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DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

The span and the width of continua
by

A. Lelek (Detroit, Mich.)

Abstract. The concept of the span is compared with Burgess’ notion of the width. Some basic
properties of them are established. The results are applied to an investigation of sets of distances
associated with continuous functions. :

Two metric properties of continua have been investigated in connection with
some topological phenomena, and each of them can be expressed by means of
a numerical quantity designed to measure the “non-arc-likeness” of a given con-
tinuum. The concept of the width was introduced by C. E. Burgess [1] in the theory
of tree-like continua, and the author [7] defined the span of a metric space without
any restrictions imposed upon its structure. The present paper resulted from an
attempt to compare these two notions. Although, in general, the span and the width
are not equal even for very primitive objects such as simple triods, some comparisons
can be made and the similarities do exist (see Sections 3-5). At the end of the paper
two results are obtained (see 5.3 and 5.4) concerning the set of distances between
points that belong to point-inverses under continuous mappings.

1. Definitions and preliminaries. I X" is.a non-empty metric space, we define
the span (X)) of X to be the least upper bound of the set of real numbers « which
satisfy the following condition: there exists a connected space C and continuous
mappings fi,/»: C—X such that £1(C) = f>(C) and a<dist[f,(c), f2(c)] for ce C.
Equivalently (see [7], p. 209), the span ¢ (X)) is the least upper bound of numbers o for
which there exist connected subsets C, of the product X x X such that p,(C,) = p2(C)
and a<dist(x,y) for (x,y)eC,, where p; and p, denote the projections of
XxX onto X, i.e. py(x,¥) = x and py(x,») =y for x,y € X. We note that, for
compact spaces X, the sets C, in the latter definition of ¢(X) can be assumed to
be closed in X'x X.

The definition of the width is a bit more involved in that it requires rather
special notation. If 4, B<=X are non-empty subsets of the metric space X, we denote
by 6(4) and o(4, B) the diameter of 4 and the distance between 4 and B, respect-
ively, i.e.

5(4) = Sup{dist(a, a'): a,a’ed}, (4, B)=TInf{dist(a,b): ac4,beB}.
1 — Fundamenta Mathematicae XCVIII
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If C is a collection of non-empty subsets of X, we denote by |C| the union of
all the sets which belong to C, and we put

mesh(C) = Sup{6(d): 4eC}.

Furthermore, we say C is a chain provided C is finite and the nerve of C, if non-
degenerate, is an arc (see [5], p. 318). For any collection C of non-empty subsets
of X, Chain(C) will denote the family of all the chains which are contained in C.
For finite collections C of non-empty subsets of X, we define real numbers w(C) by
the formula

w(C) = Min{Max{o(4, |C'D): 4&C}: C' e Chain(C)}.

We also consider finite open covers of X by which we mean finite collections C of
non-empty open subsets 6f X such that |C| = X. Now, if X is a non-empty compact
metric space, we define the width w(X) of X to be the least upper bound of the
set of real numbers o which satisfy the following condition: for each £>0, there
exists a finite open cover C of X such that mesh(C)<s and a<w(C). Thus w(X) is
a well-defined real number and 0<w(X)<d(X).

Let X be a non-empty continuum, i.e. connected compact metric space. We
say X is a tree provided X is homeomorphic to a connected one-dimensional poly-
hedron which contains no simple closed curve. A continuum X is called: tree-like
(or arc-like) provided, for each >0, there exists a finite open cover C of X such
that mesh(C) <e and the nerve of C, if non-degenerate, is a tree (or an arc, respect-
ively). The concept of the width of a tree-like continuum was defined earlier in [1]
using slightly different considerations. Before we see that, restricted to such a con-
tinuum, the two definitions coincide, we need to prove some auxiliary propositions.
By a: refinement of a finite open cover C we mean, as usual, any finite open cover
whose elements are contained in elements of C. '

1.1, If C is a finite open cover of a metric space and D is a refinement of C such
that the rerve of C is a tree and the nerve of D is connected, then
' w(D)<w(C)+2mesh(C) .

Proof. Let X denote the space and let C’ e Chain(C). The proof of 1.1 will be
complete if we show the existence of a set 4 € C such that

(¢8) w(D)<e(4, |C')+2mesh(C) .

The following two cases are to be distinguished:

Case 1. C consists of at most 2 elements. Then C has exactly 2 elements and
let C={4,B}. Thus 4 B+# @ and 4 U B =|C| = X; inequality (1) follows
from

w(D)<O(X) = 6(4 W B)<6(4)+6(B)<2mesh(C) .

Case 2. C consists of more than 2 elemenfrs. Then the chain C’ is contained
in' a chain C"”<C which has at least 3 elements, say C” = {C}, ..., C,,}, where
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mz3and C; n C; # @ifand onlyif |i—jl<lfori,j=1,..,m Thus C;nC,= @
and the non-empty sets C;, C,, intersect some non-empty sets belonging to the re-
finement D of C. Since the nerve of D is connected, those elements of D can be
joined together by means of a chain D’ D, so that we can write D’ = {Dy, ..., D,},
where C; "Dy #@ # C,n D, and D, D; # @ if ‘and only if [i—j|<1 for
i,j=1,..,n As a result, we obtain

@ C,nDcC D,
@ # C,n D,cC,n DY,

and we claim that C; n |D'| # @, too, for i = 2, ..., m—1. Indeed, since the nerve
of C is a tree, all the elements of C\{C;} (i = 2, ..., m—1) can be grouped in two
collections Cy and C, such that C; e C;, C, € C, and |C,| N |C;] = @. Supposing
C;n |D'| = @, we would get

ID'|=|CN{CH = |Csf v |Cal

and since each element of D’ is contained in an element of C, the collection D’ would
split into two collections composed of subsets of |C,| and |C,|, respectively. One
of these collections would contain D, and the other one would contain .D,. This,
however, is impossible, D’ being a chain; therefore C; N [D'| # @ for i =1, .., m.
It follows that, for each point y e |C"|, there exists an integer i = I,...,m and
a point 3’ € |D’| such that y,» e C;, and thus

dist(y, y)<(C;)<mesh(C) .
On the other hand, D’ € Chain (D) implies the existence of a set. B € D satisfying
the inequality
w(D)<e(B, D),
and since D is a refinement of C, there is a set 4 € C such that B 4. Let us select

a point x’ € B and observe that |C'|<|C"|. We conclude that, given arbitrary points
xeAd and ye|C’|, one has dist(x, x)<(4)<mesh(C) as well as

w(D)<e(B, |D'))<dist(x', y") <dist (x', x)+dist (x, y) +dist (v, y")
<dist(x, y)+2mesh(C),

whence (1) and the proof of 1.1 is completed.

