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Since U hk(ij u U UyuixeQ: xg = 0] is a locally connected con-
k>ko kzka =1 "

tinuum, there is a mapping  of the interval ¢y, (%) onto it such that the image by y

of the point p = ¢,(L,y N Ry, is equal to the point ¢r'(p) = Iy O Ry,.
Let us define g,: ¥—X by the formula:
4
,'(p,,"l(y) if k<k, and ye @, o B{P) v U @il or if
1=1

k =k, and ye @, h,P,),

o) =1 s - “ “
o 0y o ma(y) iy Ekyk [or o Bi(P L EUI(/)/c(Ikl)] Y lgz(/’lcz(lkzl) s

¥ (» if y€ or,(Tina) -

It follows from the definitions of 7, and y that g, is a map of ¥ onto X. Since
each @, is 2 homeomorphism, we infer that for every x e X either g, '(x) is a point

or g; (%) is a subset of y 0, U (0), whence diam [g; '(x)]<e. Thus g, is the desired
KSkz : :

g-mapping. This concludes the proof of (3.3), and therefore the following theorem
is proved: :

THEOREM. There exist two quasi-homeomorphic locally connected continua X
and Y such that Xeo and Y ¢o.
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A wildly embedded 1-dimensional compact set in S*
each of whose components is tame

by

H. G. Bothe (Berlin)

Abstract. A compact set X in the 3-Sbhere 8% is said to be dqﬁnable‘by cubes with handles,

o0
if X = ﬂ H; where each Hjis a compact polyhedral 3-manifold in §* whose components are cubes .
i=0

with handles (i.e. regular meighborhoods of connected finite polyhedral graphs in $%), and
Hiyy CIntH,. If Xis a curve (i.e.1-dimensional) and if these cubes with handles can be chosen thin
in the sense that for each e> 0 there is an index i, such that for i>1, the retraction of Hj to the cor-
responding graph is an e-retraction, X is called definable by thin cubes with handles. Bach of these
two properties of X is equivalent to some further geometrically reasonable tameness conditions of
the embedding X C §° In the following paper examples of curves in .S® are constructed with com=
ponents which are definable by thin cubes with handles such that these curves themselves are not
definable by cubes with handles or are definable by cubes with handles but not by thin cubes with
handles,

1. Introduction. For topological embeddings of compact sets in manifolds
several conditions were introduced in order to distinguish tame embeddings from
wild ones. Here we are concerned with topological embeddings of curves X (i.e. com-
pact sets each of whose components is a 1-dimensional continuum) in the euclidian
3-space or — what is almost the same — in the 3-sphere S3, In this case the follow-
ing conditions among others have proved to be useful (we prefer embeddings in .S 3 for
technical reasons).

(A) X is definable by cubes with handles if there is a sequence Hy, H,, ... of com~
pact polyhedral manifolds in S* each of whose components is a cube with handles

such that Hy,, SIntH; (( = 1,2,..)and X = ) H;. (A cube with handles is a con-~
i=1

nected 3-manifold which is the union of a finite number of closed 3-cells Z,, ..., Z,
such that Z; N Z; is empty or a disk on BdZ; n BdZ;, and no three of the cells have
a common point.)

(B) X is definable by thin cubes with handles if for each ¢>0 the cubes with
handles in (A) can be replaced by e-thin cubes with handles. (An e-thin cube with
handles is a cube with handles for which the cells Zy, ..., Z, in the definition above
can be chosen with diameters smaller than &)
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(C) X has an unknotted complement in §* if each simple closed polygon in S ¢
can be unknotted by a homotopy in S>\X (for precise definitions see below).

An example in [4] shows that even in the case where X is connected (i.e. where
the manifolds H; can be chosen to be cubes with handles) (B) is more restrictive
than (A). (In that paper a curve is called tangled if it has not the property (E) formu-
" Jated below which is equivalent to (B).) Another example can be found in Section 7
below. Having in mind that a cube with handles in §3 is a regular neighborhood of
a finite polyhedral graph in S%, it is easy to prove that (A) implies (C).

