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Whitney properties
by

J. Krasinkiewicz and Sam B. Nadler, Jr. *

Abstract. Some properties and structure of the “levels” u~(¢) are investigated, where X is
a (metric) continuum and g is a Whitney functioz for the space of all nonempty subcontinua of X.

1. Introduction. By a continuum we mean a nonempty compact connected metric
space. The letter X will always denote a continuum. By the hyperspace of X we mean
C(X) = {4: 4is a (nonempty) subcontinuum of X} with the Hausdorff metric H [5].
In [17], in another context, Whitney defined a function u: C(X)—[0, o) satisfying

(1.1) p is continuous on C(X);

(1.2) it A=B and A4 s B, then u(4d)<u(B);

(1.3) p({x}) =0 for each xeX.

We will call any function from C(X) to [0,00) satisfying (1.1) through (1.3)

" a Whitney map for C(X), and denote any such map by the symbol u. Kelley [5] was

the first persom to introduce Whitney’s function into the study of C(X). The first

‘explicit work done after Kelley on the nature of the sets x~'(z) was done in [3] where

it was shown, among other results, that u is both monotone and open. Next in [6]
several results on the topological type of the sets u~!(f) were obtained. The next
paper concerning the sets 7 *(f) was [12]. Several papers on Whitney maps have
recently been written (see our bibliography).

Let P be a topological property. We say that P is a Whitney property provxded
whenever X has property P, so does u"l(r) for any Whitney map u for C(X) and
each t<u(X). The purpose of this paper is to continue the work mentioned above.
We give some general results about the levels u~*(2) (see, for example, 3.1 and 5.1)
and some specific facts about p~*(?) for certain classes of continua (see, for exam-
ple, 3.4, 3.5, and 4.4). Our results and examples show for many properties whether
or, not they are Whitney properties.

¥ This paper was begun when the second author was a visitor at The Polish Academy of Sci-
ences, Warsaw, and was completed when the first author was a v1sltor at the University of Geor-
gia, Athens, Georgia 30602. :
3’
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We summarize results about whether or not a given property is a Whitney prop-
erty in the following table. Results from this paper which appear in the table are
listed according to how they are numbered in this manuscript. The column entitled
“Primary Reference” gives the paper (resp., papers) where the result first (resp.,
simultaneously) appeared. The column entitled “Secofidary Reference” lists papers
where a simpler proof or a more general result is obtained. In all cases, when a theorem
in this paper is listed as a secondary reference the result obtained here is more general
than the result listed as the corresponding primary reference. The results in this
paper were originally obtained without the authors’ awareness of {15].

Primary reference
Topological prdperties of X Whitnﬂ};’ property SIZ(;‘Z;::\C::Y
Yes | No
continyum [3]
arc [6] [12]
simple closed curve [6] 1 M12]
pseudo-arc [3]
solenoid Th. 4.5
pseudo-solenoid [15] I8}
locally connected [12]
arcwise connected [12]
aposyndetic [13]
decomposable Th. 3.4
indecomposable ) [15] Th. 5.1, Ex. 5.4
hereditarily indecomposable [5)
unicoherent [15] Th. 5.1, Ex. 5.4
non-unicoherence Ex. 5.5 B
chainable [6]
indecomposable chainable Th. 4.3
circle-like . [15] Th. 52
planar proper circle-like [151 [8]
non-planar circle-like [15] [8]
proper circle-like [6]
indecomposable circle-like [15] Th. 5.1, Ex. 5.4
hereditarily indecomposable tree-like [7]
fixed point property Ex. 5.6
cyclic [15] Bx. 5.5

In the last section we state several problems.
2. Terminology and notation. In this section we collect the notation and termin-
ology used in this paper.

The continuum X is a point of C(X) and it is called the top of C(Xj. By the
base of C(X) we mean the collection of all one-point sets. It is denoted by X and is
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isometric to X. If 4, Be C(X) and A< B, then there exists a maximal collection of
continua between 4 and B. Any such collection will be denoted by 4B and called
a segmerit between 4 and B. The existence of segments is proved in [2]. If 4 # B,
then 4B is an arc (any Whitney map on C(X) defines a homeomorphism between 4B
and an arc). Hence, the segment 4B can be parametrized in the sense that there exists
a homeomorphism (or a constant map provided 4 = B) a: [0, 1]-4B such that
o(0) = 4. Any such map will also be called a segmenz. If in addition o satisfies

p(e(®) = A~Du(d) +1-p(B),
then o is called a segment in the sense of Kelley from A to B [5]. If ae X, then
X(@) ={4eCX): ac 4}.
More generally, if 4 e C(X), then
X4) = HLE)AX (a) .

Hence, X(4) is the collection of elements of C(X) each of which intersects A. If pt is
a fixed Whitney map on C(X), then we denote

X, 1,0 =XA)np 0.

