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Let g be the unique lifting of ¢ to E, such that §(0) = e. In fact § can be represented
by the path

Q(D(s) = gls7) .

Clearly Q is a pathin E¢ p, and x = §(1) = Q(le E¢ 4,1y completing the proof.
Finally, we define a Q-subgroup G sx,(6(B), b) to be costandard if the cor-
responding &-covering space is costandard as follows.

IIL. 36. DeFINITION. Suppose G <y (6(B), b)is a Q-subgroup and p: E—&(B)
is the corresponding &-covering space. Let ee E be as above. G is said to be
costandard if

(i) p: E»&(B) is costandard and

(ii) using the notation of Definition ITI. 17, 1 may be chosen so that () is
standard.

The results of this section can then be summarized by

T11. 37. TeEOREM. Equivalence classes of overlay structures p: E-B with dis-
tinguished points e are in bijective correspondence with costandard, Q-subgroups of
7,(€(B), b).
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Collectionwise normality and absolate retracts
by

T. Przymusinski (Warszawa)

Abstract, In this paper we present a generalization and a unification of the classical theorems
concerning absolute retracts for metrizable spaces, which were proved in the early fifties by Arens,
Dowker, Hanner and Michael, )

To illusirate possible applications of the obtained results we derive from them a generalization
of Borsuk’s homotopy extension theorem, which is a slight strengthening and reformulation of the
recent result of Morita and Starbird,

§ 1. Xntroduction. Let Q be an arbitrary class of topological spaces. A space
XeQ is an absolute retract for the class Q (briefly: an AR(Q)-SP;Lce) if for every
space Z & Q containing X" as a closed subspace there exists a continuous retraction
of Z onto X, A topological space X is an absolute extensor for the class Q gan
AE(Q)-spacc) if for every space Z € @, its closed subspace F and continuous mapping
fi F—X there exists a continuous extension f: Z—X of f onto Z. .

Note, that in the definition of an absolute extensor we do not require X to be
a member of Q. A space X & Q is an absolute neighbourhood retract for the class Q
(an ANR (Q)-space) if for every space Z e @ containing X as a closed subspace there
exists a neighbourhood U of X in Z and continuous retraction of U onto X. A topo-
logical space X is an absolute neighbourhood extensor for the class Q (an ANE (Q)-
space) i for every space Z e @, its closed subspace F anfi a contlnuogs mapping
F: F—X there exists a neighbourhood U of Fin Z and a continuous extension f U-X

to U. . :
: fle:s?vlutc relracts for normal spaces are called briefly abso{uze retracts
(AR-spaces). Similarly absolute extensors (AE-spaces), absolute neighbourhood
retracs (ANR-spaces) and absolute neighbourhood extensors (ANE-spaces) are
defined. | N 1

Facr 1 (The Tietze~Urysohn theorem). The real line E and the unit mtgrva
I =10,1) are absolute extensors. B ,

One can easily check that if a space X belongs to @ and is an AE(Q)-space
(resp. an ANE(Q@)-space), then X is an AR(Q)-space (resp. an .ANR(Q)-SPaCE)‘
It turns out that in “good” classes of spaces the inverse implication holds.

Facr 2 (Fanner [12], Michael [15]). If @ denotes the class of normal (resp.
metrizable; resp. compact) spaces and if X belongs to Q, then:
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(a) X is an AR(Q)-space iff X is an AEB(Q)-space.

(&) X is an ANR(Q)-space iff X is an ANE(Q)-space. B

Facr 3 (Dugundji [8]). Convex subspaces of locally convex linear topological
spaces are absolute extensors for metrizable spaces.

In particular, normed linear spaces are absolute retracts for metrizable spaces. ]

Fact 3 and the Kuratowski-Wojdystawski theorem (see Borsuk [5]; Theorem
IIL. 8.1) imply:

Facr 4. Any metrizable space My can be embedded as a closed subspace into an
absolute retract for metrizable spaces M.

Moreover, one may assume that w(M) = sy w(My) and that M is complete if
so is M,. B

Assume that @ and S are two classes of topological spaces, Q< and that X
is an absolute retract for the class Q. A natural question arises: what conditions have
to be satisfied in order that X be an absolute retract for the class 8?7 For Q denoting
the class of metrizable spaces several important theorems partially answering this
question have been obtained in the early fifties by Arens [1], Dowker [7],
Hanner [11], [12] and Michael [15]. Tt is the aim of this paper to present a generali-
zation and a unification of these results.

