A note on the cardinal factorial

by

David Pincus* (Cambridge, Mass.)

Abstract. A model of set theory without choice is exhibited which satisfies "For all infinite \(x \), \(2^x = x^x \).

Dawson and Howard [1] compare the cardinals \(2^x \) (the cardinal of the power set) and \(x! \) (the cardinal of the symmetric group) in set theory without the axiom of choice. They show that \(x < x! \) for \(x \geq 3 \), \(2^x < x! \) for \(x \) such that \(2 \times x = x \), and \(2^x = x! \) for \(x \) such that \(x^2 = x \). They also illustrate by examples in models of set theory that all 3 possibilities of inequality between \(2^x \) and \(x! \) can occur. These possibilities are: \(2^x < x! \), \(x! < 2^x \), and \(2^x \) is incomparable with \(x! \).

A question which Dawson and Howard pose without answering concerns the strength of the statement "For all infinite \(x \), \(x! = 2^x \). They ask whether this statement is equivalent to the axiom of choice. In this note we answer the question in the negative by producing a model for ZF set theory in which the statement is true and the axiom of choice is false.

1. The model. The model is introduced in [3] § II as an example of a ZF model without choice in which there is a class of sets consisting of exactly one representative for each cardinal number. It is defined as \(M = U[I] \) where \(U \) is a model of ZF, class choice, and the generalized continuum hypothesis and where \(I = \bigcup_{\alpha \in \omega} I_{\alpha} \), \(I_{\omega} = 2 \), and \(I_{\alpha \cdot 2} \) is a countable set of independent generic functions from \(\alpha \) onto \(I \). Notice that \(\langle I_{\alpha}; \alpha \in \omega \rangle \in M \), \(I_0 = I \cap 2^x \), \(I_{\omega \cdot 1} = I \cap I_0^x \).

\(M \) can be regarded as an intermediate model between \(U \) and \(V \) where \(V \) is the extension of \(U \) by a generic filter for a countable partially ordered set. It follows that \(V \) satisfies class choice and the generalized continuum hypothesis and that alephs and cofinalities are preserved between \(U, M \) and \(V \). We adopt the convention that a set theoretical concept is assumed to be defined relative to \(M \) unless a relativization to \(U \) or \(V \) is indicated by the appropriate superscript. A concept, such as \(\omega_\alpha \), whose meaning is independent of its relativization to \(U, M, \) or \(V \) is not superscripted.

* Partially supported by NSF grant GP 44014.
a. Remark (in M). If 2 sets of ordinals have the same cardinal then there is
a 1:1 onto map between them defined from parameters in U.

Proof. Map the two sets 1:1 and onto the ordinals of their order types. The
two ordinals have the same cardinal in M, hence in U, so there is a 1:1 onto
map between them in U.

2. The support structure of M. If G is a finite subset of I we say that x ∈ VG
if x is definable in M with parameters in G ∪ {I} ∪ U. Since M = U[U] and
the transitive closure of I ⊆ U ∪ I follows that every x ∈ M belongs to some VG. I has
a canonical linear ordering in M (it is defined inductively using I_{x+1} ⊆ \mathbb{I}_x) so
there is a canonical function T(G,x) such that for fixed G, T(G,x) maps On the (class of
ordinals) onto VG.

Every member of I_{x+1} is a map from ω onto I_x. It follows that if G⊆I_{x+1}
VG contains an enumeration of \bigcup I_\omega. Thus if x ∈ M there is an n ∈ ω and G ⊆ I_n
such that x ∈ VG. The support lemma ([3] II 14) shows that if n is taken to be least
and [G] is taken to be minimal then G is uniquely determined. This G is denoted G_n.
A corollary of the density lemma ([3] II 13b) is that if n ∈ E then f|G ⊆ E and G ⊆ I_n.
From this:

a. Theorem [3]. The axiom of choice fails in M. In fact (J_x: n ∈ \omega) is a countable
sequence of countable sets which fails to have a choice function.

b. Theorem [3]. The ordering theorem is true in M. In fact if J_x is the set of
finite subsets of I_x and J = \bigcup J_x then there is a 1:1 onto function T*: J x \mathbb{N} → M
x \omega definable from I in M.

c. Theorem [3]. There is a function, \mathcal{F}, definable from I in M such that for the
infinite x, \mathcal{F}(x) is a countable (in M) subset. \mathcal{F}(x) is easily produced from the fact
that for some least n, x ∈ \bigcup VG is infinite.