In case 4 = {a} we simply write X(a, , f) instead of X({a}, p, 7). We will also use
the symbol
X[A4] = {Be C(X): A=B}.

Notice that the sets X(a) and X[{a}] coincide.

We say that a continuum A4 e C(X) is terminal in X if for every two continua
B, Ce C(X) each of which contains 4 we have either B<C or C<B [4]. It 4 is
a -one-point set {a}, then we simply say that a is rerminal in X. Observe that the
continuum 4 is terminal in X if and only if X[4] is a segment in C(X). Hence, if ais
a terminal point of X, X(a, i, 1) is a one-point set for each o< pX).

Any (continuous) map f: X— ¥ into a continyum ¥ gives rise to a (continuous)
map from C(X) into C(Y¥) which sends 4 e C(X) to the image of A under f. This
map is denoted by f and called the map induced by f.

2.1. PROPOSITION. Let f; C(X)—C(Y) be the map induced by f: X—Y. Assume
dim{xeX: {x} #/* f(x)}<0.

Then the following are true:

(i) F embeds C(X\X into C(Y\Y,

@) if p: C(Y)—=[0, o) is @ Whitney map, then pef: C(X)=10, 0) is also
a Whitney map.

Proof. 1t 4, Be C(X), A ¢ X and A\B # @, then there exists a nondegenerate
continuum CcANB. By the assumption about dimension, f (C) € C(Y)\T. Using
this it is easy to complete the argument for 2.1.
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We denote the unit closed interval [0, 1] by I and the unit circle in the complex
plane by §%, i.e., S = {ze C: |z| = 1}. A mapf: X— Y is said to be an ¢-mapping
provided diam f~*(y)<e for each y e £ (X). We say that a continuum X is chainable
or snake-like (vesp. circle-like) if for each ¢>0 there exists an s-mapping from X

_onto I (resp., S*). We say that a circle-like continuum X is proper circle-like [6] if
there exists a map f: X—S* which is not homotopic to a constant map. By 4 or cl(4)
we mean the closure of 4, and by Fry(4) we mean 4 N [Y—4] n Y.

3. Fundamental properties of some subsets of C(X). In this section we prove
a general result (3.1) about mapping simplexes into C(X). One of the most important
corollaries of this result is 3.2 which gives insight into the structure of the sets
X (4, u, 1). Other results include the fact that decomposability is a Whitney prop-
erty (3.4) and, furthermore, that u~(¥) is arcwise connected for ¢ close to u(X)
when X is decomposable. First we give some notational conventions.

Let I, denote the Hilbert space of all square summable sequences
(%15 X35 vy Xy, ...) of real numbers x,. For each n we consider Buclidean n-space R
as canonically embedded in I, so that (x,,x,,..,xX,) € R" is associated with
(%45 X35 s %,,0,0,..)€l,. Thus, we frequently write (xy,x;, ..., x,) to mean
(%15 Xg4 w0y X4, 0,0,..). Let 0 denote (0,0, ...,0,...) and, for each n = 1,2, ...,
let e, denote the point of /, whose ith-coordinate is zero if i # n and one if i = n.
If S</,, then let conv(S) denote the closed convex hull of S. Foreach n = 1,2, ...,
let 2" = conv{0, e;, ..., e,} and, for each s € [0, 1], let Z; = conv{se,, se,, ..., se,}.
Note that Z'cX?c.cXc..

The following theorem is a generalization of Lemma 1 of [12] and is related to
Theorem 1 of [11].

3.1. TueoreM. Let toe([0, u(X)]. Let Ay, Ay, ., Ay p™*(ty) such thar
n

n
N 4; #9, and let K be a subcontinuum of (\ A;. Then there is a continuous function
=1 1=1 : ‘

fo: Z'=C(X) such that

@) chn(p)ciQAi Sfor each pe X",

) file) = A, for eachi=1,2,..,n,

3 50 =K,

@ fEZlep (- u(K)+st)]  for each's€[0,1],

() fAi#EK=dind foralli,j=1,2,..,n with i # j, then f, is a homeo-
morphism.

Proof. The proof is by induction on n. Let n = 1. Let o: [0, 1]-C(X) be
a segment in the sense of Kelley from K'to 4;. Letf; = o. Clearly (1) through (5) hold
for f,. Now, assume inductively that we have defined f,..,: £"~*—C(X) such that (1)
through (5) hold (n—131). We define £,: Z"— C(X) as follows. Let o [0, 1]-C(X)
be a segment from K to 4,. Now, let x = (x;, x5, ..., X,) € 2" be fixed and let
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n n—1
- -1
%' = (%1, X, e Xyoy) € "L Then, xe It fors= Y x;and x' e Z% ' for s’ = x;.
i=1 i=1

Now, by (4) of the inductive assumption,
2 [f;;—'1(xl)] = (=sNuK)+s5'ty .
Thus, since s'<s and fo=u(K),
Bl fam 1GNNS A= pu(K) +526

Therefore, since u(4,) = #, and by (1) of the inductive assumption fi-1(x)>2K,
there exists r, € [0, 1] (r, not necessarily unique) such that .

wlo(ry) W fm1(xD] = (1—5) u(K) +sto .