The paper is organized as follows. In Section 2 main theorems dealing with
'AR(Q)- and AE(Q)-spaces are proved. Some of their consequences are also derived.
In Section 3 we formulate the counterparts of these results for ANR(Q)- and
ANE(Q)-spaces. Proofs are very similar and therefore are omitted, To illustrate
possible applications of the obtained results, in Section 4 we derive from them
a generalization of Borsuk’s homotopy extension theorem, whicl is a slight strength-
ening of the recent result of Morita [17] and Starbird [20].

‘We shall denote by M, C and P the classes of metrizable, compact and para-
compact p-spaces respectively. Let us recall (cf. Arhangel’skif [2] and Morita [16]),
that a space X is a paracompact p-space (= paracompact M-space) it X is a closed
subspace of the cartesian product Mx C of a metrizable space M and a compact
space C, or — which is equivalent — if X is an inverse image of a metrizable space
under a perfect mapping. )

Letters t and » always denote infinite cardinal numbers, We adopt the termin-
ology and notation from [10], in particular J (v) stands for the hedgchog with spikes
and w(X) denotes the weight of the space X. A Ty-space is t-collectionwise normal
if every discrete family {F,},<, of its closed subscts can be separaied by disjoint open
subsets. Clearly s;-collectionwise normality is equivalent to normality, A space is
perfectly ©-collectionwise normal if it is perfect (= open subsets are Fsets) and
t-collectionwise normal. The Lindelsf mumber I(X) of the space X is defined as
the smallest cardinal number x such that every ppen covering of X contains a sub-
;:Ewe;ing of cardinality <x. Obviously, X has the Lindelsf property if and only if

N X) S Ng B

The following facts will be useful in the sequel,
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Facr 5 (sce Engelking [10]; Problem 5. E). J(z) is an absolute extensor for
z-collectionwise normal spaces. ‘
Outline of proof. The sct J(z) can be represented as the union |J (Ix {o})

a<t

with the points {(0, 0)},<, identified. Let f; F—J(7) be a continuous mapping of
a closed subspace F of a ¢-collectionwise normal space Z. Consider the function
g: J(@)-I defined for e<tand te by g ((t, )) = tand let G: Z—Ibe a continuous
extension of the mapping ¢ o f. The family {F,},<,, where F, =f"*((0, 11x {«}),
is discrete in G™*((0, 1]) and therefore we can find a disjoint family {U,},<, of open
subsets of Z such that Fy,=U,. The function h: (Fu Z\U U)~I defined by

a<T

WF = gof and h(Z\U U)={0} can be extended continuously to the function
24

H: Z-I The mapping F: Z—J(r), where F(z) = (H(2),a) for ze U, and
F(z) = (0, ), when z¢ {J U, is a required continuous extension of f. Kl

231

Facr 6 (Lisica [14]). An absolute (neighbourhood) retract for metrizable spaces
iy an absolute (neighbourhood) extensor for paracompact p-spaces.

We shall give a short proof of this fact.

Proof. Assume that X is an AR (M)-space. In case of X being an ANR (M)-space
the proof is similar, Let £ F—X be a continuous mapping from a close.d subspace F
of a paracompact p-space Z into X and lety: Z—- M be a perfect mapping of Z onto
a metrizable space M. There exists 7 such that X<J(1)™ (see' [10]; T]leore.m 4.4.7)
and ~ by Fact 5 — a continuous extension @: Z-J(0)™ of £ into J(z)™. Since ¥ is
perfect the diagonal mapping g = @ Ay Z—J(1)% x M deﬁl?ed by g(z) = (¢ (2),¥(2))
is perfect and therefore the subset K= g (F) of J(z) x M, is closed. Denote by = the
projection of J(©)N°x M onto J(z)™. As X is an AE(}{VD—Space (see Factng) the
mapping n]K: K—X has a continuous extension : J(z -° x M—X onto J(r)"°x M.
The composition f= hog: Z—X is a required extension of £ M

The last fact is obvious.

