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The axiom of choice for linearly ordered families
by

J. Truss (Oxford)

Abstract. We study the statement (1) Any linearly oxdered family of non-empty sets has a choice
function, (1) implies AC in ZF but not in ZF without foundation. We show that a weaker form of (1),
namely “every family of non-empty sets indexed by P(w) has a choice function”, does not imply AC
even in ZF; in fact it is consistent with the existence of a partition of P(w) without a choice function.
We study further properties of the model used to prove this, and also of Feferman’s model.

§ 1. The axiom of choice for linearly ordered families is the following statement,
(1) Any linearly ordered family of non-empty sets has a choice function,
We prove in this paper that in the presence of the axiom of foundation, (1) im-

-plies AC, the axiom of choice, However this is false in set theory without the axiom

of foundation. (1)-AC is therefore an example of what Pincus [8, pp. 740-741]
calls a “non-transferable” consistency, i.e. it holds in an appropriate Fraenkel-
Mostowski model (where the axiom of foundation may be violated) but not in any
model of Zermelo-Fraenkel (ZF) set theory.

Our interest in this proposition was prompted by a question of A. Zalc. She
asked whether (2) implies (3), where (2) and (3) are as follows. ‘

(2) Bvery family of non-empty sets indexed by P(w) has a choice function.

(3) Bvery partition of P(w) into non-emply subsets has a choice fu%ction.

That the answer is “no” follows from consideration of one of the models 9,
of [12], of “Feferman type”. We thought at first that it would be enough to consider
Feferman’s original model, : [2). However it turns out that both (2) and (3) are false
there, the reason being connected with the fact that (1)-AC in ZF! (2) follows
from (1), of course, but not conversely, as we shall show. ‘

We include further information about 9 (and similar results hold for the other
models discussed in [12]). We show that for each ordinal o, 2% = 8,4 4, 2%, and more-
over that for any set X of M which can be linearly ordered, there is an a such that
|X|<2%. This is a “Kinna~Wagner ordering principle” for orderable sets. In fact
the proof will show that this conclusion holds for any set such that

[XT = {xsX: |x| = 2}
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has a choice function. This state of affairs can be paraphrased as “sets of reals in %t
aré well-behaved but partitions of reals are not”, We conclude by showing that for
any infinite set X in 9% there is a mapping from X onto 2x X,

§ 2. TrroreM 1. In ZF set theory, the axiom of cholce for linearly otdered fumilies
implies the full axiom of cholce.

Proof. In fact we only need to assume the axiom of choice for families indexed

by a set of sets of ordinals. By Rubin and Rubin [9, p. 77] it is enough to show that
" P(6) can be well-ordered for cach ordinal .

Let X be the set of all 1-1 well-ordered sequences of members of P(ar). For
each x € X, 4, is the set of members of P (@) not in the domuin of x, Suppose that P(x)
cannot be well-ordered. Then A, is non-empty for each x e X, Let % be the least
ordinal which cannot be mapped 1-1 into P(a). Tt is clear that X can be mapped 1-1
into a subset of P(xx %), so by applying the given version of the axiom of choice,
{4,: x e X} has a choice function. This provides a well-ordering of P(a), giving the
desired contradiction.

TaeOREM 2. If FM(= ZF without the axiom of foundation) Is consistent, then
so is FM+AC+the axiom of choice for linearly ordered families.

- Proof. We construct a Fraenkel-Mostowski model ag follows, Suppose that M
is a model of FM+AC+ “there are ¥, urclemente”. Here we cun take “urclemente”
to be-sets x such that {x} = x, or alternatively, objects which are not sets but which
can be members of sets. We adopt the latter approach. The reader is referred to
Felgner’s book [3] for more details.

U is the set of urelemente, and G is the group of all permutations of U, For
each o€ G, the action of ¢ on arbitrary xe M is defined in the natural way,
i.e. ox = {oy: yex}. We then let

" H(x)={ceG:ox=x} and K@) ={oeG (Yyex)oy=y}.
§ is the filter of subgroups of G generated by {K(A): AS U, [A|<K,}. Since
K(4 v B) = K(4) n K(B), § is actually the set of all subgroups of ¢ containing
some’such K(4). N is the Fraenkel-Mostowski model determined by U, G, and &
Thus R = {x e M: x=NAH(x) & F}. (N is vsed for this model only in § 2, Later
on we use N for Feferman’s model).
- That M is a model of FM is proved in [3, pp. 52-55], Cerlainly Ue 0, and
in [13, Theorem 5] we showed that the axiom of choice is fulse in M. In fact Uls
~-an uncountable set which is not the disjoint union of two uncountable sets. [t remains
to show that the axiom of choice for linearly ordered furnilies s true in 9.

