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Some results on uniform spaces N
with linearly ordered bases

by

Hans-Christian Reichel (Wien)

Abstract. The paper is concerned with uniform spaces having a base linearly ordered by in-
clusion of entourages (or by refinement of uniform coverings, respectively). By a well-known fact,
these spaces coincide with the socalled @p-metric spaces, for which several well-known metrization
theorems can be extended. — Amongst several applications, two characterizations of compact
metric spaces and of separable metric spaces are derived.

§ 1. Introduction. The uniform structure 1, of any metric space (X', 4) obviously
has a linearly ordered base B consisting of entourages

U, = {(x,») d&x, »)<1lfn}, n=1,2,..

More generally, it is interesting to study uniform spaces (X, 1) with linearly ordered
bases B (U;<Uj iff U;=U; for Uy, Uje B). Such spaces have been investigated by
many authors and under several aspects: R. Sikorski [37], F. Hausdorff [12, p. 285 ff],
L. W. Cohen and C. Goffman [5], F. W. Stevenson and W. J. Thron [39], Shu-Tang
Wang [42], P. Nyikos and H. C. Reichel [27], [28], A. Hayes [15], P. Nyikos [25],
R. Paintandre [29], E. M. Alfsen and O. Njastad [2], M. Fréchet [91.

If (X, 10) is a uniform space with a linearly ordered base B and 8, is the least
power of such a base, then there exists an equivalent well ordered base of power
8, ([39]). (Obviously, such a space is metrizable iff u = 0). Moreover, F. W. Ste-
venson and W. J. Thron [39] showed that any such space (X, ) is o,~metrizable
in the sense of R. Sikorski. That means: there is a linearly ordered abelian group G
which has a decreasing w,-sequence converging to 0 in the order topology, and
a “distance function” g: X x X—G satisfying the usual axioms for a metric on X,
which generates the topology of X. (Here w, denotes the pth infinite cardinal). —
Conversely, any w,-metric ¢ on X induces a uniformity 2, on X, a base of which
consists of all sets U, = {(x, )| e(x,))<a}, a€ G, >0. Many properties of metric
spaces have their analogues in the theory of o,~metric spaces, however the un-
countable case usually regards different proofs and methods (see for example: [27],
[28], [42].
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Shu-Tang Wang [42], for example, proved an analogue of the Nagata-Smirnov
metrization theorem: a regular space X is w,-metrizable iff it has an open base B for
its topology consisting of an w,-sequence of locally finite collections

B, ={B,l ie Iy,
and the intersection of fewer than o, distinct open sets is open in X again. Several
9ther w,~metrization theorems have been presented by P. Nyikos and H. C. Reichel
in [28]. Moreover, special theorems for x>0 can be obtained which do not have
analogues for u = 0 ([27], [28], [39], [47] for example).

It seems interesting to study to what extent “countability” inherent in metri-
zation theorems can be generalized using the well ordering of natural numbers instead

A<y,

of their cardinality. (See e.g. Theorems 5.1 and 5.3). — For other investigations with-

similar intention compare also a paper of J. E. Vaughn [41] on linearly stratifiable
spaces. :

ExampLE 1.1. Let 4 be any set and B be a well ordered set of order type w,.
Consider the set A% of all w,~sequences (x,), X, € 4, a<w,. The “natural topology”
¥ on A® is defined by the base 9 consisting of the sets

x(B) = {yed® y, = x, for a<f}, f<w, and xeA®.

(This topology has been defined by A. K. Steiner and E. F, Steiner in [38].) If
@, = g, the spaces (4%, ") exactly coincide with Baire’s zerodimensional sequence
spaces, as defined by F. Hausdorff [14]. A detailed study of the importance of
Baire’s sequence-spaces can be found in J. Nagata’s book [21] or in [22] and [27].

The natural topology on 4® can be induced by a uniformity I with a linearly
ordered base B consisting of all

Bﬁ = {((xzz)a (yz))l xnz = yxz fOI‘ 0(<‘B},
The class of alll non-metrizable w,-metric spaces (i.e. u>0) can be characterized
;)y the following proposition (P. Nyikos and H. C. Reichel [27] and 1. Juhdsz
45]).
ProposiTION 1.2, Let u>0; a topological space is w,~metrizable iff X can be
embedded as a subspace of a suitable space (4%, %), B = ©,.
Remark. An o -metric space X is w,-additive in the sense of R. Sikorski:
for any 'collectlon {0, e<p<w,}of open sets, N0, (< f) is open. In this respect,
o,-metric spaces have been used also in the theory of Boolean algebras (Sikor-

ski [37]).- Moreover, every closed set F=X is the intersection of a system & of
open sets O;=X, where card S<aw,.