FAcT 7. An absolute (neighbourhood) retract for compact spaces is an absolute
(neighbourhood) extensor for normal spaces. B

§ 2. Collectionwise normality and absolute retracts. The proposition belowlex-
plains the relation between absolute retracts for paracompact p-spaces qnd absolute
retracts for metrizable (resp. compact) spaces. . o

ProvosITioN 1. A topological space X is an AR (P)-space rj and only if X is
a retract of a product M x C, where M is an AR(M)wpacenand Cisan Alc{l(i‘)-tsajc;

Morcover, one may assume that w(M)<I(X), C = I* for some » and tha
Cech-complete if so is X, : ' ’ ”

Proof. Assume that X is an infinite AR (P)-space. There exist a metric spactee bo
and a compact space Co such that X is a closed subspace of M(,x1 COE;S:?I:;) tha};,
n: Myx Co—M, the projection paralle1' to C,. We can clcafr yt namme
n(X) = M,. The mapping z and its restriction n| X X — M, are perfec
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Ww(My) = I(M,)<I(X) and M, is Cech-complete if so is X (cf. [10]; Theorem 4.1.6
and Problem 3, Y). By Fact 4 the space M, can be embedded as a closed subspace
into an AR (M)-space M which is complete if so is M, and satisfies w (M) = 8o w(M,).
Consequently, we have w(M) = 85w (M) <I(X). Clearly C, can be embedded ag
a closed subspace into C = I* for some ». Since X is a closed subspace of Mx C,
there exists a retraction of Mx C onto X.

Assume now that X is a retract of Mx C, where M is an AR(M)-space and C ig
an AR(C)-space and let r: Mx C—X be the retraction, As a closed subspace of
M C the space X belongs to P. It follows that it suffices to prove that X is an
AE(P)-space. Let f: F—X be a continuous mapping of a closed subspace F of
@ paracompact p-space Z into X. By Facts 6 and 7 the space Mx C is an absolute
extensor for paracompact p-spaces and therefore there exists a continuous cxtension
9: Z->Mx C of finto Mx C. The composition f'= r o gt Z—Xis a required con-
tinuous extension of /. W

PROPOSITION 2. 4 paracompact p-space is an AR(P)-space if and only
an AE(P)-space, )

Proof. We have to prove only that an AR (P)-space is an AB(P)-space and this
is a consequence of Proposition 1 and the second part of its proof. B

PROPOSITION 3. Every paracompact P-space is.embeddable as a closed subspace
into an absolute retract for paracompact p-spaces.

Proof. Let X bea paracompact p-space. There exists a metrizable space M, and

. @ compact space Cy such that X is a closed subspace of Mo x Cy. By Fact 4 M, is
embeddable as a closed subspace into an AR (M)-space M and clearly Cy is embed-

dable into I* for some . By Proposition 1, X is a closed subspace of an AR (P)-space
MxI* B

if it is

THEOREM 1. For an absolute retract Jor paracompact p-spaces X and a cardinal
number t the following conditions are equivalent:

() X is Cech-complete and IX<n.
(i) X is an absolute retract Jor t-collectionwise normal spaces.
(ii) X is an absolute extensor Jor ©-collectionwise normal spaces.
(iv) X is a closed subspace of J(t)%ox I*, Sor some u.
Our proof of Theorem 1 (and also of Theorem 2) depends heavily on the methods
developed by Arens [1], Dowker [7], Hanner [11], [12] and Michael [15]. First of
all we shall prove three lemmas.

LEMMA 1. Every completely metrizable space of weight <7 is embeddable ay g closed
subspace into J(z)*.

Proof. By the Kowalsky theorem (see [10]; Theorem 4.4.7) X can be embedded
as & Gysubspace into J(£)™. It follows from ([13]; § 21, XTI, Corollary), that in
order to prove our lemma it suffices to-show that the real line E is embeddable as
a closed: subspace into J (8)? since then X would be

a closed subspace of
J(@)™ xJ(%)* and hence a closed subspace of .J(z)Me,

icm®
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+o .
The set J(%o) can be considered as the union |J (Ix{n}), with the points
n=-—c

(0, m) it identified. Any point se E can be represented in thfa form s = k'+ t,
Wheré k is an even (resp. odd) integer and |f}<1. Define continuous mappings
£, g2 E-+J(%0) by putting SCn+t) = (1—1,n) and .g(2n+1 +y=(1 —.]tl,n),
where 1 is an arbitrary integer and [ <1 Qne can ealsﬂy check that the diagonal
mapping fdg: E-J (86)* is a homeomorphic embedding of E onto a closed sub-
space of J(io)*. M

Remark 1. More general result, with J(7) replaced by an arbitrary non-compact
AR(M)-space of weight 7 is proved in ([19]; Theorem 1). M

LemMA 2. If a paracompact p-space X is an absolute retract for paracompact
spaces, then X is Cech-complete.