It is the aim of this paper to construct an example of a curve X with a knotted
complement in % each of whose components is definable by thin handlebodies.
Therefore each component of X has all properties (A), (B), and (C) while X itself
has none of them. ’

To illustrate the meaning of this example we mention some conditions which are
equivalent to (A) or to (B).

(D) X is definable by free 3-manifolds if the cubes with handles in (A) are re-

placed by compact 3-manifolds with free fundamental groups.

The equivalence of (A) and'(D) (for 1-dimensional compacta in £ 3 or S follows
from [7], Theorem 10 using the fact that two boundary components of a polyhedral
3-manifold containing X can be connected by a tunnel in this manifold which does
not meet X. (A tunnel in a 3-manifold M is a closed 3-cell T'in M such that
T ~ BdM = BdT » BdM is the union of two separate disks.) We have mentioned
condition (D) here, since it shows that the promised example answers the question
of H. Row ([7], p. 226) whether a compact subset of 2 3-manifold each of whose
components is definable by free 3-marifolds is itself definable by free 3-manifolds.

. (B) X has the strong arc pushing property if for each polygonal (or tame) arc 4
in S? and for each >0 there is an s-homeomorphism f of S* onto itself such that
fHnX =0

(F) X can be mapped by a homeomorphism of S 3 onto itself into M enger’s‘ universal

curve M. (M3 is defined e.g. in [3] as a subset of E, but by the stereographic pro-
jection we may assume that M3 is a subset of S§°)

(G) The embedding dimension of X is 1, i.e. for each point x of X there are
arbitrarily small tame 3-cells Z in §? such that x € IntZ and BdZ n X is 0-dimen-
sional, - _ o

The implication (B)=-(E) is obvious, (B)=>(F) was proved in (3], (F)=-(G) is
obvious, and (G)=>(B) is proved in [7], Theorem 13. So we see that (B), (E), (F),
and (G) are equivalent. Investigations concerning the embedding dimension can be
found in [9] and [5]. . : )

With a single exception in Section 6 where a more general set — our curve X —
+ is considered, we shall work in the category of polyhedra and piecewise linear maps.

Therefore all manifolds (no dimension exceeding 3 will occur) are assumed to carry
a -definite piecewise linear structure, :
The following notational conventions are made: By [z, ¢,] we denote the closed
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interval between #; and f,, and I means the interval [0, 1]. For a'subset 4 of a top-
ological space, Cl4 is the closure of 4 in this space which is always defined by the
context, Manifolds are not assumed to be connected. The boundary and the interior
of a manifold M will be denoted by BdM or IntM respectively. A spanming sub-
manifold N of a manifold M is a compact submanifold such that N n BdM = BdN.,
A turnnel in a 3-manifold A is a 3-cell T in M such that T A BdM = D’ u D" is
the union of two separate disks which are called the entrances of T. We say that
the 3-manifold M’ = CL(MN\T) is obtained from M by boring out the tunnel T,
A tunnel T"in a 3-cell Z is called unknotted in Z if there is a spanning disk D in
Cl(Z\T) such that Bd.D is the union of two arcs 4, 4’ with common end points
where 4 = DN BdZ and A" = D AT connect the two antrances of 7. Two
disjoint tunnels Ty, T, in Z are called unlinked if there is a spanning disk D in Z which
does not intersect Ty U T, and which separates in Z T, from T,.

