icm

Separation properties in Moore spaces *
by

William G. Fleissner (Athens, Ohio)

Abstract. We prove consistency results about the relation of separation axioms in Moore spaces:
Specifically, we prove, under various set theoretic assumptions: 1) separable (or more generally,
countable chain condition), countably paracompact Moore spaces are metrizable, 2) thete is a normal,
collectionwise Hausdorff, non-metrizable Moore space, 3) there is a collectionwise Hausdorff,
nonnormal Moore space, and 4) there is a w,-collectionwise Hausdoxff, not collectionwise Hausdorff
Moore space.

The problem of distinguishing normality from metrizability is the old and well
known normal Moore space conjecture. In this introduction we explain why we are
interested in distinguishing the other separation properties discussed in this paper.

Let us begin with Burton Jones’ 1965 account [7] of the origin of the normal
Moore space conjecture. “As far as I know the first example of a non-metric Moore
space was discovered (probably by Moore himself) in the late 1920’s. (A description
of two spaces similar to what is called the Cantor tree in [15]). The usual way to see
that these spaces were not metric was to observe that each contained a closed sep-
arable subspace which ... had no countable topological base. This kind of obser-
vation left me mildly restless and it was only after I discovered that neither was normal
that I felt that I was closer to the “real reason” for non-metrizability... Among several
examples of non-separable non-metric Moore spaces there is one which I had high
hopes of proving normal. (A description of the Jones’ road space.)”

Using the consistency of Martin’s Axiom and the negation of the Continuum
Hypothesis, we know that we cannot prove that the w,-Cantor tree (a nonmetriz-
able subspace of the Cantor tree) or the Jones’ road space is not normal. And
Jones’ old resrilt (Lemma 2.1 below) shows that for separable Moore spaces metriz-
ability is the same as ,-collectionwise Hausdorff. In the author’s opinion the
“real reason” why the examples above are not metrizable is that they are not w,-col-
lectionwise Hausdorff.

So the Moore space metrization problem can be asked in three ways.

1. What is the “real reason” that nonmetrizable Moore spaces are nonmetriz-

able?
* This paper was supported in part by the National Research Council of Canada.
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2. Are normal Moore spaces metrizable?

3. Are w;-collectionwise Hausdorff Moore spaces metrizable?

Of course, Bing [2] has answered question 1. And time has vindicated Jones’
choice of question 2. :

Countable paracompactness is, technically, a covering property rather than
a separation property. But in Moore spaces, it is implied by normality and it implies
that two closed sets, one of which is countable, can be separated. And there still
is no absolute example distinguishing it from normality (or even metrizability)

in Moore spaces. This topic is discussed more fully in [21].
Diagram 1 illustrates the need for work in distinguishing scparation properties
in Moore spaces. Diagram 2 illustrates the results of this paper and some recent

results of Wage and Reed. In the diagrams, double
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Diagram 1. Separation properties in Moore spaces (up to 1974)
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Diagram 2. Results of this and Wage’s papers
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arrows are consistency results, and dotted arrows are results for the special case of
separable (or countable chain condition) spaces. .

Although the author was motivated by Moore spaces, these results and techni-
ques have applications in other arcas; e.g. the density topology [18], separation
properties in products [11], and decompositions of metric spaces [13].

The author wishes to thank Frank Tall, Teodor Przymusiriski, and especially
Roman Pol for interesting and helpful letters in response to early drafis of this paper.

1. Notation. For topological notions we follow [15], and for set theoretic no-
tions, [9]. In addition, we need some notions concerning closed discrete collections
of points, and another axiom of set theory.

A space is x-collectionwise Hausdorff (<x-collectionwise Hausdorff) if every
closed discrete collection of <x-many points (<x-many points) can be simul-
taneously separated by disjoint open sets.

A space is x-compact if every set of cardinality » has a limit point. An associated
cardinal function is defined by A(X)<A iff there is in X a closed discrete collection
of A-many points. .