B<aw,.

The usual characterization of separability in metric spaces and the metrization
‘theorem of P. Urysohn can be generalized, too:

ProrosiTiON 1.3. Eguivalent are :
(1) Xis an o -additive space with a basis U of cardinality < w,.
(i) X is an w,~-metric space with a dense subset Y of cardinality ué @,
. Proof, (i)=>@i): In [37] R. Sikorski proved an o,-analogue of Urysohn’s

- ©
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metrization theorem by which follows w,-metrizability of .X. Moreover, for any
4,e%, 1<w,, take a point y, € X, then ¥ = {3, 1<w,} is a dense subset of X,

(ii)=(1): Use the theorem of Stevenson and Thron cited above and note that,
if (e,), T<e,, is a decreasing w,-sequence in G converging to 0e G in the order-
topology, the system of all

B, = {xeX]| o(x,y)<e}, 1<, ye¥,
is a basis U of X with cardinality <, '8, = 8,.

Using Proposition 1.2, § 2 characterizes complete uniformities with linearly
ordered bases. ‘

Since every uniform space with a linearly ordered base is paracompact, the
question arises to characterize those paracompact spaces which have compatible
uniform structures with linearly ordered bases in a purely topological manner. More
generally, §3 presents topological criteria for completely regular spaces to have
compatible uniform structures with linearly ordered bases (Theorems 3.2 and 3.3).

§ 4 deals with k-bounded uniformities with linearly ordered bases; generalizing
inverse limit methods used in this paragraph, we obtain a characterization of the
class of N-compact spaces, too.

Compact Hausdorff spaces X have unique uniform structures. However, spaces
with a unique uniform structure 2l need not be compact. In § 5 we show that if the
unique uniformity ¥ on X has a linearly ordered base, X must be a compact metric
space (Theorem 5.1). Thus we obtain a new characterization of compact metric
spaces. With similar methods we characterize the class of separable metric spaces
and we study completely regular spaces with several compatible uniform structures
but which have exactly one uniformity with a linearly ordered base.

All topological spaces are Hausdorff, all uniformities ‘are separated.

§ 2. Complete uniform spaces with linearly ordered bases. An w,~metric space,
(X, @) is w,-complete if and only if every Cauchy-w,-sequence converges [39].
F. W. Stevenson and W. J. Thron showed the following

Lemma 2.1. 4An w,metric space (X, @) is w,-complete if and only if (X, %) is
complete in the uniform sense.

Obviously, for g = 0, 1, is complete iff X" is completely metrizable. We shall
now characterize all complete uniform spaces with linearly ordered bases, which are
not metrizable.

TaEoREM 2.2. The following assertions are equivalent:

() (X, ) is a complete uniform space with & linearly ordered base of least
power ¥, u>0.

(i) (X, N) can be embedded as a closed subspace of a suitable space (4% ),
B =, u>0.

Remark. For u = 0, the topology ¥” on ‘A® coincides with the product topology
on. the countable product of the discrete spaces A, =4, i=1,2,.., [38]
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Proof. Since the embedding mapping in Theorem 1.1 is a unimorphic embedding
we only have to show that the uniform structure Uy of (4%, ¥) is complete. And
this will be assured by

THEOREM 2.3. The uniformity Wy of any space (A%, ¥) is complete.

Proof. Let B = o, (£>0), then, by the theorem of Stevenson and Thron (§ 1),
(45, ¥ is an o,~metrizable space. Moreover, there is a compatible w,~metric
d: A% x AP—G with the following property: there is an w,~sequence (s,), T< Wy,

g€ GE converging to 0 G in the order topology of G such that for all t<w, and
yed:

K0) = {x ed® dx,))<e} = y(r) = {xe A" Xy = yVa<t},

‘We shall show that every Cauchy-w,-sequence converges, i.e.: (4%, d) is ,-complete.
L?t (x%), 6<w,, be a Cauchy-w,-sequence, in other words: for every T<W,
there is a 6(t)<w, such that d(x", x"*) <e, whenever o,, 6,>6. Thus we have

x ek, (x) =x"x) and x" ek, (x7) = x").

