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Abstract. This paperls concerned w1ththe study offunctorsl’"' l’m"'v&hlcﬁfepresent such forms fof
degree m (in the sense of N, Roby) that fvanishes as a polynomial mapping (resp. that the associated:
m- hnear form Pf is zelo) The main results (Theorems 5.3 and 6. 4) characterize such modules X
mat 1""()() = 0 (resp. 1‘"’(X) = 0) Sections 7 and 8 yleldsome structure theorems for I”"(X)

0. Conventions and notation, In this paper all rings and algebras are commu-
tative and have the unit element-1; all modules are unitary. We use the’ followmg
notation:, . E
R-Mod = the category of all’ R- modules, g

R-Alg = the category of all (commutative) R- algebras
Max(R) = the set of all maximal ideals in the ring R, -
|X| = the cardinality of the set X.

" We abbrevmte ® = ® 'Y Hom = HomR it there is-no danger of confusmn

1. Polynomlals antl polynomlal mappmgs. Wc 1eca11 some deﬁmtlons contamed
in [2].°

For any R- module X consider the functor X ®_ R-Alg —» Sets. Any natural
transfotmation f = (£)! X®_>Y®_ is called a polynomml on (X, ¥) (a “loi
polynome sur le couple, (X, Y)” in [2). In a natural way we form the functor
2 R-Mod® x R-Mod—+R-Mod where #(X, Y) consists of all polynomials an (¥, ¥).
We also have the natural transformation v: 9"—+Map defined by ¥(F) = fx. The
mapping fy, where f e (X, ¥), is called the polynomial mapping induced by ‘the poly-
nomial f. 1t X' = R" and ¥ = R, then (¥, Y) = R[T}, ..., T,] and v is the standard
homomorphism which carries Fe R[Tl, we, T] 'to F: R*R where F(rey v, ry)
= F(ry, s 1),

A. polynomial f e (X, 1’) is called a form of degree m 1ﬁ fA(za) Fi@a™ for
all AeObR»AIg, aed, ze X®4. Restricting our considerations to forms of
degree m, we- obtain the functor #m: R- Mod°xR Mod>R-Mod:and ‘the natural
transformation v": #"—Map. Write P =  Kerv", Hom’" = Imv", Tt is known
from [2] that for all R-modules X, ¥ . o
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#°(X, Y) = Hom°(X, ¥) = ¥,
PY(X, ¥) = Hom'(X, ¥) = Hom(X, ¥),
PXX, Y) = Hom*(X, ¥) = Quad(X, 1).

This means that &° = P = P2 = 0. In the general case " 0 for m>3. The
purpose of this paper is the study of these functors.

2. Representability and the alternate definition of 2™, For any R-module X con-
sider the graded divided power R-algebra I'(X) = @ I'(X) (see [2] p. 248). Write

Pungeoi 15 woes X)) = 2 Xl e I'(X)
It is easy to prove that I™(X) is the R-module which is given by the generators
Pngorm Xt s %), k21, Zmy=m, x;e X

and the relations

VragtyomteeyXs1ys +ovs Xsgry) if 5 is a permutation,
rmymx...mk(x: X2 exes xk) if Xy = Ix,
(2'1) Vm...m,‘(xn ey xk) = ’ymlmmk(o’ xz, B xk) lf ml = 0’

(ml’mz)')’m1+m1,mg..-mk(xrx3,--uxk) if Xy = Xy = X,

l Z '}’ijmz..‘Mk(xl Vs Xas iy xk) if xl. = x+y’
1+ j=my

where (i,7) = (’j‘j) = (’j") Recall the following

TeEoREM 2.1 ([2], p. 266). The functorP™(X, —) is represented by ™Xx). Mor;:
precisely, any ¢ e Hom(I™(X), Y) corresponds to fe®"(X, Y) defined by

Jabe ®ay+... +%,Qa) = ¥ ‘P(?’m,...mk(xn ey xk))®ﬂ'1" . agr,

my+atme=m

Let us define the functor #™: R-Mod® x R-Mod—R-Mod as follows:
(@ Any Fe&™(X, Y)is a system F = Brnseoms K21, my0, Zmy = m) of map-

pings F, ... X*-Y satisfying relations analogous to (2.1)
(b) (rF+SG)m1...mk = rme..,mg’,'SGm;..‘mks r,seR,
© D P gy = 9 ° Fpyo o f",

In particul.ar, 7= Gy € F"(X, I™(X)). Theorem 2.1 shows that 2" m ™,
More precisely, Fe#™(X, ¥) corresponds to such an fe?"(X, ¥) that

