Further conclusions on functional completeness

by
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Abstract. This is a continuation of an earlier article by the author devoted to finding examples
of locally complete algebras. Necessary and sufficient conditions for local completeness are given
in terms of transitivity, binary operations with a zero or a unit, or both, and in terms of other notions
first formulated here, These yield numerous examples involving groups, quasigroups, rings, fields
and the real numbers R. For example, the algebra <R; b, u,c(ceR)> is locally complete if
either (0) b is addition and u is multiplication (already known from the Lagrange interpolation for-
mula), or (1) b is addition and u(x) = x2, or (2) b is addition and u(x) = x*, or (3) b is multipli-
cation and u(x) = x+1, 0r (4) bis multiplication and #(x) = 1/(1—x) with 1/0 = 0, or (5) b is
multiplication and z interchanges 0 and 1, leaving the remaining elements fixed.

Introduction

This paper is introduced to the reader by first, an examination of its conse-
quences in several highly concrete examples, then-a summary of its general results
about locally complete algebras, and finally some reasons for studying these
algebras.

The interpolation polynomials of Lagrange tell us that in the real numbers
a polynomial of degree # can always be fitted to pass through n+1 points of an
arbitrary function. For a function ¢ of one argument to be matched at the three
points a, b and ¢, Lagrange’s polynomial is

*@ e o(0)
@b @=9 (x--b)(x—C)+m(x——a)(x—c)—i-m(x_a) (x—b).

An understanding of why this polynomial agrees with ¢ at a, b, ¢ reveals how to
construct such a formula fitting a function of any number of arguments at any
finite number of points. Observe that these formulas involve only repeated addition
and multiplication of the variables and constants. Can we weaken these operations
and still equal an arbitrary function at a finite number of points?

Yes, and here are some of the many ways of doing this. As one example we shall
show that addition and squaring (together with the constants) suffice. Consider how
we might match this function of two arguments,

@, 9) = 3x+iy+1,
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at the three points <0, 0D, <0, 1> and <1, 0)>. A formula in terms of addition and
squaring is
| G+D*+ (-2 +3 .
As another example, we may get by with only addition and the operation of taking
positive part (plus the constants); our function ¢ is touched at the three given
points by

A= +-DH*+1.
In these examples we do not expect the reader to see how to construct the matching
functions; this will become clear only in the later sections when we give detailed

proofs. o . '

More bases are obtained when, instead, multiplication is retained while the
power of addition is reduced or modified. We give three examples. Let the three
functions &;, &, and &; of one argument be defined by

£1("’5) = x+13

8 (x) = ——1—u, with the understanding e,(1) = 0,
—x

&3 = (01), ie., &, interchanges 0 and 1 while leaving the other clements fixed.

‘We shall derive from our general theory that multiplication together with the con-
stants and any one of the ¢ has the matching property. At the three points men-
tioned, functional agreement with ¢ is given by any of these compositions:

3e.(3x) 5,(y),
%‘Ez(%x) “&(35),
3res(dx)-23(2y) .

Let us remark that as the name implies, the Lagrange interpolation polynomial
approximates a given smooth function ¢ in an interval in a certain, well-known sense.
In what sense, if any, our novel formulas approximate a given function we do not
investigate. Since in the general theory the underlying set will have no topological
structure, we only consider agreement at a finite number of poinis.

These five examples are most easily and systematically obtained as conse-
quences of the general theory of local completeness to which we now turn, Recall
that the locally complete algebras of Foster [4] are those universal algebras of at
least two elements in which every function of a finite number of arguments is a local
polynomial; and a local polynomial is a function such that every restriction of it
to a finite set can be extended to a polynomial. In other words, in a locally complete
algebra every function of a finite number of arguments on the underlying set can be
matched at a finite number of elements by some polynomial (a composition of the
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operations of the algebra). The purpose of this Paper is to continue the program begun
by the author [8] of finding examples of locally complete algebras.

We now describe the contents of this article. Recall the classical result of Stu-
pecki [22] that a finite algebra of at least three elements is complete iff every unary
function is a monomial and there is a surjective binomial depending on both argu-
ments. We strengthen this theorem by greatly reducing the number of unary functions
required while demanding more of the binomial. '

To this end, I introduce three notions: singularity, transitivity, and neatness;
precise definitions will come later. Singular algebras come up as exceptional cases
in theoretical results; they have much local symmetry and appear in applications
only as elementary Abelian 2-groups or not at all. The concept of (j, k)-transitivity
ensures the presence of monomials which take any j distinct elements into k others
in a prescribed way. The first principal result is that low order (3, 2)-transitivity
yields local completeness of nonsingular algebras in which there is a multiplication
with a unit. The local completeness of the first two examples mentioned earlier follows
from this. :

The second principal result is that for nonsingular algebras, (3, 2)-transitivity
also yields local completeness when there is a 0-neat multiplication, i.e., every three
elements are found in some two-by-two subtable of the multiplication table. Many
applications flow from this. Any null-group (Foster: [4]) together with a transitive
group of permutations is locally complete. From this follows the local completeness
of the last three examples given earlier. Any finite algebra with a multiplication with
a zero and a unit is complete if there is a product of all the non-zero elements of thé
algebra which is equal to one. Finally, for any integer k>3, we shall give necessary
and sufficient conditions for an algebra to be locally complete when it generates
a k-fold transitive group of permutations; this extends to infinite algebras some
results of Salomaa [18], Rosenberg [14] and Schofield [20].

Reasons for studying locally complete algebras are numerous. Mathematically,
every locally complete algebra gives rise to a representation theorem analogous to
Stone’s [23] theorem for Boolean algebras. This was discovered by Foster [4] and
more neatly formulated by Hu [5] and Kelenson [7] as follows. Any algebra which
locally satisfies the identities of a locally complete algebra is a subdirect power of
the latter, We say that one algebra locally satisfies the identities of a second algebra
if for any finite subset M of the first there is a finite subset N of the second such that
any identity on WV is an identity on M.

