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C-S-maximal superassociative systems
by
H. Liinger (Vienna)
Abstract. Let (4, ) be an n-dimensional superassociative system, C the set of its constants
and S the set of its selectors. Further assume, that for any i = 1, ..., n there exists at least one ith

selector in (4, ). The problem of determining all the pairs (n, |C]), for which (C v S, %) is already
a maximal irreducibly generated subalgebra of (4, %) is solved.

This paper is devoted to the study of certain superassociative systems. The notion
of superassociativity was introduced by K. Menger, who was the first to point out
the importance of considering such algebras (cf. [1]).

Let # be some positive integer and for each set X denote its cardinality by |X].
Now we define an n-dimensional superassociative system or an n-system — as we
shall call it briefly — to be an algebra (4, ) of type n-+1 such that the equality

HHXG coo XV vee Vi = HXGHXL V1 oo Yy oee XXy VL oo Vg

holds for anY Xg, s Xus Y1» e» Vu € 4. (4, %) is called trivial, if |4] < 1. A sub-
algebra of (4, %) is an algebra (B, 1) of type n+1 such that Bis a subset of 4 and
A oon Xy = HXg ... X, TOT ANY Xo, ..., X, € B. By a constant of (4, ») we mean some
element ¢ of A, for which xcx; ... X, = ¢ for any Xy, ..., X, € 4, and denote the set
of all constants by C. An element s; € 4, 1 <i<n, is called an ith selector of (4,%)
provided that xs;x; ... x, = x; for any xq, ..., %, € 4. Let S; denote the set of all ith
selectors of (4, x). We put §: = §; U...US, and call the elements of S selectors
of (4, %). Further we define an n-tuple (sy, ..., 5,) € 4" to be a complete system of
selectors for (4, %) provided that 1) 5, is an ith selector of (4, ») forany i = 1,u,n
and 2) the equality %xs ... s, = ¥ holds for any x € 4. An element & of A is called
symmetric, it the equation xax, .. X, = %aXg(1) -+ Xn(n) holds for any xy,..,x,€4
and for any permutation 7= of the set {1,..,n}. An irreducibly generated (i.g.)
n-system is an n-system (4, %) such that we have xXg ... X, € {Xg, ..., %,} for any
Xosor X, € A. L g n-systems were also considered by H. Skala (cf. [2]). CU S
obviously induces an i.g. subalgebra of (4, ). Applying Zorn’s Lemma to this
special case we see that there exist maxima] i,g. subalgebras of (4, %). Now there
is the question, whether (C' U S, %) is already a maximal i.g. subalgebra of (4, %)
or not. Tf the first comes true, we shall call (4, ) C-S-maximal. Obviously each
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trivial n-system is C-S-maximal. Therefore let us assume (4, %) not to be trivial,
Moreover, we make the following assumption: For any i = 1, ..., n there should exist
some ith selector, say s;, in (4, %). We note that in this case s, % s, holds, if
n>2; for otherwise we should have

X=u4Xy.Yy=u,xy..y=y for any x,yeAd.

The aim of this paper is to determine all the pairs (1, |C|), for which (4, ) must
be C-S-maximal, and those, for which it needs not be.

ProrosiTioN 1. If n=1or ifn =2 and |C|<2 or if n =13 and |C| = 0 then
(4, %) needs not be C-S-maximal.

Proof. We distinguish the following cases: I)n =1, |C| = 0,2) n = 1, |C|=1
Hn=2]CI<2and 4 n=3,|C| = 0. In the first case we define a binary oper-
ation x on the threc-element set 4: = {a; b, s,} as follows: xab: = b, xax: = a
otherwise, xba: = a, xbx: = b otherwise and xs,x: = x for any x & 4. Now we
turn to the sécond case. Let # be some cardinal, 31, C some set with |C| =y
and a, s, two distinct elements not belonging to C. Now we consider the set
A: = Cu{a,s} with the following binary operation » defined on it: xac:'= ¢
for any ce C, %ax: = a otherwise, xcx: = ¢ for any ce C and for any xe 4 and
%81 X: = x for any x € 4. In the third case let m be an integer, 0<m<2. Moreover,
let a, ¢y, €5, 51, 5, be five distinct elements and denote by C the empty set or {e}
or {c, ¢,} according as m = 0 or 1 or 2, respectively. On the set 4: = C U {a, 81,9}
we define a ternary operation % as follows: xacyx = xaxc,: = ¢, for any xe d
if m>1, xac,x = xaxc,: = xforany xe 4 it m = 2, uasys;t = s, forany i = 1,2,
xaxy: = aotherwise, xcxy: = cforany ce Candforany x, y € 4 and HS Xy Xl = X
for any i = 1, 2-and for any x,, x, € 4. Finally, we turn to the fourth case and con-
sider the four-clement set 4: = {a, 5, s,, 3} with the following quarternary oper-
ation x defined on it: xaxyy = xayxy = nayyx: =y for any x,y € 4, xaxyz: = a
otherwise- and xs;x;%,%,: = x; for any 7 = 1,2,3 and for any xy, x,, x;€ 4.