Therefore x"'(z) = x"*(z). Moreover, since w, is a limit ordinal, and y(z")>y(z'")
whenever ©' <7/, we can chose § = §(7) so that >t and §(¢)>48(z") for all v’ <.
That means: for any o>8(1), we have x e x?@+1(7),

Now construct xe A% by defining its y-coordinates by x, = (EMHY  the
y-coordinate of x*M*2, for all y<w,. Now we claim that x is the limit of the 7érans—
finite sequence (x°), o<a,. .

Since the sets x(g), ¢ <w,, form a local base of x, we only have to show that,
for all g<w,, there is a £(g) such that x” e x(g) if ¢> & But this is obvious if we
take £(g) = 6(g). Remember that x° & ¥*@+(g), because o>8(g), and therefore,
for all y-coordinates, y<p, we have (x7), = (x*@*%), = (x*®+1) = x  which
yields x° e x(o). ’ v

Thus (45, d) is o,-complete and 4%, 0,) is complete by Lemma 2.1.

§ 3. Criteria for topological spaces to have compatible uniformities with linearly
ord‘ered bases. In [15] A. Hayes has shown that any uniform space (X, ) with
a l}neal‘ly ordered base B is paracompact. Conversely, the question arises to give
a sx.mple topological criterion for a paracompact space (X, T) that its topology T can

. be induced by a uniformity with a linearly ordered base of least power w,. (Cleatly
every such condition, specialized to u = 0, must yield metrizability ofﬂX). ,

DeriNrrion- 3.1, Let X be a topological space. An open base B of X is called
an o,-uniform base if and only if

(1) NB, (B,eB,u<t<0w,) is open, and

(i) for any pe X and any neighbourhood V(p), we have:

card{B| Be®,pe B, B¢ V(p)}<w,.

T‘I{EOREM‘S.Z. The topology of any topological space (X, T) can be induced by
a uniform strycture W with a linearly ordered base B if and only if (X, X) is para-

e ®
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compact and has an o,-uniform base for some cardinal w, . (Remark that the existence
of an w,-uniform base is a purely topological criterion.)

Remark. Obviously, for u = 0, the theorem yields a metrization theorem of
P. Alexandroff [1]. Compare also the remark at the end of the paper.

Proof. Necessity: Let (X, 21) be a uniform space with a linearly ordered base
of least power &,. If i = 0, the space is metrizable. In this case define I, to be a lo-
cally finite refinement of the open covering consisting of the balls

B(x) = {y| d(x,»)<1n}, xeX,n=1,2,..

Then U = YU, (= 1,2, ..) is an wo-uniform base of X.

If u # 0, we use our Theorem 1.2, by which X can be embedded homeomor-
phically into a suitable space (A%, ¥°). The base %t of (4°, ¥") as described in Example
1.1 has then the following properties:

(i) {x(B)l B<w,} is a well ordered local base of xeX: x(Bex(y) iff B>y;

(i) two basis sets x(f), y(y) € 9 either have empty intersection, or one is con-
tained in the other; and

(iii) if y e x(f) then x(B) = y(f) for all B<aw,.
Therefore 9 is an w,-uniform base for (A%, ), and (Nn X| Ne 9N} is an @,-uni-

- form base of X.

Sufficiency: Let B be an o, -uniform base for X, then for any Be @B,
card{C| Ce B, CoB} = :c(B)<w,, as follows from the definition using any
point p € B and letting ¥(p) = B. For t<w,, let B, = {Be®B| c(B)z} v {{p}l P
is an isolated point of X'}. Then B, is an open covering of X. Chose a locally finite
open refinement 2, of B, then MW = UW(z<w,) isa topological base of X.
To show this, let pe X and V(p) be any neighbourhood of p, then

card{BeB| pe B,Bn (X\V) # O} = 0<w,.

So, for any B, pe B, Bn(X\V) # @ we have ¢(B)<o, and, for every t>0 and
Ce®B,, peC, we have c(C)z1>0. Therefore C<= V. Consequently, there is an
Ue M, with pe U=C=V.