Proof. Assume that X satisfies the conditions of the lemma and let Y'be the
set pX with the topology obtained from the topology of fX by means of making the
i isolat [ ; Example 5.1.2).
ints from SXN\X isolated (cf. [10]; Examp .
P nThe space Y is paracompact. Indeed, let U = {Ug},qs be an open covering
of ¥ and V, = U, n X, By the paracompactness of X the open covering {V};es
s E

of X admits an open refinement & = ®,, such that the family 6, = {G,s)ses
’ ’ n<a

is discrete in X and Gy = V,,. Take open subsets H,, of X such that H,,n X = G,
and H, U, . B '

n Tt ”j:‘()ll()\jls from the density of X in X tha:c the family §, = {H,,,},e.s coxlsils}ti
of disjoint sets. We shall show that $, is discrete in ¥. If y & Y\X then {;3 : ZEeigh_
bourhood of y intersecting at most one element of $,. Takei yeX ’dl‘%d let e s agnd
bourhood ‘of y in X intersecting at most. one element of ®,. 1f Ht is otperxrl1 ;1; P e

i [ ity in BX the set H intersects a -
Hn X =V, then by the density of X in 8 Hi most one e
’ i $,} is an open and o-discre
ement of §,. The fa_mllynywb,, u{{ll ye Y\”L_)m U 9.} P

refinement of 3l This shows that Y is paracompact. ' ot Yonto X
By our assumptions, there exists a continuous retraction r: Y} ‘ o Touto X

and families ,, n<w, of open subscts of fX su«:,h .’clhatz U %,,:Ge Gr é) ? nd

0 8Lx, BY=X for every xeX (see Arhangel’skil [2]). Ue,

ne<

=1 - y te open in fX and EnX =Gn X.
@ = Intyy(r~'(G n X)) n G. The sets G are pd T e
Therefore the sets G, = () & are openin fX and conta
) Galy hat X = n G
prove our lemma it is enough to show that X' = -

n<w d
Assume that y € [} G,\X. There exists an n< such that y ¢ st(r(), ©,) an ‘
Ge® such"tlmt ye G"::Ur""l(G A X) n G. Consequently, 7() € Gand y  St(r(); G,),
n ‘
which is a contradiction. M

ing’ le [3] of
Our last lemma is a generalization of t_he well-known Bl1n§ s[legyiimp »[
a normal space which is not 8- collectionwise normal (see als .

5 ~ Fundamenta Mathematicae XCVIIX
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. LEMMA 3 (Generalized Bing’s example). For o paracompact space X and a cardinal
number t<I(X) there exists a space Z = Z(X, %) with the following properties:

(8) X is a closed Gy-subspace of Z.

(b) Z\X is discrete.

(©) Z is t-collectionwise normal.

(d) Z is not t*-collectionwise normal.

(e) Z is perfect iff X is perfect.

(® X is not a retract of Z.

Proof. Let § be the family of all continuous mappings f: X—J,(z) of X into
Jy(r) = J(z). The diagonal mapping = A f: X— TM7r@isa homeomorphic em-
: feF

feF
bedding of X into T = [T7:(z) (ct. [10]; The Diagonal Lemma, p. 78 and Fact 5,
SeF

so that we can identify X'with y (X) =T. Let ¥ be the set T with the topology obtained
from the topology of T by means of making the points of T\X isolated (see [10];
Example 5.1.2). ) :

The space Y conteining X as a closed subspace is t-collectionwise normal.
Indeed, let {F,}, <, be a discrete family of closed subsets of ¥. Since Y\X is discrete,
we may assume without the loss of generality that F,'s are contained in X. The
mapping ¢: U F,—J(7) defined by ¢ (F)={(1, 0}, where the set J(¢) is represented

a<t

in the form U (I'x {«}), with the points {(0, 0)},<, identified, has — by Fact 5 —

a<t .
a continuous extension f: X-sJ (r) onto X.

Since f'e §, there exists a projection 7yt Y=Jy(r). If y = (%) belongs to Y,
then clearly m,(y) = f(x) and hence — is virtue of our identification — 7, is a con-
tinuous extension of /. Therefore, the family {Vea<e, Where V, = 77 1((0, 11x {o}),
consists of disjoint open subsets of ¥ and F,cV,.