If Vis a solid torus, a meridian disk of V is a spanning disk in ¥ whose boundary
does not bound a disk on Bd V. A meridian of V is the boundary of a meridian disk
of V. All meridians of V are isotopic on Bd V. If ¥ is embedded in S° we define
a longitude of V to be a simple closed polygon on Bd ¥ which is homologous to
zero in S*\Int ¥ but not in ¥. All longitudes of ¥ are isotopic on Bd V. A4 solid torus
in §* is called unknotted, if its longitudes are unknotted in S°. This is equivalent
to the fact that S*\IntV is a solid torus too. Two simple closed curves K, L in
a space G are called homotopic in G if there is a mapping h: KxI—G such that
A( ,0) is the identity of X, and A( , 1) is a homeomorphism of X onto L. We say
that a simple closed polygon X in a subset G of §3 or of a 3-cell E can be unknotted
in G, if it is homotopic in G to a simple closed polygon which is unknotted in S3.
or in E. The set G itself is called unknotted if each simple closed polygon in G can be
unknotted in G.

2. The manifold N. Here we define a compact 3-manifold N in S3 which will
be the starting-point of our construction. Let 4 be a triangle, and let C = AxT
be the cylinder over 4. We assume that C is a subpolyhedron of S, The manifold N
will be a subpolyhedron of C. By C’ we denote the 3-cell 4 x [0, 4] and by R a solid
torus in C' = 4 x [}, 1] such that R v BdC" is a disk in Int(4 x {}}). Of course
C’ U R s a solid torus too. The set N will be obtained from C’ U R by boring out
a tunnel T with one entrance in Intd (4 = 4 x{0}) and the other in the annulus
(Ax{IH\(R n C"). We assume that R is unknotted and that T runs around in
C’ U R as indicated in Figure 1. More precisely, T'is chosen in such a way that there
is a 3-cell C* in R such that the following holds:

(1) C* " BdR = BAC* n BAdR = D is a disk which contains the disk C' n R
in its interior. Therefore, Bd C*\IntD = D’ is.a disk which subdivides R in C*
and a solid torus R'.

(2) C* A Tis the union of two separate tunnels 77, 7" in C* each of which has

" one entrance on Int(C' n R) and the other on IntD’.

(3) T* and T are equally knotted in the following sense: There is-a knotted
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tunnel T* in C* with entrances in C’ n Rand D’ such that T’ and T’ are unknotted

and unlinked in T*. ‘
(4) T~ C' is the union of two separate tunnels which are unknotted and un-

linked in C'.

' (5) T~ R’ is a tunnel in R’ which is unknotted but linked with the hole of R’

in the following sense: There is a meridian disk G'in R’ such that G A D’is a spanning

arcin D' which separates the two.disks of T' n D’. Moreover, if we split R’ along G we

get a 3-cell in which R’ n T is an unknotted tunnel.

Fig. 1

The tunnel T is unknotted in the following sense: There is an unknotted tunnel
in the 3-cell C with one entrance on 4 x {1} and the other in the entrance T N 4
of T which does not intersect N = CI((C’ U R\T), i.e. there is an unknotted tunnel
in C which does not meet N and which connects the two components of Bd C\N.
The following remark is an immediate consequence of this fact.

Remark 1. If X is a polygonal are in S such that K n BAC<SBd C\N, then
there is a piecewise linear homeomorphism f of §° onto itself which is the identity
outside C such that f(K) " N = @.

- Now we consider a solid torus ¥, and a cube with two handles H, which is
embedded in IntV, as in Figure 2.

Fig. 2

Remark 2. Each simple closed polygon .on Bd H, which bounds a disk in
VoNInt H, bounds disk on BdH,. (This can be proved by standard techniques.)
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If we look at Figure 3, we get the following lemma. -

LemMA 1. In S there is a knotted solid torus V such that H = S3Int N is con-
tained in IntV and the pairs (V, H) and (V,, H,) are homeomorphiz. (In Figure 3¢
P denotes a 3~cell with a knotted tunnel in Int N, and ¥ is the closure of the comp-
lement of P in S3.)

a) b) ’ ) c)

Fig. 3

Remark 3. In ¥, we may choose a meridian disk Fsuch that the following holds:

(1) F' =Fn Hy is a disk which subdivides H, in two solid tori V;, ¥,
(V1 N Vz = F/). )

(2) I f: V—V, is a suitably chosen homeomorphism such that f(S*\IntN) = H,,
then the image of the tunnel T'is contained in ¥;\F’, and the images of the entrances
of T are meridian disks in ¥7;. i

(3) There is a longitude of R which is mapped by f onto a meridian L, of ¥,
which does not intersect F'.