3. On 2^\omega in M. Since each G ∈ E is coded by a real. (An easy induction on n
established this for f|G and a coding trick; together with Theorem 2b, extends this
to G.) Since 2^{\omega^2} = \omega_{x+1} it follows that \{[α ∈ 2^\omega: G_n = G] = \omega_{x+1}. (x)
denotes the cardinal number of x.) Remark la now gives:

a. Lemma (in M). 2^\omega = [J x \omega_{x+1}].

For any x ∈ M and G ∈ J set o(G, x) = [y ∈ x: G_y = G]. Also set o(x) = Sup(o(G, x)) and o^*(x) = Max(o, o(x)).

b. Lemma (in M). If 2^{\omega} \subseteq \omega(x) and o(x) \subseteq \omega_{x+1} then 2^{\omega} \subseteq \omega(x).

Proof. By the Cantor–Bernstein theorem one need only show [x] \subseteq 2^{\omega}. By
Remark la and the fact that o(x) \subseteq \omega_{x+1} there is a 1:1 map from x into J x \omega_{x+1},
This suffices by Lemma 3a above.

4. The Main Theorem (in M). If x is infinite 2^\omega = x = 2^{\omega}(x).

Proof. We will apply Lemma 3b. Let o^*(x) = o_x. To see that 2^{\omega}(x) \subseteq o_{x+1}
notice that o^*(x) = [x] so that (2^{\omega}, o_{x+1}, 2^{\omega}(x), \omega, \omega_{x+1}) so [x] \subseteq o_{x+1} for any well
ordered x \in x. This applies in particular to \{y ∈ x: G_y = G\}. A similar argument
shows that o(X) \subseteq o_{x+1}.

It remains to prove 2^{\omega}(x) \subseteq 2^\omega and 2^\omega \subseteq 2^{\omega}(x). We consider first the case in
which x has a subset y, with cardinal o^*(x). This case includes o^*(x) = \omega by
Theorem 2c. In this case 2^{\omega} \subseteq 2^\omega. Also, since \omega^2 = \omega,
2^{\omega}(x) = 2 = y \subseteq x.

Unfortunately, owing to the lack of choice in M, one cannot dismiss the possibility
that x has no subset of cardinal o^*(x). In this case (o(G, x): G ∈ J) is a countable
set of ordinals by Remark 1a and the fact that J is a countable union of countable
sets. Let o_{\omega} < o_{\omega+1} < o_{\omega+2} \cdots < o_\omega(x) be a sequence of uncountable cardinals
from among the o(G, x) with limit o^*(x). (Note that o^*(x) = o(x) since
o^*(x) \neq o_x.) Let A_x = \{G ∈ J: o(G, x) = o_\omega(x)\}. Let y = \bigcup A_x. Another
use of Remark la permits the conclusion that [y] \subseteq [x], hence that 2^{\omega} \subseteq 2^\omega and y \subseteq x.

It now suffices to show 2^\omega \subseteq 2^{\omega} and 2^{\omega}(x) \subseteq 2^\omega. Actually 2^{\omega}(x) \subseteq 2^\omega
will do because y = 2 = y so 2^{\omega} \subseteq y. To see that y = 2 = y one has only to notice that the
canonical-defined 1:1 onto maps between o_\omega and 2^\omega gives canonically 1:1 onto
maps between A_x x o_\omega and 2^\omega x A_x x o_\omega. These patch together to give a 1:1
onto map between y and 2 x y.

It is also not difficult to see that 2^{\omega}(x) \subseteq 2^\omega. Map a o^*(x) to (A_x x (o^*(x) \land n)).

If a \neq b then, as o^*(x) = Sup(o^*(x)), some a \wedge o^*(x) \neq b \wedge o^*(x). Thus a and b have
different images.

