh} K_i < 2^{-i} \) it follows that \(d^*(f_i(x), \text{id}) < 2^{-i} \). Thus, Condition (iii) is satisfied. To verify Condition (ii), let \(x \in K_i \), \(\ell \geq 0 \), and \(k \geq 1 \) be given. Choose \(j \) such that \(1/j < \ell \). Choose \([0, 1] \) such that for \(x, y \in K_i \), \(d(x, y) < \ell \), there exist interesting faces \(P_x \) and \(P_y \) of \(K_i \) containing \(x \) and \(y \), respectively. Now consider points \(x, y \in \Gamma_i \), \(\ell \geq 1/j \), and \(d(x, y) < \ell \). With \(P_x \) and \(P_y \) as above, we have \(f_{n+1}(x) = f_n(x) = P_x \) and \(f_{n+1}(y) = f_n(y) = P_y \), and it follows from the construction of \(K_{i+1} \) and \(\varphi_i \), that \(d^*(f_{n+1}(x), f_{n+1}(y)) < 1/j \). Thus for \(A, B \in 2^K \), with \(d^*(A, B) < \ell \), we have \(d^*(f_{n+1}(A), f_{n+1}(B)) < 1/j \), and therefore \(d^*(f_n(A), f_n(B)) < 1/j < \ell \). This shows that for each \(k \), the sequence of maps \(\{ f_i : \ell \geq k \} \) is equi-uniformly continuous. Thus \(2^K = \emptyset \).

To obtain the result \(C(K) \times Q = Q \), we consider the same sequence of 1-skeletons \(\{ \Gamma_i \} \) and piecewise-linear maps \(\{ \varphi_i \} \) and form the inverse sequence

\[
C(\Gamma_i) \times Q \overset{d^*}{\leftarrow} C(\Gamma_i) \times Q \overset{d^*}{\leftarrow} \ldots
\]

where the maps \(\{ \varphi_i \} \) are those induced by \(\{ \varphi_i \} \). Each \(C(\Gamma_i) \times Q = Q \) (by Lemma 4.1, [10]), and each map \(\varphi_i \) is a near-homeomorphism. Since mesh \(K_i = 0, C(\Gamma_i) = C(K) \).
and therefore $C(P) \times Q = C(K) \times Q$. Since Conditions (ii) and (iii) of the Approximation lemma are clearly satisfied, we conclude that $C(K) \times Q \approx Q$.

§ 5. Proof of the Subdivision lemma. Let K be a compact connected polyhedron. We shall view K and its subdivisions as geometric cell complexes. For $t \geq 0$, the t-skeleton of K, denoted K^t, is the collection of all t-dimensional faces of K. For each face P of K, let P be an arbitrarily chosen point in the interior of P; and consider P as a cone over its boundary P with cone point P. We use the canonical coordinates given by the map $C_P: \mathbb{R}^t \to I \to P$, where $C_P(b, \ell) = (1 - \ell) b + \ell P$.

As in § 3, on every subcontinuum S of the 1-skeleton K^1 we use the minimum path-length metric e_0. For $D = \text{diam}(S, e_0)$, let $e_0: C(S) \times I \to C(S)$ be the expansion homotopy defined by $e_0(A, t) = \{x \in S : e_0(x, A) \leq tD\}$. Thus $e_0(A, 0) = A$ and $e_0(A, 1) = S$ for each $A \in C(S)$.

Lemma 5.1. For every cell complex K there exists an unique map $\alpha: K \Rightarrow C(K^t)$ such that

(i) $\alpha(x) = \{x\}$ for each $x \in K^1$;
(ii) $\alpha(C_P(b, t)) = e_0(\alpha(b), t)$ for each cell P with $\text{dim} P > 1$;
(iii) $\alpha(P) = C(P)$ for each cell P.

Proof. The conditions define the map for K and the extension of the map to the rest of K is by the obvious induction on the K^t.

For each $n \geq 1$ we construct the n-th radial-transverse subdivision $K(n)$ of K by inductively describing the n-th subdivision $K(n)^t$ of the t-skeletons of K, $t \geq 0$. With $K(n)^t = K^t$, let $K(n)^{t+1}$ be the cell subdivision of $K(n)^t$ given by the convex cells $\{C_p \times [m/n, (m+1)/n]\}$, $P \in K(n)^t$, $\sigma \in C(n)^t$, $0 \leq m < n$. Thus $K(1)$ is simply a barycentric subdivision of K and in constructing $K(n)^t$, each element of K^t is subdivided into 2^n subintervals.

Clearly the mesh $K(n)^t$ tends to 0 as $n \to \infty$ where we can use an arbitrary metric on K. The 1-skeleton $K^1(n)$ of the radial-transverse subdivision $K(n)$ is the union of two subcomplexes, $R(n)$ (the radial segments) and $T(n)$ (the transverse segments), where $R(n) = \{C_P \times [m/n, (m+1)/n]\}$, P is a cell of K, σ is a vertex of $K(n)$ in P, $0 \leq m < n$, and $T(n) = \{C_P \times [m/n, (m+1)/n]\}$, P is a cell of $K(n)$ with $\text{dim} P > 1$, $\sigma \in \Gamma(n)$, $0 \leq m < n$. Thus $R(n)$ covers all the vertices of $K(n)$, and also the 1-skeleton K^1.

We now restate and prove the Subdivision lemma 4.1.