Julx,®@ay Tt ®a) = )y Fougem 15 vy %)@ L., die

mit.otmg=m

In this correspondence f, = F,, and hence v FmxP™Hom™ carries F to F,.
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3. Defects and the associated multilinear form. Consider the R-homomorphisms
4*: Map(X, Y)—Map (X", Y), k>0, defined by the formula

(A’ff)(xp s Xg) = Z )(-—1)""”'f(i%xi)-

He(1,2,.,,k
An easy verification shows that

(€AY Ftatx) =3 Y N0 e x).

k=0 1<) <...< jic$n
Lemma 3.1 If Fe F"(X, Y), then for any k>0
Aka = Zole,-nmk .

" o>

Proof. It is easy to verify the formula

(d¥ ) (x5 wevs %)
= (A'ff.)(xo_l'x] 3 X2y sees xk)—(A’ff)(xly weey xk)"'(A,ff)(xO, X2y aney x,,) o
Moreover, Relations (2,1) show that
*le...mk(xo +x1 3 X25 sees xk) = Z 'Fijmz...mk(xo’ ey xk)
b+ j=m
and
Forru-..mu(xm ey xk) = Fm;...mk(xh vy xk) .

Induction on % completes the proof.

In particular, 4*F,, = 0 for k>m and A"F,, = F,_, for m>0. Relations (2.1)
show that Fy . ; € Sym™(X, Y),i.e., F; . is m-linear and symmetric. This mapping
is called the m-linear form associated with F. Let fe?™(X, ¥). Then we have the
associated form A™fy which is denoted by Pf (cf. [2], p. 234).

Put (X, ¥) = {feP"(X, Y)| Pf=0}. Then we have the commutative .
diagram with exact rows

0 - F"(X, ¥)C>P™X, ¥)—s Hom"(X, ¥)0

VT

0~ J"(X, Y)C> (X, ¥)—> Sym"(X, ¥)
in which all homomorphisms are natural.

4, Representability of .ﬂ/q’"', 2" Hom™, The natural transformations of represent-
able functors

Vi PX, =)-»Map(X, =), P:#"(X, -)-Sym"(X, -)
induce the R-homomorphisms _
FX)-I"X),  x07a(*),
S"X) LX), Xy Vi VI YL (X s X) «
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Since Hom s left exact, it follows that the cokernelsof these homomorphlsms rep-
resent the functors #"(X, —) and #"(X, —). More precisely: ‘
COROLLARY 4.1, The functor 0¢ , =) is represented by
. o
0 =
R{yu(x)] xeX }
The functor ﬂ"'(X =) is represented by v

2 e
FM(X) R{’Y} 1(}61, .5 xm)l Xy ey Xy € X} '

Let us write IT™(X) = R{ym(x)] xeX }cT"‘(X’) The connection o[ T"' and
Hom™ is described in

COROLLARY 4.2. The following conditions are equivalent: . .

(@) Hom™(X, —)"is_representuble;

(i) Hom™(X, —) is represented. by T"‘(X),_‘ :

(i) the exact .s'equence

@1 ' 0—»1""’(X)—»F"'(X)—>f""(}()—v0

splits.

Proof. Tt suffices to prove (1)=>(1u) Let Hom‘"(X —) be replesented by the
R-module M. Then the exact  sequence '

O*Hom(f"’(X), ~)"'HOHI(F"'(X),.. )-—>H01’n,(M -—)—»0

induces the commutatlve dlagram w1th an. exuct row ,'

"

"

M%F”’GX)»T'”(X)—»o s

where I'™'(X)—Mis an element of Hom F"‘(Y) M) which concqponds to the ident-
ity in Hom (M, M). This completes the proof.:

Using standard methods of homologwal algebra, we obtain another connec-
tion: ‘

COROLLARY 4.3. (4.1) induces' the exact sequence
0—Hom"(X, ~) > Hom (I"(X), —) > Ext(F"(x), =)= Ext (%), e
If X is projective, then I'"™(X) is also projective and hence the sequence

0—+Hom"‘(X, —-) ,—>H01T1 (F"'(X')" _..‘) —»Exta(f""()(), __)_}0
i.; exact. :
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" EXAMPLE 4.4, Let R = Z, X = R* = Re,®Re,. Then the clements -
Va0 = Vs(e)s Va1 =7za(eive), 2 = V12001, 8), Vo5 = 'Ys(ez)
form a basis of I'*(X). (For the proof see [2, p. 272)) F*(X) is generated by
ya(rie+raey) = "13’3.0““’1"2?2,1 +"172')’1,z+7'270,3: r, 1 €R.
Putting (ry,r2) = (1, 0), O, 1y, (1, 1), (1, —1), we get
V3,05 Y0,35 V1,2 V2,0 1 ‘z‘?z 1€P(X).