We define: f,(x) = o(r) U f,—1(x). By defining f, at each point of X" by this pro-
cedure, we obtain a function from X" into C(X). It can be shown, by a technique
used in the proof of Lemma 1 of [12], that f, is continuous on each Z%. It then follows
easily that f; is continuous on X". From the way we defined f,, (4) obviously holds
for f,,. Sinee (1) holds for f,_, and since each value of £, contains (as a subset) a value
of f,—1, (1) holds for f,. Now observe that if x = (%1, Xz5 ionr X)€"
(i.e., x, = 0), then p[f,- ()] = &l £.(®)] (because, in the notation above, § = s’?.
Therefore, since f,(x)=f,—1(x), we have that f,(x) = f,~,(x). This proves that f,, is
an extension of ,_;. Thus, since (3) holds for f,— 1, (3) holds for £,; also, since (2)
holds for £,_s, (2) holds for f, when i<n—1. To see that (2) holds when i = n,
first note that e, € Z5. Thus, since (4) holds for f;,, plffe)] = - Since (3) holds
for fu-1, :

filen) = 0(re) U fua(O) = 0(r,) V K = 0(re,) -

Hence, plo(r,)] = ulfile)] =1, from which we conclude that o(r,) = 4,-
Therefore, f,(e,) = 4,. This proves (2) holds for f, (when i =n). To .prov? (S)'holds
for f,, assume A;# K=4,n d; for all i,j=1,2,..,n with i j Let
X = (g, Xz, s %y €3 and let ¥ = (e, 92, s P € 2" such thalt x ;Iéy. Let
X' = (g, Xgyems Xy—q) and let ¥ = (P13 Y2y eovs Pam1)- .Assume x #y. The'n,
since f,., is a homeomorphism, Foe1(x) # f—1("). Without loss of generality
assume there is a point wel f,,_}(x’)—f,._l(y’)]. Since (1) holds for fi-1,
e

we [”LJLAl——K]. Thus, since 4, n [ U 4] = K, wé¢ 4,. Therefore, since w ¢ f,—1(")
= ’ =1 ]
and },,(jy)c:A,, Uf,—4(y), we have that w¢f(y). Hence, we (A —F)] so

So(®) # f(). Next, assume x' = y'. Then, since X # ¥, We have x & zi and yeZy,

with ‘s, # 8,. Since (4) holds for f,, nl £ = (L—s) p(K) +51 1o ‘and p[ /(]
= (1— ) u(K)+5215. Now, K is a proper subcontinuum of each 4, and, thus,
u(K) # to. It follows from this that if p[£,G)] = ulfu()], then sy = ‘sz. .Th;refore?
BLA0] # »Lf0)] and fi(x) # £,(0). We have now shown that f s one-to-one,
henceé a homeomorphism. : .
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3.2. COROLLARY. If 4 is a subcontimuum of X, then X (A, u, 1) is a subcontinuum
of p (%) whenever 0<t<u(X). Furthermore:

1)  If u(d)<e, then X(4, u, t) is arcwise cénnecled (perhaps degenerate).

(@) If p(d)y>t, then A= p~ @)~ C(4) is a subcontinuum of X A, 1, D and
each member of X(A, u, )\A can be “joined” to a member of A by
an arc acX (4, u, 1.

Proof. From the continuity of u and properties of convergence in C(X) it is
easy to see that X(4, p, 1) is compact for any [0, u(X)]. To prove (1), assume
ulA)<ty, 1, fixed. By using a segment in C(X) from 4 to X (sec 2.3 of [5]) we pro-
duce 4; € X(4, u, 15) such that 4, >A4. Now, let 4, € X(4, 1, 1,). Then there is
a point a € [4, N A). Letting K = {a}, we see that 4;, 4,, and X satisfy the hypo-
theses of 3.1. Hence, there is a continuous function f,: %%-C(X) satisfying (4))
through (4) of 3.1. By the first containment in (1), £5(p) N 4 #@ for each pe 32,
Hence, by (4) with s = 1, we have that £,[23]cX(4, g, #,). Thus, since (by (2))
Soler) = 4, and f(e;) = A, it follows that there is an arc in X(4, , 1) from A 2
to ;. Therefore, since 4, was an arbitrary member of X(4, u, t5), we have
proved (). Next, we prove (2). Assume u(d)>to, 1, fixed. By 1.1 of [71,
A = p" () n C(4) is a subcontinuum of X (4, 1, o). Let Ay e X(A, i, t)\A.
Then, since 4; N 4 #D and (J A= 4, there exists 4, & 4 such that Ay n A4, #8.
Let ae[4; n 4,] and let K = {a}. The proof of (2) may now be completed by
using 3.1 as we just did in the proof of (1).