Subdivision Lemma. If K is a cell complex and $t > 0$, then there exists a subdivision L of K and a C-monotone piecewise-linear map $\varphi: L^t \to C(K^t)$ such that

(i) $\varphi(x) = \{x\}$ for each $x \in K^1$;
(ii) $\varphi(C_P(b, t)) = e_0(\varphi(b), t)$ for each cell P of K;
(iii) $\varphi(P) = C(P)$ for each cell P.

Proof. Let $\varepsilon > 0$ and let φ be the minimum path-length metric of K^t and φ^0 the induced Hausdorff metric on $C(K^t)$. By the uniform continuity of the map a frontier.

Lemma 5.1, and the fact that mesh $K(n)^t$ tends to 0 as $n \to \infty$, pick n sufficiently large such that if a, b belong to the same cell of $K(n)^t$, then $\varphi^0(a, b) < \varepsilon$. Let $L = K(n)^t$ and define $\varphi^t: L^t \to C(K^t)$ as follows. We have $L^t = \Gamma(n) = R(n) \cup T(n)$, $\varphi(T(n)) = \sigma \in \Gamma(n)$, and $\varphi(R(n)) = \sigma \in \Gamma(n)$ and $\varphi^0(\varphi(T(n), \varphi(R(n))) < \varepsilon$ for each cell P of $K(n)$.

In the notation of the C-monotone Definition 3.3, we have $(L^t)^0 = \{x \in L^t : \varphi(x)$ is degenerate $\}$ is precisely the subset K^t of L^t, thus $\varphi(\varepsilon)$. $(L^t)^0 \Rightarrow L^t$ is actually a homeomorphism. For a point $x = C_P(v, [0, 1])$ in an edge $C_P(v, [m/n, (m+1)/n])$ of $T(n)$, a subcontinuum C_n satisfying Condition (ii) of the C-monotone definition is given by $C_n = C_P(v, [0, 1])$, and for a point $x = (1-t) + t \ell$ in an edge $\tau = C_P(\sigma, [m/n, (m+1)/n])$, we may take $C_n = \{x = (1-t) + t \ell : 0 \leq \ell \leq t\} \cup \{\sigma \in C(n)^t, 0 \leq m < n\}$, where $v \in P^t$ is the vertex of $K(n)$ such that $C_P(v, [m/n, (m+1)/n]) = c \in \ell$. It is easily seen that φ satisfies Conditions (i) and (ii) of the Subdivision lemma.

Regarding Condition (iii), we define $\varphi(x) = \{x\} \in C(n)^t$ for each subcontinuum x of K. For a cell $C(\sigma) \subseteq C(K(n)^t)$, there exists $\tau = (c, d) \in \ell$ where c is a vertex of an edge of $R(n)$ containing x and d is a vertex of an edge containing y and z so that using the triangle inequality $\varphi^0(\varphi(x), \varphi(y)) < \varepsilon$.

§ 6. $C(K)$ for polyhedra with no principal 1-cells.

Lemma 6.1. Let $S = \text{invlim}(X_n, f_n)$ and $T = \text{invlim}(Y_n, g_n)$, where all the spaces are compact metric and for each n let $h_n: X_n \to Y_n$ be a map such that $h_n \circ f_n = g_n = h_n \circ f_n$. If for each n, both f_n and h_n are near-homeomorphisms, then the induced map $h = \text{lim} h_n: S \to T$ is a near-homeomorphism.

Theorem 6.2. If K is a nondegenerate compact connected polyhedron with no principal 1-cells, then $C(K) = Q$.

Proof. We proceed essentially as before in constructing the sequence $[K_i]$ of radial-transverse subdivision, but add at the ith stage of the construction the arbitrary finite collection of stickers to F_i, and to each of its predecessors F_{i-1}, \ldots, F_1. These stickers are obtained from F_{i+1} and do not change the homology of the graphs F_i, \ldots, F_1. In this manner, we eventually add countably many stickers to each F_i, and obtain (upon forming the closures) a sequence $[F_i^e]$ of compact connected local dendrites whose sets of branch points are dense. Thus each $C(F_i^e) = Q$ (by Theorem 5.7, [10]). We construct an inverse sequence

$$\cdots \to C(F_i^e) \to C(F_{i+1}^e) \to \cdots$$

to which the Approximation lemma applies, and thereby obtain the desired results.

Let $[K_i]$ be the sequence of radial-transverse subdivisions constructed in the proof of Theorem 4.2. We may assume that for each i, $K_{i+1} = K(n)$ for some
for the result $C(K) \approx Q$, since otherwise $C(K)$ would at some point locally look like $C(I) \approx \mathbb{I}^2$.

§ 7. The relative hyperspaces 2^X and $C_0(K)$.

Theorem 7.1. Let K be a nondegenerate compact connected polyhedron with $p \in K$. Then $2^p \approx Q$, $C_0(K) \times Q \approx Q$, and $C_0(K) \approx Q$ if K has no principal 1-cell.

Proof. We may assume p is a vertex of K. The arguments are exactly the same as for Theorems 4.2 and 6.2, with all induced hyperspace maps f and g replaced by their restrictions f_p and g_p. We also use the results from [10] that $2^p \approx Q$, and $C_0(\mathbb{I}^2) \times Q \approx Q$, for every nondegenerate compact connected graph Γ', and that $C_0(\mathbb{I}^2) \approx Q$, for every compact connected local dendron Γ^* with a dense set of branch points.

References

[5] — — Hyperspaces of Peano continua are Hilbert cubes, submitted for publication.

MATHEMATICS DEPARTMENT
LOUISIANA STATE UNIVERSITY
Baton Rouge, Louisiana

Accepted par la Redaction le 31. 1. 1976