(4) On BdN there is a meridian of R which is mapped by f onto a longitude
of ¥, which does not intersect F'.

To prove this remark it is sufficient to remember the proof of Lemma 1, i.e. to
look at Figure 3.

3. Unknotted simple closed polygons in S®\N. In this section we shall prove
the following lemma:

LemMA 2. (A) If K is an unknotted simple closed polygon in S*\N, then there
is a spanning disk D in S*\IntN which does not intersect K and whose boundary is
either the boundary of an entrance of T or a longitude of R.

(B) If moreover there is a disk Q in S®\K whose boundary ligs in S*\N and is
homotopic in S*\IntN to a meridian of R, then the disk D in (A) can be chosen such
that it is the boundary of an entrance of T.

COROLLARY. Let N', N'' be obtained as images of N under autohomeomorphisms
fLf" of 3. IFN' AN = & and the tori f'(R), f"(R) are linked in the sense that
a longitude of f'(R) is homotopic in S*\IntN"' to a meridian of f"'(R) and a longitude
of f"(R) is homotopic in S*\IntN' to a meridian of f ’QR), then for each
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unknotted simple closed polygon K in S\(N' U N'') there is a spanning disk D

in S™NIntN’ which does not intersect K and whose boundary is the boundary of an.

entrance of f'(T) in N’ or there is a spanning disk D in S*\IntN" which' does
not intersect K and whose boundary is the boundary of an entrance of fU()
in N". .

Proof of Lemma 2. We use the notations of Section 2. By [8], p. 164 each
unknotted simple closed polygon in §* which is contained in a knotted solid torus
bounds a disk in this torus. Therefore, since V is knotted in S3, K is the boundary
of a disk Ein Int V. By a similar argument the disk @ in (B) can be chosen in Int V.
So we get in Int¥, a simple closed polygon Ko, = f(K), a disk E, = f(E) with
boundary K, and a disk Qp = f(Q) whose boundary lies in IntH, and is homo-
topic in H, to a longitude of ¥, on BdH,. (f:(V, S3\Int N)—(V,, H,) is'a homeo-
morphism.)

Each disk D, in Int ¥, whose boundary lies in Int H, can be replaced by another
disk D} in Int¥, which has the following properties:

(1) Bd Dy = BdD,.

Q) DynF < IntF'. ’

(3) Dy and Bd H, have general position in the following sense: Each component
of D).~ BdH, is a simple closed curve C, and Dj intersects Bd H, along C trans-
versely.

{4) No component of Dy n Bd.H, bounds a d1sk on Bd H,.
From these propertles and Remark 2 we get:

(#) If D, is a subdisk of Dj such that D; n Bd.H, = Bd D, (if DG n BdH, # @,
such a subdisk must exist!), then D, lies in H, and Bd D, is a meridian of one of the
solid tori ¥; or V,, or BdD, is isotopic on BdH, to BdF’,

In the proof of the lemma we may assume that the disks E, and Q, have the
properties of Dq. To prove (A) it is sufficient to find a meridian disk in 73 or in ¥,
which does not intersect K, and whose boundary lies on Bd.H,. We note that one
of the following cases must occur: E,SIntH,, E, contains a meridian disk of V;
or of ¥,, or E, contains a spanning disk E; in H, whose boundary is isotopic in
Bd H, to B F’. In the first and inthe second case we are ready. In the third case H, is
subdivided by E, in two solid tori Vi, V3 where ¥V contains a meridian of ¥, which
lies on BdH, (i = 1,2). Since K, n E; = &, one of the- sohd tori ¥{ does not
intersect K,, and we are ready too.