5. Concluding remarks.
a. 2^\omega = x can now be seen not to imply 2^\omega \subseteq x or even 2 \times x = x. As was
shown in [3] II 19, the set I fails to satisfy 2 \times x = I in M.

b. M satisfies "For every infinite x there is a well ordered o^*(x) such that
2^\omega \subseteq o^*(x)." This is an interesting property but it does not imply 2^\omega = x
because a similar argument establishes this in the model U[I_\omega] which is the
Halpern–Lévy model of [2]. U[I_\omega] can be seen, by methods similar to those of [1],
to satisfy I_\omega \subseteq 2^{\omega^2}.

c. Our arguments have made little use of the particular definition of x! Indeed
let \mathfrak{F} be any set valued operation which satisfies:

1) The predicate y ∈ \mathfrak{F}(x) is absolute (at least from M to V).

2) ZF proves |y| \subseteq x \Rightarrow \mathfrak{F}(y) \subseteq \mathfrak{F}(x) and |2x| = |x| \Rightarrow 2^\omega \subseteq \mathfrak{F}(x) for
infinite x.

3) ZF with choice proves 2^\omega = \mathfrak{F}(x) for infinite x.

The statement "For every infinite x, 2^\omega \subseteq \mathfrak{F}(x)" holds in M (and therefore
is not an equivalent to the axiom of choice). Examples of \mathfrak{F}, apart from x!, are x^x
and x^x - x!."
References

[2] J. D. Halpern and A. Lévy, The Boolean prime ideal theorem does not imply the axiom of

UNIVERSITY OF WASHINGTON
Seattle, Washington
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Mass.

Accepté par la Réduction 26, 5, 1975

Some results on uniform spaces
with linearly ordered bases

by

Hans-Christian Reichel (Wien)

Abstract. The paper is concerned with uniform spaces having a base linearly ordered by in-
cclusion of entourages (or by refinement of uniform coverings, respectively). By a well-known fact,
these spaces coincide with the so-called \(\omega _n \)-metric spaces, for which several well-known me-
trization theorems can be extended. — Amongst several applications, two characterizations of compact
metric spaces and of separable metric spaces are derived.

\(\S \) 1. Introduction. The uniform structure \(\mathcal{U}_x \) of any metric space \((X, d) \) obviously
has a linearly ordered base \(\mathcal{B} \) consisting of entourages

\[U_n = \{(x, y) \mid d(x, y) < 1/n\}, \quad n = 1, 2, \ldots \]

More generally, it is interesting to study uniform spaces \((X, \mathcal{U}) \) with linearly ordered
bases \(\mathcal{B} \) (\(U_i < U_j \) iff \(U_i \supseteq U_j \) for \(U_i, U_j \in \mathcal{B} \)). Such spaces have been investigated by
many authors and under several aspects: R. Sikorski [37], F. Hausdorff [12, p. 285 ff],
L. W. Cohen and C. Goffman [5], F. W. Stevenson and W. I. Thron [39], Shu-Tang
Wang [42], P. Nyikos and H. C. Reichel [27, [28], A. Hayes [15], P. Nyikos [25],
R. Paindree [29], E. M. Alfsen and O. Njastad [2], M. Fréchet [9].

If \((X, \mathcal{U}) \) is a uniform space with a linearly ordered base \(\mathcal{B} \) and \(\kappa \) is the least
power of such a base, then there exists an equivalent well ordered base of power \(\kappa \) \((39)\). (Obviously,
such a space is metrizable iff \(\mu = 0 \)). Moreover, F. W. Stevenson
and W. I. Thron [39] showed that any such space \((X, \mathcal{U}) \) is \(\omega _\alpha \)-metrizable
in the sense of R. Sikorski. That means: there is a linearly ordered abelian group \(G \)
which has a decreasing \(\omega _\alpha \)-sequence converging to 0 in the order topology, and
a "distance function" \(g: X \times X \to G \) satisfying the usual axioms for a metric on \(X \),
which generates the topology of \(X \). (Here \(\omega _\alpha \) denotes the \(\mu \)th infinite cardinal).

Conversely, any \(\omega _\alpha \)-metric \(g \) on \(X \) induces a uniformity \(\mathcal{U}_x \) on \(X \), a base of which
consists of all sets \(U_a = \{(x, y) \mid g(x, y) < a\}, \quad a \in G, \ a > 0 \). Many properties of metric
spaces have their analogues in the theory of \(\omega _\alpha \)-metric spaces, however the un-
countable case usually regards different proofs and methods (see for example: \[27,
[28], [42]\).