We denote the collection of regular open sets of X by RO (X); and the cardi-
nality of RO(X) by [RO(X).

The class of ordinals of cofinality w is denoted CFo.

E(x) is the assertion that x is a regular cardinal >wm,, and that there is a set
EcCFw % such that a) E is stationary in » and b) E N « is not stationary in o for
any a<x.

2. Separable, countably paracompact Moore spaces. For many years, the only
result on the normal Moore space conjecture was the following, due to Jones [6]1.

LEMMA 2.1. An ;-compact Moore space is metrizable.

LEMMA 2.2. A normal space X is 2°®- compact. Or, if A(X) is attained, 240 « 290,

THEOREM 2.3 (2°<2®"). Separable normal Moore spaces are metrizable.

In this section, we prove an analogue of Lemma 2.2.

LemMa 2.4. A countably paracompact space X is [RO(X)|%compact. Or, if
A(X) is atrained, 4(X)<|RO(X)|".

Proof. We prove the contrapositive. Let » = [RO(X)|®. Let {%,: a<x},
where %, = {U,: i€ w}, index the locally finite sequences of regular open sets.
Let ¥ = {y,: a<x} be a closed discrete collection of points. We partition ¥ into o
pieces Y;, i€ w, by placing y, in Y, where m is least such that Y. U,,. Let
Vi = X—(Y-Y)). It is easy to verify that the open cover {V;: ie o} has no locally
finite open refincment.

'THEOREM 2.5 (CH). A separable, countably paracompact Moore space is metriz-
able. . ‘

Proof. First, notethat [RO(X)|<2'® = 2°; so |[RO(X)|°<(29)° = 2°, which
is w; by CH. By Lemma 2.4, X is e,-compact; then by Lemma 2.1, X is metrizable.
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Remark 2.6. Assuming MA plus not CH, Mike Wage [19] has constructed
a countably paracompact, not normal Moore space. With the same assumption,
Mike Reed [21] has constructed a separable such example.

Remark 2.7. The first draft of this paper had 2°® in place‘of ]RQ (X)]. A letter
from Frank Tall informed the author of the following facts. Sapirovskil had replaced
the 27 with |RO(X)| in Lemma 2.2; his technique can be applied to countable
paracompactness; and |[RO(X)|” = [RO(X)I.

~ 3. Some Moore spaces suggested by Starbird. Perhaps the favorite example of
a nonmetrizable Moore space is the Niemytskii plane. The points of the space are
the points of the plane. Points not on the x-axis are isolated. A neighborhood Qf
a point on the x-axis is an open disc in the upper half-plane tangent to thfa x-axis
at the point, plus the point itself. In this section we use T, a subspace consisting of
Y = {y,; a<w,), 0, points on the x-axis, plus D, all the isolated points. Tt is well
known ([15]), for example) that T'is not normal if 2° <2”* and T'is normal if MA plus
not CH.

Let M be a metric space. In the product T'x M, we make points (d, m) isolated;
points (y,, m) have the usual product neighborhoods. Mike Starbird suggested the
class of subspaces of such spaces as a good place to search for absolute examples of
normal nonmetrizable Moore spaces.

In this section, the metric space will be B,, the Baire space of weight x; equiva-
lently, the usual product of countably many copies of the discrete space of cardi-
nality %. We consider points of B, to be functions f from @ to x. Let £* be the least
ordinal strictly greater than every element of the range of £, Assume that x is regular
and greater than ;. Let 4=CFw n x be stationary. By the Ulam-Solovay theorem,
4 can be split into w; disjoint stationary sets, 4,, a<w;. We will consider spaces
of the form

X = {(d:f) deD,feB,,}u{(y,,,f): Yu € stEBu’f*EAa}'

THEOREM 3.1. a) X is normal if T' is normal.

b) X is not collectionwise normal.

©) X is normal only if T is normal.

d) If A witnesses E(x), then X is collectionwise Hausdorff.