So 9B consists of an w,-sequence of locally finite open coverings of X, which
assures a)“-metrizabil'ity of X by Shu-Tang Wang’s generalization of the Nagata—
Smirnoy theorem (§ 1). Obviously, we can use this theorem, since, for u>0, the
intersection of fewer than o, distinct open sets is open. To see this, remember that B is
an w,-uniform open base of X sharing this property. W

There is another topological characterization of uniform spaces with linearly
ordered bases: '

Let X be a strongly zerodimensional metric space (ndX = dimX = 0),
then X is metrizable in a non-archimedean way, i.e.: there isa compatible metric d
for X which satisfies. d(x, ¥) <smax(d(x, 2), d(z, y)) for all x,7,ze X (F. Haus-
dorff [13], J. de Groot [10], J. Nagata [22]). Conversely, every n.-a. metric space
has dimX = 0. (Note that by J. de Groots theorem n.-a. metrics can be compatible
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even with the Buclidean topology of the rationals or the Cantor discontinuum, for
example). By the strong triangle inequality, two balls B,, B; with radii & and § re-
spectively, either have empty intersection or one containes the other. More generally,
A. F. Monna [19] defined a topological space X to be “non-archimedean” if X has
a topological base B sharing this property (B is called a “non-archimedean” base
if any two members of B either have empty intersection or one contains the other).
Non-archimedean spaces have been studied in several papers ([3], [19]), [47], [26],
[30], [32], [44] and others). If a n.-a. topological space is metrizable it is non-archi-
medeanly metrizable. Sometimes, non-archimedean bases B. are called “bases of
rank 1%

Now let (X, 1) be a uniform space with a linearly ordered base B of least
power 8,. If >0, Theorem 1.2 asserts that X" is homeomorphic with a subspace
of a certain space (4%, ¥7) as described in Example 1.1. It is easy to see that the
“natural” topological base € = {x(y)| x & 4% ye B} of (4% ¥°) has the property
that x(x) N y(B) is either empty or equals x(x) or y(f). So we get the following
proposition:

Every uniform space (X, W) with a linearly ordered base B of least cardi-
nality 8, is a n.-a. topological space in the sense of A, F. Monna if y>0and — aswe
just saw —for u =0, X is n.-a. iff dimX = 0.

Surprisingly, we can prove a converse for m,-compact spaces:

One can show that any compact n.-a. topological space is metrizable (Nyikos—
Reichel [26]); now, as a corollary of Theorem 3.2, we can prove the generalization
of this theorem to higher cardinals, but we have to be careful: it is easy to see that
every non-archimedean base'® of a compact space X is a tree with respect to inverse
inclusion as order relation: B<C < B> C. (As usual, a tree is a partially ordered
set such that the set of predecessors of any element is well ordered.) As the proof of
the following theorem will show, it is this property we have to assume explicitely in
case @, >y . Moreover, recall that a space X is “w,-compact” ([37], [17]) iff every
open cover of X has a subcover consisting of 'fewer than @, sets . ‘

THEOREM 3.3. Let X be an o,-compact T,-space, u>0, then the following is
equivalent;

(@) X has a compatible uniformity W with a linearly ordered base B of least
cardinality §

"3
(i) X is an w,-additive space ([37]) admitting a non-archimedean base G for its
topology such that € is a tree (w.r.t. inverse inclusion as its order relation). ‘
If p =0, (i) is equivalent with metrizability of X, and the implication (\)=>(ii) is
true only for spaces X with dimX = 0.

(1)‘In several papers the term “wy~compact” is used in the sense that every open cover
of cardinality <w, has a finite subcover. In the ternﬁhology of Aleksandroff-Urysohn (1929)
the term “w,-compact” in the just mentionedsense is called ““initially wy~compact” and in the
sense. of this paper “finally w,-compact”. o
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Proof. ()=(ii) follows from the remarks cited above, note that the base € con-
structed above is a tree. The proof of the converse uses Theorem 3.2:1et€ = {Cj{iel}
be a non-archimedean base of X which, moreover, is a tree. Then every C; is open
and closed in X, since there are no basissets intersecting both, C;and its complement.
Moreover, by the non-archimedean property described above, any collection of
basissets {C;| jeJ<I} is a chain (with respect to the inclusion) whenever there is
a point x € X with x € C; for all j e J. We shall show that € is an o,-uniform base
for X. Suppose there is a point x € X and a neighbourhood U(x) of x such that
card {C| x € C;and C; n (X\U)#@}>w,. Without loss of generality we can assume
that U €. Since all C; are clopen sets and € is a tree, it would be possible then to
construct a partition of X\ U into ), or more clopen sets C\Cy, k, [eJ,and a suitable
clopen set X\C; (i €J), respectively. But this would yield a contradiction, because
the closed subspace X\U is w,-compact.

Therefore card{C;| x € C; and C; n (X\U) # @} <w, for every point xeX
and every neighbourhood U of x; thus the base € is an w,-uniform base.