12. If X is a tree-like continuum and Cy, C,, ... is a sequence of finite open
covers of X such that the nerve of C, is a tree (n =1,2,...) and
(@) limmesh(C,) =0,

n-ron

then limw(C,) = w(X).

n-rco

Proof. Let y>0 be a number arbitrarily chosen. If the inequality

3 L w(C)<w(X) +y

o*
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were violated by infinitely many positive integers n, the number « = w(X)-+y would
have the property of possessing finite open covers C, of X with small mesh(C,),
by (2), and such that a<<w(C,). According to the definition of the width w(X),
we would then have a<w(X) which contradicts the assumption that.y>0. Conse-
quently, there exists a positive integer n; such that (3) holds for nzn,.

By virtue of (2), thefe also exists a positive integer n, such that mesh(C,) <3y
for nzn,. Let n=>n, be fixed for a while. Since X is compact, there is a number
£>0 such that each finite open cover C of X with mesh(C)<e is a refinement of C,.
But since w(X) is the width of X, a cover C of this type can be found satisfying the
inequality

wX)—1y<w(0),

and the connectedness of X implies the connectedness of the nerve of C. By 1.1, we
obtain

w(C)<w(C,)+2mesh(C,)<w(C,)+%7,

whence w(X)—y<w(C,). Combining the latter inequality with inequality (3), we
see that

w(C—w@X)] <y

provided n>n, and n=n,. Thus 1.2 is proved.

Remark. It follows from 1.2 that, for tree-like continua, the width as defined
in this paper is equal to that invented by Burgess [1]. On the other hand, the condition
that the nerves of C, are trees surely implies, by (2), that the continium X from 1.2 is
tree-like. It will be shown (see 3.7) that this condition cannot be omitted in 1.2,

2. The width of dendroids. Each arcwise connected tree-like continuum is said

10 be a dendroid. Clearly, all trees as well as all dendrites are dendroids. By a simple .

triod we mean a tree which is the union of three arcs having a common end-point
and being pairwise disjoint except at that point. Since chains are related to arcs
in a natural way, there should also exist a relationship between the concept of the
width, as defined in Section 1, and another concept that expresses a similar idea by
means of arcs instead of chains. To have such a relationship, however, one should
assume the existence of sufficiently many arcs in the space, and the class of dendroids
seems to be an appropriate range for this purpose. Before studying them, we prove
two propositions of a more general character. For any mietric space X, Arc(X) will
denote the collection of all the arcs which are contained in X and of all the non-
empty degenerate subsets of X. If {a} is a degenerate set and B is a non-empty set,
we denote the distance between them by ¢(«, B) rather than by e({a}, B).

2.1. If X is a metric space, 4 € Arc(X) and y>0, then there exists a mumber
£>0 such that each finite open cover C of X withmesh(C) <¢ has a chain C' € Chain(C)
satisfying the condition

Sup{e(a, |C'): ae4}<y.

icm
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Proof. If 4 is degenerate, 2.1 tiivially holds since any degenerate chain C’ com-
posed of a set C e C which contains 4 has the distance ¢(4, C) = 0. Let us then
assume A is an‘arc and decompose it into k>3 subarcs 4, , ..., 4, such that §(4,) <y
and A; " 4; # @ if and only if [i—jI<1 for i,j = 1, ..., k. We define

e = IMin{o(d; U . Ui g, diq U U4 i=2,..,k—1}.

Let C be a finite open cover of X with mesh(C) <e. The subcollection C* of C
consisting of all the elements of C which meet 4 hasa connected nerve since A4 is con-
nected. Two elements of C* intersect 4; and A,, respectively, and thus they can be
joined together by means of a chain C’=C*. Thus A, N |C’| £ @ and 4, n |C'] # Q.
We claim that 4, n |C'] # @, too, for i = 2, ..., k—1.If it were not so, the collec-
tion C’ would split into two non-empty collections composed of sets which meet
Ay u..UA;_ and A;y; U ... U A4, tespectively. But, C’ being a chain, there
would exist non-disjoint elements C; and C, belonging to these collections, respect-
ively, and we would get

oAy V.. Udi 1, Ay 0 U4Y)
<o[Ci 0 (AU .U q), Con(disg V. UAY]
<8(Cy u C)<8(C)+6(C,)<2mesh(C)<2e,
which contradicts the definition of &. Hence |C’| meets all the arcs Ay, ..., 4. Given

a point a € 4, there is an integer j = 1, ..., k such that a € 4;. The condition re-
quired in 2.1 now follows from the inequalities

o(a, ICN<ela, 4; 0 |C)<8(A)<y .
2.2. THEOREM. If X is a non-empty compact metric space, then
wX)<Inf{Sup{e(x,4): xeX}: A€ Arc(X)} .

Proof. Let » stand for the real number that is the right-hand side of the latter
inequality and let y>0 be an arbitrary real number. There exists then an 4, € Arc(X)
such that

) Sup{o(x, 4o): xe X} <r-+y
and let ;>0 be the real number whose existence is guaranteed by 2.1 for 4 = 4,.