- The space Y is not t*-collectionwise normal. First of all let us note that in X
there exists a discrete family of cardinality ©* of non-empty closed subsets. Indeed,
since /(X)>7 one can find an open covering W of X such that its every subcovering

has cardinality =z*. As X is paracompact, U admits a refinement § = | B
n<w
where each family T, is discrete in X and consists of non-empty closed sets. Clearly,

one of the families §, must have cardinality ><*.

If the space Y was t*-collectionwise normal, then this family could be separ-
ated by a disjoint family of cardinality t* consisting of open subsets of ¥, It follows
from the definition of topology on ¥, that this would Imply the existence of a disjoint

family of cardinality t* of non-empty open subsets of T, which is impossible (see [6];
Corollary 14).

Let Z = Z(X, <) be the set (X'x {©oh v L_)l((Y\X') x {1/n}) with the topology

of the subspace of the product space ¥'x I. Obviously, Z satisfies (a) and (b). Proper-
ties (¢) and (d) easily follow from analogous properties of ¥ and property (e) is
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a simple consequence of (a) and (b). The condition () follows from collectionwise
normality of X and properties (b) and (d). B

Remark 2. For X denoting the discrete space of cardinality ¥, the space
Z =2Z(X,7) is a perfectly normal, t-collectionwise normal space, which is not
7*-collectionwise normal (cf. [18]; Theorem 1).

For an arbitrary paracompact space X'and 7 <I(X) the normal space Z = Z(X,7)
containg X as a closed Piembedded, but not P™-embedded subset (see [19];
Theorem 2). M .

Proof of Theorem 1. (i)=(iv). It follows from Proposition 1 that X is a closed
subspace of M xI* where M is a complete metrizable space of weight <7..By
Lemma 1 M can be embedded as closed subspace into J(r)* and therefore X is
a closed subspace of J()* x 1% (cf. Sostak [22]).

(iv)==(iii). Since X is an AR(P)-space there exists a retraction r: J@)™ x *~>X |
of J(©)¥° x I* onto X.Let f: F—X be a continuous mapping of a closed S}lbspace F
of a r-collectionwise normal space Z into X. By Facts 5 and 7 there exists a con-
tinuous extension @: Z—J@MxI* of f inte J@)M°xI* The composition
f=rofi Z-X is a required extension of f.

(iif)=>(i). This implication is obvious. . -

(i==(). The Cech-completeness of X follows from Lemma 2 and the inequality
A(X) <7 is a consequence of Lemma 3. M

CoroLLARY 1. Let X be an absolute retract for paracompact p-spaces: Then:

(&) X is an absolute retract (extensor) iff X is Cech-complete. and Lindelb'j".

(b) X is an absolute retract (extensor) for collectionwise normal spaces iff X is
Cech-complete. M .

COROLLARY 2. For a paracompact p-space X and a cardinal number « the following
conditions are equivalent : .

(i) X is an absolute vetract for paracompact p-spaces, I(X)<t and X is Cech-
complete.
(i) X is an absolute retract for v~collectionwise normal spaces.

(i) X 1y an absohute extensor for v-collectionwise normal spaces.

(iv) X is a retract of J()™ x 1%, for some x. .

Proof. The implication (i)=>(iv) follows from 'I"lworem 1. It (iv) h'o}dg, t’chen
by Proposition 1 X'is an AR(P)-space and hence in virtue of ?lworem 1 (m? 1s. rw‘:.

The implication (iD)=>(i]) is obvious and if X satisfies (ii) then a fortiori Xis
an AR(P)-space and again by Theorem 1 (i) holds. M ‘ .

The next corollary, which is an easy consequence of Theom.n 1, Fact 6 an)
Lemma 1, is a generalization of the result obtained independently (fo1;1 1B= N: c'>r[ :]03
by Dowker [7], Hanner [12] and Michael [15] (see also Arens [1] and Boga YJdl l