Let <X, <) be a linearly ordered set and {4,: xe X} a family of non-empty
sets, both in 9. Then for some countable subset B of U, HX,<Y)nH
({Cx, 42>t xe XD2K(B). We show that in fact KX)2K(B), i.e. Hx)=K(B)
for every x e X. If not, H(x) n K(B) is a proper subgroup of K(B). It is casy to see

-that K(B) is generated by the elements of finite order, In fact it is gencrated by the
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clements of order 2. Hence there is o e K(B)—H(x) of order 2. As ox # x, and
oxeX (as K(BYSHKX, <)), x<ox (or ox<x). Since ¢ preserved < this gives
ox<x (x<ox respectively), a contradiction.

Tt is now clear that K(B) fixes any well-ordering of X lying in M, since it fixes X
pointwise, s0 X can be well-ordered in 9. In fact this argument shows that any set X
of 9t such that [X]? = {x& X |x| = 2} has a choice function can be well-ordered,

Now let C be a countubly infinite subset of U—B. We claim that every A, has
a member f(x) such that J(/f (X))2=K(B U C). The choice of the function fis
made in M, of course, but it follows at once that H(/)=2K(B U C) and so feN
as desired. For lel y & A, be arbitrary, and let H(»)2K(B u C,), where we may
take Cy 1o be countably infinite and disjoint from B. Let o be a member of K(B)
mapping C; onto €, As o fixes w and {{x, 4. x e X} it also fixes A4,, and hence
oy € Ay, Lot f(X) = oy, Then :

H(f() = H(oy) = cH()o™ 2 0KB U C)o™! = KB U C)
as desired.

This proof is similar to Solovay’s proof that in Feferman’s model, the axiom
of choice for well-ordered families holds. We could use a countable set of urelemente
it we wished (obtaining in fact an clementarily equivalent model), but taking
|Ul = 8y makes the argument slightly simpler. Two of the steps of the proof of
Theorem 2 can be carvied out in Feferman’s model, i.e.

(i) Any sct X such that [X]* has a choice function can be mapped 1-1 into
P(w), some ordinal «.

(i) Any well-ordered fumily of non-empty sets has a choice function.
It is the linking step
@itl) For any ordinal &, P(e) can be well-ordered, which fails there.

§ 3. We consider two models “of Feferman type”, 3t and 9, % is Feferman’s
model [2] and M, is one of its modifications described for example in [12]. Let M be
a countable transitive model of ZFC+-V = L, We take as set of conditions P or P,
the set of all maps in M from u finite subset of wx @ (w,x w respectively) into 2,
partially ordered by extension, T §(%,) is an -generic subset of P (P;) we obtain
the Cohen extension WR[F] (or M[F N and NN, is a submodel of this. Let
Fe U®, Fow () &, Then F, F, are maps from o X, o, %o into 2, For each
new, &g wy, let a(l) = P, 1), @) = Fy(a, 1), Then N is the submodel of M[F]
consisting of all its members which are hereditarily ordinal definable over {4,: n & @},
i.e. using only finitely muny purameters from this set, and Ry is the submodel of
MIF,] consisling of its members which are hereditarily ordinal definable over
{ap: p<oy: a<w,}).

Now let I denote the ideal of finite subsets of w, P(w)/I the corresponding
factor of P(w), and [4] the equivalence class of 4 & P(w) modulo L The following is
implicit in [2]. See ulso the account of Feferman’s model given in [3, pp. 160-166].
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TrpoREM 3. Tn N and M, there isno choice function for {14], [o—4]}: 4 e P(w)}.
Hence P(w) has no non-principal prime ideal, the axiom of choice for s‘els of pairs fails,
and there is a partition of P(w) into non-empty subsers with no choice function.

Proof. We just observe how the final statement follows. Let IT 1?6 the partition
given by II = {[4} v [0o—A]: Ae P(w)}. Thus each merpber of H is the union of
two complementary members of P(w)/L. It IT has a choice function then so does
{41, lo—41}: 4eP@)}- , o

1t follows from the considerations of § 2 and the fact that in N any set is ordinal
definable from a real that not every family of non-empty sets indexed by P(w) has
a choice function. In fact it is easy to give a specific counter-example, which turns
out to be the most important case. We.say that xe2° is Cohen I-generic if
{x } n: ne w} is an M-generic subset of 2°°, For each 2 2%, let G, = {x € 2°: xis
Cohen M [a]-generic}. Then X = {G,: ae 2°} is a family of non-empty sets (in %)
indexed by 2°. If f were a choice function for X in N, weshould have /9 [a]-defin-
able in M[F] for some real a. But then f (4) would also be M[a]-definable in
M[F], and hence by arguments of Levy [5, 6] would lie in M[a], contrary to f(a)
M [a]-generic. )

LemMa. In Ny, X = {G,: a2} has a choice function.