By a theorem proved in [26] and [44], any non-archimedean topological space
is (hereditarely) .paracompact, and we can make use of Theorem 3.2. Thus
X has a compatible uniform structure with -a linearly ordered base.

For the second part of our proof, we assumed that w, was a regular cardinal;
if w, is singular then X would be a discrete space of cardinality <w,, and there is
nothing to prove.

Remark. If in (ii) of Theorem 3.3 we do not assume that that € is a tree then our -
methods used above would only guarantee that

card {Cj| x € C; and C; n (X\U) # O}<a,,

since this is then a totally ordered set in which every subset has a coinitial and cofinal
subset of cardinal <w, (by w,-compactness of X). Thus CGH implies the result
if w, is a regular cardinal; if w, is singular, there is nothing to prove again.

§ 4. k-bounded uniform spaces with linearly ordered bases.

DermvirioN ([31], [40]). An uniform space (X , W) is k-bounded iff for every
U & U there exists a set 4 of cardinality <k such that U(4) = U {U(x)| x € A} =X.
(X, W) is strictly k-bounded iff k is the least cardinal number for which (X, ) is
k-bounded. Bquivalently, (X, M) is k-bounded iff I has an associated family of
k-bounded pseudometrics, where a pseudometric p is k-bounded if for eac}_x e>0,
X can be written as a union of fewer than k sets, each of p-diameter not exceeding &.
We shall characterize the class of k-bounded uniform spaces with linearly ordered
bases: ’

ExampLe 4.1. Let I be a linearly ordered countable index set and {X;,myl iel},
ny X—=X] for izj, an inverse Iimiting system consisting of discrete spaces X, with
card X;<k. If limX; = : Y # @, the topology of Y can be induced by a k-bounded
uniformity W on X with a linearly ordered base.
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Proof. Let p;: Y—»X,, ie], be the canonical projections. For each ie I, we
obtain partitions
A, = {0h=p ') xe X}

of Y consisting of fewer than & open and closed sets Oi Thus 2;, ZE I, are open
coverings of ¥ and %, is a refinement of 2, if i>j, since for every OLe U, there is
a point x € X; such that 0! = p;'(x), and O‘t:pj 1(n,J(x))e ;. Therefore the
partitions 9, i e I, induce a uniform structure I on ¥ with 4 linearly ordered base
B = {0l 0l OLeW;icl}. '

Moreover, since card 2, <k for every iel, U is k-bounded, and so is every
subspace. Clearly, the topology on Y coincides with the topology induced by .

Now let (X, ) be-an arbitrary k-bounded uniform space with a linearly ordered
base B = {B,| t<a,}, u>0.

Without loss of generality, we can assume that 8, = {B(x)| x € X'} is a partition
of X for every t<w,. To prove this, let € = {C| 1<w,} be any linearly ordered
base of 1, and for every C, take a sequence C,, n=1,2,.., such that
{C,,. )] xeX} is a star-refinement of {C,(*)| xe€X}. Then B, = C,, (n
=1,2,..) is an entourage of U, because x>0, and {B(x)| x e X} is a partition
of X (a star-refinement of itself). In fact, [ B, (1<o<w,) is always an entourage
of U again.

(X, W) is k-bounded, so B, = {B(x)| x e X} consists of fewer than k clopen

.sets. Moreover, B, is a refinement of B, iff o>7. Consider now the collections B, as

topological spaces X, with discrete topology and define w,,: B,—B, (6=17) in such
a way that ,.(B,(x)) = B(y) for any x,ye X, if and only if B,(x)=B,y). Thus
{X, = 8B,; 7| v<w,} is alinearly ordered inverse limiting system and (X, Ty) Q)
is a subspace of ¥ = limX;. This follows immediately from the fact that for each
xe X and 7<), there exists exactly one B,(x) € B, containing x so that the w,~se~
quence (B(x)), T<w,, is a point of imX,. Moreover, since

U {B.x)eB| t<w,, xe X}

is a topological base of X, the mapping f; defined by f(x) = (B.(¥))e<a, is & continuous
injection, f: X— Y. But f~* need not be continuous if ®,>w,: For x € X and any
fixed B(x) =X, a<aw,, f(B,(x)) consists of all transfinite sequence (be)e<o,, in ¥ with
w-coordinate b, = B,(x). As mentioned above, B,, = (] B(x), t<o<w,, is an
open set and f(B,,) = {(b,)] b, = B/(x) for all t<s}. But for ¢>w,, this set need
not be open in the topology on ¥ which in fact is the topology inherited from the
product topology. on the set IIX, (1<w),).