3.3. CorovLLArY. If X contains an n-odd, then there exists t, < [0, 1(X)] such
that = (t,) contains an (n~1)-cell.

) Proof. Let M<X be an #n-odd. Then, by definition [1], there is a subcon-
tinoum K of M such that M\K is the union of » (nonempty) mutually separated sets

81,85, ., Sy Let B, =8, UK for each i =1,2,...,n Let
to =min{u(By): i =1,2,..,n},

For .each I=1,2,..,nlet 4, be a subcontinuum of B; such that u(dy) =ty (such
c.ontlnua 4; exist by 2.3 of [5]). Let f,: Z"-+C(X) be as guaranteed by 3.1. Then,
since (5) is satisfied by X, 4, 4, ..., 4,, Ju is a homeomorphism. The result now
follows by using (4) which guarantees that £,(2)c LY.

3.4. THEOREM. Decomposability is a Whitney property.

Proof, Let X be a decomposable continuum and let 1o be fixed, 0ty < u(X).
L.e_t1 4 and B be proper subcontinua of X such that X = 4 U B. Clearly,
BT (t0) = X(4, i, 1) U X(B, 1, 1) and, by 3.2, X(A, 1, 10) and X(B, u, t,) are
each subcontinua of u~%(¢,). Thus, if X (A, s t0) # 1™t (te) # X (B, 1, 1), We are
done. So, for the purpose of proof, assume that X' (A4, 1, to) = p~*(ty). Then, if
#(4)<to, we have by (1) of 3.2 that X° (4, p, 1) is arcwise connected, hence decom-
posable [9, p. 213]. Now, assume wld)>15. Let A = p~1(zg) N C(4). Since A # X,
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A (tp). It now follows from (2) of 3.2 and from [9, p. 213] that u~*(z,) is
decomposable. o

The following theorem provides as a corollary a partial solution to a\question
first posed in.[12] and later in [15].

3.5. TueoreMm. If X is a decomposable continuum, then there exists t,<pu(X)
such that p~'(¢) is arcwise connected for each t>1,.

Proof. Let 4 and B be proper subcontinua of X such that X = 4 U B. Let
ty = max{u(A), p(B)}. Let 17, be fixed. Assume, for the purpose of proof, that
t, = u(d). Then, since u(B)<rfand 4 N B #@, it follows that X(4, p, 1) = w i)
Therefore, by 3.2, u~*(z) is arcwise connected. :

The following corollary extends Theorem 5 of [12].

3.6. COROLLARY. If X is a finite-dimensional decomposable cominuum such that
() is homeomarphic to X for all t< p(X), then X is an arc or asimple closed curve.

Proof. From 3.5 above, we have that u~*(f) is arcwise connected for some z.
Thus, since u~(?) is homeomorphic to X, X is arcwise connccted. Now, by
Theorem 5 of [12]; X must be an arc or a simple closed curve.

4. Whitney maps for snake-like and circle continua. In this section we give results
about the hyperspaces of snake-like and circle-like continua. Theorem 4.3 answers
a question posed in [15] and the next theorem, 4.4, gives more information than
Theorem 5.1 of [15]. 'We then give some result for solenoids.

The following lemma is 2.3 of [6].

4.1. LemmMa. Let 1o € [0, u(X)]. Given &>0, there exists n = n(g)>0 such that
if A, Be =Y ;) and BeN(n, A), then H(4, B)<s.

4.2, THEOREM, Assume X is a chainable continuum and let tye [0, p(X)]. If A is
a subcontimum of u(to) such that ) 4 = X, then 4 = W)

Proof. Let A be a subcontinuum of g~ 4(f,) such that J 4 = X. Let d e u‘l(to).
We show 4 & 4. To do this let >0. Choose 1 = 7(¢) so as 1o satisfy 4.1 above.
Let {Uy, ..., U,} be an n-chain of open subsets of X covering X. Let

m =min{i: U;n 4 @}

and let '
s=max{i: Uyn 4 # @}
Now, let : .
Ay = {LeA: LnU; #@ for some i<m}
and let

Ay = {LeA: LnU; #@ for some izs}.
Clearly, A, and A, are each open subsets of A. Since YA =X, 4, #DF # 4.

s=—1
First: Assume A, U 4, # 4. Then there exists Lo € A such that Ly U Ui

i=m+1
Since X is chainable, {Uy, ..., Uy} is a chain, and A is a subcontinuum of X such that
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AnU, #3 # A n U, we have that 4 n U; %@ for alli = m+1,m+2,..,s~1.
s—1
Hence, since Ly U U; and diam[U]<n, Lo=N(n, 4). Thus, by 4.1,
i=m+1
H(A,Ly)<e. .