One very important application of functionally complete algeli)ras is to multi-
valued logic. Various paradoxes or, more correctly, inaccuracies in interpretation
can be eliminated. For example, the law of the excluded middle need not hold in
a logic of three values. Using a three-valued logic, Turquette [24] clarifies some (_):f
the antinomies of quantum mechanics. In particular, he shows how Heisenberg’s
notion of “necessary uncertainty” can. be interpreted naturally in"Eukasiewicz’s [12]
three-valued logic (its completeness is discussed in Knoebel [8]). However, it should
be mentioned that some algebras corresponding to modal logics. are not:complete,
2 — Fundamenta Mathematicae, T. XCIX ‘
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The curious reader who is interested in the relationshil? be‘tween proposi‘tional calculi
and their corresponding algebras is referred to Lukasiewicz agd Tarski [12], Rosser
' te [24], and Chang [3].

and zutlig?gur(;agoi’for' the study of complete algebras is their possible application
in the design of digital computers. Here, constants repres.ent constant voltages,
currents, or the like, which are readily available; the operations of the algebra are
the basic circuits; and thus functional completencss guaré?ntces ‘L1.1at‘a11 possible
switching functions can beé built out of the basic girc‘uits. Physical re.ullzauon? of some
likely operations and their synthesis into swi'tchmgl networks are discussed in Santos
and Arango [19], Lowenschuss [11], and Vranesic .‘9.1'1d Hamacher [25]. o

" We adopt in this paper the conventions and definitions of Knocbel [8], including
‘the assumption that all algebras have at least two elements.

Singularity

Before getting to the heart of this article, we must deal wi'th tpe nastyl notion
of singularity, which is present in the theoretical results, but arises in practice only
in elementary Abelian 2-groups and zero-rings on them. In this section we find out
when certain common algebras are singular. ) .

The quadruple a, b, ¢, de A" of n-tuples is a quartet if for each i<n, no one

. of the a;, by, ¢;, d; is distinct from the remaining three; in other words, the a,, bf’
¢;, d; are all equal or split into two pairs of equal elemcpts. For example, if
4=1{0,1,..,5 and n=3, then the quadruple of triplets a=<0,2,3),
b=¢0,3,3) c=<1,2,3)and d = (1, 3, 3) is a quartet; whereas the quadruple
a, b, ¢ and {1,3,4) is not. A function ¢: 4"—>A is singular if for every quartet
a, b, c, de A", we have that ga = @b implies pc = ¢d, i.c., for every quartet
a: b, ¢, de A", the elements ga, @b, pc, ¢d are all distinct, all equal, or form two
pairs of equal elements. An algebra is singular if each polynemial of it is singular.
Note that all constants (# = 0) and unary functions (n = 1) are singular.

"The following are multiplication tables for some singular binary functions ¢ on
the set {0, 1,2,3}.

0123 0123 0123 0123
0{0123 0|0011 0({0020 012122
11032 1(0011 1|1131 12122
212301 22233 211131 21211
3{3210 3{2233 3|1131 3{1211

From the study of these examples, we may, for binary functions, simplify the defi-

‘nition of singularity to two dimensions: a binary function ¢ is singular iff for all

ab € A% the values of ¢ take on one of the following patterns:

a, by ay by ay by ay by ay by
| X X G| X X aGl|lxy a|xy a|xp
bo| x x bo| ¥ ¥y b Xy byl'y x by| z w

icm
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where X, y, z, w € 4 are presumed to be distinct. A complimentary result is that a bi-
nary function ¢ is nonsingular iff for some a, be A*

the values of ¢ take on one of
the remaining possible patterns:

ay by as by ay by ay by
G| X X G| X X a|xy a|x p
by | x y by|ly z by| x z by |z x

Binary functions occur in everyday algebras, and when working with them, we will
often have these patterns in mind.

The following propositions and corollaries assert that various common algebras
are nonsingular, Co

PROPOSITION 1. The following algebras and Sfunctions are nonsingular:
(i) any semilattice, »

(i) any nonconstant binary function -: A*~A with a zero 0, i.e.,
a0=0=0a (acd)),
(iii) any binary function -: A A with a it 1, ie.,

al=a=1a (acA)),
Jor which there exists an ae A such that a-a # 1.

Proof. (i) Let @ and b be two comparable elements of the semilattice (we always
assume at least two elements per algebra). Consider the quartet {a, b} x{a, b}
= {£a, a), {a, b), b, ad, <b, b>}. On these pairs the semilattice operation takes the
values a, a, a, b or a, b, b, b, depending on which of ¢ and b is larger, and these form
one of the patterns listed for nonsingular binomials. '

(i) There are a, be 4 such that ab % 0. Consider the quartet {0, a} x {0, b}.

(iii) Consider the quartet {1,4}x {1, a} where az # 1. W

The concepts of loop, quasigroup and isotopy, which appear in the following
proposition and its corollary are defined in Kurosh [9, Chap. 2].

PROPOSITION 2. A loop is singular iff it is an elementary Abelian 2-group.

Proof. » Let % = {4; -> be a singular loop with unit 1. By part (iii) of the
previous proposition, aa = 1 for all ae 4. Since a loop is solvable, it suffices to
show U is associative, and we do this in several steps. Firstly-is commutative, for
if not, ab # ba for some a, b € 4, and the quartet {a, b} x {a, b} yields a contradic-
tion to singularity since aa = 1 = bb. Secondly, for all a,b,c,de 4, wehave ac = bd
iff ad = be, by looking at the quartet {a, b} x{c, d}. Thirdly, a(ab) = b for all
a,be A, since 1(ab) = ab iff 16 = a(ab). Now let a, b, ¢ be any elements of 4.
By commutativity and the third point, a(ab) = b = ¢(bc), and by the second point
applied to this and commutativity, a(bc) = c(ab) = (ab)e. ) )

« In an elementary Abelian 2-group, for any quartet {a,b} x{c,d}, ac'= bd
iff ad = be, and this insures singularity. M
2'
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COROLLARY. A quasigroup' is singular iff it is isotopic to an elementary Abelian
2-group. .