On the other side, if we provide the set IIX, (v<w,) with the “natural” uni-
formity 1, described in Example 1.1, £ and £~* are uniformly continuous injections.
So, if 4 denotes a set with card 4 = supcardX;, 1<w,, we obtain the following
strengthening of Theorem 1.2: ‘

(% Ty denotes the topology induced by "M,
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THEOREM 4.2. If (X, W) is a k- bounded uniform space with a linearly ordered base
of least cardinality 8, i>0, then X is unimorphic to a subspace of a suitable space
(4% 0,), B = w,, card A<k. »

Remark 4.3. Conversely, a space (4% ,), B = w, and cardd = k>,
need not be k-bounded: For m,<a<w,, let B, = {((x)), )] x, = y, for <a},
then B, e, but B, = {B,(x)| x€X} is a partition of X which may consist of
more than k clopen sets (in fact, for k<a<w,, B, can consist of £*>k clopen sets).

“Thus W, need not be k-bounded if u>0.

If k< w,, every B, consists of at most k*<k™ clopen sets, so U, is 22" bounded.
If & = 2%, then k™ = k = 2% and U, is strictly 2>™*-bounded. Finally, if k>0,
we have k*<k®*<2¥ and U, is 2*“bounded.

Remark 4.4. Let (X, i) be any uniform space with a linearly ordered base,
then there is always a cardinal k such that U is k-bounded (embed X into a space
(4% U,) and let k = supcard B, (a<w))).

Concerning totally bounded uniformities with linearly ordered bases see
Theorem 5.3.

Remark 4.5. In the light of Example 4.1 and Theorem 4.2 it might be interesting
to study inverse systems not only with linearly ordered index sets and to describe
Y = limX; where the inverse limit is obtained from an arbitrary spectrum consisting
of discrete spaces X; of cardinality <k. In the following we use several methods also
used by K. Nagami [20], P. Nyikos [23] and J. Flachsmeyer [8].

Remember that a space is N - compact iff X is homeomorphic with a closed subset
of a product of the discrete space N = {1,2, 3, ...}. (As a reference see e.g. [17]).

The category of N-compact spaces is reflexive in the category of T),-spaces,
i.e. closed hereditary and productive [16]. By a theorem of H. Herrlich, X is N-com-
pact iff every clopen ultrafilter with the countable intersection property is fixed in X.

Every discrete space X of non-measurable cardinal is N-compact, since X is
realcompact and strongly zerodimensional [17], [24]; and so is every closed subspace
of any product of such discrete spaces.

Conversely, let X be an N -compact space, and let & be an infinite non-measurable
cardinal. Consider all partitions 8 of X into fewer than k clopen sets. These partitions
obviously generate a uniform structure ¥, compatible with the topology of X (com-
pare the proof of Theorem 4.1). Define B>B" iff B refines B’ and note that for any
pair B, B, BAB' = {Bn B| Be B, B’ e B’} is again a partition of X into fewer
than k clopen sets. Now for every such partition 8 let X be the discrete space whose
points are the elements of B, and for B> B’ define g : Xg—Xyp- by associating to
every member Be B the member B’ e B’ which contains B. All spaces Xy, con-
sidered as discrete uniform spaces are complete, therefore Y, = limXy with the
uniformity 28, inherited by the product uniformity, is again complete. By the methods
developed by J. Flachsmeier in [8], we easily learn that X can be embedded as a dense
subspace of Y and 1[,, is the subspace uniformity inherited by the uniformity 2B
of ¥.:

3 — Fundamenta Mathematicae XCVIII
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Tn fact, since all projections pg: X— Xy are uniformly continuous, so is the em-
bedding i of X into ¥, and since all ¢y are quotient maps, I is an uniform embedding.
So (Y, I3,) is the completion of (X, 1f). Moreover, ¥, can be considered as a sub-
space of Yy,, the completion of (X, ) constructed in the same way as Y. But
as it is well known (A. C. M. van Rooij [35]), [23] the completion of (X, Wg,) is,
homeomorphic with the N-compactification X of X, i.e. the reflection of X in the
category of N-compact spaces. Therefore, since X is N-compact, we have
R~ X = Y, =~ Yy, and we have gotten:

THEOREM 4.3. 4 T,-space X isN-compact iff X is homeomorphic with the inverse
Timir limX; of an inverse spectrum consisting of discrete spaces X; where card X<k
and k is a non-measurable cardinal.