Proof. We use the fact that {a,: a<w> € ;. Let f(a). = 4, for the least a such
that a, € G,. We just have to show that there is such an o. But this is clear, for if x is
any countable set of ordinals in MM [F:], by Levy [6, Lemma 4] there is a countable
subset A of @, such that x e M[F, } 4] where §, 4 = ;N (Axwx2).

THEOREM 4. In R, any family of non-empty sets indexed by P(w) has a choice
Sunction. :

Proof. Let X = {4,: x 27} be the given family. Then for some oy <w,, X'is
ordinal definable in M[F, ] from (a,: a<ayy. Without loss of generality we suppose
that &, = 0. Given x we show how to choose a member of A,. It is enough to show
that A, has a member a which is ordinal definable from (x, f(x)), where fis the
function given by the lemma, since we may then choose the first such in the ca-
nonical ¢x,f(x)) — ordinal definable well-ordering of sets ordinal definable from
{x,f(x)>. But. 4, has a member b which is ordinal definable from <{x, ) for some
9 [x]-generic y. In fact for any b .4, there is such a p (applying Levy’s lemma
again and dovetailing the countably many I [x]-generic reals resulting). This must
be forced by a finite initial segment of y, and hence by altering y to lie in
MIx][f(x)] we can find the desired .

' COROLLARY. If ZF is consistent, then so is
ZF + every family of non-empty sets indexed by P(w) has a choice function.
+ not every partition of P(w) into non-empty subsets has a choice function,

§ 4. This section contains results about the cardinals of R, Feferman’s mode‘l,
defined in § 3. These could be extended to the other models of [12]. Firstly we prove
a result about power sets.

v
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THEOREM 5. In M, 2% = x,., 2%,

Proof. That 2 >x,, 2% is clear, so we just have to establish the reverse
inequality. Let 4 be a subset of w, in N. Then for some a € 2%, 4 is ordinal definable
from a in M[F], and hence by Levy [5], 4 € M[a]. We show that @ may be taken to

‘lie in 9MM[4]. When this is established the inequality 2% <n,. 2% follows thus.

Bach 4 € P(w,) is mapped to {f, a), where a is the first member of M[4].n 2%
in some M[A4]-definable well-ordering of M[A4] such that M[a] = M[A4], and 4 is
the fth member of the canonical M [a]-definable well-ordering of Mfa] N P(w,)
of order-type w,..q. . .

We may suppose that  is Cohen M-generic. Then as 4 € M[a] there is a label 4
for A in this extension. Let b be the set of all o € 2°® which are compatible with
the interpretation of 4 as 4. Thus '

b={0e2%: (Vfew)oclrfed-pecdnro l-B¢A-p¢EA)}.

Then beM[A] and 4 = {B: @oeb)o - feA), giving AeM[b]. This shows
that M[4]= M[b], and of course b can be coded as a member of 2°,

THEOREM 6. Let X be any set in W such that [X')? has a choice function (in par-
ticular, any X which can be linearly ordered). Then |X|<2%, some o. )

Proof. Without loss of generality we suppose that X and a choice func-
tion f for [X']? are ordinal definable in M[F]. Fix a well-ordering in M of the labels
for members of M[F]. For each x e X we let H(x) = (x, 4D, where x is the least
label in this well-ordering such that x is denoted by x in some M[§'] for an Bi-gen-
eric subset §' of P satisfying M[F] = M[F'], and A4 is the set of all members
of P lying in some such §'. These are the members of P “compatible” with the inter-
pretation of x as x.

It is clear that 0(x) € 9N and 6 is ordinal definable in M[F], so also 8 € N. The
range of 0 is not actually a set of sets of ordinals, but whenever 0(x) = (x, A,
A is a subset of M, and this is clearly enough. What remains to be verified is
that @ is 1-1.