‘Remark. In any of the n-systems defined in the proof above the n-tuple
(845 ... 8,) even constitutes a complete system of selectors.

LemMmA. If (A? %) is not C-S-maximal then there exists some symmetric element
a of 4 such that a¢ C U S, (CUS U {a}, x) is an i.g. subalgebra of (A, %) and
Haxy ... X, % a holds for any i =1,...,n and Jor any

Xy, v Xy @ CU U {S)] Igign, [ 1},

Proof. By definition of C-S-maximality there exists an i.g. subalgebra (B, x)
of (4, %) such that B confains C U S as a proper subset, Now choose some fixed
eIer‘nent a of B\(CUS). We put D: = C"U SuU {a}. Then obviously (D, %) is
an1.g. subalgebra of (4, x). Let 7 be some permutation of the set {1, ..., n}, Suppose

there exists an integer i, 1<i<n, such that A1y s Sy = §;. Then

HAXy ... Xy = ‘ ‘
aAX1 e Xy %%as,,(l) S,,(,,)x,,-x(l) v Xpityy = J{S‘lxn_j(l) oo K=ty == Xp1())
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for any Xy, .., x,€ 4, whence aeS, which contradicts the choice of . Hence
HOSn(1) - Sy = @ and therefore : : ’ 1

HAXy o Xy = HHASp(1) oo Sp(u) Xy woo Xy = HAXn(gy o Xy OF ANY Xy, -, X, € 4.

Thus, the symmetry of a is proved. Now suppose there exists an integer i, 1<i<n,
and elements a;,..,a4,e CU.U{S)] 1<I<n, ] # i} such that ®ady ... a, = a,
‘We show by means of induction on 7 that for any / = 1, ..., n the statement

) HAXY v Xy = KA ., AXpyq .0 X, *fOr any xg, .., X, € A

I

proves true. For I =1 the validity of (1) is shown by the following calculation:
HAX Y oo Xy = HHAGY oo Xy oo XXy K] wor Xy

= HAAAY Ky on Xy Xy Xpg g o Xy von KXy eon XX Xppq eon Xy

I

HAHG Xy oo XX g ove Koy oo Ky Xog ere Xy @Ky e X,
= HHAQY .o Xy oo XiGXpy oo Xy = HAAX, ... X,
for any Xy, ..., x,€ 4. If n =1 then the proof is completed.

Otherwise let 2 < / = s<n and suppose that (1) is already proved for any
I'=1,..,8~1. Observing the lines above’ we conclude xax, ..x, = xa...
v Qg eos Xy = HAXG ... Qg wes Xy = K orr By .. X, fOT any Xy, ..., %, € A. Thus,
(1) holds for any I =1, ..., n Putting / = n we obtain xax; .. x, =xda..a=a
for any xy,..,x,€ 4, whence aeC, a contradiction. Therefore xax, ... x, # a
for any i=1,..,n and for any x4, ..., x,e Cu U {Si| 1<I<n, [ # i}, which
completes the proof of the lemma. : ‘

PRrOPOSITION 2. If n =2 and |C|23 or if n =3 and |C|=1 or if n>4 then
(4, %) is C-S-maximal. )

Proof. In order to prove this proposition by means of contradiction we assume
(4, %) not to be C-S-maximal. The above lemma then tells us that there exists an
element @ of 4 having all properties stated there. Now we distinguish the following
cases: 1) n =2, |C|>3, 2) n =3, |C|>1, 3) n>4, n even and 4) n>4, # odd. In
the first case any two constants ¢, d of (4, ) for which xacs; = ¢ and xads; = d
must coincide because of ¢ = xcda = wracs;da = xacd = nade = xxads, ca
= ndca = d. Similarly any two constants e, f of (4, %) for which xdes; = xafs, = 5,
are equal since e = xs;ea = uxafy, eq = xafe = xaef = uxaes, fa = »s, fa = f.
Hence we obtain [C] <2, which contradicts the assumption. Now we turn to the second
case. Let ¢ € C. We have xacs, 5, = ¢; for xacs, s, = s; with some integer £, I <i<2,
would imply §; = xacs, S, = %acS,5; = *HACS{ 558581 4 = X8;8,8,a = §3_;, which
contradicts [A4] > 1. Suppose as,s,5, = §;. From this we conclude a = s, acc
== A8 8482 ACC = HAACC = HACCA = XHACSy S, caa = xccaa = ¢, which contradicts

the thoice of a. Therefore we have xas, 5,8, = §,, Whence a = xS,caa = uxas;s,s,caa