Proof. Every quasigroup is isotopic to a loop (Kurosh [9, Chap. 2]). and isotopy
preserves singularity. H

COROLLARY. A ring R = (R; +, > is singular iff

@ R has characteristic 2, and .

(i) R is a zero-ring. ‘

Proof. Use the previous two propositions and the easily proven fact that in
a zero-ring R = (R; +, ), every polynomial of M is a polynomial of just
{R; +,0)>. K :

There is a characterization, not needed in this article, of singular functions
emphasizing the local symmetry that is enforced. Consider the function f: A"—4.
We restrict our attention to n two-element subsets By, ..., B,..; of 4. Each B, is
given the structure of the two-element group Z,, and the cartesian product
P = Byx...xB,_; the structure of the product group. Although there are two
choices for the group structure on each B, and even more for the product, our use
of these groups is not affected by these alternatives. Define the kernel of £|P to be
the equivalence relation {{a, b) € P*| fa = fb}. Then it can be shown that f is
singular iff for each n-fold product P of two-clement subsets, the kernel of f|P is
a congruence of the product group. ‘

The import of this section is that most algebras are nonsingular.

Transitivity

In this section we define (j, k)-transitivity and show that the low orders of
transitivity are usually equivalent. Then this is used to obtain the first main result,
characterizing local completeness in algebras with a unit. As an application we
convert ‘Archimedean linearly ordered  groups into locally complete algebras.

An algebra A = {4; 0y, 0y, ...) is (f, k)-transitive if every unary function whose
domain and range are subsets of A of no more than j and k elements, respectively,
can be extended to a monomial. The algebra U is (w, k)-transitive it W is (7, k)-tran-
sitive for all finite j. Similarly (e, w)-transitivity is defined; it is equivalent to saying
that every unary function is a local monomial. Here are two examples with cyclic
groups in which all constants are added as operations: Z, is (w, 1)~transitive,
and Z5 is both (2,2)- and (w, 1)-transitive. The special case of (2, 2)-transitivity
is just the two-point property of Hu [5]. For our proofs we need the following theorem
of Knoebel [8].

THEOREM 0. An algebra N with at least three elements is locally complete iff

() U has a surjective local polynomial depending on at least two arguments,
and : . ‘
(i) W is (o, w)-transitive. .
We use this now to weaken condition (ii) to (3, 2)-transitivity at the expense
of the local polynomial of condition (i)..

icm°®
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THEOREM 1. An algebra is locally complete iff
@ U has a local binomial - with unis 1,
(i) U is (3, 2)-transitive, ang
(i) A is nonsingular.
The proof proceeds by establishing four useful lemmas.

Lemma. 1. Suppose U is 2, 2)-transitive. Then

AN is nonsingular iff N ha, -
singular binomial, wular if s anon

Proof. = Letp bea nonsingular

] polynomial of # arguments. B i i
there is a quartet g, b, c,de A" 8 Y nonsngularity,

for which

9a = ¢b # ¢c # od.

On the basis of (2, 2)-transitivity, we may assume elements 0,1 such that

pa = @b = 0,
oc =1,
a;=0 (i<mn),

by, ¢, d {0, 1}

The arguments of ¢ are naturally divided into four groups according to the values
of by, ¢; and d;, viz.;

(i<n).

Group: ’ I ) is J I , v
ai 0 0 0 0
bi 0 1 1 0
ci 0 0 1 1
di 0 1 0 1

Assume each group of arguments is nonempty;
modified.

In each group, the arguments of ¢ are to be identified. The resulting argument
f’f group Lis replaced by a monomial taking 0 and 1 both to 0, and the new argument
is then identified with the argument of group IT. What results is a trinomial whose
values on triples of 0°s and 1’s are best illustrated by the accompanying cube. Now

when not, the proof is easily

b=}
~
L]
—

vd

| S A
|
f
!

e Jpb=0
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this cube has the property that the trinomial is nonsingular e.ith,er on the bottgm face
or on the quartet consisting of ¢, 4 and their zxpt'ipodes. In e.lth?r cz;tsc?, z'\‘nonsmgular
binomial is easily manufactured from the trinomlal‘ l?y' substituting into its arguments
appropriate monomials obtained via (2, 2)-transitivity. B .
The following lemma, stated without proof, is due to Yablonskil [26].
Lemma 2. If U has a surjective local polynomial dependw?l on ar least two argu-
ments and |A|=3, then there is a quartet and a polynomial taking at least three values
on the quartet. ‘ o _
Although insignificant in appearance, the next lemma is crucial in that it allows
us to map a finite set onto two of its elements.
LemMa 3. Suppose W is (3, 2)-transitive, and M is a finite subset of A containing 0
and 1. Then there is a monomial y for which :
y(M<={0, 1},
y(0) = 0,
y(1) = 1.
Proof. Using (3, 2)-transitivity, we induct on the size of M. H
In the final lemma of our series, we lift the algebra 2 from (3, 2)-transitivity
to (w, 2)-transitivity.
LemMa 4. If U has a surjective local polynomial dependent on at least two argu-
ments and |A|=3, then the following are equivalent:
() U is (3,2)-transitive and nonsingular,
(ii) A is (4, 2)-transitive,
(iii) A is (w, 2)-transitive.
"Proof. (iii)—(ii). Trivial.
(i)—(i). By Lemma 2 and (4,2)-transitivity we establish nonsingularity.
(i) (iii). Assume M is a finite subset of 4 containing 0 and 1. By Lemma 1,
there is a nonsingular binomial, From this, by applying (3, 2)-transitivity, we can
construct a binomial - such that
0:0=01=10=0,

11=1.
Next we shall find polynomials 8, (me M) such that
' Sulm) = 1, ‘

Su(¥) =0  (xeM\{m}).
Applying (2, 2)-transitivity to the function of Lemma 3, we find polynomials y,
“(n,me M) such that when n # m,
Yu(M)={0, 1},
7;(’2) =0,
Ym(m) = 1.