" To prove (B) we have to show that there is a meridian disk in ¥, which does
not intersect K, and whose boundary lies on Bd Hj. Since Bd @, is homotopic in H, to
a longitude of ¥,, by (%) one of the following cases must occur: Q, contains a meri-
dian disk of ¥; whose boundary lies on Bd H,, or Q; contains a spanning disk Q,

in H; whose boundary is isotopic on Bd H, to Bd F’. In the first case we are ready. .

In the second case Q; subdivides Hy in two solid tori ¥; and ¥V, where ¥ contains
a meridian of ¥ which lies on BdH, (i = 1,2). Since X, does not intersect Q,,
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we have K,<Int ¥V or K,=Int V. In the second case we are ready. In the first case
we find a meridian disk in ¥; which does not intersect K, and whose boundary lies
on Bd H, by the following simple fact: if a s1mple closed polygon K, lies in a solid

- torus ¥y in S and if there is a disk Q, in S3\K, whose boundary lies in S3\Int ¥y

and is homotopic there to a meridian of V7, then there is a meridian disk in vy which
does not intersect K.

4. Unknotting simple closed polygons in the complement of a manifold with
a tunnel. In this section we shall prove the following lemma,

LemmA 3. Let Q be a compact 3-manifold in S, and let T be tunnel in Q with
entrances D' and D"'. We consider the manifold Q' = CL(Q\T) and a simple closed
polygon K in G = S>\Q. This polygon X can be unknotted in G, provided it can be
unknotted in G' = S*\Q' by a homotopy h: Kx I»G’ for which the following holds:
There is a disk D in S® such that D n (T~ Q') = BAD = BdD', and D does not
intersect the simple closed polygon L = h(Kx {1}).

Proof. The annulus T n Q' will be denoted by 4. Since E = S3\ A4 is homeo-
morphic to an open solid torus, the total space E of the universal covering n: E—E
of Eis an open 3-cell which is equipped via = with a piecewise linear structure. For
a subset Z of S* we shall denote 7~(Z\4) by Z. We consider the open 3-cell
U = S3\T. Each component of U is a 3-cell which is mapped by = homeomor-
phically onto U. Let U, be one of these components, The complement of C1T, in Eis
the union of two open 3-cell U’, U, and Dy = C1T’ A C1T,, By = C1T” ~ C1T,
are open disks which are mapped by © homeomorphically onto IntD’ or Int D"
respectively. The intersection K, = U, n K is a component of K which is contained
in Uy n G =.T\0. The homotopy h: KxI-»G' can be lifted to a homotopy
R:RyxI-G', and B(R,x {1}) = L, is a simple closed polygon in G’ which is a com-
ponent of L. Since L is contained in the open 3-cell E\D, L, is unknotted in E.
We have Dy U Dy <G’ and it is easy to find an autohomeomorphism f of £ onto
itself which is the identity outside a neighborhood of ClU’ U ClU* and which
throws A(R,xI) into ¥, n &' = U, n G without moving any point of K. The
homotopy k = fFk is an unknotting of &, in T, n G, and k = nk unknots K in

= n(Ty n &)

5. The main construction. Let M be a compact 3-manifold in §3 and let T be
a triangulation of BdJ. By 4 15 > 45 we denote the triangles of T. As proved
in [6] there is a piecewise linear collar of BAM in M, i.e: a piecewise linear embedding
%: BAM x I—M such that x(BdM x I) is a closed neighborhood of BdM in M and
%(x,0) = x for all xeBdM. For each index i (1<i<2’) and each mapping
k:{1,..,5}{0, ..., 2°} we shall define a- compact 3-manifold My in %(BdM x I).
In the simplest case My, will be the layer x(BdM x [(i—1)-27%, (i—%)-27°]), and
in the general case My, will be obtained from this layer by adding some thin handles
and boring out some tunnels in such'a way that for fixtd k& the manifolds;
My, ..., My, are still mutually disjoint but linked in a special way.
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We use the notations of Section 2. Over the tiiangle A4 with which we started
the construction of the manifold N we consider the cylinder A4 x [1, 2°4-1] and choose
piecewise linear embeddings ¢; of Ax T in 4x[i, 2°+1] (1<i<2°) such that:

1) I (x, Hedx[0, 3], then o, D) = (x,i+9).
(2) The sets N; = ¢,(N) are mutually disjoint.
(3) For 1<i<2* we have ¢ (R)=4x[2°+%,2°+1].