§ 5. Spaces having unique uniform structures with linearly ordered bases.
As it is well known, compact spaces X have unique uniform structures 1 compatible
with their topology I: a base of U consisting of all neighbourhoods of the diagonal
{(x, x)] x € X'} which are open in the space X x X. Conversely, there are noncompact
spaces having unique uniform structures. For uniformities with linearly ordered
bases we obtain

TrEOREM 5.1. 4 topological space X is a compact metric space if and only if the top-
ology of X can be induced by a unique uniform structure which has a linearly ordered
base.

Proof. Since the “only-if-part” is obvious, let us prove sufficiency. Let X have
a unique compatible uniform structure U and let B = {V] t<w,} be a linearly
ordered base of 1, then the topology induced by M on X is paracompact (see § 3).
So thete is 2 complete uniformity 8 compatible with the topology. Because of uni-
queness, B = 1. '

On the other side, the completion of X with respect to 1l must be the Stone~Cech
compactification BX of X. Hence X = BX, and X is compact. But any compact
uniform space with a linearly ordered base is metrizable. This follows from a more
general theorem of P. Nyikos and H. C, Reichel in [28]. Nevertheless, let us
prove this special case just by a few words: let {B| t<w®,} be a base for .
‘We can assume then that B,cB, iff 7>0, that the intersection of fewer than w,
many B.’s in an entourage again and that every B, is clopen in X’'x X' (compare
§1 and § 4). So either w, = wy, or there is an open covering {X\B)| i<wo} of
the clopen, and hence compact subspace X\ ().B; (i<wp) which has no finite
subcover, Thus X is metrizable.

Theorem 5.1 characterizes those spaces X having a unique uniformity 2 with
the additional property that U has a linearly ordered base. It might now be inter-
esting to characterize those topological spaces X which may have several compatible
uniform structures but exactly one of them with a linearly -ordered base. In this
respect we can. prove the following

PROPOSITION 5.2. Let w,>wy. An o,-compact Hausdorff space (§ 3) has at
most one uniform structure with a linearly ordered base of power w,. .
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Proof. Let U be a compatible uniformity with a linearly ordered base B of
power §,, then, as we have shown in §4, we can assume that all systems
U, = {U(x)| U e B} are partitiones of X into open and closed sets. Moreover,
card W <w, for all 7. Now let & = {4,] t<wu<w,} be an arbitrary partition of X into
fewer than @, open and closed sets, then 2 is a uniform cover with respect to 2, in
other words: thereisa Ve Wsuchthat {V(x)| x e X} refines . Of course, since U
generates the topology and all 4, are open sets, for every A, e Wthere is an U, e B
such that U, refines the partition {4,, X\4,}. And since V =T, t<a<m,)
is an entourage of W again as we have seen in § 3, V is the entourage we were looking
for.

So U is the unique uniform structure of X generated by the system of all par-
titions of X into closed and open sets.

By similar methods we obtain another metrization theorem:

THEOREM 5.3. A4 topological space X is a separable metric space if and only if its
topology can be induced by a totally bounded uniformity with a linearly ordered base.

Proof. Let (4% ) be as in Example 1.1; then, by Theorem 2.3, i is com-
plete. So, if 1, is totally bounded, (4%, U, is compact and hence metrizable (and
therefore separable) by the argument used in the proof above. -Now let (X, 10) be
any totally bounded uniform space with a linearly ordered base, then (X, ) is
unimorphic with a subspace ¥ of a certain space (4%, ) as mentioned in § 1, and
the arguments above applies to the closure ¥ of ¥ in (4%, W,). Thus (X, ) is metri-
zable, and a metric space is separable iff it ismetrizable in a totally bounded manner.

§ 6. Psendometrics compatible with uniformities with linearly ordered bases.
As it is well known, uniform spaces (X, ) can be described by families of pseudo-
metrics d: X x X—R. Asusual, a pseudometric 4 on X is called uniform relative to 1,
if for every £>0 there exists an U e !l such that (x, y) e U implies d(x, y)<e. For
a given uniform space (X, i) the family P of all pseudometrics d on X uniform
relative to U is

(i) separating, i.e.: for every pair x, y € X there exists a d e P with d(x, y)>0;

@) full, i.e. if dy, d, e P, then max(d;, d,) € P.

Conversely, any full separating family $ of pseudometrics d on X determines
a uniformity 1 on X such that all ¢ € P are uniform relative to 2. In fact, the system
of all

U = {(x, 2 dix, <2, n=1,2,..,de%,

is a base of U.
A pseudometric d is called non-archimedean [19] iff

d(x,y)<max(d(x,z),d(z,y) forall x,y,zeX.