@ ©
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Then
5m = n :I )
ne M\ {m}

where [] is the iteration of the binomial - .
To prove (o, 2)-transitivity, we must extend any &: M—{0, 1} to a monomial.
The required extension (when & is not the constant 1 is
O s
a(m)=0

’

where ’ is a monomial interchanging 0 and 1. W

Proof of Theorem 1. « First assume || >3. In view of Theorem 0, it suffices
to show that U is (w, w)-transitive. To that end suppose &: M—A and M is finite;
we must find 2 monomial which extends &. For each m € 4, by (w, 2)-transitivity
from Lemma 4, there is a monomial §,, such that

8(x) if x=m
1) = . ?
n(®) 1 if  xeM\{m}.
Then [ 6, is the required monomial -,
meM
- Now suppose |4| = 2. By Lemma 1 there is a nonsingular binomial; with the
help of (2, 2)-transitivity we obtain from it a binomial with zero and unit. It is well
known in the theory of Boolean algebras that such a binary operation together with
the nontrivial permutation generate by composition all other functions. B

In view of Lemma 4, this theorem has the alternative form: an algebra is locally
complete iff it has a local binomial with a unit and is (4, 2)-transitive. In contrast,
it is possible to weaken (3, 2)-transitivity by strengthening the binomial: an algebra
is locally complete iff it has a local binomial with both a zero and a unit and is
(2, 2)-transitive (Knoebel [8, Theorem 2]). )

For the fbllowing corollary and succeeding results, 2 is the algebra 9 with-
all constants added as operations. i

COROLLARY. Let § = (F; +, *) be a field not of characteristic two, and let 2 de-
note the operation of squaring. Then the algebra U = (F; +, 0% locally complete.

Proof. In view of Theorem 1 and Proposition 1 (iii), it is sufficient to prove
that 2 is (3, 2)-transitive. (Note that -+ has the unit 0, and is nonsingular since ¥ is
not of characteristic two.) If @, b and ¢ are distinct elerents of F, then the monomial
[¥ —(b+¢)/2]* takes b 'and ¢ into the same element while leaving a distinct. This
is so since a quadratic equation in a field can have no more than two roots. Thus
the problem is reduced to showing that 9 is (2, 2)-transitive. To this end, assume
a # b. Then the monomial

. c—d—a®+b* 2; ¢c—d+(a—b 2:|2+c
[+ 2(a—b) ] [ 2(a—b)

takes @ into ¢.and b into 4. B

s
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This verifies the first example given at the beginning of the introduction.
While one might be tempted to base a proof of this corollary on the Lagrange
interpolation formula, it will not work ; for not all of the usual field polynomials are
polynomials of 2. For example, in a field § of characteristic 0, any nonconstant
monomial of % must have a leading term with positive integral coefficient and ex-
onent a power of two. ‘ .
g We apply Theorem 1 to Archimedean linearly ordered groups, which, by
a theorem of Holder (see Kurosh [9, p. 268]), are isomorphic tq subgrpups of the
multiplicative group of positive real numbers in its natural ordering.

PrOPOSITION 3. Let G = (G; -, <) be an Archimedean linearly ordered group,

Let | be defined by x|y = x'y™*, and *. GG by

o = 1 i x<1,

x if xzl.

Then the algebra U = {G; |, ¥ s locally complete,

Proof. Clearly from the binomial / we may recover *, which lms. the u1?it 1;
and so we turn to Theorem 1 for a proof. We prove successively that 20 is nonsingu-
lar, (2, 2)-transitive, and (3, 2)-transitive. o

Nonsingularity is established by examining the values of the group multipli-
cation on the quartet {I, g} x{l, g}, where 1 # geG.

" Now let us find for arbitrary elements a # b and ¢, d of 4 a monomial & suc!l
that ez = ¢ and eb = d. Since it is possible to interchange two elements by appli-
cation of ~* and a suitable translation, wemay assume withoutloss of generality that
a<b and ¢<d. With two more translations, we may also assume a = 1 = c. There
is a positive integer n such that

‘ b>d,

since ® is Archimedean. We transform « into ¢ and b into d by raising to the nth
power, translating by b7"-d, and taking positive part; viz.:

1 Kb~ Md et
Il »1"=1 0 b"dmwl,
b > b > d wvd.

Thus A is (2, 2)-transitive. o
To prove (3, 2)-transitivity it suffices, in view of (2, 2)~-transitivity, to shgw
that for any three distinct elements a, b, ¢ there is a monomial effecting the following
transformation
ava, bbb cra.

There are six cases according to how the a, b, ¢ are ordered. If a and ¢ are both lgss

than b, then the positive part of a suitable translation will merge a with ¢ while

keeping b distinct; the (2, 2)-transitivity already, established finishes these two cases.

If a and ¢ are both greater than b, then inversion leads to the previous cases.
3

©
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With the inverse operation ~* present, it will suffice to consider only one of the
remaining two cases, say a<b<c. By the preceding, there are monomials

giava,bmbjcrb,
and

hiavpb; bbb, crec.