(4) Each two of the solid tori @R’ are linked in the sense that for iy # i,
a longitude of ¢;(R’) is homotopic in S3\@,(IntR) to a meridian of ¢;,(R).

[ A B

Fig. 4

For i<2° the images of the 3-cell C* under ¢, must bé thin worms which run
through the tunnels’ ¢;,4(T), ..., ¢2«(T). These tunnels will be denoted by T;.
Figure 4 illustrates the situation. Let J be a subset of {1, ...,2°} and 0<k<2".
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In our construction the following polyhedra will be used

W= U 4x[i,i+iluv U N;.
1<isk k<i<2s
ieJ ieJ

As an immediate consequence of the corollary of Lemma 2 we get the following fact.

Remark 4. If  is a piecewise linear embedding of 4 x [1,2°+1]in §* and Kis
an unknotted simple closed polygon in SNy (Wyy), then for each pair ij, i,>k
of indices in J there is a spanning disk in $3\Int(y (¥;,)) whose boundary is the
boundary of an entrance of the tunnel ¥(7;,) or there is a spanning disk in
S3Int(y (V) whose boundary is the boundary of an entrance of the tunnel
(T !

The following remark is a simple consequence of Remark 1 in Section 2.

Remark 5. Let ¥ be as in Remark 4, and let K be a polygonal arc in S, We
assume that for a fixed index i (k<i<2’ ieJ) K does not intersect

(N, A BA(dx[1, 2 +1]) .
Then there is a piecewise linear homeomorphism 4 of S* onto itself which is the
identity outside (4 x[1,25+1]) such that A(K) n (V) = @.

For each index j (1 <j<s) we consider a linear map A; of our standard triangle 4
onto 4; and the piecewise linear homeomorphism

vy Ax 1, 27+ 1% (4;x T)
which is defined by
Yix, 1) = n (409, (t—=1)-277%).
If a ‘mapping k: {1, ..., §}—{0, ..., 2} is given, then for 1<i<?’
My= U ydxI[i,i+3]) U VAN
k(j{?i kUJ)<i
is a compact 3-manifold in »(BdM x I) which coincides with
% (BAM x [(i—1)-27%, (i—$)-27"])

provided k(j)zi for all j. Two of the manifolds M, cotresponding to different
indices i but to the same mapping k are disjoint. For a subset J of {1, ..., 2} we
define
My = U My
. iet

Obviously for each triangle 4; of T we have
My 0 %(AJXI) = ¥, (W) -
If k=2, then My, = U (BAMx[(i—1)-27%, (i—9-27D. I J={l,...,2°} and

teJ

k(j) = 0, we denote My, by M'.
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In this way for a given compact 3-manifold M with boundary collar » and
a triangulation T of BdM whose triangles are indexed by the numbers 1, ..., s to
each subset J of {1,..., 2°} and each mapping k: {1, ..., s}—{0, ..., 2°} there cor-
responds a compact 3-manifold My, in »(BdM x I). (Besides on M, %, 4, , ..., 4, J,
and k the manifold depends on the linear maps A;: A—4;, but this dependence is
inessential.) . .

' Given a manifold My, (J # @, i, the maximal number in J, k % 27, j, the mini-
mal index in {1, ..., s} for which k(j,)<2%) and an unknotied simple closed poly-
gon L in S°\M;, we define a manifold M;,. by the following standard modifi-
cation of My,.