On the other hand, it follows from the definition of the width that there is a real
number «, such that

wX)—y<a
and, for each >0, a finite open cover C of X exists with mesh(C) <g and oo <w(C),
whence w(X)<w(C)+y. In particular, for & = g, there exists such a finite open

cover C, and, by 2.1, we have a chain C{ e Chain(C,) with the following property:
for each point aed,, there is a point y € |Co| satisfying the condition

©) - dist(a, y)<e(a, |CoD+y<2y .
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According to the definition of w(Cy), an element G, & C, must exist such that
w(Co)<a(Gy, |Ch),
whence w_v(X) <w(Ce)+7<0(Gy, |Col)+y and, taking a point x,€ Gy, we get
w(X) < (Go, ICsl)+y<a(xo, [CoD)+y .
Obtaisrilnce to each point a € 4, there corresponds a point y & |Co| fulfilling (5),‘ we
(%o, ICo) <dist(xo, y) <dist(x,, a)+dist(a, ) <dist (x5, @) +2y ,
which implies that o(xo, |Co) <0 (xo, Ao)+2y, Whence
w(X) <o (%o, |Col) +y<a(xo, 4o)+3y .
By (4), the width of X thus satisfies the inequality w(X) <r-+4y, which completes

‘the proof of 2.2.
2.3. TarOREM. If X is a dendroid, then

w(X) = Inf{Sup{o(x, 4): xeX}: 4 eArc(X)}'.

. Pr90f. Keeping a notation of the preceding proof, let » be the number which
is the right-hand side of this equality and let y>0 be an arbitrary number. If the
inequality .

©) - ‘ w(C)<w(X)+y

did not hold for some finite open covers C of X with mesh(C) as small as one wants
the number ¢ = w(X)+y would satisfy the condition from the definition of thei
width w(X) and, consequently, we would have a<w(X) which is not the case as
9>0. Therefore there exists a number £,>0 such that (6) holds if mesh(C)<e,.

The dendroid X being a tree-like continuum, there exists a finite open cover C
of X such that °

mesh (Co) <Min{e,, v}

and the nerve of Cj is either degenerate or a tree. Then, by (6), we have
w(Co)<w(X)+y. It follows from the definition of w(C,) that there exists a chain

Cg € Chain(Cy) such that

0 Max{o(G, |Col): G & Co} = w(Co)<w(X)+y,
and we claim that an 4, € Arc(X) can be picked up so that
® Sup{a(r, 40): xe|Cil}<y.

Indeed, if C; is a degenerate chain {C}, it is enough to put 4, = {as}, where
ag € ’C., and then g (x, 4o) = dist(x, a5) <5(C)<mesh(C,) <y for each x & l%:l = C
_If Cy is non-degenerate, we have Cg = {Cy, ..., C;}, where k=2 and C, A Z‘ o (/)
if and only if |i—j|<1 for 7,7 =1, ..., k. Let us select two distinct p(;ints ; eC
and g e C;. Since X is arcwise connected, there exists an arc ApcX joining p and q]
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Thus C; N 4y # @ and C, 0 4, # @. We show that C;n 4 # Gfori=1,...k
1f it were not so, k>3 and there would be an integer iy = 2, ..., k—1 such that
Ag=]|CoN\{C;,}|. But the nerve of C, being a tree, all the elements of Co\{C;,} would
group in two collections C, and C, such that C; € Cy, G € C,and |Cy| N |Cy| = O.
The arc 4, would then be contained in the union of two disjoint open sets |Cy]
and [C,| each of them intersecting 44, which contradicts the connectedness of 4,-
Hence A4, meets all the sets Cy, ..., C,,. Given a point x € |Cg|, there-is an integer
j =1, ..,k such that xe C;, and (8) follows from the inequalities
o(x, o) <o(x, C; n 49)<8(C)<mesh(Co)<y .

By the definition of the mumber r, there exists a point x, € X such that
r—y<0(xy, 4g). Let G, € C, be an element containing X, and let y be an arbitrary
point of G,. Clearly, to each point x € |C4l, there coiresponds a point a € 4, with
dist (x, @) <o(x, Ag)+7y, whence dist(x, a)<2y, according to (8). As a result- we
obtain 4
) r<g (g, Ag)+y<dist(xo, a)+7

<dist (x,, ¥) +dist(p, x) +dist(x, @) +7
<8 (Gy)+dist(y, x)+3y
<mesh(Cy) +dist(y, x)+3y<dist(y; x)+4y,

which implies that r—4y<g(Go, [Cip<w(X)+y, by (7). Thus r—5y<w(X) and,
7 being an arbitrarily taken positive number, we have r<w(X), whence w(X) =r,
by 2.2. The proof of 2.3 is complete.

24. If X = Ay U A4, U 4, is a simple triod, where A; are arcs having a common
end-point v and A; 0 Aypq = {0} for i=0,1,2 and the subscripts of 4; taken
mod3, then

w(X) = Min{Max{o(x, 4141 U Ais2): xedi}: i=0,1, 2}

) Proof. Let m stand for this Min Max. It follows from 2.2 that w(X)<m.
If A e Arc(X), there is a subscript i = 0, 1,2 such that AcA;ry U Ajsqe, Whence

a(x, Ay Y A;42)<0(x, 4)
for each point x € X. Consequently, we get the inequalities
m<Max{o(x, Aj4y U Aisg): x€ A}<Sup{o(x, 4): xe X},
and 2.3 implies m<w(X). Thus w(X) = m.
3. Some continuity properties. The span and the width, when treated as real-
valued functions defined on collections of tree-like continua, seem to behave alike

as far as their continuity is concerned. If X is a non-empty subset of a metric space Z
and ¢>0, we call the set {zeZ: oz, X)<e} the e-neighbourhood of X in Z.