Then the monomial f = g/h changes the ordering so that both fz and fc are less
than fe =1, and thus we have reduced this case to a previous one. M

This verifies the second example of the introduction.
Neatness

The notion of neatness evolves naturally from the idea that there may be more
distinct elements in some small subtable of the multiplication table of a function than
one would have a right to expect. As Lemma 2 demonstrates, even rather weak con-
ditions insure some degree of neatness. This fortuitous fact leads to interesting
theoretical results. Many applications are developed in both this section and the
next.

An algebra U is k-neat (k=0,1,2, of 3) if there are distinct elements
ey, ..., € € Asuchthatforalle,,,, ..., e; € 4 there exist a surjective polynomial ¢ and
a quartet @y, ay, a,, a3 for which e; = ¢a,, e, = pa, and e; = pa;. An equivalent
but more expansive definition is developed by considering the set T of all triples
bay, ¢pay, paz where ¢ is a surjective polynomialand the ay, a,, @5, a5 form a quartet.
Then the four degrees of neatness become:

Wis O-neat if AxAxAST; "

A is 1-neat if {e;}x AxAST for some e, € A;

A is 2-near if {ey, e} x AST for some distinct e, , e, € 4;
A is 3-neat if {ey,e,, ey € T for some distinct e,, e,, e € A.

For the sequel it should be noted that without loss of generality, we can always
take all the ey, e;, €5 in the original definition to be distinct since otherwise, if some
of them were the same, they could be obtained by a trivial polynomial acting on
a degenerate quartet.

By way of example, quasigroups are 0-neat. As another example, an algebra 9
with a binomial - and a unit 1 is 1-neat; for setting ¢, = 1 in tlie definition, we see
that {1, e,}-{1, es}2{1, e,, e3} for arbitrary e,, e;e 4. Lemma 2 ensures that
most everyday algebras are 3-neat. Note that if 9 is k-neat and k <k’ <3, then o is
k'-neat.

An algebra 2 is k-fold transitive if there is a set P of monomials which is, under
composition, a k-fold transitive group of permutations on 4. On the basis of
Ledermann’s [10] definition of k-fold transitive group (there called k-ply transitive), ,
if an algebra U is k-fold transitive, then it is j-fold transitive for all j<k; also o is
k-fold transitive if k>|4| and U is already [4|-fold transitive.
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We are now prepared to state the principal theorem, which relates all the no-
tions introduced in this paper. _
Trrorem 2. Let k = 0, 1,2 or 3. Then an algebra 2 is locally complete if

(@) U is nonsingular,

(i) A is (3, 2)-transitive,

(i) o is k-neat, and

(iv) U is k-fold transitive.

Proof. Let us assume |4|>3 since the two-¢lement case is classical. We may
replace conditions (iii) and (iv) by 0-neatness for the following reason. Let ey, ..., &
satisfy the definition of k-neatness. ‘We must show that any three distinct elements
firfarfs€A are the functional values of some surjective polynomial on some
quartet. By k-fold transitivity, there is a permutation = which is also a monomial
of 9 such that m(e) =/f; (=1,..,k). Define ¢ = 7~ f) G =k+1,..,3)
By k-neatness there is a surjective polynomial ¢ such that the elements ey, e;, e;
are values of ¢ on some quartet. Then f3, f2,.f3 are values of ©- ¢ on the same quartet.
Thus 2 is 0-neat. \

We now assume ¥ is nonsingular, (3,2)-transitive and 0-neat, and has at
least three elements. We want to show that 2 is (, w)-transitive. By Lemma 4,
A is (w, 2)-transitive. By induction on j, we shall show that 2 is (w, j)-transitive
for all finite j. Assume 2 is (e, f)-transitive for some j >2. Let &1 A— 4 have a range
of no more than j+1 elements e, , ..., €41 Our objectisto show that gis a local mono-

* mial. There is a surjective polynomial ¢ whose values on some quartet do, @y, 8z, d3
contains ey, e,, €3 (assume e; = @4, e; = Qdy, and ey = @as). Let g, be a preimage
of ¢ (i =4, ..,j+1). Since the cardinality of the set of gth components of the
quartet @y, ay, @3, g3 is at most 2, the cardinality of the set of gth components of
all the a; is at most j. Thus by (w,j)-transitivity there exist local monomials
805 vy 8y_y Such that & = @(8g, ..., Gy-y), Which proves that & is also a local mon-
omial. Hence U is (w, w)-transitive.

We. finish by Theorem 0. B

In the statement of Theorem 2 (as well as in succceding results) we could
strengthen the implication to logical equivalence by localizing all notions, i.c., by
replacing the term polynomial by local polynomial, wherever it occurs. Fowever,
this would be an unnecessary complication as such a Jocal version is a trivial conse-
quence of our present one.

Here are a couple of aprlications of Theorem 2 to semilattices. Recall from
Proposition 1 that all semilattices are nonsingular,

COROLLARY. If the algebra N = {A; A,..) is 2-fold transitive and <4; AD

is a semilattice with a zero and at least one atom, then U is locally complete. ’

Proof. That A has a zero and % is 1-fold transitive insures that 2 is

(o, 1)-transitive, i.e., all constants are available locally. If @ is an atom of {A; AD,
then the function a A * takes on éxactly two values, and hence A is 2-neat. Likewise,
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on account of .Zi-fold transitivity, the function aA *, along with A compels A to
be (3, 2)-transitive. Theorem 2 with k = 2 can now be applied. i
PROPOSITION 4. If for some k22, the algebra U = {A4; A, ds (K, E)-transi-

tive and {A; A is a semilattice with at mo, irwise i
st k—1 pairwise incomparable el
then N is locally complete. ) 7 ements