First case: k(jo)=i,. Then

k() it
2° if

j ‘76 jO)
J=Jo.
Second case: k(j,)<ip, but besides i, there is no other number in J which
exceeds k(jp). Then :

J' =1, k’(i)={

, . y kG i j#de,
I = N}, mw{@. JT
2 it j=j,.
) Thlh:d case: There are indices iy, 7, in J such that k(j,)<i; <i,. Then choose
by minimal a.nd consider ;,(N;,) and v/,,(N,). By Remark 4 for one of the indices
iy, Iy (we call it i) there is a spanning disk D in S\ Iut (¥;,(¥)) which does not

intersect L and whose boundary is the boundary of an entrance of the tunnel
Y5o(T3) in Y (V). We define

V=17, k'(j):{l.c(']) AL
i J=Jo
if i =4, and

, . T
J=N%k@%@?fﬁW

. ) : I it j=j
if [ =i,
Rcmark‘ 6. It is a simple combinatorial fact that a repeated application of this
sFandard modification (possibly with different curves L in each step) to the manifold M*
(ie. J={1,...,2°}, k = 0) leads to a manifold Myus where J* # & and k* = 2°.

- Remark 7. Let K'be a simple closed polygon in §3\A and let L be an unknotted
simple, closed polygon in S3\M;, (J # &, k # 2°) such that X is homotopic in
Sank to L. Then, if M. is obtained from My, and L by the standard modifi-
cation, K can be unknotted in S*\Mj,. ,

This remark is trivial if the standard modification is applied in the first or the
SCCOIEld case. In the third case let i = i, or i = i, as in the definition of the standard
fnodlﬁcation. Since #;, i, are minimal in IN{L, i, k(jg)} the 3-cell () is a tunnel
1n Mo U, (T)), and this tunnel can be closed by a disk D which does not inter-
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sect L. It is an immediate consequence of Lemma 3 (if we take Q@ = My, L ¥1;(T)),
T = ;,(Tp) that K can be unknotted in S*\(Myy U ¥;o(T7)). But My, is con-
tained in My U ¥, (T, and the remark follows.

LeMMA 4. Let M bé a compact 3-manifold in S® for which a boundary collar %
and a triangulation T of BAM are given such that the manifold M’ in x(BdM xI)
is defined. Then, if a simple closed polygon K in S*\M can be unknotied in S>\M’,
it can be unknotted in S>\M.

Proof. Let J*, k* be as in Remark 6. It follows by repeated application of Re-
mark 7 that K can be unknotted in §3\Mu.. Since J* # @ and k* = 2°, the mani-
fold My contains (for a suitable t e I) the surface %(BdM x {f}), and K can be
unknotted in the complement of this surface which is parallel to BdM. Hence K can
be unknotted in the complement of BdM and, since X lies in S*\M, in the com-
plement of M. This proves the lemma.

6. The carve X. To define the curve X we construct step by step a sequence
MO2MDoMP ... of compact polyhedral 3-manifolds in §3: M is the com-
plement of the interior of a knotted solid torus in S*. If M @ is defined, we choose
a triangulation T™ of BdM™ with triangles of diameters smaller than 27"~2
and a collar %™ of BdM®. in M® such that d(x, x"(x, §)<27™" 2 for all
(x, f) € BAM® x I. These assumptions imply that for each triangle 4; of T the 3-cell
#"(4;%I) is of diameter less than 27". Then M @+1) s the manifold (M®)’ which
was described in Section 5. The set X is the intersection

X= (M,
n=0

We prove now that each component of X has the strong arc pushing property and
is therefore definable by thin cubes with handles. Let X, denote a component of X'
and let M™ be the component of M® which contains X,. We have to prove that for
each polyhedral arc 4 and for each positive ¢ there is an &-homeomorphism 7 of § 3
onto itself such that h(d) n X, = .