3.1, Let X be a non-empty compact set contained in a metric space Z.If Bis a real
number and, for n = 1,2, ..., there exists a subset Z, of the (1n)-neighbourhood of X
in Z with B<o(Z,), then f<o(X). (compare [7], p. 21 1).
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Proof. Denote by py, ps: ZxZ—Z the standard projections of the product
ZxZ onto Z. Let y>0 be an arbitrary real number. Since f—y<a(Z,), it follows
from the definition of the span that there exists a non-empty connected set C,=Z, x Z,
such that p;(C,) = py(C,) and p—y<dist(x, ) for (x,))eC, (n=1,2,..). Let
us select points ¢, € C, and observe that the set Z,x Z,, hence also the set C,, is
contained in the (,/2/n)~neighbourhood of X'x X in Z'x Z. Consequently, there exist
points z, € X'x X such that dist(c,, 2,)<+/2/n for n = 1,2, ... By the compactness
of XxX, a subsequence z,, %, .. (Where n;<m,<...) converges to a point
ze X'xX, whence also
©® lime, =z.

i~ oo .

We define D = Ls;.,,C,, (see [5], p. 337). Thus each point of D is the limit of
a sequence of points of C,, U C,, U ... It follows that f—y<dist(x, y) for (x, y) e D.
Moreover, given a point d e D, there e)sist points u; € an, (where i, <i,<...) such
that the sequence v, , u, , .. converges to d. The point u; belongs to the (\/2/n; )-neigh-
bourhood of X'x X, whence d e X' x X, so that D=X x X. On the other hand, since
pl(C,,ij) = pz(C,,ij), there are points ¢j e an, such that p;(u) = pa(c)). We conclude,
as we did before for the points c,, that a subsequence c},, cj,, ... (Where j; <j,<...)
converges to a point z' € X x X. By the definition of D, we have z'e D, and

(@) = ,1cimP1(ujk) = llcimpz(c}k = p,(z),
—r 00 Sad-e]

which implies that p,(D)cp,(D). A symmetric argument shows that p,(D)<p(D),
whence py(D) = p,(D).

Now, we claim that the set D is connected. Suppose it is not, and notice that
ze D, by (9). Then there exist two disjoint open subsets U and V of Z'x Z such that
DcUuV,zeUand DNV # @. Let d e DNV be a point. As we have seen,
there are points v,, € G, (where I, <l,<...) which converge to d’, so that v, eV

for m>m,, where m, is a positive integer. By (9), ¢,, € U for m=m,. The con-
1 g ny,., 2

nected set C,,lm intersects both U and ¥V provided m>m, and mzm,. Therefore,

almost all of the sets C"t,.. contain points ¢,, ¢ U u ¥ which, again, must have a sub-
sequence converging to a point z"’e D. This implies that z" ¢ Uu V, contrary to the
inclusion D=U v V. Hence D is a connected set.

Setting & = f—y and C, = D in the definition of o(X), we obtain f—y <o (X).
Since y was an arbitrarily chosen positive number, the inequality <o (X) follows
and the proof of 3.1 is completed.

If X'is a non-empty subset of a metric space Z and >0, we say that a continuous
mapping f: X—Z is an e-translation provided dist[x,f(x)]<e for x e X. Thus
if f: X—Z is an e-translation, then the set £ (X) is contained in the e-neighbourhood

of X'in Z, It follows directly from the triangle inequality for distances that if f: X—+2Z
is an g-translation, then

a0 [dist (x, y)—dist[f (x), fO)]| <2 (v,yeX).
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3.2. Let X be a non-empty set contained in a metric space Z. If B is a real number
and, forn = 1,2, ..., there exists a (1/n)- translation f,: X—Z such that o[ £,(XD1<B,
then o(X)<p. ‘

Proof. Assume ¢ is a real number and C=Xx X is a connected set such that
p1(C) = px(C) and a<dist(x, y) for (x,y) e C, where p; and p, are the standard
projections of ZxZ onto Z. The set

C, = {(£i). ) (x,3) e C}
is connected and C,<=f,(X) xf,(X). Moreover,
21(C) = £[ps (O] = £,[p2(O)] = P2(Cy)
and it follows fl:mﬁ (10) that, for any point (£,(x),5,()) of C,, we have
w=2jn<dist (5, ) ~2In<dist (D, HON

whence o—2/n<a[f(X)]. Consequently, the inequality a—2/n<f holds for
n=1,2, .. This means that «<p and, as a result, the least upper bound o(X) of
such numbers « also satisfies the inequality o(X)<p.

" 3.3, Lemma. Let X be a non-empty subset of a bounded metric space Z and let
fi X—»Z be an e-translation. If C is a finite open cover of f(X) and
C' = {f"YG): GeC}, then

|mesh(C)—mesh(C")|<2s, |w(C) —w(C)| 2.

Proof. By (10), for any pair of non-empty sets 4, Bcf(X), we get the in-
equalities .
B—0[f (DI, lo(, B)—elf TH(A).f T BlI<2e,
which imply the two inequalities required in 3.3, respectively. It suffices to notice

that some sets Gy, ..., G, of Cforma chain if and only if the setsf~1(Gy) s - "G
form a chain (in C'), and .

FUGL U UG) =T G . ufYG,).-
3.4. Let X be a non-empty compact Set contained iri a metric space Z. If B is
a real number and, for n = 1,2, ..., there exists a (1/r)-translation f,: X—2Z such
that B<wlf(X)], then B<Sw(X).

Proof. Since f—Un<w[f,(X)] (n=1,2,..), it follows from the definition
of the width that there exists a finite open cover C, of £(X) such that

mesh(C)<1/m, p—1/n <.w <.

We take the finite open cover C, = {f, '(G): G € C)of X(n=1,2,..) which,
according to 3.3, fulfills the conditions T,

an mesh (C})<mesh(C,)+2/n<3/n
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and B—3/n<w(C,)~2/n<w(C;). Setting « = p~3/n and C = C,,; (m>n) in the
definition of w(X), we obtain f—3/n<w(X), by (11). The inequality B<w (X) now
follows.