Suppose that 6(x) = 0(y) where x % y. Let 0(x) = {x, 4). There must be
M- generic subsets §', §F'' of P such that M[F] = M[F] = M[F"'] and x, y are
the denotations of x in M[F] and M[F"] respectively. Now we work with the
complete Boolean algebra B associated with P. There is an automorphism = of B
in M taking §F to F". To see this, let F be a label for § in M[F'], and let
7(d) = [beF]. Then = is in M a complete homomorphism from B onto B. By
adjusting the choice of F it can be made 1-1, i.e. an automorphism. Clearly = maps §’
to ”. \

Let G be the group of automorphisms of B in 9 which fix 8(x) (i.e. those which
fix 4). Thus G M, but we do not necessarily have G e M. A4 is a subtree of P (re-

garding P as, say, the Cantor tree 2°%), and so it is easy to see that G is generated

by the elements of order 2. Hence we may write. © = 7, %, ... T, Where for each i,
7,0(x) = 6(x) and n? = 1. As x denotes x in M[F], mx denotes y. As x # y there
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is i such that m;m;4y ... T,% and 7y, ... 7, X denote different elements of M[F].
Also if z is the denotation of @4y ... m,x in M[F'], then 0(2) = {x, A, since
n(4) = 4, all j. . ‘

" This shows that there is an x (equal to the previous m;..4 ... %,X) and an auto-~
morphism 7 of B (equal to the previous ;) such that n> = I, x and 7x denote
different elements x, y say of M[F'], and n0(x) = O(x). Since X is ordinal definable
in M[F], x, y are in X. Suppose without loss of generalify that f{x, y} = x. Then
there must be o & §' forcing f {x, 7x} = x. Hence no Ik £ {x, 7y} = nx. As noen§,
and y is denoted by x in M[xF'], no € ', where 0(y) = {x, 4. But 0(x) = 0(y).
Hence there is an M-generic subset §" of P containing 7o such that x is the deno-
tation of x in M[F"']. Thus also y is the denotation of mx. This gives f{x, y} =y,
which is a contradiction.

COROLLARY. Let X be any set of T such that [XV has a choice function. Then
either X is finite or for some a, B, |X| = NW+N,,'2““ or | X| = &,.

Proof. Suppose that X<m,x2% Let 4 = {0: |[Xn ({8} x2”)| = 2™}, By
{12, Theorem 3.2] any set of reals of 3 has cardinal 2™ or <s,. Thus if 4 = a9,
the result follows at once using the axiom of choice for well-ordered families. If
A # @, let 85 = max(8o,]|4]).

TrEOREM 7. If X is an infinite set of N there is a mapping from X onto 2 x X.

Proof. Asin the proof of Theorem 6 we maylet X = | {a} x X, where each X,

a<x :
is a partition of a subset of 2°. We show that therc is a family {¥,: «<x} of subsets
of 2% such that for each «, X, and ¥, can each be mapped onto the other.

I |X| <&y we just let Y, be a subset of 2 of the same cardinal as X,. Otherwise
a repetition of the methods of [12] shows that X, has a subset of cardinality 2%.
So we let Y, = 2% Now by the axiom of choice for well-ordered families we may
choose families of maps {f,: a<x}, {g,: a<x} such that for each a, f, maps X,
onto ¥, and g, maps ¥, onto X,. Letting ¥ = {J {{e} x ¥,: a<x} we obtain, by
piecing together ‘the f;, g,, maps f, g from X onto ¥ and ¥ onto X respectively.
Clearly |Y|<|x|-2%, so the result follows from the previous corollary.

Sageev [10] and Halpern and Howard [4] have given independent (negative)
solutions to the long-standing problem; does Vx(x infinite~sx = 2x) imply the
axiom of choice ? We conjecture that Vx(x infinite—sx = 2x) holds also in Feferman’s
model. What we have shown above would of course follow at once, and can be
written Nk Vx(x infinite—2x<*x) in the notation of Lindenbaum and Tarski [7].
Tt is clearly enough to show that Vx(x infinite and x<*2%—x = 2x), where x<<*2%
means that x is the cardinal of a partition of 2%, and a useful test case seems to be
to take x = [II|, where IT is the set of degrees of non-constructibility of members
of 2°. We do not know whether |II| = 2|IT|. ‘

To conclude, we make a remark about Solovay’s model 9N, [11] (in which every
set of reals is Lebesgue measurable). There are many similarities between 9% and 9.
In particular Theorems 5 and 6 are true in 3,. However the proofs of Theorem 7 and
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the corollary to Theorem 6 break down since the axiom of choice for well-ordered
families is false there. In fact if X, is the set of all real numbers which code & well-
ordering of type a, {X,: «<w,} has no choice function in 9¢,.

Added in proof. A considerable simplification may be made in the proof of Theorem 6
by using the following result previously unknown to the author: If M [F] =M [F'] then
there is an automorphism % of B in M taking §' to ' such that 72 is the identity.
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