Proof. .For this, the proof of Theorem 2 must be modified. As in the proof
ﬁilt;hz iizvll?;s&corollaly, A is (w, 1)-transitive. Assume for the moment that
. First'we prove by induction on j that 2 is (e, j)-transitive for Jj<k.ByLemma 4
W is (v, 2)-transitive. Assume 2<j<k and U is (w, j)-transitive. We must sho“;
that any &: F-+B is a monomial when F, B are finite subsets of 4 and |B] =j+1
Since A is (k, k)-transitive, we may without loss of generality fix B as follows By;
the 3-neatness of 2, there are subsets B, C, D<A for which B€CA D |B| = ]:+1
and [C| = j = |D|. We can obtain the monomial ¢ as a composition of /i into whos;
arguments are substituted monomials found from the induction hypothesis.
Let us next show that for any set B4 of k+1 elements there are sets C. D
each of k elements, such that B&C A D. Since there at most k—1 pairwise inc:)m:
parable elements, one can find distinct «, 5, ¢, de B satisfying the relations

a<c and b<d,
or the relation

a<b<c.
Set B' = B\{a, b, ¢, d}. Then

Be(B U {s,c,dDAB uib,c,dY.

Now we finish by entering the proof of Theorem 2 at the induction step when j>k.

This demonstration can be modified ad hoc to accommodate the excluded cases
of [d|[3 ork=2 H

I A is k-fold transitive, when is 2 locally complete? The answer, almost
always. From Theorem 2 we shall find the exceptional cases when k3. When
k<2, we can find a formulation of the exceptions only when A is finite, and for
this we use a theorem of Rosenberg [16].

First we need some definitions. The algebra U is affine with respect to an Abelian
group & = (4; +) if every n-ary polynomial ¢ can be written

P(Xgy vy Xyu]) = 8gXg+ e+ 8y 1 Xy g+ a

for some endomorphisms &, of & and some a € 4. The function ¢: A"—>4 is meta-
monic if gx = @y implies x; = y, for some i = 0, ..., n—1. The algebra A is said
to be special if A can be written as a product Bx H;X..xH, (m=1) with
|Hy| = ... = |H,|>3 such that for each operation 0: 4”4 of A and for each
i =1,..., m, the projection of o to H; either is not onto or depends only on the value
of one of the arguments of o on one of the factors Hy, ..., H,,,.
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PROPOSITION 5. Let U be a fe-fold transitive algebra with a surjective polynomial
depending on at least two arguments.

() If k=1 and A is finite, then A is not campleyte if .

(A) U has a nontrivial automorphism with cycles of ez(ual prime length, or
(G) U is affine with respect to some elementary Abelian group, or

(8) U is not simple, or

(Z) U is special.

(i) If & = 2 and A finite, then 2 is not complete -iff
(A 4| =2 and U has the nontrivial automorphism, or
(G) U is affine with respect fo some elementary Abelian group.

(iii) If & = 3, then U is not locally complete iff _

(G"Y U is affine with respect to some elementary Abelian 2-group or an isomor-
phic image of Z,, or .

(M) every operation of U is metamonic.

(iv) If k=4, then W is not locally complete iff ,
(G") U is affine with respect to some isomorphic image of Z,, Zy or Z3, or
(M) every operation of U is metamonic.

Note that in (i) on account of the 1-fold transitivity, any congruence must
have equivalence classes of equal size. Observe that in (iii) m}dl, (iv) condition (M)
includes (A'), and so the latter is omitted. Note also that condition (M) occurs only
it A4 is infinite or |4] = 2. )

There are several antecedents of this theorem when 4 is finite, especially fqr
k3. Salomaa [18], as the culmination of a sequence of papers, proved that 2 is
complete when k>3 and the cardinality of 4 is greater than 5 and not'a power of 2.
The exceptions when A is a power of two weére completely characterized by S§ho-
field [20]. This line of thought leads to the concept of basic set — a set of operations
on A for which completeness is attained whenever there is adjoined to the set any
other surjective operation dependent on at least two arguments. Basic gl’.oups o‘f
permutations were characterized by Blohina and Kudrjaveev [2]; and basic semi~
groups of unary operations have been studied by Mal’cev [13], Zaharova [27] and
Bairamov [1]. .

There is the related result of Rousseau [17] that a finite algebra {4; > with
a single operation is complete iff there are no nontrivial subalgebras, uutomorphimns,

or congruences. An improvement and variations on Rousseau’s result are given ‘by
Rosenberg [15] and Schofield [21]. These are all derived from the comprchcnslve
theorem of Rosenberg [14] mentioned earlier.
Proof. For each part, conditions (A), (G), (8), ete. clearly imply incompleteness,
so we need only consider the other direction of implication. The first two parts are
_ derived from a result of Rosenberg [16], with which.we shall assume the reader is
familiar.
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(i) It is easy to see that 1-fold transitivity rules out conditions (1) and (5) of
Rosenberg. The only remaining condition of Rosenberg not listed in our proposition
is his condition (6), and this is special on account of the I-fold tramsitivity.

(i) Rosenberg’s conditions (1), 4, (5) and (6) are eliminated by 2-fold tran-
sitivity.- The only possibility for condition (2) is the rather trivial (AY.

(iii) We shall assume that 9 is 3-fold transitive, has a surjective poly-
nomial ¢ depending on at least two arguments, is not locally complete, and is not
metamonic; and we shall show that 9 is affine with respect to some elementary
Abelian 2-group or an isomorphic image of Z;. Without loss of generality, assume [0)
depends on all its arguments, and 0,1 & 4. For the moment assume |4|>4.

We first show that 4 is (3, 2)-transitive. Since 9 is not metamonic, there are
a nonconstant polynomial ¢: 4"-+4 and elements z,ue A" such that gz = gu
but z; # u, for all i<n. Without loss of generality, assume z = (0,...,0) and
u=<1,..,1>. Set B={0,1} and C = AN{0, 1}, Let us call a,b, ce 4™ a true
triple if for each i<n, the a;, b, and ¢, are distinct and pa # pb = @c. If there is
a true triple, then by 3-fold transitivity we are finished. With no true triples at hand,
by way of contradiction, we successively realize that for any ce C", pc = @z = @u;
that for any b e B", pb = ¢c since |C|>2; and that for any other a € 4" there are
be B"and ce C" such that b; # a; # ¢; (i<n), and hence pa = pb = gc. That o is
constant is a contradiction.