3.5. Let X be a tree-like continuum contained in a metric space Z. If,f is a real
number and, for n=1,2, ..., there exists a (1/n)-translation f,: X—2Z such that
Z, = f(X) is a tree-like continuum with w(Z,)<pf, then w(X)<8B.

Proof. We can assume X is non-degenerate; otherwise w(X) = 0. Thus all
but a finite number of the continua Z, also are non-degenerate and, without loss of
generality, we can as well assume that each Z, is a non-degenerate tree-like con-
tinuum (n = 1, 2, ...). According to 1.2, there exists a finite open cover C, of Z,
(n = 1,2,..) such that the nerve of C, is a tree and

mesh(C,)<1/n,  |w(C,)—w(Z)|<1/n.

The finite open cover C, of X from the proof of 3.4 fulfills condition'(11),
by 3.3. Furthermore, for n = 1,2, ..., we h_ave

(12

and the nerve of C, is obviously the same as the nerve of C,,; thus it is a tree. Since (11)
implies (2) with C, replaced by C,, we can apply 1.2 again to conctude from (12)
that : )
w(X) = lim w(C,)<lim (B+3/n) = B.
n—op n-ro0

w(C)<w(C,)+2/n<w(Z)+3n<p+3n,

Remark. Observe that the tree-likeness of Z, in 3.5 implies, by 3.3, the tree-
likeness of the continuum X itself. However, even if the continuum X is assumed to
be tree-like, the conclusion of 3.5 is no longer true when the tree-likeness of the
continua Z, is dropped. We provide an example to explain this possibility (see 3.7).

3.6. CorOLLARY. If X is a tree-like continuum contained ini a metric space and,
forn=1,2,.., atree-like continuum X, is the image of X under an &,-translation
such that

limeg, =0,
then lim ¢ (X,) = ¢(X) and lim w(X,) = w(X).

3.7. EXAMPLE. There exists a simple triod T on the plane R%, (1/n)-translations
fo: T»R* and finite open covers C, of T (n = 1,2,..) such that

@ w =1, -

() wlfi(MI=0for n=1,2, .., and

(iii) lim mesh(C,) = lim w(C,) = 0.
- Proof. Let S, Sy and S, be the straight-line segments joining the origin with
the points (0, 1), (1, 0) and (0, —1), respectively. Then 7' = S, U Sy U S, is a simple
triod and (i) follows from 2.4. Let f,: T->R? be a (1/n)-translation such that £,(T)
is topologically a disk (n = 1,2, ...). We get (ii), by 2.2, which means that it D is
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a finite open cover of the disk f,(7) with mesh (D) sufficiently small (depending on ),
then w(D) is small, too. Thus there exists, for n = 1,2, ..., a finite open cover D,
of f,(T) such that : ;

mesh(D)<1/n, w(D,)<l/n.

We define C, = {f; (&: GeD,} (n =1,2,..). It follows from 3.3 that Cs
satisfy condition (iif). :

4. Simple triods and trees. The results of this section indicate that the problem
of finding a relationship between the span and the width of tree-like continua reduces
partially to another problem, rather combinatorial in its nature, namely that of con-
necting the width of a tree with the widths of simple triods contained in it.

4,1. If T is a simple triod, then w(T)<o(T).

Proof. By 2.4, this is a consequence of a lemma proved in [8].

Remark. The inequality in 4.1 cannot be replaced by the equality (see 4.5).
Also, the assumption that T'is a simple triod is essential in 4.1. To support the latter
statement, we study, in 4.2 below, some properties of an example of a tree which has
been constructed in [9].

4.2. BXAMPLE. There exists a tree T in the 3-space R® such that

® w() =1,
(i) o(T) =%, and

(i) T = 4o U A, U Ay U As, where A; are arcs having a common end-point v and
Aindy={v} for i#j(,j=0,1,2,3); thus T'is a simple “4-o0d”.

Proof. The space R® with the ordinary Pythagorean distance will be used. Given
two points p, g€ R®, we denote by pq the straight-line segment having p and g as
the end-points. For i = 1,2, 3, we take the points

p; = (kcosdmi, 1sin3ni, 0), ¢q; = (cosim(i+1), sinn(i+1),0),

and let g = (0,0, 1) and v = (0,0, 0). We define 4, = Jov and A; = p;q; v piv
(i =1,2,3). Then the union I of these arcs satisfies condition (iii). We also denote

B=A,ud, Ud,,

so that B.is a simple triod and T = 4, U B. Clearly, dist(x, v)<1 for x € B. Since
v ey, we get

Sup{a(x, 4p)i xeT}<I1,
which implies that w(T)<1, by 2.2. Now, let 4 & Arc(T). If A<B, we have

1 = dist(go, v) = ¢(d0, B)S0 (g0, 4) »
whence :

(13) 1<Sup{o(x, 4): xeT}.
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If A& B, there is a subscript j = 1, 2, 3 such that 4= 4, U 4;. The set 4, U 4;
is contained in the cylindrical section

S = {(rcosf, rsind, 7): 0<r<1, $j<O<3n(j+1), 0<i<1}
and one of the points g;, namely the point
g = (cos4m(j+2), sinn(j+2), 0)

has the distance g(g, S) = 1. Since dcd, U 4;=S, we obtain o(g, S)<ea(q, 4),
whence (13) holds again. By 2.3, this implies the inequality 1< w(T), and so (i) is
proved.