CoroLLARY 3.2. a) (E(%) for some x). There is a collectionwise Hausdoryf, not
collectionwise normal Moore space.

b) (MA. plus not CH plus E(x) for some %). There is a normal, collectionwise
Hausdorff, not collectionwise normal Moore space.

©) (2°<2”! plus E(%) for some %). There is a collectionwise Hausdorff, not normal
Moore space.

Proof of 3.1 a). The proof will show that this, Starbird’s Lemma, holds in more
general situations. We start with an easy lemma.

icm

Separation properties in Moore spaces 283

Lemva 3.3. Let {U;: ie o}, {V;: ic w) be open covers of H, K respectively,
satisfying U, " K = @ = V, n H for all i. Then there are disjoint open U, V cover-
ing H, K respectively.

Proof. Define U= | {Ui~( U ..uP): ie Y}. Define V similarly.

Let H, K be disjoint closed subsets of X, It is sufficient to consider the case
where H U K= Y'x B,

Let # = U {4,: iew} be a o-discrete base for B,.

For Bed, define H(B) = {y,: {(y}xBnH @, (P} xB A K = @}, and
K(B) similarly. Using the assumption that T is normal, define disjoint open U(B),
V(B) such that V(B)> H(B), V(B)>K(B). Set U= U{UB)xB: Bed}, V;simi-
larly, and apply Lemma 3.3.

Proof of 3.1 b), ¢). We start with a combinatorial lemma.

Lemma 3.4. Let ScB,. If {f*: fe S} is stationary, there is a cub C such that
CFw n C={f*: fe8§}.

Proof. Let X be the set of functions ¢ from a natural number to » such that
{f*: ocfe S} is stationary. By assumption ¥ # &. Using the Pressing Down
Lemma, we can show that there is a function §: X x x—s% such that (i) 6(c, 0)> 0,
(ii) range 0(c, a)a. Let C be the set of v such that <y, range o<y implies range
0o, ®)cy. ‘

COROLLARY 3.5. Let ReCFow N % be stationary. Let R’ ={f:f*eR}. Let Ube
an open set of B, containing R'; let F = B,—U. Then, { f*: fe F} is not Stationary.
Equivalently, there is a cub C such that f* e C implies fe U.

Note that if for some f, T'x { f } = X, the statement 3.1 b), ¢) are obvious. Loosely
speaking, our plan is to use Corollary 3.5 to choose an f such that, in effect,
Tx{f}cX.

We now prove 3.1 ¢). (3.1b) is similar). Let H, X be any disjoint subsets of ¥,

Let U = {U,: aew;} be a family of open sets such that

() U, is the union of basic open rectangles, one for each 0. eX.

() If y,e H, y;e K then U, A Uy = 0.

Apply Corollary 3.5 to each U e % to get cubs C(U). Let C = N{CU): Ue ).
C is cub because »>card%. Choose fe B,, f*eC. Then we can use % to show
that Hx{f} and Kx{f} can be separated in T'x {f }, and hence H, K can be
separated in T.

Proof of 3.1. d). Let Z< X be a closed discrete collection of points. Define:
Z’ = {f: @G’f)ez, y{ZE Y}’
Z|p={feZ': F*<p},
Z*={f* feZ'}.
It will be sufficient to show that Z’ is o-discrete. For then X' =DxB,uZ

has a o-discrete base. Because X" is metrizable, Z can be separated in X7, and
hence in X. '
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We will show by induction on 8, f<x, that Z|f is o-discrete. The induction
iseasyfor B =0, f = 6+1, and cf f = w. For cff>w we need to know that there
~ is Ccub in B disjoint from Z*. If f<x, this follows from E(%); for B = %, we prove
the following lemuma.
LEMMA 3.6. Z* is not stationary in .

Proof. For each «, {y,} x B, is metrizable, a fortiori collectionwise Hausdorff.
It then follows from the Pressing Down Lemma that for each o { f*: (v,,/)eZ}
is mot stationary. Because x>w,, Z*, the union of @, not stationary sets, is not
stationary.