COROLLARY 3. For an absolute retract for metrizable spaces M and-a cardinal
number © the following conditions are equivalent:
B%
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(i) M is complete of weight <r.
(i) M is an absolute retract for t-collectionwise normal spaces.
(i) M is an absolute extensor for t-collectionwise normal spaces.
(v) M is a closed subspace of J(v)™. W
- COROLLARY 4. For a metrizable space M and a cardinal mumber © the Sollowing
conditions are equivalent:
() M is a completé absolute retract for metrizable spaces, and w(M) <.
(i) M is an absolute retract for - collectionwise normal spaces.
(i) M is an absolute extengor for t-collectionwise normal spaces.
(iv) M is retract of J(1)™. H
For a compact space X we shall denote by C(X) the space of continuous real-
~valued functions defined on X withi the topology of uniform convergence. It is
well-known that C(X) is a Banach space and w(C(X)) = 8, w(X). Consequently,
Fact 3 and Corollary 3 imply: -

COROLLARY 5. A4 Banach space M is an absolute retract (extensor) for t-collec-
tionwise normal spaces if and only if w(M)<t. W

‘COROLLARY 6 (cf. Starbird [21]). Let X be compact. The space C(X) is an absolute
retract (extensor) for t-collectionwise normal spaces if and only if wiX)<t. W

THEOREM 2. For an absolute retract for paracompact p-spaces X and a cardinal
number v the following conditions are equivalent:
@ IX)<z. )
(1) X is an absolute extensor for perfectly -collectionwise normal spaces.
(iii) Every continuous mapping f: F—X" from a closed Gy-subspace F of a ©-collec-

tionwise normal space Z into X is conrinuously extendable onto Z.

Proof. ()=s(iii). It follows from Proposition 1 that there exists a metrizable
space M of weight <t such that X is a closed subspace of M x I* for some % and
we can clearly assume that M is contained in J (D™, Let 7 F-X be a continuous
mapping of a closed G,-subspace F of a 7~-collectionwise normal space Z. Since Z is
normal, there exists a continuous function Y1 Z—1 such that = 1(0) = F. By Facts 5
and 7 there is a continuous extension @: ZJ@NxI* of finto J(@)Mox I”,

If g = @dy: Z-+J ()" xI*x 1 is a diagonal mapping, then

9Z)=T = (J@™xI*x (0, 1]) U (M x I*x {0})

and clearly X is a closed subspace of T, Consider the projection m: J(r)Me x I*x 1
—>J@®" x I parallel to the compact space [* Since « is perfect and

T=1"*((J())%x(0, 1]) L (Mx {oh)

is an inverse image under 7 of a metric space, we conclude that T'isa paracompact
Pp-space. Let r: T X be a retraction of T onto X, The composition f = rog; Z—X
is a required continuous extension of f :

Collectionwise normality and absolute retracts ‘ 69

(ii)=+(ii). This implication is obvious.

(ii)=>(i). Assume that J(X)>7. As in the proof of Lemma 3 we note that X con-
tains a discrete family {F}y<.+ of cardinality t* of non-empty closed subsets.
Let {U,}a<e+ be a digjoint family of open subsels of X such that F,c U, and choose
an x, € F, for a<t™. For the diserete space D = {d}ucon of cardinality ¢+ the
space Z = Z(D, ) from Lemma 3 is perfectly z-collectionwise normal, Define
the mapping J: DX by putting f{d,} = x,. By our assumption there exists a con-
tinuous extension J: Z—X of f onto Z. Tt follows that the family {f~"(U.)} consists
of digjoint open subsets of Z and d, & U,, which clearly implies that Z is collection-
wise normal. This contradicts Lemma 3. B ‘

Remark 3. In general, the spuce X satislying conditions of Theorem 2 need
not be an absolute retract for perfectly 7-collectionwise normal spaces, since it need
not be perfect. B |

CoroLLARY 7. Let X be an absolute retract for paracompact p-spaces. Then:

(8) X is an absolute extensor for perfectly normal spaces iff X is Lindelsf. ‘

(b) X is an absolute extensor for perfectly collectionwise normal spaces. B

The next corollary is a generalization of the result obtained independently
(for © = 19 or o0) by MHanner [12] and Michael [15] (see also Dowker [7] and
Bogalyj [4])-

CoroLLARY 8. For an absolute retract for metrizable spaces M and o cardinal
number t© the following conditions are equivalent:

) wM)<T.
(i) M is an absolute retract for perfec(ly T~ collectionwise normal spaces.

(ili) M is an absolute extensor for perfectly x-collectionwise normal spaces.

(iv) Every continious mapping f: F-M from a closed Gg-subspace of a - collec-
tionwise normal space Z into M is continuously extendable onto Z.