The set T" = p,v U p,0 U pyv is a simple triod contained in T, and w(T") = 4,
by 2.4. It follows from 4.1 that 1< ¢(T")<o(T). Thus, to complete the proof of (i),
we have to show that o(T)<%. Suppose, on the contrary, that ¢(T) exceeds %.
Then there exists a number ¢;>%, a continuum C and two continuous mappings
Sfi,fat C=T such that fi(C) = £,(C) and w,<dist[f,(c),fa(c)] for ce C. The
vertex v is a cut-point of 7. If v ¢ f,(C), the continuum f;(C) would be contained in
one of the sets A\{v} (i = 0,1, 2, 3), which is impossible since the span of any arc
is zero. Thus v ef,(C). We denote

(14) Vi=fT), Xi=fi'4o). Yi=f'® (=1,2).

Let <, be the ordering of the arc 4, from v to g, that is (0, 0, <, (0,0, #)
if and only if #<¢. The sets :

Py ={ceX;nX,: f1(<of2(0)}, P, = {ceX, nX,: f(0)<0 1)}

are compact subsets of C whose union is X n X,. They are also disjoint since
J1(¢) # f5(c) for ceC. Hence

(15 XynX, =P wP,, PinP,=0, V,nX,nX,cP; (i=1,2).

We claim that a decomposition similar to (15) also exists for the set ¥; n Yz.
More precisely, we are going to prove that there exist compact sets @, and Q,
satisfying the conditions

16) Y1nY, =000, 0nQ =0 V,nYnYecd (=12,

or, in other words, that the set ¥; n'Y, is not connected between V,n Yy n Y,
and ¥, n ¥; n Y,. This will be achieved when we show that the set ¥, n ¥, is
not connected between any two points belonging to these sets (see [6], p. 168).
Let eV, n Y, nY, (i =1,2) be points arbitrarily selected. By (14), we have
f1(d) = v = fo(dy), whence f5(d;) # v # f1(d;). Also by (14), the points f,(dy)
and f5(d,) are in B, so that each of them is in one of the sets AN} (i = 1,2,3).
Thus there exists a subscript & = 1, 2, 3 such that the arc 4, contains neither f,(d,)
nor f5(d,). Let [ and m be the two remaining subscripts from {1, 2, 3} arranged so
that the arcs 4; and 4,, are obtained from 4, by the counter-clockwise rotation
through the angles 47 and 4, respectively. In other words, (%, [, m) is either (1, 2, 3)
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or (2,3,1) or (3,1,2). We consider a retraction g: B4, v A4,, which is defined
in the following way. The mapping g maps A4, into 4., g(p) =7, g(@) = Pms
and g is linear on both segments p,g, and p;v whose union is 4;. Consequently, we
have

{x} . for X €& (Ak Y Am)\m H
17 g7 (x) = {pw for =v,
{xa y(x)} fOr x Eme\{'D} H

where p(x) is the point of the segment p,q, such that

dist [py, y()] _ dist(v, x)
dist (_pl H ql) dist (1} H Pm) ’

Next, we need to show that

Slg 1<

(18)

(19) (xed v d,).

Since 8(py5) = dist(py, v) = %, inequality (19) holds for x € (dx U 4,)\Pud
or x = v, by (17). Assume then that x is 2 point of p,,v and x # v. It has to b.e shown
that dist[x, y(x)]<3% for such x € po\{v}. To this end, let us denote 1 = dist (v, %),
and observe that dist(p;, q) = %/7 and dist(v, p,) =%. Hence 0<i<? and

dist[py, y()] = A/T
by (18). Also, it follows from the definition of_L and m that p,, is the mid-point of the
segment g;0. Thus the point x belengs to g;v and
dist(g;, x) = dist(g;, v)—dist(v, x)=1-21.
On the other hand, we get
dist[g;, y (¥)] = dist(g. p)—dist[py, y ()] = TG=4)
and cos@ = 5+/7, where 0 is the angle between the segments gvand g,p;. As aresult,
we obtain
(dist[x, y (1) = (1= +T G2 =2 7L =D E=2)cos
= (1=-H*+7G-»*-501-DE=1)
= }+3A2-D<i,

i i lete.
whence dist[x, y(x)]<% and, by (17), the proof of (19) is comp _ .
Let <, be the ordering of the arc 4, v 4,, from gy to g,,, the end-points of this

arc. The sets
0y ={ceY 0¥y af(Q)<r9f2(0)}

s ={ce¥ n ¥y gfz(¢)<k9f1(¢)}

: ion is ¥in Y, by (14). Since
are compact subsets of C whose union 18 Xy 23
L<ay<dist[ £1(e); f2(0)] for ceC, it follows from (19) that gfi(c) # gf,(e) for
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ce Yy n Y,. Therefore the sets Q; and Q, are disjoint. Moreover, the points
fi(d;) and f,(d,) both belong to 4; U 4,,, whence

gj} (dz): ng(dl) €4g (‘Al 4 Am) = Am H

and because gfy(d) = g(v) = v (i = 1,2), we conclude that -

gfi(dy) = ”gkgfz(dx)s 9folds) = v<,gfi(dy) ,

which means that d;e Q; (i = 1, 2). The decomposition of ¥; n Y5 into Q and Q5
then establishes the non-connectedness of ¥; n Y, between d; and d,. Conse-
quently, we have also proved the existence of compact sets.Q; and Q, which sat-
isty (16).

We now distinguish two cases to prove that

(20)
Let u = (0,0, ).

Case 1. uefi(C). Since f1(C) = f,(C), there exist points ¢, & C such that
fie) = u (#=1,2). But ue 4y, so that ¢;e X; (i = 1, 2), by (14). Each point of T
whose distance from u exceeds % belongs to B. It follows from the inequalities

F<op<dist[fi(e)), falen)]

that f(cy), fi(c2) € B, whence ¢, € ¥, and ¢, € Yy, by (14). We get ¢, e Xy 0 Y,
and c,e X, n Y;.