It is casy to see that these elements are generators of T*(X). Hence [P(X)~ 2z,
and, by Corollary 4.2, Hom®(X, =) is not representable. Corollary 4.3 gives the
exact sequence :

0-Hom®*(X, —) ~ Hom (T*(X), 5)_>’zz® -0,

“Let us exchange H om’"(X Y) for Hom(T"(X), ¥) in (3 2) Then we obtain the
induced commutative diagram with exact rows :

Sm(X‘)ql—*m(X)__}I‘m(X)_)O
4.2),
0T '"(X)-*T '"(X)*f "'(X)—>0

in whlch cﬂl homomorphisms are natural. It is known that. I'™, §™ commute with
direct limits (for I'" see [2], p. 277). Using standard methods, we can prove .

COROLLARY 4.5. All functors in (4.2) commute with direct limits.

5, The functor f’"‘ ‘Let us denote by Pp..mi¥1s %) the class of

‘}"m;...m;.(xly ieny xk) in F"'(X')
LeMMA 5.1. Any ring homomorphism R—A induces the natural A-isomorphism

@AY @A) .
Proof. Consider the diagram with exact rows

0K, Cr I X)@ AT (X)®A—+0
~ | S

0K, T IYX @A) [ i ®4)-0

where S denotes the standard isomorphism (see 2L p. 262) which carries
'yml mk()"ls . 9)‘-];)@1 tO ynu...mu(xJ.@l 9xk®1) Slnce

Ky = A{yy, (x5, o5 %) ®1),
Kz = A{')}l 1(>‘l®1 sxm®1)}

it follows that K~ ~K; by f. Now it suffices “to complete the above diagram.
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LemmA 5.2. Let X be a free R-module and let {e; , ..., ey} be a basis of X. Then
fm(X) = @ R;ml...mzv(el, ey eN)

and
R

Ry €5 ves EN)R
P8 NN LR

Proof. From [2], p. 272, it follows that {py,..my(€1s > &) Mg+ 1y = m}
is a basis of I™(X). The image of S"™(X) in I™(X) is generated by

'}’1...1(‘31: sy €15 eny €N waey eN) = ml! mN!ymi-..mn(eJJ revs eN) .
my my

This completés the proof.

From the above lemmas we get the following

THEOREM 5.3. Let X be a finitely generated R-module. Then the following con-
ditions are equivalent:

@ P =o,

(i) P2 (X/IX) = 0 for any I'e Max(R),

(iii) for any Ie Max(R) either X = IX or m!¢ I

Proof. The equivalence (i)<>(ii) follows from the Nakayama Lemma and

Lemma 5.1. For the proof of (ii)<>(iii) observe that, in the case of a linear space

over a field, I™(X) = 0 if X = 0 or m! # 0 by Lemma 5.2. This completes the
proof.

CORC:,LLARY 5.4. The following conditions are equivalent:
(M I'r=0,
@) FR®) =
(i) m! is invertible in R,
(iv) S™—I™ is bijective. -
Proof. (ii)=(iii) follows from Theorem 5.3. (iii)=(iv) follows from [2], p. 256.
In the next section we prove similar results for f*,

6. The functor [, Let us denote by (%1, ..., %) the class of X1y oo sXy)
in f"‘(X) We first prove e * Tt

THEOREM 6.1. Any ring homomorphism R— A induces the natural A-epimorphism
9: FHN@A-I"(X® )

wlhzch Carries o, m Xy, ooy XY@ 10 5y (%, @1, .. X ®1). Moreover, if any
element of X®A has a form x®a where xe X and ae A, then g is bijective,

Proof. Observe that the standard isomorphism f (see the proof to Lemma 5.1)
carries the submodule
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K=4 {vm(x)®1 | xeX}eIMX)®4
into TH(X®A). Hence we obtain the commutative diagram

0—+KC>TrX) @A~ X)R A0

&S 4
The snake lemma (see [1], Proposition 2.10) shows that g is surjective and

HX®4)

Kergn ",
TN @) xe X

This completes the proof.
COROLLARY 6.2. [ (Xo)mI'%(X)s for any multiplicative ScR,

(X IX) ~ FRe)/IFR(x)  for any ideal IcR
and
xR X X X~ IR x (X .