Second: Assume A, U 4, = A. Then, since 4 is a continuum and each of A,
and A, is a nonempty open subset of A, A; N A, #@. Let Ky & [4; n A4,). Let
ip<m and j,>s be such that Ky 0 U, #@ # Ky n Uy, Thus, by properties of

s
chains used above, Ky, n U; @ for all i = iy, ip+1, ..., Jo. Now, A:iU U, and

=m

therefore it follows easily that A= N(n, Kp). Thus, by 4.1, H(K,, A)<e.

We have now shown that for any &>0, there is a member of A less than e
from A. Therefore, by compactness of A, 4e 4.

4.3. THEOREM. The property of being an indecomposable chainable contimuwm is
a Whitney. property.

Proof. Let £, e [0, u(X)]. Let I'y and I', be subcontinua of u~*(#,) such that

FyuTl, = u™i(t) Let X; = UTI'; and let X, = JI',. By 1.2 of [5], X and X,

are -each subcontinua of X. Also,

X 0X, =[UTJulUT]=Uu't)=X.

Therefore, since X is indecomposable, X; = X or X, = X. If X, = X then, by 4.2
I'y=p~Yty), i = 1 or 2. This proves p~'(f,) is indecomposable. Its chainability
is 6,2 (a) of [6].

4.4. THEOREM. (2) If X is a decomposable snake-like continuum, then there
exists to<p(X) such that u~'(f) is an arc for each ty<t<u(X). ’

(b) If X is a decomposable proper circle-like continuum, then there exists to < u(X)
such that p~*(1) is a circle for each toy<t<u(X).

Proof. (a) By 3.5 there exists #,<p(X) such that u~(?) is arcwise-connected
for each #,<t. Since 4~ '(2) is always snake-like [6] and each snake-like continuum is
irreducible [10], x=*(?) is an arc.

(b) There exist two continua 4, Be C(X) such that
X=4uB and A4d#X+#B.

Since no proper subcontinuum of X separates X (this follows from [9, p. 435] and 3.2
of [6]) we can assume that

M "A4=X\B and 'B=2X~A (see [9; p. 422]).
Also, by [9, p. 435] and 3.2 of [6], 4 N B is not connected. Hence
AnB=MUN

where M, N are nonempty closed disjoint sets. It follows that M and N are continua,
for otherwise X would contain a triod, which is impossible [1]. Let

to = max{u(d) , u(B)}
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and let fo<t<p(X). Tt follows that

@ pN) = XM, p, ) W XN, 1, 1)
and cach of these continua is arcwise connected by 3.2. We claim that
€) X(M,p, 1) # p~t (@) # XN, 1, 1)

Observe that 4 and B are irreducible between M and N, for otherwise, by (),
X would contain a proper non-unicoherent continuum. Let o, be a segment in C(4)
between M and 4 and let o be a segment in C(B) between M and B [5]. It follows
that o I=C(X) given by o(s) = o4(s) v op(s) is a segment in C(X) between M
and X. By the irreducibility, o(5) " N =@ for each s<I. Since u(0(0))

= p(M)<to<t<p(X), there exists so<l such that o(so)'e p~(9). Clearly,

o(so) € X(M, i, ONX(N, g, 1), which proves that X (N, u, f) # u~'(2). The other
i ality i i ed anal ly. '
inequality in (3) is proved mabgou's

Since p~ (1) is a circle-like continuum [6], by (3) we see that X (M, u, ?) and
X(N, u, 1) are snake-like arcwise connected continua. So, they are arcs. Hence
By (2’) 1~ (f) is a union of two arcs and, therefore, is a circle (because it is a proper
circle-like continuum [6]). o . -

In [14] Rogers showed that the cone over a solenoid is homeomorphic to the
hyperspace of the solenoid. Tn the following theorem we give a much bf:tter behaved
homeomorphism which shows that “levels” can all be preserved with the same
homeomorphism. .

4.5. THEOREM. The property of being a solenoid is a Whitney property. More.
particularly, given any solenoid £ and any Whitney map  for C(2) such that u(Z) =1,
there is @ homeomorphism h* from the cone over X, S(X), onto C(ZX) such‘ that j‘”or the
standard projection p: S (%)—10,1] given by p(x, )=t the following diagram
commures ‘ ;

82— C2)

RN
[0, 1)

* Furthermore, for each x € X and each 1<, W¥((x, n)ch*(x, ).