Now, because C is cub in B and disjoint from Z*, we can define for all fe Z|p
ordinals y(f), y*(f) such that

0 ()< *<r (),

(ii) there is no 7' e C strictly between y(f) and y*(f).

By induction hypothesis, Z|y is o-discrete. So we can write { fe Z]y:y = y"(f)}
= U {W,s: i,k e} such that f, g € W, implies ’

(i) f11+# gli,

(iv) there is m<i such that f(m)=y(/).
Then, () {W,u: yeC} is discrete, demonstrating that Z|f is o-discrete.

Remark 3.7. Any not o,-collectionwise Hausdorff Moore space could have
been used for T.

Remark 3.8. The proof of 3.1 presented above does not seem to show that X is
countably paracompact iff T' is countably paracompact.

Remark 3.9. At about the same time, Alster and Pol [1] independently con-
structed a consistent example of a collectionwise Hausdorff not normal Moore
space under weaker set theoretic assumptions. The history of this problem is discussed
in the introduction of [20], in which Wage constructs an absolute example of a collec-
tionwise Hausdorff not countably paracompact Moore space.

Remark 3.10. In the first version of this paper, the examples were constructed

separately, using an additional set theoretic assumption beyond the assumptions of
Corollary 3.2 in the definition of the spaces. The author is very grateful for a letter
from Roman Pol containing the definition of X used above and the following result
(which is Corollary 6 of [13]).

Lemma 3.11 (E()). There is a decomposition of B, into w, pieces R, o<w,,
such that

@ if U,oR;, is open, then \{U,: a<w,} # @,

(i) every selector (i.e. choice function, or transversal) is o-discrete.

Proof. As in the proof of 3.1 b), d). Pol’s proof of i) uses Arthur Stone’s notion
of ¢-LW(<1) rather than Corollary 3.5.

Rema.rk 3_.12. An absolute example of a normal, collectionwise Hausdorff,
not collectionwise normal space is given in [4] (and also in [I5] and [12]).
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4. <x-collectionwise Hausdorff, not x-collectionwise Hausdorff Moore spaces.

THEOREM 4.1 (E(x)). There is a <x-collectionwise Hausdor[f, not »-collectionwise
Hausdorff Moore space.

Proof. We define a “wide” Cantor tree [15]. Let E witness E(x). For A¢ E,
choose f3: w—A with the range of f cofinal in 4. Let D = {filn: 1€ E, new}.
The points of the space S are D U {f,: A€ E}, Points of D are isolated; the nth
basic open neighborhood of f; is {3} U {film: m=n}. It is straightforward to use
the Pressing Down Lemma to show that S is not x-collectionwise Hausdorff. That S'is
< x-collectionwise Hausdorff is proved as in 3.1d).

Remark 4.2. Let E' be the set E with the topology inherited from » with the
order topology. With a proof paralell to that of Theorem 4.1 above, Istvan Juhész [8]
independently showed that E' is a first countable nonmetrizable space all of whose
subspaces of cardinality <s are metrizable. S also has this property. It is interesting
to note, in light of Bing’s theorem, that S is Moore and E’ is collectionwise normal.

Remark 4.3. Another way to construct a <x-collectionwise Hausdorff, not
x-collectionwise Hausdorff Moore space is to apply Mike Reed’s technique [14]
to E'. - .

Remark 4.4, Teodor Przymusifiski [12] constructs an absolute example of
a <x-collectionwise normal, not x-collectionwise Hausdorff space.

5. Consistency. All the combinations of axioms used in this paper are consistent.
Jensen [5], assuming V = L, shows that E(») holds for all regular, not weakly com-
pact cardinals x greater than wy. It is easy to show that E(x) is preserved under ccc ex-
tensions; in particular, the Solovay-Tenmenbaum extension forcing MA plus
not CH. Finally, Baumgartner [22] has shown that in the Lévy model, collapsing
a weakly compact cardinal to @,, E(w,) is false.
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