Now we study the conditions under which [™ vanishes. We first prove .

LemMA. 6.3. If K is a field then the following conditions are equivalent:

@ Ix&™ =0

(i) ZREN, K) = 0,

(i) every form of degree m in K[T', ..., Ty] which vanishes as a mapping is zero,

@iv) N<1 or m<[K].

Proof. Equivalences (i)<>(ii)<>(iii) are evident. If N>1 and m>|K]| then the
non-zero form TP~ MI=XT[¥IT, - T, TS!) vanishes as the mapping K"—K. .

Conversely, we prove (iv)=>(iii). The case N<1 is evident. Let m<|K| and let
FeK[Ty, .., Ty] be a form of degree m. The condition F(O,..,1,..,0)=0
implies that all degrees of T in F are <|K]. If such a polynomial vanishes as a map-
ping, then it is zero (for the proof apply induction on N). This completes the proof.

In the general case we have

THEOREM 6.4. If X is a finitely generated R- module, then the following conditions
are equivalent: .

@ FR) =0,

(i) PR (XJIX) = 0 for any Ie Max(R),

(iii) for any Ie Max(R) either dimg, X/IX< <1 of m<|R/I|.

Proof. (i)<>(ii) by the Nakayama Lemma and Corollary 6.2.

(ii)«>(iii) by Lemma 6.3.
The above theorem and Corollary 4.5 immediately imply
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COROLLARY 6.5. The following conditions are equivalent:
@M IR=0,

() TRR* =0,

(il m<d(R), ! '
where d(R) = inf{ R/][, Ie Max(R)} In particular I'f = 0 for all m iff d(R) is
infinite.

EXAMPLE 6.6. Let X be a finitely generated Z-module. Let N (resp. N, for any
prime p) denote the number of those summands in the canonical decomposumn
of X which are isomorphic to Z (resp. to, Z,,.. for some n). Then Theorem 6.4 shows
that F3(X) = 0 iff N+N,<1 for any prnne p<m.

7. Modules [™(X) over integral domams. In this section, R denotes an infinite
integral domain.

Observe that .['R(X), = FRIO)(X(O)) =0 by Corollary 6.2 and 6.5. Hence
we get :

CoROLLARY 7.1. All FR(X) are torsion R-modules. In parfzcu/ar, if X is finitely
generated, then Ann([}(X)) # 0.

Note also two consequences of the above fact:

CoROLLARY 7.2, v™: P¢(—, Y)-»HomR(~, ¥) is bijective for any natural m
and any torsion free R-module Y.

(Compare also [2], Proposition 1.8.)

CoRrOLLARY 7.3. If X isa ﬁmtely generated projective R~ module then the followmg
conditions are equivalent:

(i) HomR(X, —) is represenmble

@) Zpx, =) =0,

(i) rankX'<1 or m<d(R). ‘ ‘

Proof. ()< (iiy Tollows from Corollaries 4.1 and 4.2 since I'™(X) is projective

and I™(X) is a torsion R-module.
(i) (iii) follows from Theorem 6. 4.

If R is a Dedekind domain, then We can prove some struciural ﬂworems

- THEOREM 7.4. Let R be a Dedekind domain and let X be a Jinitely genemied
R-module. If ‘

AmRX)) = ] P
P aMax(R)
and kp>np for all P eMax(R) then there exists a naturgl R- ~isomorphism
TR~

© fm 123
. ; Pe 1\;.;\%((1{) R/PkP (X/P X)
induced by X-»X|P**X,
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Proof. Let np =0 for P s Py, ..., P, and k;>np,.
I =P ... Plc Ann(F2(X)).

Since Pf+-PY = R for all i # j, it follows that.

Then

RII =~ ]‘[ R|P} ]
i=1

(see [1], Proposition 1.10). Flence by Corollary 6.2

m fm(X) m X . " X
T30 s =i )~ 8, (i)

P,, then I+P* = R for any natural k. Hence

m“ ( _Ai ) (X) =0
MNP T PR

COROLLARY 7.5, If Risa Dedekmd domazn, then there exists a natural R-iso-
morphism :

It P # Pyyos

(X)'“ D

PeaMax(R)

Rp(X P)

induced by X—Xp. e # ‘
Proof. If X is finitely gencrated then we apply the above theorem to Xand Xp
for P & Max(R). Next we apply Corollary-4.5.
Analogously we can prove
COROLLARY 7.6.