By (3, 2)-transitivity, Lemma 2 and Theorem 2, 9 is singular.

Define a ternary relation R on 4 as follows: R(a, b,c) if there is a poly-
nomial ¢ taking the values 1, a, b, ¢ on some quartet, We shall show Ris a loop oper-
ation with unit 1.

To this end we first show R is a partial function. Suppose R(a, b, ¢) and
R(a, b, c') and ¢ 5 ¢’. By Lemma 3 there is a function & taking 4, b, ¢, ¢’ to {0, 1}
and separating ¢ and ¢’. Since ¥ is singular it must be that & sums to zero on the
values on each quartet, viz.: )

el+ea+eb+ec =0,
el+ea+tebtec’ =0,

where addition is modulo two. Since ec 5 ec’, we have a contradiction.

Next we show R is a function, i.e., for all a,b e 4 there is a ce .4 such that
R(a, b, c). This follows from Lemma 2 and 3-fold transitivity. We are now justified
in writing a-b = ¢ for R(a, b, c). This same argument also shows - is solvable in
each argument. :

Clearly a+1 = a = 1-asince R(a, 1, &) and R(1, a, a) bysingularity. Therefore,
{4;+> is a loop. )

We want to show - is singular. This is equivalent to showing ab = cd implies
dac = bd for all 4, b, ¢, d € A. And this is demonstrated in the manner of a previous
argument by finding 2 monomial & taking all elementsin sight into {0, 1} and separ-
ating gc from bd if they are unequal. Summing over.the g-values of all pertinent
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quartets, we find that the inequality ab # cd must be just when ac # bd. So - is
ingular. ) ] o y
sing By Proposition 2, {4; - is an elementary Abelian 2-group. All that remains
to be shown is that each polynomial of ¥ is affine with respect to {4; ->. First note
that if a, b, ¢, d € A are the values of a polynomial on a quartet then ab = .Cd’ for
otherwise inequality leads by another separation argument to a contradiction, as
in the previous paragraphs. By definition of +, the elements 1, x; y and xy are the
_yalues of some polynomial on some quartet, and thus so are el, ex, ey and &(xy),
Then we have
e(xry) el = ex-gy = [ex-el]-[ey-el];
hence sx- ¢l is an endomorphism; and therefore, & is the sum of an endomorphism
and the constant &l. So any monomial is affine. For any binomial ¢, we have by an
analogous argument
@ (%05 %1) = ¢(%o, 1) (L, %) 0 (1, 1)

where each of the factors is affine. We continue by induction on 7 to prove that any
n-ary polynomial is affine. .

We must still consider the cases when |4|<3. For 4] = 3 we may develop an
ad hoc argument. It is easier, however, to apply Rosenberg’s theorem and realize
that only his quasilinear (= affine) case can be 3-fold transitive.

For |4| = 2, we construct an ad hoc argument. We show that any poly-

nomial ¢ is affine with respect to Z,. Suppose there are a, b € 4" which differ only at
the ith spot, and for which ¢a = @b. Il ¢ depends on the ith argument,. there lare
¢, de A", differing only at the ith coordinate, for which @c # ¢d. Applymg 2—£_01d
transitivity if necessary, we obtain a binomial » with zero and unit. B}'f 4 classical
result of Boolean algebra, 2 is complete, which contradicts our agumptlons. There-
fore, pa # @b for any a, b e A" which differ only at one essential argument of o,
and it is easy to show that this characterizes the affinity of ¢. ‘
*(iv) We assume that 90 is at least 4-fold transitive, has a surj'e.ctive polynomx'al
depending on at least two arguments, is not locally complete, and is not metamonic.
We may proceed as in case (ili), proving everything here thatwsfs provcn.there‘ I—If)w~
ever when |45 a contradiction arises in proving that R is a partial funct:mn.
For consider a quartet om which some polynomial takes at least three \‘/a‘h}es
(Lemma 2). Tt must really take four values since 20 is singular. By 4-fold ‘tran.smvrty
there are two polynomials agreeing on three clements of the quartet, tukmg the
value 1 on one of them and differing on the fourth. Thus there are (@, b, ¢) & R ?or
which the element ¢ is not uniquely determined by @ and b. This contraf‘hcuon
to (iif) restricts our attention to when |4|<4, and this was already considered.

Divisibility

There are various ways in which the idea of divisibility in semigroups may be
generalized to less structured -algebras. We propose one approach which leads

.
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to some new, sufficient conditions for local completeness. Assume that - is a binomial
of the algebra . Define the relation R< 42 by

aRb if there is an x such that a'x = b or X*a = b,

Let | be the ancestral closure of R, i.e.,
alb if there are x,, x,, ..., x, such that aRxy, %1 Rx;, ..; %, Rb.

In a commutative ring these concepts coincide with the usual notion of divisibility.

ProroSITION 6. The algebra U is locally complete if
(). U has a binomial - with zero 0 such that Jor all a,bedifa+ 0 then a|b,
(i) U is 1-fold transitive, and
(it)) A is 1-near.
Proof. On the basis of Theorem 2 this is true if 2 is (3, 2)-transitive. We show
first (2, 2)-transitivity. In view of 1-fold transitivity, it suffices to find for any
a,b e 4 with a # 0 a monomial y which takes 0 into 0 and 4 into b. Since a|b, there

are an (n+1)-ary polynomial ¢ composed only from « and elements Cys

ey &, for
which

b=o(@, ¢, es0).