Case 2. u¢fi(C). We know that vef;(C). Let w be the last point of the
segment 4, which belongs to f;(C), in the ordering <,. The set Ay N f1(C) is
connected, f;(C) being a continuum. Thus, in this case, we have w e up. Conse-
quently, by the definition of w, each point of £;(C) whose distance from w exceeds %
must belong to B. Since f,(C) = fz(C), there exist pomts ¢; € C such that fi(e]) = w

~((=1,2). Asin Case 1, we get ¢y € X; A ¥, and ¢, e X, n Y, which completes
the proof of (20).

The sets

XinY,#0#X,nY,.

(i=1,2)

M=P L Q,u(X,n Ty, N=P,uQ,uX,nY,)

are compact and non-empty, by (20). Also, we have
C=CaC=f"T)nfz(T) = f{ (4o UB) N f5 (4, U B)
=X uINnhuY) =X nX)u N Y)uXan Yo (YA Yz)
=PiuP,uX;a)uX,nY)u U@, =MUN,

by (14), (15) and (16). Since 4, n B = {v}, it follows from (14) that X, A ¥, = V,
(i =1,2). Hence A e L=V
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MAaN=@n @)@ nXinT)u(@nP)u(@nXinT)u
UP, N XnTNu(@inXon YY), 0 X, nYinY,)
cPnXon U nXmonT)u(@n Y nX)u(@nYinX)u
VP, 0 X nYDuQinY,nX)ulVinVy)
=@ NAVIU(@nVIuPnVRu@inP)uFinPy) =0

by (15) and (16). This contradicts the assumption that C is a continuum. Con-
dition (ii) is then proved, and so is 4.2. ‘

4.3. Let T be a tree which is not an arc. Let vy, ..., vy be all the branch-points
of T, and let n, denote 1he ramification order of T at v;, i.e. n, is the number of com-
ponents of TN{v;} (i =1, ..., k). Denote

m(T) = [(iini)_(k+1)]—1 .

Then there exists a simple triod T' =T such that m(T)w (T)<w(T") (see [9], p. 8).

Let us define separately m(4) = 1 for each arc 4. Observe that if 7'=T are
trees, then m(T)<m(T"). The next result follows from 4.1 and 4.3.

4.4, CorOLLARY. If T is a tree, then m(T)w(T)<o (D).

Remarks. For some trees, the inequality in 4.4 provides a sharp estimation
of the span. Indeed, the 4-od T from 4.2 has m(T) = 4—2)"' =% and o(T) = %
= m(T)w(T). This estimation, however, is not the best one for all trees. We cite an
interesting problem that seems to be important here. It is the following unsettled
conjecture of Frances O. McDonald: is it true that each tree T which is not an arc
contains a simple triod 7” such that w(T)<2w(7")? If the answer were “yes”, we
would get, by 4.1; the inequality w(T) <20 (T) for all trees. Up to now, McDonald’s
conjecture has been proved for T being “n-ods” and n = 4, 5,6 (see [9], p. 13).
Thus, for all the 5-ods and 6-ods, it already provides a better estimation of the span
than that given by 4.4.

4.5. ExampLE. For each >0, there exists a simple trzod T on the plane R* such
that o(T) = 1 and w(T")<s for each simple triod T"T.

Proof. There exists an atriodic tree-like continuum X< R? such that o(X)>0
(see [3], pp. 100 and 106). Moreover, X is “triod-like” in the sense that there are
finite open covers of X with the mesh arbitrarily small and with the nerve being
a simple triod. These covers can be constructed by means of open disks on the plane,
so that their nerves are embeddable in the unjons of the disks (ibidem, see also [4];
p. 76). It follows (compare 5.1 below) that there exists, forn = 1,2, ...,;a (1 [n)~trans-
lation f,: X~»R? such that T, = f,(X) is a simple triod. Let y = }20(X). We have

lim(Z;) = o(X),

n-roo .
by 3.6, and therefore there is a positive integer #, such that to(X)<o(T,) for nzn,.
We claim that there also exists an integer 7, 1, such that w(T")<y for each simple
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triod T"<T,,. If it were not so, each T, (where n>n,) would contain a simple
triod T with y<w(T}). Hence, by 2.4, there would exist arcs 4 meTheT,
(i =0,1,2) such that 4o, N 4y, O Ay, # @ and none of the arcs Ao, Ay,s 4y, is
contained in the y-neighbourhood of the union of the other two. All these arcs are
contained in a bounded subset of the plane. Without loss of generality, we can assume
that the three sequences of the arcs 4,, (i = 0, 1, 2) converge to some three continua
C,cX (when n—»co), respectively, Then also Cy i C; 0 C, # @ and none of the
continua Cy, Cy, C, is contained in the union of the other two, which contradicts
the fact that X is atriodic (see [10], p. 443). The existence of n, is.thus proved.
Let p € R™\T,, be a point. We define an embedding h: T,,;—)»R2 by taking A (x)
to be the point of the ray px (x& T;,) such that

dist[p, h(x)] = dist(p, x)[o(T;,) »

whence dist[2(x), k()] = dist(x; »)/o(T;,) for x,yeT,,. The set T = h(T},) is
a simple triod with the span o(T) = (T}, )/o(T,) = 1. If T'<T is a simple triod,

then .
w(T") = wlh ™ (T)o(T,)<y/e(T,)<2y/c(X) = &.

5. The span of certain tree-like continua. The following well-known lemma es-
tablishes a relationship .between finite open covers, their nerves and e-translations,
5.1. LEMMA. Let X be aron-empty subset of the Hilbert space R®. If ¢>0 and C is
a finite open cover of X such that mesh(C)<se, then there exists a polyhedron P < R®
contained in the e-neighbourhood of X in R® and an e-translation x: X—~R®
such that P is topologically the nerve of C and »(X)<P. Moreover, if the nerve of
C has dimension n, then R® can be replaced by the Euclidean (2n-+1)-space
_R¥*1 (see [5], pp. 319, 324 and 330).