= nacaa = uxacsys,aaa = xcaaqa = ¢, which again contradicts the choice of a. In
the third case there exists an integer i, 1 <i<2, such that xas, s, ... 8,5, ='s;, whence
8 == HAS| Sg oo 8185 = HASSy ... So81 = HHASYSo o §182858 1 oo 81 = 85281 o0 Sy = S5-45
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which contradicts |4| > 1. Finally, let us consider the fourth case. We have xas, s, 55...
w83 = 83; for ®as8,5,8; .. 83 = & With some integer i, 1<i<2, would imply

§; = KAS{ 8,85 vn §3 = HASHS( S5 e 83 = URAS S5 83 o0 838,883 .. 83
= 28,8, 8183 o 53 = S3_q,
which contradicts |4| > 1. Suppose there exists an integer 7, 1<Ki<2, such that
%aS381 85 ... §,8, = 5;. From this we conclude

§; = HAS3 S8y oo §1 8y = HAS3SH 8y oo Sy = HHAS3 S 8y on 8185855183 .. 83
= U8y 838183 w0 B3 = Sz,
which again contradicts [4]| > 1. Therefore we have xas; 8, ... 8185 = 85, whence

@ = %3810 ... 4 = RNAS{§583 o S350 o 4 = HAS A ... Q
= MHaS3 Sy Sg .o 515,008y ... 8
= XS$34dS ... §; = &y,

which contradicts the choice of a. This completes the proof of the proposition.

Summarizing Proposition 1 and Proposition 2 we obtain

THEOREM 1. Let (A, %) be some n-dimensional superassociative system such that
Jor any i=1,..,n there exists at least one i-th selector in (4,%). If n =2 and
IC|=3 orifn= 3and |C|=1o0rif >4 then (4, x) is always C-S-maximal. Otherwise
it needs not be C-S-maximal,

CoroLLARY. Let (4, %) be as in Theorem 1 and additionally assume (A, %) 1o
beig Ifn=2and |C|23 orifn=73and |C|21 or if n=4 then (4, %) only con-
sists of constants and selectors (cf. [2]).

We are now going to apply Theorem 1 to an important special case.- For this
purpose we consider some non-empty set M and denote the set of all z#-place func-
tions defined on it by F,(M). On F,(M) let us define an (n+1)-ary operation o in
the following way: o assigns to each (n+1)-tuple (fy, ..., f,) € F,(M)"*1 the element
Joo(fis s f5)€ F (M), which is defined by

(fo °© (f1> ---:.f;:))(xls wrey Xp)l =f0(f1(x1> s xn): '“’f;l(x.l’ sy xn))

for any x,, ..., x, € M. Further let p, denote the ith projection from M" to M for
any i =1,...,n. We note that (F,(M), «) is an n-system, which we shall call the
Jull n-place function algebra over M, and that (pgs s p,) is a complete system of
selectors for it. Moreover, we immediately see that for this n-system the notion of
constant element ith selector and symmetric element coincides with the notion
of constant n-place function on M, the ith projection from M" to M and symmetric
n-place function on M, respectively. For any x € M let x denote the constant n-place
function on M with x as its value. Finally, we put M = {x] xe M}>and
Pi={pg, ., pu}e Applying Theorem 1 we easily obtain T

» THEOREM 2. The full n-place function algebra over M is C-S-maximal iff not

=n=2, :
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Proof. If M| = 1 then (F,(M), o) is C-S-maximal in some trivial way. There-
fore assume |M|>2. We first consider the case # = 1. Now suppose (Fy(M), o)
not to be C-S-maximal. In view of the above lemma there exists an element f'e F, (M),
which is not the identical mapping of M, such that (M U P U { £}, o) is an i.g. sub-
algebra of (Fy(M), ) and fo X % f holds for any x € M. From this we conclude
Seox = x for any x € M, whence fx = f(xx) = (fo x)x = xx = x for any xe M,
which contradicts the choice of f. Therefore (Fy(M), ) must be C-S-maximal. Now
we turn to the case |[M| = n = 2 and write M as {a, b} with distinct elements a, b.
Let us define an element f& Fo,(M) by means of f(2,a): =a and f(x,y): = b
otherwise. We immediately see that f¢ M O P and that (M WP U {f},¢) is an
i.g. subalgebra of (F,(M), o), which proves the non-C-S-maximality of (F,(M), ) -
in this case. Finally, we apply Theorem 1 to the remaining cases. This completes the
proof of Theorem 2.
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