Proof. We prove ihe theorem only for the case of the ?yadic solenoid. Lelt X bg
the dyadic solenoid, i.e., X = 1im {S,, o} Where S, = § ' =.{ze C: |zih—— ]; ;I;e
a, .,(2) = 7* for each z.€ 8,41- Let 0,2 XS, denote projection for each . De :
oc':'nz‘l(X Y- lim{C(Sy), By} = Y Dy letting a(d) = (algA), 8(4)s wees a,,(AI),,. :..)f O[r
eéch A'e C(X). It is easy to see that o is 2 homeomorphism of c(X) c;ntof 5 mCl:mn s
it is the inverse of Segal’s homeomorghii'sm [16].1];;% 1fI),,t= :}:lzaf ﬁ' : Zl;[lc}( ;; ia{ p }].
i = " for te R*. Note . ]
Let p: R—S* be given by p() = € : : 5 [
thenpthere are numbers t; <1, such that p([tl,’ tz]), = A; also if p([lrlt, t2]‘) c(;s —tl:;n
P(&(h*”tz)) = P(’l’(ti”"‘t’z)) and |t;—t;] = lt1—1al- For each n, let B, " n

be given by B.(d) = [max{0, 1|t~ a1 p (1 +1)
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where f, and 1, satisfy p([f;,1,]) = 4 when A # S,. It is easy to sce that f, is
a homeomorphism of C(S,) onto D,. For each 7, let Sum+1: Dysi— D, be given by

5 () = 0 for 0<{z|<E,
i@ Rl -1 EfEAR for  d<lEl<T.
If follows that the diagram

C(S) < C(Sy10)

Bn Pnwt

-Dn A -Dn-)-l

Spyntt

commutes for each #. Let Z = lim{D,, §,,}. Let f: ¥—Z be the natural homeomor-

phism, i.e.,
ﬂ(Al’ A21 ey An: ) = (ﬂl(A1>> /32(A2)= s ﬁn(An)’ ) .

Next, let I, = [0, 1] = I for each n. Let #%,,4,: Iy1—1I, be given by %,,.1()
= min{2¢, 1} for each n and let I* = Jim{f,, %,,}. It is easy to see that I* is an
arc with end points (0,0, ..., 0, ...y and (1, 1, ..., 1, ...); let 4: I—=I* be any homeo-
morphism of I onto I* satisfying 2(0) = (0,0, ...,0,..)and 2(1) = (1,1, .., 1, ..).
For each n, let A, = x,4: I-=I,. Let S(X) denote the cone over X and, for each n,
let y,: S(X)—D, be given by ‘

yn((xa t)) = [1 '—"/111(0] oc,,‘(x) .
Straightforward computations show that the diagram

Snmrt

‘Dn < 'Dn+1

E\ /;ﬂ- 1
e

commutes. Let y: S(X)—Z be the natural map, i.e.,

')J(X, t) = (yl((x’ t))s yz((x; t)): vy 'Vn((.xz t)): ) .

Since y, maps S(X) onto D, for each n, y maps S(X) onto Z. Co111j711ta1‘Li0115 show
that y is one-to-one. Thus, y is a homeomorphism of S(X) onto Z. Consider the
following. diagram:

C(X)

C(S) =— C(S2) e ¥

B i B .'l l./f
a2

D; on D, A =
P x / |
S(X) . \

[4H]
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Define k: S(X)-C(X) by b = o~ 7 1y. Since each of @, B, and y as a homeo-
morphism, 7 is a homeomorphism of S(X) onto C(X). Moreover,

a ‘ h((x, 0)) = {x},

@ h((x, 1)) =X,

(@) i (x, D, (%, ) e S(X) with t<r, then 2{(x, ))=h((x, ).

Now let ¢: S(X)—S(X) be the homeomorphism given by ¢((x, 1)) = (x, uh{(x, 1))
for each (x, 1) Define &*: S(X)—C(X) by h* = h o ¢~*. Since (1) through (3) above
hold for A, they hold for h*. Also, the diagram in the statement of the theorem
comniutes.

5. The hyperspaces of continua obtained by some identifications. In this section
we give some general results which are useful for recognizing certain subsets of
hyperspaces.

5.1. TuEOREM. Let X be a continuum which is irreducible between points a and b

and assume a and b are each terminal in X Let Y = X/ 1o be the contimuum obiained .
from X by identifying a and b and let p be the corresponding identification point in. ¥,
i, p=1{a,bye Y. Let v: X—Y be the quotient map and let be a Whitney map
on C(Y). Then:
(1) py = pv is a Whitney map on C(X),
(@) 3 is an embedding of C(QON{{a}, {8}} into C(Y),
(B) S = v[X@]u VXW®) is a simple closed curve,
@ for each 0<t<p(Y), % maps py'(f) homeomorphically onto

el ONY (P, 1, D15
(5)  Y(p) is a 2-cell and S is its manifold boundary,
(6) for each 0<t<u(Y), Y(p,u, 1) is an arc with endpoinis Y(4,) and (B,

where {4} = X(a, iy, 1) ond {B} = X(b, us, f); moreover,

{G(.AD, Q(Bt)} = Frp,'l(t)[Y(P, H, t)] 2

©] cry =35[CEN U Y(F) ad VICXIN ¥(p) =S.