Let IT be a collection of polyhedra. A compact metric space X is called II - like
provided, for each ¢>>0, there exists a finite open cover C of X such that mesh(C) <e
and the nerve of C, if non-degenerate, is topologically a polyhedron belonging to IT.
Our next proposition involves the McDonald coefficient m(T) as defined in 4.3.

5.2. Let IT be a firiite collection of trees and let X be a II-like continuum. Denote
m(Il) = Min{m(I): Tell}.

Then m(IHw(X)<o(X).

Proof. We can assume X is non-degenerate; otherwise 5.2 states a tr 1vml fact,
Since then X is one-dimensional, it is embeddable in R®. Let us also assume that
X<R? and, moreover, that the space R3 is remetrized so that the metric in R? is
an-extension of the given metric in X (see [2], p. 353). By 5.1, there exist trees T}, < R®
and g,-translations f,: X—~R® such that ¢, , &,, ... converge to zero, T, is topologically
a member of II and f,(X)<=T, (n = 1,2, ...). Since X is non-degenerate, all but

a finite number of the sets T, = f,(X) are non-degenerate. Consequently, they are
trees and the inclusions Ty T, imply the inequalities

m(I)<m(T,)<m(Ty) .
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It follows from 3.6 and 4.4 that
m(IDwX) = m(H)th( W = hmm(ﬂ)W(Tn)

< lim m(T, )w(T,,)<hm (T = o(X).
n—=oo n—

A contimuum X is called unicoherent provided the common part of any two con-
tinua whose union is X is connected. 'We say that a continuum X is P-unicoherent
provided there exists a collection IT of unicoherent connected polyhedra such that X
is IT-like. If £ is a mapping of a metric space X, we denote

4, = {dist(x, x'): f(x) =f(x), x,x €X}.

5.3: TueoreM. If f: X— Y is a continuous mapping of a P-unicoherent continuum X
into an arc-like continuum Y, then
N

[0, (X)) =4, -

Proof. Without loss of generality, let us assume that X is a subset of the Hilbert
space R® and that the metric in R is an extension of the given metric in X (see 21,
p. 353). Also, since ¥ is one-dimensional (or degenerate), we can assume that YcR3.
We are given a collection II of unicoherent connected polyhedra such that X is
II-like. By 5.1, there exist polyhedra P, =R® contained in the &, neighbourhoods
of X in R®, respectively, and g,-translations f,,: X—R® such that¢,, &, ... converge
to zero, P,, is topologically a member of II and f,(X) =Py, (m = 1,2, ...). Similarly,
there exist arcs 4, R? and n,~translations g,: ¥Y—R® such that #;, 75, ... converge
to zero and g (¥)=4, (n = 1,2, ...). Let &,: R°—>4, (1 = 1,2, ...) be a continuous
extension of the mapping g, f; X—4, (see [6], p. 332).

Since P, is a unicoherent locally connected . continuum,
h = &,P,: P,—A4, fulfills the condition

[0, (P4,

(see [8], p. 207). Given any number « & [0, ¢/(X)], there exists a number o, € [0, 6(P,)]
such that ‘

the mapping

Id—dml < lO'(X‘)—G'(P,,JI H]

and thus we also have a,, € 4,. Consequently, there exist points bm,,, Drun € Py With
Sty Do) = Oy A0 A (D) = B (PL,y), Whence

@n lot—dist (Pyuns Pran) SlOX) =0 (Pl (mym=1,2,...)
and .
(22) n(Pmn) = n(p:nn) (m n= 1 2 )

Let n be fixed for this part of the proof. Since the polyhedron P, is ‘contained .
in the ¢,-neighbourhood of X in R®, there exist POINtS Xy, Xy € X such that

ISt (Pyums Xoun) <Ems dlst(p,,,,,, Xy <e, (M=1,2,.),

2 — Fundamenta Mathematicae XCVILI/3 ~
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whence ‘
1. diSt(Pyys o) = Lim. dist(Bppms Xpun) = 0,
m=r o

m—r oo

according to the assumption made about the sequence &;, ¢, ... By the compactness
of X, there exists a sequence m, <m,<... of positive integers such that

M Xy = X,p W Xy = Xy,

i+ . i~ .
where x,, x, € X. (Actually, the sequence my, My, ... May depend on », but this is
irrelevant here, n being fixed.) Thus we also have

. . ! 4
Ump, = %,  limpy, = %,
i i~

and therefore
gnf (xn) = @n(xn) = lhm ¢n(pm¢n) = ilim ¢n(pr'mn) = an(x;) = gnf (xr,, s
=¥ 00 -+ 00
by (22). Moreover, it follows from 3.1 that
lim supo(P,)<o(X),

i+

and 3.2 implies
c(X)Kliminfo | £, (XN]<lim info (Py,) ,
i+ i~

since f},;: X~ R® is an &, -translation and f,(X) =Py, (i=1,2,..) Asa result,
we obtain

lima(qu) =0(X),

i+o

and condition (21) implies that

dist (%, x2) = lim dist(ypyns D) = &
i

Again, X being compact, there exists a sequence n; <m, <... of positive integers
such that
. .
lim x,, = x, lim x,, = x',
P ad ) J=eo
where x, x’ € X. Consequently, we get
dist (e, x') = lim dist(x,,, X%,,) = &
j=ew

andsq,, S ) = g, f (xs ) forj=1,2,.. Butthe mapping g,, is an 1, ftranslation,
whence

dist[f (o)), S ()l <2, G =1,2,.), ’
by (10). The latter inequality yields ' .

£ () =}imf (ey) = iimf (om) =S ()
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so that « = dist(x, x") € 4. Since o« was an arbitrary number of the interval [0, a(X)1,
we have shown that this interval is a subset of 4. ;

5.4, COROLLARY. If IT is a finite collection of trees and f: X—Y is a continuous
mapping of a II-like continuum X into an arc-like contimnum Y, then

[0, m(IT)w ()] = 4, -
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