Let my, ..., W, be monomials satisfying ma =.¢; for i = 1,...,n Then the mono-
“mial _

LY = (x, Wy, Tyx, ., )
takes 0 into 0 and ¢ into b.

Now for (3, 2)-transitivity. For arbitrary a, b, ¢ with a, b # 0, we shall find
a monomial e for which £0 = ¢ and gq = 0 = ¢b. Obviously - is surjective, and
hence there are x, ye .4 such that x-y = c. From the first paragraph, there are
monomials §;, J, such that 6,0 = x, 6,0 =0 = ,b, and 5,0 = y. Then the
required monomial is :

e= 0% 0. M
This proposition leads to a curious criterion for completeness in finite algebras.

COROLLARY. Suppose U is a finite, 1-fold wransitive algebra having a bi-
nomial » with a zero 0 and a unit 1. Assume that there is an iterated product [[a; =1
i

In which each nonzero element of 4 occurs at least once. Then U is complete.

Proof. Since a binomial with unit is 1-neat, it is sufficient to show that a|bfor
all nonzero b and @ in A.. Since a occurs in the product [Ta; we have
i

d[(I:_[{l,‘b) =1b=b. R

Recalling the Cayley representation theorem that every group gives rise to
a trapsitive group of permutations, we have the following result. '
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COROLLARY, Let R = {(R; +, > be a finite unitary ring. If there is an iterated
product equal to 1 containing all nonzero elements, then ¥ is complete.

A more restricted concept than divisibility is that of solvability. We show how
this notion can be combined with 1-fold transitivity to yield some locally complete
algebras which are generalizations of fields.

ProPOSITION 7. The algebra N is locally complete if

@) U is 1-fold transitive; and

(i) there exists a binomial + with a zero 0 suc'/z that for all a,be A, if a # 0,
then there exists an xe A such that a-x =b.

Proof. We shall use Proposition 6. We nced only show that 2 is 1-neat. We
do this by proving that for all b, ce 4 there are x,, ze 4 such that

0.y=0,

We achieve this by setting x # 0 and finding y and z from the cquations x-y = b
and x-z=c¢ H

1t follows immediately that any field (with all constants adjoined) is locally
complete (cf, Foster [4, p. 44], Knoebel [8], and the corollary to Theorem 1 for
different proofs). We now turn to various generalizations of fields.

An algebra 6 = (G; - with one binary operation - is a null-group if there
are 0, 1 & G such that 0 is a zero of - and (G\{0}; ) is a group with identity 1.
Foster [4, p. 47] first defined this notion and has shown that if ® = {G; ) is a null-
group, g~ is the --inverse of g with 0~ =0, " is any permutation on the set &
with 0" = 1, and Y is its inverse, then the algebra U = (G;-, 0 Y, =M js locally
complete. We shall give an improvement of this result.

COROLLARY: Let & = (G;-,n) be an algebra such that

() <G; +> is a null-group with zero 0, and

(i) = is a permutation for which m(0) # 0.

Then ¥ is locally complete.

Proof. Let P = {#-g| g e G} u {n}. It is easily shown that P generates a 1-fold
transitive group of permutations, and so by Proposition 7, the result follows. M

Let us now consider the last three concrete examples of the introduction. Recall
that these were algebras on the real iumbers whose operations were mulliplication,
the constants and a unary operation e;, varying from example to example, given by

xy=b xz=c,

gy(x) = x-+1;
/x—~1) it xs1,
- g = {0/( ) it x=1;
I if x=0,
g5(x) ='{0 i k=1,
x otherwise.

Clearly each ¢; is a permutation displacing 0, and so the corollary applies.
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- Exact sequences of pairs in commutative rings
by

R. Kielpinski, D. Simson and A. Tye (Torun)

Abstract. Let R be a commutative ring with unit and let M be an R-module. We say that

- . u .
a pair (,v), u,v e R, is M-exact if the sequence M-,M—';-MLM is exact. A sequence of pairs
(2, v) = (1, %5, oov, (u,.,v,.)) is M-exact if the pair (u,v;) is M](uy, ..., ui—1)M-exact for
i=1,..,n .
In the paper we investigate the full subcategory En(, v) of R-Mod consisting of all R-mod-
ules M such that (u, v) is M-exact and rings R such that R ¢ Eg(x, v) and the Jacobson radical J(R)
of R is generated by elements uy, ..., Un,

Introduction. Section 1 contains definitions, examples and preliminary results.
A homological characterization of modules from Ex(u, v) is given provided
R e Ex(u, v).

In Section 2 we study conditions which ensure the projectivity or the injectivity
of a module from the category Ep(u, v) under the assumption that R € Ey(u, v) and

- JB) = (uy, ..., 1,). Our main result says that in this case Injp = Ep(u, v) = Projg

iff R is artinian, or equivalently, iff R is noetherian and Eg(u, v) = Flg where Fl,
Injg and Projy denote the classes of all flat, injective and projective R-modules,
respectively. '

Section 3 is devoted to the study of local rings R whose maximal ideals are
generated by elements uy, ..., u, such that (ug, 1), ..., (u,, w) is an R-exact se-
quence of pairs for some natural numbers Iy, -5 byo It is proved that such a ring
is R always artinian of the length (f; +1)(#,+1) ... (,+1) and that the associated
graded algebra gr(R) is of the same type.

Throughout this paper R denotes a commutative ring with identity element
and J(R) is the Jacobson radical of R. If X is a subset of R and M is an R-m8dule,
we set Anny X = {me M, Xm = 0},

§ 1. Exact sequences of pairs and the category Egp(u, v).

DerNviTION 1.1 Let M be a module over a commutative ring R. A pair (u, v
of elements of R is M-exact if uwM =0 and the left complex :

M, U)o M M MM M0
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