Prool. Statements (1) and (2) follow from 2.1. It is easy to prove (3). We now
prove (4) (see the diagram following the proof). By (2) it suffices to show

ST @] = cllu EONY (, 1y 0]

To do this, let 4eu;'(). By definition of g, in (1), ¥(4) e (). Assume
¥(4)e Y(p, p, 1). Then, ae 4 or bed and we assume without loss of generality -
that ae A. Since uy*(f) is a nondegenerate continuum [3, p. 1032] and since
X(a, uy, 1) and X(b, py, ) are each one-point sets, we have

A e i ONX @, 1, )0 X, iy, D)
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This implies ¥(4) e cl[u"*(O\Y(p, &, H)]. Now, let Becl[p"O\NY (2, 1, H]. For
each n = 1,2, .., let B, e [u""(O\Y(p, u, )] such that the sequence {B,} con-
verges 'to B. Since p ¢ B, for any n, v~*(B,) is a continuum for each n = 1,2, ...
Let K be the limit of a convergent subsequence of {v~*(B,)}. It follows easily that K is
a continuum, Ke u7'(?), and ¥(K) = B. This completes the proof of (4). Next
we prove (5). First, define functions

a: Y(p)=»X(@ and B: Y(p)=X()

by the equalities

a(Z) = the component of v~*(Z) which contains a;
B(Z) = the component of v~!(Z) which contains &.

It -is. easy to see that if Ze Y(p) then v~1(Z) has at most two components (one con-
taining a and one containing ). It follows from this that

(8 v[w(Z)up(Z)]=Z for each Ze Y(p),
(b) - is continuous on Y(p)\{Y}.

To see t.his let Ze [Y(p)\{Y}] and let {Z,} be a sequence of members of Y(p\{Y}
converging to Z. There is a subsequence {Z,} of {Z,} such that both sequences
{oz('Zm)} and {$(Z,)} converge; let their limits be denoted, respectively, by 4 and B
Using (a) and the continuity of v it follows that v(4 U B) = Z Now, since a € a(Z, )
and be f(Z,) for each i, ae 4 and b e B. Thus, since 4 and B are continua m;"d
vE_;li UB)=Z+# Y,An B=@. Also, since ae 4 and be B, v(d U B) = Z implies
V"X (Z) = 4 U B. It now follows that a(Z) = 4, i.e., {2(Z,)} converges to a(Z)
’II‘Itlerefore, o is continuous at Z and we have proved (b). Now, for each Ze ¥( ]7)‘
e »

f(@2) = (W(Z), w2 (2)]) .

Noting that ,uiz[oc(Z)] = woy[u(Z)]<u(Z), we see that [ is afunction from Y(p)
into {(s, 1) € R* 0<1<s<p(Y)} =T Let D be the 2-cell obtained from T by

shrinking the convex segment from (u(¥), 0) to (u(¥), #(Y)) to-a point and let
A: T-D be the natural map. We will show

’ h=23cf Y(p)-D
is a homeomorphism onto D. First we prove
© hlY(p)]=D.

To prove () first note that £(¥) = (u(y), #{Y)). Thus, it suffices to show that
if (s,2)eT such that s<u(¥), then there is a Ze Y(p) such that f(Z) = (s, 1)
Let (s, ) € T with s<u(Y). Choose E e X(a) such that u(E) = t. Now. therc; is.
A e){(a) and BeX(b)‘such that py(4) = 5 = py(B). Clearly, ¥(d)e I:f(p, Uy 8)
and v(B)e ¥(p, u, 5). Also, a[¥(4)] = 4 and «[¥(B)] = {a} (the second equality -
follows from the fact that s< (X)) and hence ¢ B. Since <, we have a e Ec A.
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Therefore, since Y(p, i, s) is a continuum (by 3.2) and since, by (b), o is a con-
tinuous function on Y(p, i, s) into the arc X(a), it now follows that there is
a Ze Y(p, u,s) such that w(Z) = E. Clearly, Ze Y(p) and f(Z) = (s, #). This
completes the proof of (c). -
(@ & is one-to-ome. ‘
From the formula for it is easy to see that (d) follows from the following:
(e) For each 0<s<pu(Y), a is one-to-one on ¥(p, iy 8).
To prove (¢) let K, Le ¥(p, u, 5) such that a(K) = «(L). Suppose B(K) # B(L)
Since b is terminal in X, B(K)=p(L) or B(L)=B(K). Without loss of generality we
assume B(K)<=p(L). Suppose
(9 : a(K) U B(K) = a(L) v B(L) -
Then, since (K) is a proper subset of B(L), B(L) N al(K) # 9. Thus, a(K) u f(L)= X"
(by. irreducibility). It now follows easily that
a(K) U BK) = X = a(l) v BL)
which, by (a), implies K = Y = L. This contradicts the assumption s< u(¥). There-
fore, (x) is false and we have that a(K) L B(K) is a proper subset of a{L) u (L)
Hence, by (a), K is a proper subcontinuum of L. This. contradicts the fact that
w(K) = s = u(L). We have now proved that B(K) = B(L)and thus, by (), K = L.
This proves (e).
To complete the proof that k isa homeomorphism we need to show
(f) h is continuous.