If we choose the index  large enough, we easily get an }e-autohomeomor-
phism 7, of §° such that the following holds: If 4; is a triangle of the triangulation ;(")
of BAM®, then hy(d) does not intersect Bd ((x"(4;x 1)) n M"*?). Now using
Remark 5 of Section 5 we get another autohomeomorphism A, of S § which is the
identity outside x™(BdM® xI) and on the boundary of each 3-cell 9’¢("‘_(ij1’)
where 4; is a triangle of ) gnd which maps each of these 3-cells onto itself such
that hyhy(4) N MO39 = @. It the index » was chosen sufficiently large:,, the cel.is
%"(4,;% 1) become small such that h = hyhy is an e-autohon'xeomorphls? of § >

This argument shows moreover that X, does not locally disconnect S° and is
therefore at most 1-dimensional (see [1, p. 208 or [2], IV, § 5.6). Of course X, is
at least 1-dimensional, and as a compact space each of whose components is 1-di-
mensional X itself is 1-dimensional. _ R

Finally we show that X has a knotted comglement in S3. Since S( O}M Visa knot-
ted open solid torus, there is a simple closed polygon K in §3\M"®’ which can not
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be unknotted in SP\M®. Looking at Lemma 4 we see that K can not be unknotted
in §3M® for n = 1,2, ... Since an unknotting always proceeds on a compact set
(the image of the unknotting homotopy), an unknotting of X in S*\X would be an
unknotting in a set which has positive distance from X. Therefore, if K could be
unknotted in S™X it could be unknotted in S*\M® for sufficiently large », but
this is impossible as weh ave seen above. So we have found a simple closed polygon
in §3\X which can not be unknotted there.

7. Curves definable by cubes with handles but not by thin cubes with handles.
Here we define a curve ¥ in S which is definable by cubes with handles but not by
thin cubes with handles and each of whose components is definable by thin cubes
with handles.

Let F be a compact polyhedral 2-manifold in $° c’xch of whose components
has a non empty boundary, and let T be a triangulation of F. Then F can be con-
‘tracted by simple collapses onto a subset of the one-dimensional skeleton of T.
(If 4" is an n-simplex of a simplicial complex T, and 4"~ ! is an (n~ 1)-dimensional
face of 4" which is not a face of any other simplex in T, we say that IN{4", 4"~}
is obtained from T by an elementary collaps.) This shows that any regular neighbor-
hood of Fin S? is also a regular neighborhood of a finite polyhedral graph and there-
fore a cube with handles (concerning regular nelghborhood theory see [6], Chap. II).
This proves the following lemma.

LevMA 5. Let X be a compact subset of S* such that for each &>0 there is a com-
pact polyhedral 2-manifold F in S* each of whose components has a non empty boundary
and a regular neighborhood N of Fin 8% which contains X and is contained in the
e-neighborhood of X. Then X is definable by cubes with handles.

Looking at the property (G) in Section 1 we see that the property of being de-
finable by thin cubes with handles is a local one; i.e., a curve X in S? is definable
by thin cubes with handles if and only if each point of X has a compact neighborhood
in X which is definable by thin cubes with handles.

Now ‘we define the curve Yin S° by a construction which is very similar to the
construction of the curve X'in Section 6. The differerice is that we replace the defining
sequence M, M™), .. by a sequence N, N, .. where N© = M@ and N@+1
is obtained from N in the same way as M’ e was obtained from M with the single
exception that for each component B of Bd N we choose a triangle 4, of T in B
and remove %™ (Int Az x I) N (N™)’ from (N’ to obtain N1, These triangles A,
have to be selected such that the sets x™(d x I) do not intersect a neighborhood ¥ of
apoint x of the curve X at which X is locally not definable by thin cubes with handles.
(As pointed out above, such a point x must exist, but by.the construction of X each
point of X has this property.) Then ¥ n N = V' M™ for each index n, and if

we define Y to be the curve ﬂ N, we have ¥ A X2 ¥, This implies that ¥ can not
n=0

be defined by thin cubes with handles. By Lemma 5 we see easily that ¥ can be
defined by cubes with handles. To prove that each component of ¥ is definable by
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thin cubes with handles we have to proceed as in Sectlon 6 where we proved the cor-
responding fact for the curve X.

Remark 8: This construction and especially Lemma 5 show that the example
in [4] was unnecessarily complicated.
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