Proof, By Theorem 2 and Fact 6 it suffices to prove the implication (ii)=-(i) and
this is a consequence of Lemma 3. B

COROLLARY 9. A normed linear space M is an absolute retract (extensor) for
perfectly w-collectionwise normal spaces if and only if w(M)<t. B

§ 3. Collectionwise normuliizy and absolute neighbourhood retracts. In this section
we shall formulate Tor absolute neighbourhood retracts (extensors) the counte.rpz}rts
of the resulls obtained in § 2 for absolute retracts (extensors). Proofs are very similar
and therefore are omitted,

ProrositioN 1%, A paracompact p-space X in an ANR(P)-space if and only
if X is a retract of an open subspace of the product M x Cy -where M is an ANR(M)-
space. and C iy an ANR(C)-space. ¥ .

PROPOSITION 2%, A paracompact p~space is an ANR (P)-space if and 9n1y if
it Is an ANE(P)-space. B
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THEOREM 1*, For an absolute neighbourhood retract for paracompact p-spaces X'

and a cardinal number © the following conditions are equivalent:
(i) X is Cech-complete and I(X)<r.
(i) X is an absolute neighbourhood retract for - collectionwise normal spaces.
(iif) X is an absolute neighbourhood extensor for - collectionwise normal spaces.
(iv) X is a closed subspace of J()™ x I*, for some ». W
COROLLARY 1*. Let X be an absolute neighbourhood retract for paracompact
p-spaces. Then:

(a) X is an absolute neighbourhood retract (extensor) iff X is Cech-complete
and Lindelsf. ‘

(b) X is an absolute neighbourhood retract (extensor) for collectionwise normal
spaces iff X is Cech-complete. B
COROLLARY 2%, For a paracompact p-space X and a cardinal number < the follow-
ing conditions are equivalent: ‘
() X is an absolute neighbourhood retract for paracompact p-spaces, I(X) <
and X is Cech-complete.
(1) X is an absolute neighbourhood retract for t-collectionwise normal spaces.
(itl) X is an absolute neighbourhood extensor for - collecrionwise normal spaces.
(iv) X is a retract of an open subspace of J(v)"°xI*. B
COROLLARY 3*. For an-absolute neighhourhood retract for metrizable spaces M and
a cardinal number t the following conditions are equivalent:
() M is complete of weight <.
(i) M is an absolute neighbourhood retract for t-collectionwise normal spaces.
(i) M is an absolute neighbourhood extensor for ©-collectionwise normal spaces.
(iv) M is a closed subspace of J(v)™. - |

COROLLARY 4*. For a metrizable space M and a cardinal number © the following
conditions are equivalent:

() M is a complete absolute neighbourhood retract for metrizable ‘spaces, and
weight M<rx.

(i) M is an absolute neighbourhood retract for t “collectionwise normal spaces.
(iil) M is an absolute neighbourhood extensor for - collectionwise normal spaces.
(v} M is a retract of an open subspace of J(9)™. @

THEOREM 2*. For an absolute neighbourhood retract Jor paracompact p-spaces
and a cardinal number <t the following conditions are equivalent:

0 IX)<e.

() X is an absolute meighbourhood extensor for perfectly <-collectionwise
normal spaces.

(iif) Every continuous mapping f: F~X of a closed Gy-subspace F of a ©-collec-

icm
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tionwise normal space Z into X' is continuously extendable onto a neighbourhood U
of FinZ. M .
ARY T*. Let X be an absolute neighbourhood retract for paracompact

COROLLA) P i
p-spaces. Then: ’

(0) X is an absolute neighbourhood extensor for perfectly normal spaces iff X is
Lindeldf.

(b) X is un absolute neighbourhood extensor for perfectly collectionwise normal
spaces. W

COROLLARY 8%, For un absolute nelghbourhood retract for metrizable spaces M and
a cardinal mumber © the following conditions are equivalent:

(i) w(M) <,

(i) M is an absolute neighbourhood retract for perfectly ©-collectionwise normal
spaces. .

(iiiy M is an absolute neighbourhood extensor for petfectly t-collectionwise
normal spaces. ' :

(iv) Every continious mapping f+ F-+M of a closed Gy-subspace F of a t-collec-
tiomwise normal space Z into M is continuously extendable onto a neighbourhood U
of FinZ. B ‘

§ 4, Homotopy extension theorem, To illustrate possible applications of ‘the Te-
sults obtained in the preceding sections we shall derive from them a g:enerahzauon
of the Brosuk homotopy exiension theorem, which is a slight strengthening andvrefol-
mulation of the recent result of Morita [17] and Starbird [20]. Throughout this sec-
tion P is assumed to be a paracompact p-space.