However, (f) follows easily from (b) and the continuity of u at Y.
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We have now proved (5). To prove (6)note that, by (b) and (€), « is a homeo-~
morphism of Y(p, u, ©) into X(a). It is easy to see from part of the proof of (c) that
a[Y(p, i, 1)] has endpoints {a} and 4, where {4,} = X(a, yty, 1). Tt follows that
Y(p, i, ¥) has endpoints ¥(4,) and ¥(B,), 4, and B, as in (6). The fact that

{‘\;(A,), G(BJ} = Fr,u”'l(t)[y(p: Hs I)]

can be proved with an argument similar to the one used to prove (4).

Finally, (7) can easily be verified using (3).

The proof of the next theorem is similar to that of the above theorem and is
omitted. '

5.2. THEOREM. Let p, be a lerminal point of a continuum X, i = 0, 1, and let X'
be the one-point union of X, and X, obtained by identification of py and py. Consider X,
as the subset of X and let p, = py = p. If wis a Whitney map 'on C(X), then we have:

(1)  X(p) is a 2-cell with its manifold boundary

aX(p) = {p}XQ UXoXU {p}Xl v X1X'
The interior of X(p) relative to C(X) is equal

IntX(p) = X(0)N\{p}Xo v {P} X1) .

(Observe that the segments are unique.)

Q) For O<t<p(X) the set X(p, u, 1) is an arc with endpoints A,, B, such that
(@) A, {p} X, for t<p(Xo); Ay e XoX for t2u(Xy),
(b) B e {p}X; for t<u(Xy); B.e X\ X for r>u(Xy).
5.3. THEOREM. Let X be a continuum such that

X=XouX; and XonX, =Y,

where X, i = 0,1, is a proper subcontinuum of X, and Y is a continuum terminal in
both X and X, such that each subcontinuum of X intersecting both Xo\Y and X|\Y
conltains Y. Let 1y = max{u(X,), u(X)}. Then for each to<t<u(X), the continuum
wHO) is an arc.

' Proof. By definition of £, we have p~ () = X' (¥, u, ), and the result follows
easily from the assumption that ¥ is terminal in X,y and in X;.

All but three oi the examples we intended including in this section to illustrate
our results appear in [15]. All these examples can be constructed from the arc,
§1n(1/x)-continuum, and the two snake-like examples in [9, p. 205] by some simple
1dentiﬁclations. The results in this section can then be used to verify the pertinent
propert%es. The reader is referred to [15] for the examples and the statements of the
properties they have. We include the following three examples.

‘ .5.4. Examere. Let X be the pseudoarc and let @ and b be iwo points from
distinet composants of X. Then a and b are terminal in X and X is irrechucible between
them. Let ¥ be the indecomposable circle-like continuum obtained from X by identi-
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fication of @ and b, and let u be a Whitney map on C(Y). Now, applying 5.1 we
can casily determine the topological type of the level u~*(?) for 0<t<u(Y). In
fact, ur*(f) is a pseudoarc [3] and hence, by (4) end (6), x~'(2) is the union of
a pseudoarc P and an arc A such that the intersection 4 N P consists of two points

. which are the endpoints of 4 and which lie in distinct composants of P. Note that

w0 is decomposable for each 0<f<pu(Y).

5.5. ExampLE, There exists a non~unicoherent 1-~dimensional continuum X
containing a simple closed curve such that, for some #o<u(X), p~(?) is an arc for
each to<t<u(X). Let X be the continuum obtained by identifying (0, —1) with
0, —1) and (0, 1) with (0, 1) in two copies of the sin(1/x)-continuum. Let S be the
simple closed curve in X. Let X;, i = 0,1, be continua such that '

X"":XoUXl and XoﬁX1=S.

The properties of X" can be easily checked by using 5.3.

5.6. ExampLE. Let X be the sin(1/x)-circle, i.e., X is the continuum obtained by
identifying two terminal points of the sin(1/x)-continuum about which it is irreduc-
ible. Then, X has the fixed point property but, by (b) of 4.4, w~Y(r) is a simple closed
curve for some . Hence, the fixed point property is not a Whitney property.

6. Problems. The table in Section 1 lists topological properties for which it is
now known whether or not they are Whitney properties. The canonical problem
is of course:

1. For a given topological property determine whether it is a Whitney property.
In relation to this problem, we are especially interested in, and do not know the
answer for, the following properties of X acyclic, ANR, AR, contractibility, Hilbert
cube, homogeneity, A-connected, Sh(X)<Sh(Y), and weakly chainable.

In 4.2 we showed that for chainable continua X, no proper subcontinuum
of w~*(#) covers X for any ¢ ’

2. What class of continua does this condition characterize? It is easy to see
from 8.3 of [5] that every hereditarily indecomposable continuum satisfies this
condition. Also, it is not difficult to prove that the condition implies unicoherence

(of X).
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