(F. Hausdorff [13] and some other authors “call them wultra(pseudo)metrics).
J. de Groot [10] has proved the following
3%
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“THEOREM. A metric space X is strongly zerodimensional (dimX = IndX = 0)
if and only if X is non-archimedeanly metrizable (*).

There is a corresponding characterization of weakly zerodimensional spaces X
(indX = 0):

ProposiTiON 6.1. A completely regular space X is weakly zerodimensional
(ind X = 0) iff X has a compatible uniformity determined by a family B of non-archi-
medean pseudometrics.

Proof. Note that for any pair of n.-a. pseudometrics dy, d, on X, d = max(d,, dy)
is a n.-a. pseudometric again. Let P = {a,/ie 1} be a full family of n.-a. pseudo-
metrics, then for every x € X, the “balls” U,(x) = {y| d(»,») < Inln=1,2,..,de9,
are clopen sets and form a neighbourhood base of x. Conversely, for any clopen
set AcX, define d,(x,) = 0 iff x and y are elements of 4 or X\A4, otherwise let
dy(x,y) = 1. Then the system D = {d,| 4 is clopen in X} is a separating full system
of n.-a. pseudometrics, and the uniformity 2 determined by D is compatible with
the topology of X. (Compare also [19] and [4])

Using n.-a. pseudometrics we can formulate a nice characterization of uniform
spaces (X, ) with linearly ordered base: let B = {B/| t<w,}, u>0,be such a base,
then, as mentioned in § 4, we can assume that for every t<w,, B, = {B(x)| xeX}is
a clopen partition of X, B, refining B, iff v>¢. If we let d(y, z) = 0iff y, z belong
to the same set B,(x) and d,(», z) = 1 otherwise, we obtain a linearly ordered system
of n.-a. pseudometrics compatible with . Hereby we have d;=>d; iff di(x, y)<e
implies d;(x, y)<e for every £>0. Conversely, if a w, -uniformity 2 on X (i.e. every
countable intersection of entourages is an entourage) is induced by a linearly
ordered, full and separating system of pseudometrics {d;| ieI}, then U has a lin-
early ordered base. Hence X is either a discrete space (if I is countable) or X is
a strongly zerodimensional space. Moreover, {d;| ie I} can be replaced by a lineaxly
ordered, full and separating system of non-archimedean pseudometrics tor L.

Thus, summarizing results of this paper (combined with well-known results
cited above) we obtain a corollary which supplements the theorem of de Groot
and the remarks above. (Obviously, a countable system of n.-a. pseudometrics
for U can always be replaced by a n.-a. metric for ) ’

COROLLARY 6.2. For any uniform space (X, W) are equivalent:

() W has a linearly ordered base and is not metrizable.

(i) U is a non-discrete w,-uniformity which can be generated by a linearly
ordered, full and separating system of pseudometrics.

(iii) U is a non-discrete w,-uniformity which can be generated by a linearly
ordered, full and separating system of non-archimedean pseudometrics.

(iv) U is non-metrizable but can be generated by a linearly ordered, full and se-
parating system of discrete pseudometrics.

() The theorem partly was known to F. Hausdorfl [13]. See also J. Nagata [22].
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Proof. The proof follows from the remarks above: (iv)=(iii)=(ii)=>()=>(iv).

Remark. Having concluded this paper I was informed that I. Juhasz in Unter-
suchungen iiber ®,-metrisierbare Riume (Annale Univ. Sci., Section Mathematicai,
Budapest, Tom. VIIL (1965), pp. 129-145) proved a theorem which — in a great
part — is analogue to Proposition 1.2 in the introduction of this paper; however,
Juhdsz used different definitions and methods. (Amongst others, Juhdsz used the
generalized continuum hypothesis for his proof; later, in 1973, it was shown by
M. M. Coban that the assumption of CGH can be deleted (Akad. Nauk. Moldav-
skat SSR. Izvest. Bul. Akad. RSS Moldovenest 3 (1973), pp. 12-19 & 91, in Russian)).
Moreover, Theorem 3.2 could also be deduced from a theorem in Juhdsz’ paper,
by applying the theorem of Stevenson and Thron (§ 1). On the other hand, the proof
of our Theorem 3.2 uses different methods and seems to be shorter and more direct.

T want to thank P. Nyikos for valuable discussions.
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