Z(X)~ @

where Z, denotes the ring of p-adic integers. '

gp (X®Z ZP) :

8. The structure of ["(RY). For any natural m, k write

I'-mk = “R{Vm; ;u;c(elv ' gk)l mj>0 ' Zm_l = m} C"Fm(Rk)’

T = R{(4%,)(r1 €1, s 10| 1y RY<T(RY, .
where ey, ..., ¢, form the standard basis of R*. Lemma 3.1 shows that T <™,
Hence we can define [ = 1"""‘/— T, Tt is easy to' see. that [™ =0 for k= 1
and kzm,

TrroreM 8.1, If e;, ie I, form a basis.of X and I is ordered by <, then for any
natural m

FM(X) = @ @ R{'ym---mn(eh’ S
1""’(30 EB EB R{(A"vm)(i‘l €lys e
fm(X) @ @ R{')h"m; mk(eh: seey eik)l mJ>0 ij

1<l
k .
Moreover, the above summands are isomorphic with I™, T™, F™, respectzvely.

elk)] mj>0 Yoy = m},

o rket;)] "j €R},
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Proof. The first decomposition is evident since Yyu,,.me(€is -++» €4 form a basis
of I™(X) (see [2], p. 272). The second follows from formula (3.1) applied to ,,(Y.r;e)).
The third we obtain by division. The evident isomorphism

R{'ymb..mk(eiu sery eii)] m]>0’ ij = m}zrmk

induces the next two isomorphisms.

COROLLARY 8.2.

Ry~ @ [V,

k=1

(IZ) ok =mm(%§~n (],:_r) ke

k=2

N
R~ @

k=1
ExampLE 8.3. Example 4.4 shows that ['Y? = ['Y(Z%) = Z,. Hence
32 = 2,8..02, ((g’)-ﬁmes).
We get another application in the case where R = K is a finite field, Write
My = {my, ...,m)| m>0, Y. m, = m},
Noe = {(myy s My y)l my20, Zmi<m—k},
Al = {(my, ey my )| OSM<q—2, Y, m<m—k}.
Turorem 8.4. If |K| = g then diimT™ = |42,
Proof. We can assume that 1<k<m. Write
E(x, (m) = x7* ... ap*

for  x = (%, .., %) K", (m) = (my, ..., m) e N,

Then Pemye, ..., &), (M) € My, form a basis of I"™* and '™ is generated by
Y.Ex, m)ymyess -, &), x € K. Hence
QimI™* = rank(E(x, (m))), xe K, (m) e M,
= tank(E(x, ), xe(K¥  (m)e M,
= rank(E(x, (m)), xe(K**"%, (m)eN,,
where K* = K\{0}. Since ' =1/ for any reK* and i = j (modg—1), we can
assume that 0<m,<q—2. This means that

dim ™ = rank (E(x, (m))),

xe (KN, (m) e Al .

1t suffices to prove that the columns of the above matrix are linearly independent,
Observe that these columns are contained in any analogous matrix constructed for
m'>m. Hence we can assume that m>k+(k—1)(g—2). In this case, we have the
quadratic matrix since Afy = {(my, ..., m,_ )| 0<m;<g—2}. We must prove that
its determinant is non-zero. This condition is equivalent to the following:

® X F=m(sz.,"-zr"'""""‘"ﬂm - Tg%1 € KTy, o, Ty y] vanishes on (K*)e?
then F = 0.

The above property can easily be proved by induction on k.
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The above theorem and Corollary 8.2 show that

- - N—1 N ‘ N-1 N-1 P
dimI" (K ) = k;} (k-{-l) lAm,k—l-Il = k;() s;) (k) lAzx,k+1I
N-1 s o
= _‘=ZO EHZO (k) '{(miﬂ -'-’mk)[ 1<m1<q~1’ Zmzsm_l}l

I

N-1
3 [(mys s ml 0<mi<g=1, Tmy<m—1}] = Bl

where ({; ) =0 for p<g, and

Bly = (1, . m)] O<my<q—1, Tm<m—1, 5 = 0,1, .., N~1}.

CoROLLARY 8.5. If |K|=gq then dimI™K™) = [B%|. In particular:

Q) I m=1>W-1)(g—~1) then
. qN.._.]
dimI™(K™) = 14g+..+4 ! = —
. P
N (mtN—1) 4'—1
ot _ (mtN-1y_q —1
dim (k™) = ( Ne1 ) -t
@ dim ["(K?) = max(0, m—gq).
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