Trrorim 3. Let F be a closed subspace of a t-collectionwise normal space X and
Jet P'be an absolute neighbourhood retract for t-collectionwise Tmrmal space.r.d "

Every contimuous mapping [ (X {0}) u (Fx)—P is c,om:mzously extendable
onto X% 1. ,

COROLLARY 10. Lot P be a closed subspace of a normal space X and let P be an
absolute neighbourhood retract. I

" \ i e

Every continuous mapping fi (X% {0}) © (FxI)=P is continuously extendab
onto X% 1., y -

For o metrizable space M we shall denote by Cc(I, M) the mettic SPZCCL(::t -
continuous mappings f1 f-+M with the topology of uniform convergence.
recull the following feets:

(1 w(C, M) Ry w (M),

(! iy complete if so is M. :

@) €, M) s com i ing Ar ME¥CU, MY, defined

(3) For every spuce M the exponential mapping A: ,rres sadonce
forzeZ and t& I'by [A(S)E]() = (1) cstablls.lms a one~to-.on: ;o - —?C(I M)
between continuous mappings f: Z x [-+M and continuous mappings ©: ’
(sec [9]; Chapter XII, Theorems 3.1, 5.3 and 8.2).
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Lemma 4. If a metrizable space M is an absolute retract for t-collectionwise
normal spaces, then so is C(I, M).

Proof. Assume that M is an absolute retract for 7-collectionwise normal
spaces. It follows from Corollary 4, that M is a complete AR (M)-space of weight <1,
By (1) and (2) C(I, M) is also complete and has weight <t. Therefore, again by
Corollary 4, to prove our lemma it is enough to show that C(I, M) is an AE(M)-space
(see [13]; § 53, II, Theorem 5).

Let g: F~C(I, M) be a continuous mapping of a closed subspace F of a metri-
zable space Z. By (3) the mapping A(g): Fx I-M is continuous and hence {here

exists an extension y: X'x I-»M of A(g) onto X'x I. Clearly § =A~1(})): Z— i, M)y

is a required continuous extension of g. B

Proof of Theorem 3. In virtue of Corollary 2* P is a retract of an open sub-
space U of J(1)* xI* Let r: U—~P be the retraction. '

We shall first show, that there existsa continuous extension @: X x J—J (T x I*
of finto J(r)™ x I*. To this end it suffices to prove that if M is a factor of the product
space J(7)™ x I* (i.e. if M= J(z) or I) and g: X x{0})) U (FxIN—M is a continuous
mapping, then there exists a continuous extension j: X x I-M of g.

According to (3), the mapping G = g|(Fx I): Fx I-M induces a continuous
mapping A(G): F—~C(I, M). Lemma 4 and Corollary 4 imply that C(Z, M) is an
absolute extensor for z-collectionwise normal spaces. Let &: X~ C(I, M) be a con-
tinuous extension of A(G). Clearly, the mapping G = A~*(®): X'x I-M is a con-
tinuous extension of G.

The argument used below is a generalization of an idea due to Starbird [21].
Since the set K = {xeX]| g(x, 0) = G (x, 0)} containing F is functionally closed,
there exists a continuous function y: X—I such that K = ¥~(0). The mapping
h: X— M defined by putting 4(x) = & (x, Y (x)), for x € X, is continuous and since M
is contractible there exists a homotopy between g1(Xx{0}) and 2 (see [5]; Cor-
ollary IV. 2.3.),i.e.a contimlous mapping H: X x I-M such that H(x, 0) = g(x, 0)
and H(x,1) = h(x), for x e X. .

One easily checks that the mapping §: X x I—M defined by

G(x, 9), if
H(x, thj(x)),

is a required continuous extension of g.

Let ¢: XxI=J(1)™xI* be a continuous extension of Sand V= =Y (U).
Since I is compact and V> Fx I there exisis an open subset @ of X such that Fc G
and G x I'is contained in V. Take a continuous mapping §: X-»1 such that 0(Fye= {1}
and 0(X\G)={0}. The mapping f: X'xI-P defined by 7 (x, 1) = r(p (%, 0(x) 1))
is a required continuous extension of | ‘

Corollary 10 is an immediate consequence of Theorem 3.

2y(x),
otherwise
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